Homework, Lesson 6

Problem 1

You are responsible for designing a pizza dough press that will transform a spherical ball of pizza dough into a flat pizza crust. The creation of the flat-disk crust is a two-step process:

State 1: Spherical ball of dough with diameter D_{1} and density $\rho_{1}=\rho_{\text {raw }}$
Process $\mathbf{1 \rightarrow 2}$ 2: Sphere is compressed into a cylinder.
State 2: Vertical, cylinder of dough with diameter $D_{2}=D_{1}$, height H, and density $\rho_{2}=\rho_{\text {raw }}$
Process $2 \rightarrow 3$: Cylinder is flattened until it has radius $r=R$ and thickness δ.
State 3: Flat, disk of dough with radius R and thickness δ and density $\rho_{3}=0.90 \rho_{\text {raw }}$

State 1

State 2

State 3
Figure 1: Three states in smashing pizza dough
(a) Determine the relationship between the dough cylinder height (H) in State 2 and the dough-ball diameter $\left(D_{1}\right)$ in State 1.
(b) Determine the relationship at State 3 between the pizza crust radius R, the pizza crust thickness δ, and the original dough ball diameter D_{1}.
(c) At State 3, determine how fast the edge of the pizza dough crust advances $(d R / d t)$ in terms of the time-rate-of-change of the pizza thickness ($d \delta / d t$).
(d) What diameter of dough ball is required to make a $40-\mathrm{cm}$ diameter pizza crust that is $6-\mathrm{mm}$ thick?

