Example

A pump is used to pump water from a low pressure, p_{1}, to a high pressure, p_{2}. The temperatures at the inlet and exit are T_{1} and T_{2}, respectively. The pump operates adiabatically and at steady state with a mass flow rate of \dot{m}. Show that the minimum power input to the pump corresponds to isothermal flow; i.e., $T_{2}=T_{1}$. (Hint: model water as an incompressible substance.)

Example

A rigid, insulated (and therefore...) tank with a total volume of $2 \mathrm{~m}^{3}$ contains air at $25^{\circ} \mathrm{C}$ and 100 kPa . Initially the air occupies $1 \mathrm{~m}^{3}$ to one side of a thin membrane. A magic fairy then pokes a pinhole in the membrane allowing the air to eventually fill the whole tank. (c_{v} $=0.713 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, c_{p}=1.000 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, R_{\text {air }}=0.287 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$)
(a) Find the specific volume of the air (in $\mathrm{m}^{3} / \mathrm{kg}$) in its initial state.
(b) Find the final specific volume of the air.
(c) Find the entropy generated (in kJ / K) due to the expansion.
(d) The magic fairy then lets all the air flow back through the pinhole to the right hand chamber. Calculate the entropy generated (in kJ / K) for this process. Comment on the possibility of this process. Comment on the existence of fairies.

