Example

$0.5 \mathrm{~kg} / \mathrm{s}$ of air flows steadily through a compressor. The air enters and exits the compressor at the states shown in the figure. If the compression is adiabatic (buzza buzza buzz) calculate the power input to the compressor.

Example

0.3 kg of air is contained in a piston-cylinder assembly. Initially, the air is at 200 kPa and $20^{\circ} \mathrm{C}$ with a volume of $\xi_{1}=0.126 \mathrm{~m}^{3}$. The air is then compressed in a process for which $p \not{ }^{2}=$ constant until the pressure is 500 kPa .
(a) Sketch the $p-\Psi$ diagram and calculate the work (in kJ) into the piston cylinder.
(b) If the change in specific internal energy during the process is $121.0 \mathrm{~kJ} / \mathrm{kg}$, calculate the heat transfer (in kJ) into the piston cylinder during the process.

