$\qquad$

## ROSE-HULMAN Institute of Technology

Department of Mechanical Engineering

## CM

## Exam 1

Sep 20, 2012

| Problem 1 | $\ldots$ |
| :---: | :--- |
| Problem 2 | $\ldots$ |
| Problem 3 | $\ldots$ |
|  | $\ldots$ |

Show all work for full credit.
Open book, computer use for computational purposes, one $8 \frac{1}{2} \times 11$ " handwritten equation sheet.
If you use tabular data from your text, do not interpolate values. Use the nearest value in the table(s).
$\qquad$

## Problem 1 (34 pts)

A pump with isentropic (adiabatic) efficiency of $\eta_{P}=0.7$ compresses $\dot{m}=1.5 \mathrm{~kg} / \mathrm{s}$ of saturated liquid water from $P_{1}=$ 200 kPa to $P_{2}=2.5 \mathrm{MPa}$. The water is then passed through a constant pressure steam generator which receives heat transfer in the amount of $\dot{Q}=3.7 \mathrm{MW}$. The temperature and pressure of the surroundings are $T_{0}=300 \mathrm{~K}$ and $P_{0}=$ 100 kPa . The properties at state (1) are given below.

(1) $P_{1}=200 \mathrm{kPa}$

Saturated liquid
$T_{1}=120.2^{\circ} \mathrm{C}$
$v_{1}=0.0011 \mathrm{~m}^{3} / \mathrm{kg}$
$u_{1}=504.5 \mathrm{~kJ} / \mathrm{kg}$
$h_{1}=504.7 \mathrm{~kJ} / \mathrm{kg}$
$s_{1}=1.530 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
(2) $P_{2}=2.5 \mathrm{MPa}$
(3) $P_{3}=P_{2}$

(a) Sketch the two step process on the T-s diagram above.
(b) Find the required power into the pump, $\dot{W}_{i n}$, in kW .
(c) Find the specific enthalpy of the steam leaving the steam generator, $b_{3}$, in $\mathrm{kJ} / \mathrm{kg}$ and state the phase (liquid, superheated vapor, saturated mixture, etc.) of the steam leaving the steam generator.
(d) Find the exergetic efficiency (second law efficiency) of the pump, $\varepsilon_{P}$.
$\qquad$
Problem 2 (34 pts)
A rigid vessel contains 2 kg of steam. Initially the steam is a saturated vapor at $P_{1}=200 \mathrm{kPa}$. Heat transfer from a reservoir at $T_{\mathrm{R}}=400^{\circ} \mathrm{C}$ is then added to the steam in the amount of $Q=148 \mathrm{~kJ}$, along with an unknown amount of paddle wheel work, $W$, until the steam is at $T_{2}=200^{\circ} \mathrm{C}$. The temperature and pressure of the surroundings are $T_{0}=300 \mathrm{~K}$ and $P_{0}=$ 100 kPa , respectively.

Find

(a) the work the paddle wheel does on the steam (in kJ ) and
(b) the change in exergy (in kJ ) of the steam.
(c) Using the results of (a) and (b), find the amount of exergy destroyed (in kJ ) in the process.
$\qquad$

## Problem 3 (32 pts)

(a) A turbine with an adiabatic efficiency (isentropic efficiency) of $\eta_{T}<1$ operates between pressures of 10 MPa and 50 kPa . The inlet is a saturated vapor.
i. (3 pts) How does the actual exit pressure compare to the isentropic exit pressure?

0 $P_{2}<P_{2 s}$
o $P_{2}=P_{2 s}$
0 $\quad P_{2}>P_{2 s}$
0 Insufficient info to determine
ii. (3 pts) How does the actual exit specific entropy compare to the isentropic exit specific entropy?
$0 \quad s_{2}<s_{2 s}$
O $s_{2}=s_{2 s}$
$0 \quad s_{2}>s_{2 s}$
0 Insufficient info to determine
iii. (3 pts) How does the actual exit temperature compare to the isentropic exit temperature?
$0 \quad T_{2}<T_{2 s}$
$0 \quad T_{2}=T_{2 s}$
0 $\quad T_{2}>T_{2 s}$
0 Insufficient info to determine
(b) (3 pts) The work out of a closed system is $W_{12}=100 \mathrm{~kJ}$. The system's volume increases from $\forall_{1}=1 \mathrm{~m}^{3}$ to $\forall_{2}=2$ $\mathrm{m}^{3}$ during the work addition. If the environment is at $T_{0}=300 \mathrm{~K}$ and $P_{0}=100 \mathrm{kPa}$, how much exergy has left the system because of work?

O $\quad A_{W, \text { out }}=0 \mathrm{~kJ}$
O $A_{W, \text { out }}=100 \mathrm{~kJ}$
O $A_{W, \text { out }}=200 \mathrm{~kJ}$
o Insufficient info to determine
(c) An electrical resistance heater operates at steady-state with an input electrical power of $\dot{W}_{i n}=5 \mathrm{~kW}$. The heater converts all of the electrical power into heat transfer, which is dissipated to the heated space. The temperature of the heating element is $T_{\text {elem }}=700 \mathrm{~K}$ and the heated space is at $T_{\text {space }}=300 \mathrm{~K}$ and $P_{\text {space }}=100 \mathrm{kPa}$.
i. (2 pts) What is the energy-based efficiency of the heater?
$0 \quad \eta_{\text {heat }}=0 \%$
O $\eta_{\text {heat }}=43 \%$
O $\quad \eta_{\text {heat }}=57 \%$
O $\eta_{\text {heat }}=100 \%$
o Insufficient info to determine
ii. (4 pts) What is the exergetic efficiency of the heater?

O $\quad \varepsilon_{\text {heat }}=0 \%$
$0 \quad \varepsilon_{\text {heat }}=43 \%$
O $\varepsilon_{\text {heat }}=57 \%$
O $\varepsilon_{\text {heat }}=100 \%$
o Insufficient info to determine
$\qquad$
(d) Circle the correct response.
i. (3 pts) True / False For a turbine operating at steady-state, the total power produced and the useful power are the same.
ii. (3 pts) True / False A change in exergy can be negative.
iii. (3 pts) True / False Exergy destruction can be negative.
(e) ( 5 pts ) Hot combustion gases at $T_{\mathrm{R}}=700^{\circ} \mathrm{C}$ provide 5 MW of heat transfer to steam at $T_{\text {boiler }}=600^{\circ} \mathrm{C}$ in a Rankine cycle. If the boiler temperature were raised to $T_{\text {boiler }}=650^{\circ} \mathrm{C}$ instead, would you expect the cycle efficient to go up, down, or remain the same? Explain your answer.

