$\overline{C M}$

ROSE-HULMAN
INSIITUE OF TECHNOLOGY

Name

ME301 - Applications of Themodynamics

Circle section:	$\mathbf{0 1}\left[4^{\text {th }}\right.$ Lui $]$	$\mathbf{0 2}\left[5^{\text {th }}\right.$ Lui $]$
	$\mathbf{0 3}\left[4^{\text {th }}\right.$ Thom $]$	$\mathbf{0 4}\left[5^{\text {th }}\right.$ Thom $]$
	$\mathbf{0 5}\left[4^{\text {th }}\right.$ Mech $]$	

Exam 1
Sep 29, 2017

Rules:

- Closed book/notes exam.
- Help sheet allowed. ($8-1 / 2 \times 11$ " sheet of paper, one side, handwritten; may not contain worked out example problems)
- Maple, Excel, and MATLAB are allowed on your laptop, but, nothing may be prepared before the exam.
- Either open property tables (hardcopies) or open Property Calculator Programs on your laptop.

Instructions:

- Show all work for complete credit.
- Work in symbols first, plugging in numbers and performing calculations last.

Problem 1 Problem 2	/ 26
	/ 37
Problem 3	/ 37
Total	/100

PROBLEM 1 [26 points]

(a) [20 pts] Indicate whether each of the following statements is true or false.

True \| False Anything that generates entropy also destroys exergy.
True \| False Exergy and energy have the same dimensions.
True | False If a substance is at the same temperature as the environment (i.e., $T=T_{0}$) then it necessarily has no exergy.

True | False Exergy is a conserved property.
True | False "Isentropic efficiency" and "exergetic efficiency" are necessarily the same thing.
True | False Based on its definition, exergy cannot be negative.
True | False When heat is transferred into a system, it necessarily transfers entropy into the the system.

True \| False When heat is transferred into a system, it necessarily transfers exergy into the the system.

True | False Exergy destruction is a consequence of the Second Law of Thermodynamics.
True | False A turbine with 101% isentropic efficiency is thermodynamically impossible.
(b) [3 pts] Heat transfer in the amount of 100 kJ is transferred to air in a rigid container. The reservoir is at $T_{R}=500 \mathrm{~K}$ and the environment are at $T_{0}=300 \mathrm{~K}$ and $P_{0}=100 \mathrm{kPa}$. How much exergy has been transferred to the air?
o 100 kJ
o - 100 kJ
o 40 kJ

- -40 kJ
o 20 kJ
o Insufficient information to determine
(c) [3 pts] Power in the amount of 100 kW is transferred to air in a rigid container in a steadystate process. The environment are at $T_{0}=300 \mathrm{~K}$ and $P_{0}=100 \mathrm{kPa}$. How much exergy has been transferred to the air?
o 100 kW
o -100 kW
o $\quad 66.7 \mathrm{~kW}$
o -66.7 kW
o 33.3 kW
o Insufficient information to determine

PROBLEM 2 [37 points]

A mass of 0.75 kg of saturated liquid steam is initially contained in a piston cylinder initially at $P_{1}=200 \mathrm{kPa}$. Heat transfer in the amount of 990.8 kJ is added to the steam in a constant pressure process until the quality reaches $x_{2}=0.6$. The heat is transferred from a thermal reservoir maintained at $T_{R}=227^{\circ} \mathrm{C}$ while holding the pressure of the steam constant. The environment is at $P_{0}=100 \mathrm{kPa}$ and $T_{0}=300 \mathrm{~K}$.
(a) Sketch the process on $P-v$ and T-s diagrams.
(b) Calculate the work out of the steam in kJ .
(c) Calculate the useful work out of the steam in kJ .
(d) Using the Accounting of Exergy Equation, find the total exergy destroyed in the process.

Problem 3 [37 points]

A flow of $\dot{m}_{\text {air }}=10 \mathrm{~kg} / \mathrm{s}$ of air is compressed adiabatically in a compressor with an isentropic (adiabatic) efficiency of $\eta_{C}=0.8$. The exiting air is then expanded irreversibly through a throttle valve to a lower pressure. The valve operates adiabatically and has no moving parts. The apparatus and pertinent property values are shown in the diagram at the right.
Treat air as an ideal gas with variable specific heats. The environment is at $P_{0}=100 \mathrm{kPa}$ and $T_{0}=27^{\circ} \mathrm{C}$.
(a) Sketch the two-step process on a T-s diagram.
(b) Calculate the compressor input power in kW .

