Example

A system of three tanks is connected as shown. The flow network formed by the tanks and their piping operates at steadystate. Known flow rates are $\dot{m}_{1}=10 \mathrm{~kg} / \mathrm{s}, \dot{m}_{3}=30 \mathrm{~kg} / \mathrm{s}$ and \dot{m}_{4} $=20 \mathrm{~kg} / \mathrm{s}$. Find the unknown flow rates.

The tank system

Example

Water is being added to a storage tank at the rate of $4200 \mathrm{lbm} / \mathrm{min}$. At the same time water flows out the bottom through a small diameter pipe at a flow rate of $4900 \mathrm{lbm} / \mathrm{min}$. The storage tank has an inside diameter of 10 ft .
(a) Find the rate at which the water level rises or falls. $\left(\rho_{\text {water }}=62.4\right.$ $\mathrm{lbm} / \mathrm{ft}^{3}$)
(b) If the exit flowrate is actually $1.23 \mathrm{lbm} / \mathrm{ft} \sqrt{ }(2 g h)$ where h is measured in feet, find the steady state height.
(c) If the inlet flow is turned off for an initial water height of $h_{\text {int }}=10 \mathrm{ft}$, how long will it take to drain the tank? The exit flow is the same as given in (b).

A draining storage tank

