CM
ROSE-HULMAN
institute of technology

Name

ME301 - Applications of Thermodynamics

Circle section: 01 [10 am, Lui] 02 [11 am, Lui] 03 [10 am, Thom] 04 [11 am, Thom] 05 [11 am, Danesh]

Sep 30, 2022

Rules:

- Closed book/notes exam.
- Help sheet allowed. (8-1/2 $\times 11$ " sheet of paper, one side, handwritten; may not contain worked out example problems)
- Maple, Excel, and MATLAB are allowed on your laptop, but nothing may be prepared before the exam.
- Either open property tables (from your textbook) or open Property Calculator Programs on your laptop.

Instructions:

- Show all work for complete credit.
- Work in symbols first, plugging in numbers and performing calculations last.

Problem 1	/ 28
Problem 2	/ 36
Problem 3	/ 36
Total	/100

PROBLEM 1 [28 points]

For (a) through (c), assume the temperature and pressure of the surroundings are $T_{0}=300 \mathrm{~K}$ and $P_{0}=100 \mathrm{kPa}$, respectively.
(a) [4 pts] Heat transfer in the amount of $Q=100 \mathrm{~kJ}$ is transferred from a thermal reservoir at $T_{R}=400 \mathrm{~K}$ to a closed system. How much exergy has been transferred from the reservoir to the system with the heat transfer?

- 0 kJ
- 25 kJ
- 75 kJ
- 100 kJ
- Cannot be determined
(c) [4 pts] Compression/expansion work in the amount of $W=100 \mathrm{~kJ}$ of leaves a closed system. The system volume increases by $0.5 \mathrm{~m}^{2}$ during the expansion. How much exergy has been transferred out of the system?
- -100 kJ
- 0 kJ
- 50 kJ
- 100 kJ
- Cannot be determined

Air at temperature and pressure T_{1} and P_{1} initially occupies half of a rigid (i.e., nondeformable), adiabatic container. A partition separates the air from a vacuum. The partition is removed so that the air fills
 the entire container at a final temperature and pressure of T_{2} and P_{2}. Take your system to be the entire container before and after the process.
(d) [2 pts] The heat transfer into the system is

- $Q_{i n, 12}<0$
- $Q_{i n, 12}=0$
- $Q_{i n, 12}>0$
- Cannot be determined
(b) [2 pts] Electrical work in the amount $W=100 \mathrm{~kJ}$ is transferred to a closed system of fixed volume. How much exergy has been transferred to the system?
- -100 kJ
- 0 kJ
- 50 kJ
- 100 kJ
- Cannot be determined
(f) [3 pts] The change internal energy of the system is
- $U_{2}-U_{1}<0$
- $U_{2}-U_{1}=$
- 0
- $U_{2}-U_{1}>0$
- Cannot be determined
(g) [2 pts] The entropy generation of the system is
- $S_{g e n}<0$
- $\quad S_{g e n}=0$
- $S_{\text {gen }}>0$
- Cannot be determined
(h) [8 pts] Indicate whether each of the following states are sometimes, always, or never true.
i. For a system undergoing a finite time process, the destroyed exergy is sometimes । always 1 never the same as $T_{0} S_{g e n}$.
ii. The exergy of a closed system sometimes I always । never decreases.
iii. A substance with no kinetic and potential energy that is at the same temperature and pressure as the surroundings sometimes I always I never has no exergy
iv. The power out of a turbine at steady-state is sometimes | always | never the same as the useful power out.

PROBLEM 2 [36 points]

0.1 kg of air ($R=0.287 \mathrm{k} \mathrm{J} / \mathrm{kg} \cdot \mathrm{K}$) is contained in a piston-cylinder device and subjected to work from a paddle wheel. Initially, the air is at $P_{1}=300 \mathrm{kPa}$ and $T_{1}=450 \mathrm{~K}$. It is then gradually compressed by the piston in a constant-pressure process such that its volume becomes one-half of its initial value. During this process, 60 kJ of heat is
 removed from the air through a boundary as shown.
Model air as an ideal gas with variable specific heats.
Determine:
(a) the final temperature T_{2} of the air, in K ;
(b) the work done on the air by the piston, in kJ ;
(c) the work done on the air by the paddle wheel, in kJ ;
(d) and the maximum boundary temperature at which the heat can be removed while this process would still be possible, in K.

Problem 3 [36 points]

A flow of $\dot{m}_{1}=2.0 \mathrm{~kg} / \mathrm{s}$ of a saturated water mixture with quality of $x_{1}=60 \%$ and $P_{1}=3.0$ bar (Inlet 1) is mixed with $\dot{m}_{2}=1.5$ kg / s of superheated water vapor at $P_{2}=3.0$ bar and $T_{2}=200^{\circ} \mathrm{C}$ (Inlet 2). The mixture stream is then throttled to a pressure of $P_{3}=1.5$ bar through a valve.
Assume the entire process is adiabatic. Use $T_{0}=25^{\circ} \mathrm{C}$ and $P_{0}=101.325 \mathrm{kPa}$.

