Example

Dr. Thom drops a 75 lb dumbbell from a height of 5 ft onto a springboard. The spring board has a mass of 10lbm with springs of stiffness $450 \mathrm{lb} / \mathrm{in}$. The springs are initially compressed 0.022 in . Calculate the maximum deflection of the springboard in inches.

Divide the problem into three stages:
$\mathrm{A} \rightarrow \mathrm{B}:$ Weight drops from 5 ft to instant just before impact.
$B \rightarrow C:$ Just before impact to just after impact.
$\mathrm{C} \rightarrow \mathrm{D}:$ Just after impact to point of maximum spring
 deflection
$\mathrm{A} \rightarrow \mathrm{B}$
System: dumbbell

Conservation of energy

$$
\frac{d}{d t}\left(E_{\text {sys }}\right)=\dot{Q}_{\text {in.net }}+\dot{W}_{\text {in.net }}+\ldots-\ldots /
$$

Integrate to get finite time:

$$
E_{s y s, B}-E_{s y s, A}=W_{A-B}
$$

Only KE and PE for this system:

$$
\left(K E_{B}-K E_{A}\right)+\left(P E_{B}-P E_{A}\right)=W_{A-B}
$$

No surface (contact) forces do work. Plug and chug...

$$
\begin{gathered}
0=\left(1 / 2 m_{d b} \cdot V_{B}^{2}-0\right)+m_{d b} \cdot g \cdot(5 \mathrm{ft}) \\
V_{B}=(2 \cdot \mathrm{~g} \cdot 5 \mathrm{ft})^{1 / 2}=\left(2^{*} 32.2 * 5\right)^{1 / 2} \mathrm{ft} / \mathrm{s}=17.9 \mathrm{ft} / \mathrm{s}
\end{gathered}
$$

$B \rightarrow C$
System: dumbbell \& board
z-dirction Linear momentum, finite time, closed system (You should be able to derive this on your own!)

$$
\begin{gathered}
P_{\text {sys }, C}-P_{s y s, B}=F_{\text {avg, impulsive }} \Delta t \\
{\left[\left(m_{d b}+m_{b o a r d}\right) V_{C}\right]-\left[m_{d b} V_{B}+m_{b o a r d} V_{B, b o a r d}\right]=0}
\end{gathered}
$$

(No impulsive forces acting on system. Spring forces are negligible compared to impulsive forces.)

$$
\begin{gathered}
{\left[\left(m_{d b}+m_{\text {board }}\right) V_{C}\right]-\left[m_{d b} V_{B}+m_{\text {board }} 0\right]=0} \\
V_{C}=\left[m_{d b} /\left(m_{d b}+m_{\text {board }}\right)\right] V_{B}=\ldots=15.83 \mathrm{ft} / \mathrm{s}
\end{gathered}
$$

$C \rightarrow D$
System: dumbbell, board and spring
Conservation of energy reduces as before:

$$
\frac{d}{d t}\left(E_{\text {sys }}\right)=\dot{Q}_{\text {in:ivet }}+\dot{W}_{\text {in.net }}+\ldots \neq \ldots \downarrow
$$

Integrate to get finite time:

$$
\begin{aligned}
& E_{s y s, D}-E_{s y, C}=W_{C-D} \\
& W_{C-D}=\left(K E_{D}-K E_{C}\right)+\left(P E_{D}-P E_{C}\right)+\left(E_{S, D}-E_{S, C}\right) \\
& 0=\left[1 / 2 \cdot\left(m_{d b}+m_{\text {boart }}\right) \cdot V_{D^{2}}-1 / 2 \cdot\left(m_{d b}+m_{\text {boart }}\right) \cdot V_{C}{ }^{2}\right]+\left[m_{d b} \cdot g \cdot\left(z_{D}-z_{C}\right)\right]+\left[\left(1 / 2 k x_{D}{ }^{2}-1 / 2 k x_{C}{ }^{2}\right)\right] \\
& 0=\left[1 / 2 \cdot\left(m_{d b}+m_{\text {board }}\right) \cdot 0^{2}-1 / 2 \cdot\left(m_{d b}+m_{\text {boart }}\right) \cdot V_{C^{2}}\right]+m_{d b} \cdot g \cdot\left(0-z_{C}\right)+\left[1 / 2 k\left(z_{C}+0.022 \mathrm{in}\right)^{2}-1 / 2 k(0.022 \mathrm{in})^{2}\right] \\
& 0=-1 / 2 \cdot\left(m_{d b}+m_{\text {board }}\right) \cdot V_{C}{ }^{2}-m_{d b} \cdot g \cdot z_{C}+\left[1 / 2 k\left(z_{C}+0.022 \mathrm{in}\right)^{2}-1 / 2 k(0.022 \mathrm{in})^{2}\right]
\end{aligned}
$$

Note that x_{D} is the initial compression in the spring plus the additional compression from $\mathrm{C} \rightarrow \mathrm{D}$, which is z_{c}.

The only unknown here is z_{c}. Solving anyway you want (and paying close attention to units)

$$
\begin{gathered}
z_{\mathrm{C}}=4.34 \mathrm{in} \\
\max \text { deflection }=z_{\mathrm{C}}+0.022 \mathrm{in}=4.36 \mathrm{in}
\end{gathered}
$$

