ROSE-HULMAN Institute of Technology

Department of Mechanical Engineering

Fall 2012-2013

Name CM

Exam 2

Oct 9, 2012

Problem 1	/ 30
Problem 2	/ 36
Problem 3	/ 34
Total	/ 100

Show all work for full credit.

Open book, computer use for computational purposes, one 8 $\frac{1}{2}$ x 11" handwritten equation sheet.

If you use tabular data from your text, do **not** interpolate values. Use the nearest value in the table(s).

Problem 1 (30 Points)

A mixture of ideal gases contains 75% N2 (M=28.01) and 25% CO2 (M=44.00) on a molar basis.

- (a) Find the mass fraction of each component.
- (b) Find the apparent (or average) molar mass of the mixture and the ideal gas constant of the mixture in kJ/(kg-K).
- (c) 0.2 kmol of the mixture is contained in a **rigid vessel**. A paddle wheel does work on the gas in the amount of W_{in} =86.3 kJ, increasing the temperature from T_1 =47°C to T_2 =87°C. Find the heat transfer in or out of the mixture, in kJ. Assume that specific heats *are* a function of temperature.

Problem 2 (36 pts)

Air is heated and humidified in a two-step process as shown in the figure.

Moist air at a dry-bulb temperature of $T_{db,1}=10^{\circ}$ C and a relative humidity of $\phi_1=70\%$ enters the heating section at (1). In the next section the air is humidified by an unknown flow rate of 100°C saturated steam ($b_g=2675.7$ kJ/kg) in an adiabatic process, leaving (2) at $T_{db,2}=20^{\circ}$ C and a relative humidity of $\phi_2=60\%$. The mass flow rate of dry air through the system is $\dot{m}_a = 1.085$ kg/s. The total pressure is constant at 1 atm.

(Hint: Find the requested quantities in the order given.)

- (a) Find the humidity ratio ω_1 at (1), and the humidity ratio ω_2 at (2).
- (b) Find the mass flow rate of saturated steam \dot{m}_s in kg/s.
- (c) Find the mixture enthalpy b_A , the relative humidity φ_A , and the temperature $T_{db,A}$ at (A).
- (d) Calculate the rate of heat transfer required in the heating section in kW.

Problem 3 (34 Points)

- (a) (3 pts) $m_i = n_i M_i$ and $\dot{m}_i = \dot{n}_i M_i$.
 - o True/False: $mf_i = y_i M_i$
- (b) (3 pts) Circle one: A volumetric analysis of an ideal gas mixture is the same as a
 - o mole analysis
 - o mass analysis
- (c) The molar analysis of a mixture is 20% N₂ and 80% CO₂. The pressure, temperature and volume of the mixture are 100 kPa, 300 K and 1 m³, respectively.
 - o (2 pts) True/false: The temperature of the CO_2 is 300 K.
 - o (2 pts) True/false: The pressure of the CO_2 is 80 kPa.
 - o (2 pts) True/false: The volume of the N_2 is 0.20 m³.
 - o (2 pts) True/false: The specific volumes of the two gases are the same; i.e., $v_{CO2} = v_{N2}$.
- (d) (8 pts) Sketch the *T-s* diagram for an ideal vapor-compression refrigeration cycle. Label all relevant points and processes appropriately.

- (e) A two-chambered container initially has N₂ in one chamber and He in the other chamber. A partition between the chambers is removed so that the N₂ and the He mix together. The system is kept at constant temperature and constant pressure during the mixing.
 - o (3 pts) True/false: Since the two chambers taken together make up a closed system and s = s(T,P), the entropy of the system remains constant.

(f) (6 pts) A moist air mixture has a temperature of $T=23^{\circ}$ C, relative humidity of $\varphi=0.4$, and a total pressure of P=90 kPa. Find the vapor pressure.

- (g) (3 pts) Consider a moist air mixture at $T_{db,1}$ and $\varphi_1 < 100\%$. The temperature is lowered to $T_{db,2} > T_{dew}$ at constant total pressure. What happens to the relative humidity?
 - o It increases.
 - o It remains about the same.
 - o It decreases.
 - o In sufficient info to determine.