ROSE-HULMAR Institute of Technology

Department of Mechanical Engineering

Exam 2

Oct 9, 2012

Problem 1	\ldots
Problem 2	\ldots
Problem 3	\ldots
	\ldots
Total	\ldots

Show all work for full credit.
Open book, computer use for computational purposes, one $8 \frac{1}{2} \times 11$ " handwritten equation sheet.
If you use tabular data from your text, do not interpolate values. Use the nearest value in the table(s).

Problem 1 (30 Points)

A mixture of ideal gases contains $75 \% \mathrm{~N}_{2}(M=28.01)$ and $25 \% \mathrm{CO}_{2}(M=44.00)$ on a molar basis.
(a) Find the mass fraction of each component.
(b) Find the apparent (or average) molar mass of the mixture and the ideal gas constant of the mixture in $\mathrm{kJ} /(\mathrm{kg}-\mathrm{K})$.
(c) 0.2 kmol of the mixture is contained in a rigid vessel. A paddle wheel does work on the gas in the amount of $W_{i n}=86.3 \mathrm{~kJ}$, increasing the temperature from $T_{1}=47^{\circ} \mathrm{C}$ to $T_{2}=87^{\circ} \mathrm{C}$. Find the heat transfer in or out of the mixture, in kJ . Assume that specific heats are a function of temperature.

Problem 2 (36 pts)

Air is heated and humidified in a two-step process as shown in the figure.

Moist air at a dry-bulb temperature of $T_{d b, 1}=10^{\circ} \mathrm{C}$ and a relative humidity of $\phi_{1}=70 \%$ enters the heating section at (1). In the next section the air is humidified by an unknown flow rate of $100^{\circ} \mathrm{C}$ saturated steam ($h_{\mathrm{g}}=2675.7$ $\mathrm{kJ} / \mathrm{kg}$) in an adiabatic process, leaving (2) at $T_{d b, 2}=20^{\circ} \mathrm{C}$ and a relative humidity of $\phi_{2}=60 \%$. The mass flow rate of $d r y$ air through the system is $\dot{m}_{a}=1.085 \mathrm{~kg} / \mathrm{s}$. The total pressure
 is constant at 1 atm .
(Hint: Find the requested quantities in the order given.)
(a) Find the humidity ratio ω_{1} at (1), and the humidity ratio ω_{2} at (2).
(b) Find the mass flow rate of saturated steam \dot{m}_{s} in kg / s.
(c) Find the mixture enthalpy h_{A}, the relative humidity φ_{A}, and the temperature $T_{d b, A}$ at (A).
(d) Calculate the rate of heat transfer required in the heating section in kW .

Problem 3 (34 Points)

(a) (3 pts) $m_{i}=n_{i} M_{i}$ and $\dot{m}_{i}=\dot{n}_{i} M_{i}$.
o True/False: $m f_{i}=y_{i} M_{i}$
(b) (3 pts) Circle one: A volumetric analysis of an ideal gas mixture is the same as a
o mole analysis
o mass analysis
(c) The molar analysis of a mixture is $20 \% \mathrm{~N}_{2}$ and $80 \% \mathrm{CO}_{2}$. The pressure, temperature and volume of the mixture are $100 \mathrm{kPa}, 300 \mathrm{~K}$ and $1 \mathrm{~m}^{3}$, respectively.
o (2 pts) True/false: The temperature of the CO_{2} is 300 K .
o (2 pts) True/false: The pressure of the CO_{2} is 80 kPa .
o (2 pts) True/false: The volume of the N_{2} is $0.20 \mathrm{~m}^{3}$.
o (2 pts) True/false: The specific volumes of the two gases are the same; i.e., $v_{\mathrm{CO}}=v_{\mathrm{N} 2}$.
(d) (8 pts) Sketch the T-s diagram for an ideal vapor-compression refrigeration cycle. Label all relevant points and processes appropriately.

(e) A two-chambered container initially has N_{2} in one chamber and He in the other chamber. A partition between the chambers is removed so that the N_{2} and the He mix together. The system is kept at constant temperature and constant pressure during the mixing.
o (3 pts) True/false: Since the two chambers taken together make up a closed system and $s=s(T, P)$, the entropy of the system remains constant.
(f) (6 pts) A moist air mixture has a temperature of $T=23^{\circ} \mathrm{C}$, relative humidity of $\varphi=0.4$, and a total pressure of $P=90$ kPa . Find the vapor pressure.
(g) (3 pts) Consider a moist air mixture at $T_{d b, 1}$ and $\varphi_{1}<100 \%$. The temperature is lowered to $T_{d b, 2}>T_{d e \nu}$ at constant total pressure. What happens to the relative humidity?
o It increases.
o It remains about the same.
o It decreases.
o In sufficient info to determine.

