Example

$0.5 \mathrm{~kg} / \mathrm{s}$ of air flows steadily through a compressor. The air enters and exits the compressor at the states shown in the figure. If the compression is adiabatic (buzza buzza buzz) calculate the power input to the compressor. $\left(R_{\text {air }}=0.287 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}=0.287 \mathrm{kPa}-\mathrm{m}^{3} / \mathrm{kg}-\mathrm{K}, c_{v}=0.713\right.$ $\left.\mathrm{kJ} / \mathrm{kg}-\mathrm{K}, c_{p}=1.000 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}\right)$

Example

0.3 kg of air is contained in a piston-cylinder assembly. Initially, the air is at 200 kPa and $20^{\circ} \mathrm{C}$. The air is then compressed in a process for which $p \not V^{2}=$ constant until the pressure is 500 kPa . $\left(R_{\text {air }}=0.287 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}=0.287 \mathrm{kPa}-\mathrm{m}^{3} / \mathrm{kg}-\mathrm{K}, c_{v}=0.713 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, c_{p}=1.000 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}\right)$
a) Sketch the $p-\forall$ diagram and calculate the work (in kJ) into the piston cylinder.
b) Calculate the heat transfer (in kJ) into the piston cylinder during the process.

Example

A heat exchanger operates at steady-state. $50 \mathrm{~kg} / \mathrm{min}$ of air enters the device at $35^{\circ} \mathrm{C}$ and leaves at $45^{\circ} \mathrm{C}$. Water flows through a coiled tube in the heat exchanger, entering at 250 kPa and $200^{\circ} \mathrm{C}$ and leaving at 240 kPa and $195^{\circ} \mathrm{C}$. The kinetic and potential energies of the fluid streams are negligible. Property data are given below.
a) Find the mass flow rate of water through the coiled tube.
b) Find the rate of heat transfer from the water to the air.

Air: $c_{v}=0.713 \mathrm{~kJ} /(\mathrm{kg}-\mathrm{K}), c_{p}=1.000 \mathrm{~kJ} /(\mathrm{kg}-\mathrm{K}), R_{\text {air }}=0.287 \mathrm{~kJ} /(\mathrm{kg}-\mathrm{K})$
Water: $\rho=865 \mathrm{~kg} / \mathrm{m}^{3}, c=4.47 \mathrm{~kJ} /(\mathrm{kg}-\mathrm{K})$

