ROSE-HULMAN Institute of Technology

Department of Mechanical Engineering

Fall 2014-2015

Name

СМ

Exam 2

Oct 27, 2014

Problem 1	/ 15
Problem 2	/ 20
Problem 3	/ 30
Problem 4	/ 35
Total	/ 100

Show all work for full credit.

Open book, computer use for computational purposes, one 8 $\frac{1}{2}$ x 11" handwritten equation sheet.

If you use tabular data from your text, do **not** interpolate values. Use the nearest value in the table(s).

Problem 1 (15 pts)

Sketch the process path on a psychrometric chart for the following physical processes:

(a) heating of a moist air sample from an initial temperature T_1 to a final temperature T_2

(b) cooling of a moist air sample from an initial temperature T_1 to a final temperature T_2 (where T_2 is below the dew point temperature)

(c) humidification of a relatively dry air sample ($\varphi_1 = 30\%$) at an initial temperature T_1 by a liquid spray at a lower temperature

Problem 2 (20 pts)

A vapor-compression heat pump cycle uses **R-134a** to provide heating. The power into the compressor is $\dot{W}_{compr,in} = 10$ kW. Other data are shown in the figure and the table.

State	T [°C]	P [kPa]	h [kJ/kg]	other
1	10	320		Compressor inlet
2		1000	295	
3		1000		Saturated liquid
4		320		

- (a) Determine the mass flow rate of R134a through the system.
- (b) Determine the <u>heating capacity</u> in kW.
- (c) Determine the heat pump coefficient of performance.

Problem 3 (30 Points)

During the cold winter months, a gas heater is commonly used to keep the indoor temperature at a comfortable level. However, the warmer air is usually dry which may cause troubles for people with sensitive skin.

A combined heating-humidification system is proposed to control both the temperature and the relative humidity of the indoor air stream. Please refer to the following schematic for details.

Assuming a uniform total pressure of 101.325 kPa throughout the process,

- (a) Determine the <u>humidity ratio</u> of the air at the entrance,
- (b) the spray rate of liquid water, in kg/s, and
- (c) the <u>heat transfer rate</u> during the heating process, in kW.

CM:_____

Problem 4 (35 pts)

A Really Bad Idea Cycle (RBI cycle) is a closed-system/periodic cycle consisting of only three steps as follows:

(1) \rightarrow (2) Constant volume heat addition (2) \rightarrow (3) Reversible, adiabatic expansion

 $(3) \rightarrow (1)$ Constant temperature heat rejection

A particular RBI cycle is to be modeled using the **cold air standard** assumptions. (For air, $c_p = 1.005 \text{ kJ/kg-K}$, $c_r = 0.718 \text{ kJ/kg-K}$, R = 0.287 kJ/kg.) The air at the beginning of the heat addition is $P_1 = 90 \text{ kPa}$ and $T_1 = 20^{\circ}\text{C}$. The heat added during the constant volume process (1) \rightarrow (2) is $q_{in,12} = 200 \text{ kJ/kg.}$

This information is sumKmarized in the table below. (You do not need to fill in all values in the table.)

State	<i>T</i> [°C]	P [kPa]				
1	20	90				
$q_{in,12} = 200 \text{ kJ/kg}$						
2						
3						

(a) Complete the sketches of the P-v and T-s diagrams for a RBI cycle.

- (b) Find the <u>temperature</u> T_2 at the end of the constant volume heat addition (in °C).
- (c) Find the <u>compression ratio</u>, $r = v_3/v_2$
- (d) Find the <u>work and heat transfer per unit mass</u> (in kJ/kg) for each step in the given cycle (in kJ/kg). (Hint: For a constant temperature process of an ideal gas, Pv = constant.)
- (e) Find the cycle efficiency.

CM:_____