$\overline{C M}$

ROSE-HULMAN
INSIITUE OF TECHNOLOGY

Name

ME301 - Applications of Themodynamics

Circle section:	$\mathbf{0 1}\left[3^{\text {rd }}\right.$ Mertz $]$	$02[3$ rd Thom $]$
	$03\left[4^{\text {th }}\right.$ Thom $]$	$04[3$ rd Cloutier $]$
	$05\left[4^{\text {th }}\right.$ Cloutier $]$	

Exam 1
Oct 4, 2019

Rules:

- Closed book/notes exam.
- Help sheet allowed. ($8-1 / 2 \times 11$ " sheet of paper, one side, handwritten; may not contain worked out example problems)
- Maple, Excel, and MATLAB are allowed on your laptop, but nothing may be prepared before the exam.
- Either open property tables (hardcopies) or open Property Calculator Programs on your laptop.

Instructions:

- Show all work for complete credit.
- Work in symbols first, plugging in numbers and performing calculations last.

Problem 1	/ 26
	/ 39
Problem 3	
Total	/ 100

PROBLEM 1 [26 points]

(a) [10 pts] Water, initially a superheated vapor at a pressure P and temperature T_{1}, passes through a turbine and leaves at a pressure P.

1) On the T-s diagram shown below, draw the two lines of constant pressure, P and P_{2}.
2) On the T-s diagram shown below, draw the process from State (1) to State (2s), assuming the turbine is isentropic and that the water leaves as a saturated vapor.
3) On the T-s diagram shown below, draw the process from State (1) to State (2), assuming the turbine has an isentropic efficiency less than 1.
4) True | False In the case of the actual turbine (part 3), the area under the curve for Process (1) to (2) represents the heat transfer associated with Process (1) to (2).

(b) [8 pts] Answer the following True/False questions:

True | False A change in entropy can be negative.
True | False When work is produced by a system, it necessarily changes the exergy of a system.
True | False If a substance is at the same temperature and pressure as its environment, then it necessarily has no exergy.
True | False A reversible process yields no exergy destruction.
(c) [8 pts] Air flows through a turbine with an exergetic efficiency of 65% and a mass flow rate of $1 \mathrm{~kg} / \mathrm{s}$. If the air's specific flow exergy decreases by $300 \mathrm{~kJ} / \mathrm{kg}$ as it travels through the turbine, determine the power produced by the turbine in kW .

PROBLEM 2 [39 points]

A mass of $m=0.3 \mathrm{~kg}$ of steam (water) is contained in a piston-cylinder. Initially a saturated liquid at $220^{\circ} \mathrm{C}$, heat transfer is added to the water until it becomes a saturated vapor via a constant temperature process. The heat transfer comes from a reservoir maintained at 600 K . The temperature and pressure of the surroundings (environment) are 300 K and 100 kPa , respectively.

(1) $T_{1}=220^{\circ} \mathrm{C}$

Saturated liquid

(2) $T_{2}=T_{1}=220^{\circ} \mathrm{C}$

Saturated vapor
(a) Show the process and the two states on a $\underline{P-v}$ diagram. Be sure to include the vapor dome and lines of constant temperature.
(b) Find the compression/expansion work out of the water and the heat transfer into the water in kJ.
(c) Find the useful work out of the water in kJ .
(d) Using the accounting of exergy (i.e., not the accounting of entropy) find the exergy destroyed in the process in kJ .

Problem 3 [35 points]

An adiabatic compressor compresses air with a temperature and pressure of 300 K and 100 kPa to a pressure and temperature of 5 MPa and 1300 K , respectively. Treat air as an ideal gas with variable specific heats and $R_{\text {air }}=0.287 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$. Find
(a) the power per unit mass flow rate needed to compress the air in $\mathrm{kJ} / \mathrm{kg}$,
(b) the issentropic efficiency of the compressor, and
(c) the rate of entropy generation per unit mass flow rate in the compressor in $\mathrm{kJ} / \mathrm{kg}-\mathrm{K}$.

