Dimensions and units

Dimension:

Physical quantity (length, velocity, temperature, etc.)

Unit:

Standard for **measuring** dimensions (m for length, °C for temp, etc.)

Arbitrary! (Somewhat) Fundamental vs. derived dimensions:

- Fundamental Can **not** be derived from other dimensions
- Derived Can be derived from other dimensions

Base vs. derived units:

- Base Correspond to fundamental dimensions
- Derived Correspond to derived dimensions

Example: Base units of different units systems

Dimension	AES (American Eng. Sys.)	BGS (British Gravitational Sys.)	SI (Système International)
Length	ft	ft	m
Mass	lbm	slug (derived)	kg
Time	S	S	S
Force	Lbf (derived)	lbf	N (derived)

Some derived units: SI: N = kg-m/s² BGS: slug = lbf-s²/ft

Some unit conversions:

lbf ≠ lbm !!!!

Some definitions

System

A region of space set aside for analysis

- Closed system:

No mass crosses the boundary

- Open system:

Mass can cross the boundary

- Isolated system:

No interactions with surroundings. **Nothing** crosses boundary

Property:

Any quantity that can be assigned a numerical value

Property:

- Extensive property

Depends on the extent (size) of the system Is **additive**

- Intensive property

Does **not** depend on the extent (size) of the system

Has a "value at a point"

Is not additive

State:

Description of a system in terms of its properties

We will apply the Accounting Principle to **extensive** properties.