\qquad SECTION \qquad
BOX NUMBER \qquad

Problem 1 (XX) \qquad
Problem 2 (XX) \qquad
Problem 3 (XX) \qquad

INSTRUCTIONS

- Closed book/notes exam. (Unit conversion page provided)
- Help sheet allowed. ($8-1 / 2 \times 11$ " sheet of paper, one side)
- Laptops may be used; however, no pre-prepared worksheets or files may be used.
- Time limit is 50 minutes unless you travel back to 1955, in which case you have 54 years.

1) Show all work for complete credit.

- Start all problems at the ANALYSIS stage, but clearly label any information you use for your solution.
- Problems involving conservation principles MUST CLEARLY IDENTIFY THE SYSTEM IN A SEPARATE DRAWING and show a clear, logical progression from the basic principle.
- Don't expect us to read your mind as to how or why you did something in the solution. Clearly indicate how your arrived at your answer.
- Always crunch numbers last on an exam. The final numerical answer is worth the least amount of points. (Especially if all I would have to do is plug in the numbers into a well-documented solution.)

2) Useful Rule of Thumb (Heuristic): $(100$ point exam $) /(50 \mathrm{~min})=2$ points $/$ minute. That means a 10 point problem is not worth more than 5 minutes of your time (at least the first time around).
3) Please remain seated until the end of class or everyone finishes. (Raise your hand and I'll pick up your exam if you have other work you need or want to do.)

USEFUL INFORMATION	SI	USCS	Molar Mass	
Ideal Gas Constant: R_{u}	$=8.314 \mathrm{~kJ} /(\mathrm{kmol}-\mathrm{K})$	$\begin{aligned} & =1545 \text { (ft-lbf)/(lbmol- } \\ & \left.{ }^{\circ} \mathrm{R}\right) \end{aligned}$	Air	28.97
		$=1.986 \mathrm{Btu} /\left(\mathrm{lbmol}^{-}{ }^{\circ} \mathrm{R}\right)$	O_{2}	32.00
Standard Acceleration of Gravity:	$=9.810 \mathrm{~m} / \mathrm{s}^{2}$	$=32.174 \mathrm{ft} / \mathrm{s}^{2}$	N_{2}	28.01
Density of liquid water	$=1000 \mathrm{~kg} / \mathrm{m}^{3}$	$=62.4 \mathrm{lbm} / \mathrm{ft}^{3}$	H_{2}	2.016
		$=1.94 \mathrm{slug} / \mathrm{ft}^{3}$	CO_{2}	44.01

Problem 1 (35 pts)

Doc Brown slides down a zip line from the Hill Valley Court house en route to the Delorean Time Machine. Just meters away from the DeLorean, his dog Einstein suddenly jumps up and collides with him, consequently getting caught in his lab coat. Dimensions of the zip line and the masses of Einstein and Doc Brown are given in the figure
a) If Doc Brown starts from rest at the top of the court house and slides along the line 25 meters before running into Einstein, find his speed just prior to colliding with Einstein. Assume the sliding is resisted by a constant friction force of $f_{\text {Brake }}=150 \mathrm{~N}$.
b) Find the speed of Doc Brown and Einstein just after they collide. Assume that Einstein's has negligible initial velocity. Assume that collision happens over a very small time.

\square

Problem 2 (30 pts)

The flux capacitor in the DeLorean-made-into-a-time-machine requires a total of 1.21 gigaJoules \dagger to run through the 'time travel process' (that is, take the time machine from one time period to another). The 'time travel process' takes a total of 60 seconds to complete and draws constant electrical power. To prevent overheating, a coolant liquid flows through the flux capacitor from point 1 to point 2 .
a) Assuming and that the flux capacitor runs steadily through the 'time travel process', and that the power required to create the time-travel wormholes is 20 MW , determine the heat transfer rate from the flux capacitor, given the other parameters as indicated.
b) To avoid overheating the inside of the DeLorean Time Machine, the heat generated by the flux capacitor is dissipated by a heat exchanger on the back of the car. Assuming that the heat transfer rate out of the flux capacitor in part (a) is 40 kW (it isn't, really) and that the surface temperature of the heat exchanger is $70^{\circ} \mathrm{C}$ and the surrounding temperature is $10^{\circ} \mathrm{C}$, with an heat transfer coefficient of $70 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$, what would the required surface area of the heat exchanger (in m^{2})?

Note: For the specialized coolant liquid, $c=12 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and $\rho=1500 \mathrm{~kg} / \mathrm{m}^{3}$

At point 1:

$$
\begin{array}{r}
\dot{m}_{1}=200 \mathrm{~kg} / \mathrm{sec} \\
T_{1}=18^{\circ} \mathrm{C} \\
P_{1}=2500_{\mathrm{kPa}} \\
V_{1}=5 \mathrm{~m} / \mathrm{s}
\end{array}
$$

At point 2:

$$
\begin{array}{r}
\dot{m}_{2}= \\
T_{2}=45^{\circ} \mathrm{C} \\
P_{2}=100_{\mathrm{kPa}} \\
V_{2}=15 \mathrm{~m} / \mathrm{s}
\end{array}
$$

It's worth noting that in his excitement describing the amount of energy needed to run through the 'time travel process', Dr. Emmett Brown accidentally referred to a power (1.21 gigaWatts) and not an amount of energy. We've corrected his misstep in this problem.
(2)

