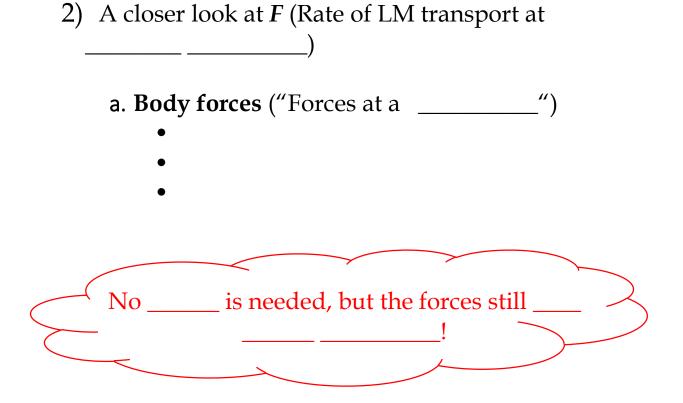
Conservation of linear momentum


$$\frac{d}{dt}(\vec{P}_{sys}) = \sum \vec{F} + \sum \dot{m}\vec{V} - \sum \dot{m}\vec{V}$$

in out

1) A closer look at \vec{P}_{sys} a. System is a **particle**

b.System has **uniform velocity**

c. System is a **general closed system**

Then

Drawn at:

c. Contact stresses

- i. Shear
- ii. Normal

3) A closer look at $\dot{m}\vec{V}$ (Rate of LM transport at _____)

$$\dot{m}_{in} \implies \sum \dot{m}_{in} \vec{V}$$

$$\dot{m}_{out} \Rightarrow \sum \dot{m}_{out} \vec{V}$$

These are _____. Thus they have ______ in the component equations and can make entire term ______ or _____.