Active learning exercise

The nozzle on the firehose in the boat problem is pictured below. If the pressure at the inlet of the nozzle is $40 \mathrm{psi}\left(\mathrm{lbf} / \mathrm{in}^{2}\right)$, calculate the reaction force needed to keep the nozzle stationary. Other conditions are the same as in the original problem. ($P_{\text {atm }}=14.7 \mathrm{psi}, \rho_{\text {wat }}=62.4$ $\mathrm{lbm} / \mathrm{ft}^{3}$)

1. Draw a system boundary and draw all relevant mass and linear momentum related transport terms on it. Be sure to indicate a coordinate system on your diagram.
2. Apply conservation of mass to the system and any related equations. What can you use these to solve for?
$\frac{d}{d t}\left(m_{s y s}\right)=\sum \dot{m}_{\text {in }}-\sum \dot{m}_{\text {out }}$

$$
\begin{aligned}
& \dot{m}_{2}=\rho \dot{\forall}_{2} \\
& =62.4 \frac{\mathrm{lbm}}{\mathrm{ft}^{3}} 2000 \frac{\mathrm{gal}}{\mathrm{~min}}\langle\overline{=}\rangle=278 \frac{\mathrm{lbm}}{\mathrm{~s}}
\end{aligned}
$$

$$
V_{1}=\frac{\dot{m}_{1}}{\rho A_{1}}=\frac{278 \frac{\mathrm{lbm}}{\mathrm{~s}}}{\left(62.4 \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}\right)(0.1364 \mathrm{ft})}=32.7 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

3. Apply flow direction component of conservation of linear momentum to the system. Be careful with pressures. Use this to solve for R.

$$
\begin{aligned}
& R=\dot{m}\left(V_{2}-V_{1}\right)-\left(P_{1}-P_{a t m}\right) A_{1} \\
& =\left(275 \frac{\mathrm{lbm}}{\mathrm{~s}}\right)(100-32.4) \frac{\mathrm{ft}}{\mathrm{~s}}\langle\overline{=}\rangle-(40-14.7) \frac{\mathrm{lbf}}{\mathrm{in}^{2}}\left(0.1364 \mathrm{ft}^{2}\right)\langle\bar{\square}\rangle \\
& =84.3 \mathrm{lbf}
\end{aligned}
$$

4. Dealing with the pressures was a bit tedious. Here is a short cut we can use when systems are almost completely surrounded by atmospheric pressure. Treat the pressure at the inlet as the sum of two pressures, $P_{\text {atm }}$ and the pressure above atmospheric, also called the gage pressure.

What is the resultant force due to $P_{a t m}$ and the atmospheric component of the inlet pressure?
5. Using the result of part 4., redraw your system and the any relevant transports. (I.e., use $P_{\text {gage }}$ at the inlet.) Apply the flow direction component of conservation of linear momentum again and solve for R. Do you get the same answer? Which way was easier?