(c) Calculate the exergetic efficiency of the compressor.
(d) Using any reasonable method, find the total rate of exergy destruction in the valve. Remember that the valve operates adiabatically and has no moving parts.

Length

$1 \mathrm{ft}=12 \mathrm{in}=0.3048 \mathrm{~m}=1 / 3 \mathrm{yd}$
$1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}=39.37 \mathrm{in}=3.2808$
ft
1 mile $=5280 \mathrm{ft}=1609.3 \mathrm{~m}$

Mass

$1 \mathrm{~kg}=1000 \mathrm{~g}=2.2046 \mathrm{lbm}$
$1 \mathrm{lbm}=16 \mathrm{oz}=0.45359 \mathrm{~kg}$
$1 \mathrm{slug}=32.174 \mathrm{lbm}$

Temperature Values

$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right) / 1.8$
$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)+273.15$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)=\left[\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)-32\right] / 1.8$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\mathrm{~T} / \mathrm{K})$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)+459.67$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)=1.8\left(\mathrm{~T} /{ }^{\circ} \mathrm{C}\right)+32$

Temperature Differences
$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\Delta \mathrm{~T} / \mathrm{K})$
$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{F}\right)$
$(\Delta \mathrm{T} / \mathrm{K})=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{C}\right)$

Volume

$1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL}=35.315 \mathrm{ft}^{3}$

$$
=264.17 \mathrm{gal}
$$

$1 \mathrm{ft}^{3}=1728 \mathrm{in}^{3}=7.4805 \mathrm{gal}=0.028317 \mathrm{~m}^{3}$
$1 \mathrm{gal}=0.13368 \mathrm{ft}^{3}=0.0037854 \mathrm{~m}^{3}$
$1 \mathrm{~m}^{3} / \mathrm{s}=35.315 \mathrm{ft}^{3} / \mathrm{s}=264.17 \mathrm{gal} / \mathrm{s}$
$1 \mathrm{ft}^{3} / \mathrm{s}=1.6990 \mathrm{~m}^{3} / \mathrm{min}=7.4805 \mathrm{gal} / \mathrm{s}$

$$
=448.83 \mathrm{gal} / \mathrm{min}
$$

Force

$1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}=0.22481 \mathrm{lbf}$ $1 \mathrm{lbf}=1 \mathrm{slug} \mathrm{ft} / \mathrm{s}^{2}=32.174 \mathrm{lbm} \mathrm{ft} / \mathrm{s}^{2}$ $=4.4482 \mathrm{~N}$

Pressure

$$
\begin{aligned}
1 \mathrm{~atm} & =101.325 \mathrm{kPa}=1.01325 \mathrm{bar} \\
& =14.696 \mathrm{lbf} / \mathrm{in}^{2}
\end{aligned}
$$

1 bar $=100 \mathrm{kPa}=10^{5} \mathrm{~Pa}$
$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=10^{-3} \mathrm{kPa}$ $1 \mathrm{lbf} / \mathrm{in}^{2}=6.8947 \mathrm{kPa}=6894.7 \mathrm{~N} / \mathrm{m}^{2}$;
[lbf/in ${ }^{2}=$ " $\left.p s i "\right]$

Energy

$1 \mathrm{~J}=1 \mathrm{~N} \mathrm{~m}$
$1 \mathrm{~kJ}=1000 \mathrm{~J}=737.56 \mathrm{ft} \cdot \mathrm{lbf}=0.94782 \mathrm{Btu}$ 1 Btu $=1.0551 \mathrm{~kJ}=778.17 \mathrm{ft} \mathrm{lbf}$ $1 \mathrm{ft} \cdot \mathrm{lbf}=1.3558 \mathrm{~J}$

Energy Transfer Rate

$1 \mathrm{~kW}=1 \mathrm{~kJ} / \mathrm{s}=737.56 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=1.3410$
$\mathrm{hp}=0.94782 \mathrm{Btu} / \mathrm{s}$
$1 \mathrm{Btu} / \mathrm{s}=1.0551 \mathrm{~kW}=1.4149 \mathrm{hp}$

$$
=778.17 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}
$$

$1 \mathrm{hp}=550 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=0.74571 \mathrm{~kW}$

$$
=0.70679 \mathrm{Btu} / \mathrm{s}
$$

Specific Energy
$1 \mathrm{~kJ} / \mathrm{kg}=1000 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$1 \mathrm{Btu} / \mathrm{lbm}=25037 \mathrm{ft}^{2} / \mathrm{s}^{2}$
$1 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm}=32.174 \mathrm{ft}^{2} / \mathrm{s}^{2}$