Length

$1 \mathrm{ft}=12 \mathrm{in}=0.3048 \mathrm{~m}=1 / 3 \mathrm{yd}$
$1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}=39.37 \mathrm{in}=3.2808$
ft
1 mile $=5280 \mathrm{ft}=1609.3 \mathrm{~m}$

Mass

$1 \mathrm{~kg}=1000 \mathrm{~g}=2.2046 \mathrm{lbm}$
$1 \mathrm{lbm}=16 \mathrm{oz}=0.45359 \mathrm{~kg}$
1 slug $=32.174 \mathrm{lbm}$

Temperature Values

$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right) / 1.8$
$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)+273.15$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)=\left[\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)-32\right] / 1.8$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\mathrm{~T} / \mathrm{K})$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)+459.67$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)=1.8\left(\mathrm{~T} /{ }^{\circ} \mathrm{C}\right)+32$

Temperature Differences
$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\Delta \mathrm{~T} / \mathrm{K})$
$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{F}\right)$
$(\Delta \mathrm{T} / \mathrm{K})=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{C}\right)$

Volume

$1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL}=35.315 \mathrm{ft}^{3}$ $=264.17 \mathrm{gal}$
$1 \mathrm{ft}^{3}=1728 \mathrm{in}^{3}=7.4805 \mathrm{gal}=0.028317 \mathrm{~m}^{3}$
$1 \mathrm{gal}=0.13368 \mathrm{ft}^{3}=0.0037854 \mathrm{~m}^{3}$

Volumetric Flow Rate

$$
1 \mathrm{~m}^{3} / \mathrm{s}=35.315 \mathrm{ft}^{3} / \mathrm{s}=264.17 \mathrm{gal} / \mathrm{s}
$$

$$
1 \mathrm{ft}^{3} / \mathrm{s}=1.6990 \mathrm{~m}^{3} / \mathrm{min}=7.4805 \mathrm{gal} / \mathrm{s}
$$

$$
=448.83 \mathrm{gal} / \mathrm{min}
$$

Force

$$
1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}=0.22481 \mathrm{lbf}
$$

$$
1 \mathrm{lbf}=1 \mathrm{slug} \cdot \mathrm{ft} / \mathrm{s}^{2}=32.174 \mathrm{lbm} \mathrm{ft} / \mathrm{s}^{2}
$$

$$
=4.4482 \mathrm{~N}
$$

Pressure

$1 \mathrm{~atm}=101.325 \mathrm{kPa}=1.01325 \mathrm{bar}$

$$
=14.696 \mathrm{lbf} / \mathrm{in}^{2}
$$

$1 \mathrm{bar}=100 \mathrm{kPa}=10^{5} \mathrm{~Pa}$
$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=10^{-3} \mathrm{kPa}$
$1 \mathrm{lbf} / \mathrm{in}^{2}=6.8947 \mathrm{kPa}=6894.7 \mathrm{~N} / \mathrm{m}^{2}$;
[lbf/in ${ }^{2}=$ " $\left.p s i "\right]$

Energy

$1 \mathrm{~J}=1 \mathrm{~N} \mathrm{~m}=1 \mathrm{~Pa} \mathrm{~m}^{3}$
$1 \mathrm{~kJ}=1000 \mathrm{~J}=737.56 \mathrm{ft} \cdot \mathrm{lbf}=0.94782 \mathrm{Btu}$
$1 \mathrm{Btu}=1.0551 \mathrm{~kJ}=778.17 \mathrm{ft} \cdot \mathrm{lbf}$
$1 \mathrm{ft} \cdot \mathrm{lbf}=1.3558 \mathrm{~J}$

Energy Transfer Rate

$1 \mathrm{~kW}=1 \mathrm{~kJ} / \mathrm{s}=737.56 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=1.3410$
$\mathrm{hp}=0.94782 \mathrm{Btu} / \mathrm{s}$
$1 \mathrm{Btu} / \mathrm{s}=1.0551 \mathrm{~kW}=1.4149 \mathrm{hp}$
$=778.17 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}$
$1 \mathrm{hp}=550 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=0.74571 \mathrm{~kW}$
$=0.70679 \mathrm{Btu} / \mathrm{s}$

Specific Energy

$1 \mathrm{~kJ} / \mathrm{kg}=1000 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$1 \mathrm{Btu} / \mathrm{lbm}=25037 \mathrm{ft}^{2} / \mathrm{s}^{2}$
$1 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm}=32.174 \mathrm{ft}^{2} / \mathrm{s}^{2}$

