$\overline{\mathbf{C M}}$

ROSE-HULMAN
INSIIIUIE OF TECHNOLOGY

Name

ME301 - Applications of Themodynamics

Circle section:	$\mathbf{0 1}\left[6^{\text {th }}\right.$ Cloutier $]$	$\mathbf{0 2}\left[5^{\text {th }}\right.$ Thom $]$
	$03\left[6^{\text {th }}\right.$ Thom $]$	$\mathbf{0 4}\left[5^{\text {th }}\right.$ Lui $]$
	$\mathbf{0 5}\left[6^{\text {th }}\right.$ Lui $]$	

Exam 1
Sep 28, 2018

Rules:

- Closed book/notes exam.
- Help sheet allowed. ($8-1 / 2 \times 11$ " sheet of paper, one side, handwritten; may not contain worked out example problems)
- Maple, Excel, and MATLAB are allowed on your laptop, but nothing may be prepared before the exam.
- Either open property tables (hardcopies) or open Property Calculator Programs on your laptop.

Instructions:

- Show all work for complete credit.
- Work in symbols first, plugging in numbers and performing calculations last.

Problem 1 Problem 2	125
	140
Problem 3	135
Total	/100

PROBLEM 1 [25 points]

(a) [3 pts] Below is a $P-v$ diagram showing the vapor dome. Draw two lines of constant temperature on the plot labeled T_{1} and T_{2}, where $T_{1}>T_{2}$.

(b) [3 pts] Below is a $T-v$ diagram showing the vapor dome. Draw two lines of constant pressure on the plot labeled P_{1} and P_{2}, where $P_{1}>P_{2}$.

(c) [3 pts] Circle the correct answer. Which process shown below has the largest magnitude of work?

a) Process $1 \rightarrow 2$
b) Process $2 \rightarrow 3$
c) Process $3 \rightarrow 1$
d) Insufficient information to conclude
(d) [3 pts] Circle the correct answer. Water, initially a saturated liquid, is heated at a constant pressure until it becomes a saturated vapor. During this process:
o The temperature will remain constant
o The temperature will not remain constant
o There is insufficient information to determine the temperature's behavior
(e) [8 pts$] 0.4 \mathrm{~kg}$ of air in a closed piston-cylinder, initially at a pressure of 250 kPa and a specific volume of $0.75 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}$, expands in a constant pressure process until its volume doubles. Calculate the useful work done (in kJ) by the air during this process. The environment is at $P_{0}=100 \mathrm{kPa}$ and $T_{0}=25^{\circ} \mathrm{C}$.
(f) [5 pts] Determine the magnitude and direction of exergy transfer by 50 kJ of heat transfer out of a system crossing a system boundary at $30^{\circ} \mathrm{C}$. The temperature and pressure of the environment are $25^{\circ} \mathrm{C}$ and 100 kPa , respectively.

PROBLEM 2 [40 points]

3.0 kg of a water initially at a temperature of $200^{\circ} \mathrm{C}$ and a pressure of 3.0 bar is kept in a closed piston-cylinder. It undergoes a gradual expansion to a final pressure of 1.0 bar and a final volume of 2.5 times its original value without any leakage. The total heat transfer from the water during the expansion is measured to be 50 kJ at an
 average boundary temperature of $30^{\circ} \mathrm{C}$. The environment is at $25^{\circ} \mathrm{C}$ and 1.0 bar.
(a) Sketch the process path on a $P-v$ diagram. Clearly label your states relative to the two-phase dome.
(b) Determine the final volume and temperature of the water, in m^{3} and ${ }^{\circ} \mathrm{C}$, respectively.
(c) Determine the work done by the water during the expansion, in kJ .
(d) Determine the entropy generation during the expansion, in kJ / K.

Problem 3 [35 points]

A steady-state turbine takes an unknown mass flow rate of air and expands it from 6.0 bar and $800^{\circ} \mathrm{C}$ to 1.0 bar and $464^{\circ} \mathrm{C}$. The turbine produces 2000 kW of power and rejects 325 kW of heat transfer to the surroundings at $T_{0}=300 \mathrm{~K}$. Modeling air as an ideal gas with variable specific heats,
(a) find the required mass flow rate of air in kg / s,
(b) the drop in specific flow exergy of the air, $a_{f, 1}-a_{f, 2}$, in $\mathrm{kJ} / \mathrm{kg}$, and
(c) the total rate of exergy destruction for the turbine in kW .

