ROSE-HULMAN Institute of Technology

Department of Mechanical Engineering

ME301 - Thermodynamics II

Fall 2013-2014

Section: □ 01 (8th hour) □ 02 (9th hour)

Name

CM

Sep 30, 2014

Problem 1	/ 50
Problem 2	/ 25
Problem 3	/ 25
Total	/ 100

Show all work for full credit.

Open book, property tables. Computer use for computational purposes or EES properties. One $8\frac{1}{2} \times 11^{"}$ handwritten equation sheet – one side, hand-written, no worked examples or homework.

Problem 1 (50 pts)

Consider the reheat **STEAM** cycle at the right. Partial data are provided in the table below. Kinetic and potential energies are negligible.

- (a) [10 pts] Determine the **net work out** per unit mass of steam in kJ/kg.
- (b) [10 pts] Determine the **thermal efficiency** of the entire cycle.
- (c) [12 pts] Determine the adiabatic (isentropic) efficiency of the low pressure turbine (LPT).
- (d) [10 pts] Determine the exergetic (2nd Law) efficiency of the pump.

HINT: <u>Only find the property data necessary to complete the computations.</u> Much of the table can be left blank.

State	T [°C]	P [kPa]	h [kJ/kg]	s [kJ/(kg K)]	other
0	17	101.3	71.4	0.253	environment (dead state)
1	500	8000			
2	245.5	1000	2932.0	6.904	
3	450	1000	3370.7	7.618	
4		8	2521.0	8.052	
5	41.5	8	173.9	0.593	
6		8000	186.3	0.606	
7	15	200	63.1	0.224	
8	30	101.3	125.8	0.436	

- (d) [4 pts] Most of the data required to calculate the **exergetic** (2nd Law) efficiency of the condenser are given in the table above.
 - (1) What parameter(s) are missing?
 - (2) How would you calculate it (them)?
- (e) [4 pts] What is (are) the advantage(s) of adding a reheat to a modified-Rankine cycle.

CM: _____

Problem 2 (25 pts)

Refer back to Problem 1 of this exam but focus on the pump of the steam cycle. Further measurements show that heat is being transferred out of the pump at a rate of 5 kJ/kg from a surface at 45°C. You may neglect the changes in kinetic and potential energies.

- (a) [5 pts] Determine the <u>exergy transfer by heat</u> from the pump, in kJ/kg.
- (b) [7 pts] Determine the <u>NEW energy transfer by work</u> to the pump, in kJ/kg.
- (c) [8 pts] Determine the <u>rate of exergy destruction</u> in the pump, in kJ/kg.
- (d) [5 pts] Circle the correct answer. Qualitatively, how does the heat transfer affect
 - i. the thermal efficiency of the cycle? [increase / decrease / stay the same]
 - ii. the <u>exergetic efficiency of the pump?</u> [increase / decrease / stay the same]

CM: _____

Problem 3 (25 pts)

A mixture of ideal gases contains 75% N₂ (M = 28 kg/kmol) and 25% CO₂ (M = 44 kg/kmol) by mass. The mixture is initially at $T_1=27^{\circ}$ C and $P_1 = 100 \text{ kPa}$.

- (a) What are the partial pressures (in kPa) of the N_2 and the CO₂ at state 1?
- (b) If 1 kmol of the mixture is heated to a temperature of $T_2 = 37^{\circ}$ C and $P_2 = 200$ kPa, what is the total change in entropy, $S_2 S_1$, in kJ/K?

CM: _____