Conservation of Angular Momentum

Four Questions

- What is it? 1.
 - Moment of LM?
 - For a particle, it's

It's a vector

$$\vec{L}_{\tiny point} = \vec{r} \times \vec{P} = \vec{r} \times m \vec{V}$$

How can it be stored (What is $\vec{L}_{point,sys}$?) 2.

System of particles

$$\vec{L}_{point,sys} = \sum_{i} \vec{r}_{point} \times m_{i} \vec{V}_{i}$$

Continuum

$$\vec{L}_{point,sys} = \sum_{i} \vec{r}_{point} \times m_{i} \vec{V}_{i}$$
 $\vec{L}_{point,sys} = \int_{\forall_{sys}} \vec{r}_{point} \times \vec{V} \rho d \forall$

If translating only $\vec{r}_{point} imes m \vec{V}_G$

If translating and rotating, expressions like

$$\bar{\bar{I}}\vec{\omega} + \vec{r}_{point} \times m\vec{V}_G$$

Conservation of Angular Momentum

3. How can it be transported? (How does it cross system boundaries?)

Flow boundaries

Rate of LM of mass *m* at boundary is

$$\vec{r}_{\scriptscriptstyle point} imes \dot{m} \vec{V}$$

Rate of AM transport due to mass flow is

Non-flow boundaries

Rate of LM transport at a non-flow boundary is

$$\vec{M}_{point} = \vec{r} \times \vec{F}$$

A moment is a rate of AM transport at a non-flow boundary!

Conservation of Angular Momentum

4. How is generated and/or consumed?

Net *rate* of AM transport at non-flow boundaries

Net *rate* of AM transport at flow boundaries