The 2nd Law of Thermodynamics

From experience we know...

1. Spontaneous processes have a preferred direction of change.

2. The maximum efficiency of cyclic devices that exchange energy via heat transfer with their surroundings is less than 100%.

3. It is impossible for energy to flow spontaneously from a low temperature to a high temperature by heat transfer.

4. Isolated systems have a preferred equilibrium state.

The 2^{nd} law of thermodynamics deals with these experiences. One of the most useful statements of the 2^{nd} law is given below.

- 1. There exists an ______ property called ______. It can be transported
 - by ______ at non-flow boundaries and by ______ at flow boundaries.
- 2. The *rate* of entropy transfer by heat transfer is given by

T_j is the _______ temperature at the ______ *j*.

3. Only in the limit of an ______ process, entropy is conserved.

Otherwise entropy can only be _____.

Entropy Accounting

- 1. What is entropy?
 - It depends on the amount of stuff within a system. It's an
 - Given the symbol
 - Related to the 2nd Law of Thermo.
 - Dimensions of

- 2. How is it stored? (What is S_{sys} ?)
 - *Particles*:
 - *Continuum*:
- 3. How is it transported? (How does it get in or out of a system?)
 - *By heat transfer:*
 - By mass flow:
- 4. How can it be generated or consumed?
- 5. Putting it all together.