Length

$1 \mathrm{ft}=12 \mathrm{in}=0.3048 \mathrm{~m}=1 / 3 \mathrm{yd}$
$1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}=39.37 \mathrm{in}=3.2808$
ft
1 mile $=5280 \mathrm{ft}=1609.3 \mathrm{~m}$

Mass

$1 \mathrm{~kg}=1000 \mathrm{~g}=2.2046 \mathrm{lbm}$
$1 \mathrm{lbm}=16 \mathrm{oz}=0.45359 \mathrm{~kg}$
$1 \mathrm{slug}=32.174 \mathrm{lbm}$

Temperature Values

$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right) / 1.8$
$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)+273.15$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)=\left[\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)-32\right] / 1.8$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\mathrm{~T} / \mathrm{K})$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)+459.67$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)=1.8\left(\mathrm{~T} /{ }^{\circ} \mathrm{C}\right)+32$

Temperature Differences
$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\Delta \mathrm{~T} / \mathrm{K})$
$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{F}\right)$
$(\Delta \mathrm{T} / \mathrm{K})=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{C}\right)$

Volume

$$
\begin{aligned}
1 \mathrm{~m}^{3} & =1000 \mathrm{~L}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL}=35.315 \mathrm{ft}^{3} \\
& =264.17 \mathrm{gal} \\
1 \mathrm{ft}^{3} & =1728 \mathrm{in}^{3}=7.4805 \mathrm{gal}=0.028317 \mathrm{~m}^{3} \\
1 \mathrm{gal} & =0.13368 \mathrm{ft}^{3}=0.0037854 \mathrm{~m}^{3}
\end{aligned}
$$

$1 \mathrm{~m}^{3} / \mathrm{s}=35.315 \mathrm{ft}^{3} / \mathrm{s}=264.17 \mathrm{gal} / \mathrm{s}$
$1 \mathrm{ft}^{3} / \mathrm{s}=1.6990 \mathrm{~m}^{3} / \mathrm{min}=7.4805 \mathrm{gal} / \mathrm{s}$

$$
=448.83 \mathrm{gal} / \mathrm{min}
$$

Force

$1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}=0.22481 \mathrm{lbf}$ $1 \mathrm{lbf}=1 \mathrm{slug} \mathrm{ft} / \mathrm{s}^{2}=32.174 \mathrm{lbm} \mathrm{ft} / \mathrm{s}^{2}$ $=4.4482 \mathrm{~N}$

Pressure

$$
\begin{aligned}
1 \mathrm{~atm} & =101.325 \mathrm{kPa}=1.01325 \mathrm{bar} \\
& =14.696 \mathrm{lbf} / \mathrm{in}^{2}
\end{aligned}
$$

1 bar $=100 \mathrm{kPa}=10^{5} \mathrm{~Pa}$
$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=10^{-3} \mathrm{kPa}$ $1 \mathrm{lbf} / \mathrm{in}^{2}=6.8947 \mathrm{kPa}=6894.7 \mathrm{~N} / \mathrm{m}^{2}$;
[lbf/in ${ }^{2}=$ " $\left.p s i "\right]$

Energy

$1 \mathrm{~J}=1 \mathrm{~N} \mathrm{~m}$
$1 \mathrm{~kJ}=1000 \mathrm{~J}=737.56 \mathrm{ft} \cdot \mathrm{lbf}=0.94782 \mathrm{Btu}$ 1 Btu $=1.0551 \mathrm{~kJ}=778.17 \mathrm{ft} \cdot \mathrm{lbf}$ $1 \mathrm{ft} \cdot \mathrm{lbf}=1.3558 \mathrm{~J}$

Energy Transfer Rate

$1 \mathrm{~kW}=1 \mathrm{~kJ} / \mathrm{s}=737.56 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=1.3410$
$\mathrm{hp}=0.94782 \mathrm{Btu} / \mathrm{s}$
$1 \mathrm{Btu} / \mathrm{s}=1.0551 \mathrm{~kW}=1.4149 \mathrm{hp}$
$=778.17 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}$
$1 \mathrm{hp}=550 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=0.74571 \mathrm{~kW}$

$$
=0.70679 \mathrm{Btu} / \mathrm{s}
$$

Specific Energy

$1 \mathrm{~kJ} / \mathrm{kg}=1000 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$1 \mathrm{Btu} / \mathrm{lbm}=25037 \mathrm{ft}^{2} / \mathrm{s}^{2}$
$1 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm}=32.174 \mathrm{ft}^{2} / \mathrm{s}^{2}$

Volumetric Flow Rate