(a) Determine the specific flow exergy of the saturated water mixture at Inlet $1 \mathrm{in} \mathrm{kJ} / \mathrm{kg}$.
(b) Determine the mixture temperature at the exit in ${ }^{\circ} \mathrm{C}$.
(c) Determine the rate of exergy destruction for the mixing-throttling process in kW . Use the Accounting of Exergy.
(d) Clearly identify the two inlet states and the one exit state on a $T-s$ diagram, relative to the two-phase dome with properly labeled isobars.

Length

$1 \mathrm{ft}=12 \mathrm{in}=0.3048 \mathrm{~m}=1 / 3 \mathrm{yd}$
$1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}=39.37 \mathrm{in}=3.2808$
ft
1 mile $=5280 \mathrm{ft}=1609.3 \mathrm{~m}$

Mass

$1 \mathrm{~kg}=1000 \mathrm{~g}=2.2046 \mathrm{lbm}$
$1 \mathrm{lbm}=16 \mathrm{oz}=0.45359 \mathrm{~kg}$
$1 \mathrm{slug}=32.174 \mathrm{lbm}$

Temperature Values

$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right) / 1.8$
$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)+273.15$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)=\left[\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)-32\right] / 1.8$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\mathrm{~T} / \mathrm{K})$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)+459.67$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)=1.8\left(\mathrm{~T} /{ }^{\circ} \mathrm{C}\right)+32$

Temperature Differences

$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\Delta \mathrm{~T} / \mathrm{K})$
$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{F}\right)$
$(\Delta \mathrm{T} / \mathrm{K})=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{C}\right)$

Volume

$1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL}=35.315 \mathrm{ft}^{3}$ $=264.17 \mathrm{gal}$
$1 \mathrm{ft}^{3}=1728 \mathrm{in}^{3}=7.4805 \mathrm{gal}=0.028317 \mathrm{~m}^{3}$
$1 \mathrm{gal}=0.13368 \mathrm{ft}^{3}=0.0037854 \mathrm{~m}^{3}$

Volumetric Flow Rate

$$
1 \mathrm{~m}^{3} / \mathrm{s}=35.315 \mathrm{ft}^{3} / \mathrm{s}=264.17 \mathrm{gal} / \mathrm{s}
$$

$$
1 \mathrm{ft}^{3} / \mathrm{s}=1.6990 \mathrm{~m}^{3} / \mathrm{min}=7.4805 \mathrm{gal} / \mathrm{s}
$$

$$
=448.83 \mathrm{gal} / \mathrm{min}
$$

Force

$$
1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}=0.22481 \mathrm{lbf}
$$

$$
1 \mathrm{lbf}=1 \mathrm{slug} \cdot \mathrm{ft} / \mathrm{s}^{2}=32.174 \mathrm{lbm} \mathrm{ft} / \mathrm{s}^{2}
$$

$$
=4.4482 \mathrm{~N}
$$

Pressure

$1 \mathrm{~atm}=101.325 \mathrm{kPa}=1.01325 \mathrm{bar}$

$$
=14.696 \mathrm{lbf} / \mathrm{in}^{2}
$$

1 bar $=100 \mathrm{kPa}=10^{5} \mathrm{~Pa}$
$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=10^{-3} \mathrm{kPa}$
$1 \mathrm{lbf} / \mathrm{in}^{2}=6.8947 \mathrm{kPa}=6894.7 \mathrm{~N} / \mathrm{m}^{2}$;
[lbf/in ${ }^{2}=$ " $\left.p s i "\right]$

Energy

$1 \mathrm{~J}=1 \mathrm{~N} \mathrm{~m}=1 \mathrm{~Pa} \mathrm{~m}^{3}$
$1 \mathrm{~kJ}=1000 \mathrm{~J}=737.56 \mathrm{ft} \cdot \mathrm{lbf}=0.94782 \mathrm{Btu}$
$1 \mathrm{Btu}=1.0551 \mathrm{~kJ}=778.17 \mathrm{ft} \cdot \mathrm{lbf}$
$1 \mathrm{ft} \cdot \mathrm{lbf}=1.3558 \mathrm{~J}$

Energy Transfer Rate

$1 \mathrm{~kW}=1 \mathrm{~kJ} / \mathrm{s}=737.56 \mathrm{ft} \mathrm{lbf} / \mathrm{s}=1.3410$
$\mathrm{hp}=0.94782 \mathrm{Btu} / \mathrm{s}$
$1 \mathrm{Btu} / \mathrm{s}=1.0551 \mathrm{~kW}=1.4149 \mathrm{hp}$
$=778.17 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}$
$1 \mathrm{hp}=550 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=0.74571 \mathrm{~kW}$
$=0.70679 \mathrm{Btu} / \mathrm{s}$

Specific Energy

$1 \mathrm{~kJ} / \mathrm{kg}=1000 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$1 \mathrm{Btu} / \mathrm{lbm}=25037 \mathrm{ft}^{2} / \mathrm{s}^{2}$
$1 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm}=32.174 \mathrm{ft}^{2} / \mathrm{s}^{2}$