Before going forward to the future, Doc needs to fuel up the time machine with the new "Mr. Fusion" device. It works by creating fusion energy from compressing a gas consisting of a mixture of banana peels, skunky beer, and rotten tomatoes, which behaves as an ideal gas (properties R, c_{p}, and c_{v}).
a) In order to activate Mr. Fusion, Doc must compress a spring that will transfer energy to the gas mixture. The spring (with spring constant k) is initially compressed by length x_{0} Doc further compresses it to length x_{1}. Solve for the work, W, that must be done by Doc to compress the spring.
b) The peel/beer/tomato gas is then compressed from state 1 to state 2 with $P{ }^{1.4}=C$, where C is a constant. Given P_{1}, \forall_{1}, and \forall_{2}, find: P_{2} and the work done during the compression, W , in terms of the given values (assume that the spring does not interact with this process).
c) If the initial temperature of the gas is T_{1}, find T_{2} and the
 heat released from the gas in terms of the given values.
(2)

Length

$1 \mathrm{ft}=12 \mathrm{in}=0.3048 \mathrm{~m}=1 / 3 \mathrm{yd}$
$1 \mathrm{~m}=100 \mathrm{~cm} \quad=1000 \mathrm{~mm}=39.37 \mathrm{in}=$
3.2808 ft
$1 \mathrm{mile}=5280 \mathrm{ft}=1609.3 \mathrm{~m}$

Mass

$1 \mathrm{~kg}=1000 \mathrm{~g}=2.2046 \mathrm{lbm}$
$1 \mathrm{lbm}=16 \mathrm{oz}=0.45359 \mathrm{~kg}$
$1 \mathrm{slug}=32.174 \mathrm{lbm}$

Temperature Values

$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right) / 1.8$
$(\mathrm{T} / \mathrm{K})=\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)+273.15$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)=\left[\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)-32\right] / 1.8$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\mathrm{~T} / \mathrm{K})$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)+459.67$
$\left(\mathrm{T} /{ }^{\circ} \mathrm{F}\right)=1.8\left(\mathrm{~T} /{ }^{\circ} \mathrm{C}\right)+32$
Temperature Differences
$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=1.8(\Delta \mathrm{~T} / \mathrm{K})$
$\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{R}\right)=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{F}\right)$
$(\Delta \mathrm{T} / \mathrm{K})=\left(\Delta \mathrm{T} /{ }^{\circ} \mathrm{C}\right)$

Volume

$1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL}=35.315 \mathrm{ft}^{3}$
$=264.17 \mathrm{gal}$
$1 \mathrm{ft}^{3}=1728 \mathrm{in}^{3}=7.4805 \mathrm{gal}=0.028317 \mathrm{~m}^{3}$
$1 \mathrm{gal}=0.13368 \mathrm{ft}^{3}=0.0037854 \mathrm{~m}^{3}$

Volumetric Flow Rate

$1 \mathrm{~m}^{3} / \mathrm{s}=35.315 \mathrm{ft}^{3} / \mathrm{s}=264.17 \mathrm{gal} / \mathrm{s}$
$1 \mathrm{ft}^{3} / \mathrm{s}=1.6990 \mathrm{~m}^{3} / \mathrm{min}=7.4805 \mathrm{gal} / \mathrm{s}=$
$448.83 \mathrm{gal} / \mathrm{min}$

Force

$1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}=0.22481 \mathrm{lbf}$
$1 \mathrm{lbf}=1 \mathrm{slug} \cdot \mathrm{ft} / \mathrm{s}^{2}=32.174 \mathrm{lbm} \cdot \mathrm{ft} / \mathrm{s}^{2}=$
4.4482 N

Pressure

$1 \mathrm{~atm}=101.325 \mathrm{kPa}=1.01325 \mathrm{bar}=14.696$
lbf/in ${ }^{2}$
$1 \mathrm{bar}=100 \mathrm{kPa}=10^{5} \mathrm{~Pa}$
$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=10^{-3} \mathrm{kPa}$
$1 \mathrm{lbf} / \mathrm{in}^{2}=6.8947 \mathrm{kPa}=6894.7 \mathrm{~N} / \mathrm{m}^{2}$
[lbf/in ${ }^{2}$ often abbreviated as "psi"]

Energy

$1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}$
$1 \mathrm{~kJ}=1000 \mathrm{~J}=737.56 \mathrm{ft} \cdot \mathrm{lbf}=0.94782 \mathrm{Btu}$
$1 \mathrm{Btu}=1.0551 \mathrm{~kJ}=778.17 \mathrm{ft} \cdot \mathrm{lbf}$
$1 \mathrm{ft} \cdot \mathrm{lbf}=1.3558 \mathrm{~J}$

Energy Transfer Rate

$1 \mathrm{~kW}=1 \mathrm{~kJ} / \mathrm{s}=737.56 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=1.3410 \mathrm{hp}$ $=0.94782 \mathrm{Btu} / \mathrm{s}$
$1 \mathrm{Btu} / \mathrm{s}=1.0551 \mathrm{~kW}=1.4149 \mathrm{hp}=778.17$
$\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}$
$1 \mathrm{hp}=550 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}=0.74571 \mathrm{~kW}=0.70679$
Btu/s

Specific Energy

$1 \mathrm{~kJ} / \mathrm{kg}=1000 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$1 \mathrm{Btu} / \mathrm{lbm}=25037 \mathrm{ft}^{2} / \mathrm{s}^{2}$
$1 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm}=32.174 \mathrm{ft}^{2} / \mathrm{s}^{2}$

