Example

To help isolate a large and heavy optics table from building vibrations, the table is floated on four isolation pads like the one shown in the figure. The isolation pad consists of a cylindrical cavity of diameter D filled with a dense liquid (S.G. $=13.6$) and a piston with diameter d attached to the table.

Initial Conditions:

- $H=20 \mathrm{~cm}$
- $h=15 \mathrm{~cm}$
- $D=18 \mathrm{~cm}$
- $d=9 \mathrm{~cm}$
- $V_{\mathrm{p}}=1 \mathrm{~cm} / \mathrm{s}$

You have been asked to determine how the vertical motion of the piston affects the motion of the liquid in the cavity.
(a) Determine the mass of liquid in the cavity, in kg. Use symbols first!
(b) If the piston moves downward with a constant velocity V_{p}, what is the direction and magnitude of the motion of the free surface of the liquid: i.e. what is $d H / d t$ in terms of V_{p} ? Use symbols first!
(c) In another design, liquid can be added or removed from the base of the cavity, to maintain H at a constant value. Determine the direction and magnitude of the required mass flow rate.

A cylindrical isolation pad

