Let’s plot the inductor current and voltage for this circuit, and we’ll do that over the range just before the switch closes until three seconds after the switch has been closed.
We’ll confirm our analytical result using a circuit simulator.

Once the circuit switch closes, we’ll have a parallel RLC circuit driven by a constant current source value.

This means we are looking at a step response.

In general, the step response is the sum of the final value plus the natural response, which is a time varying function.

Let’s turn our attention next to finding a specific form for the natural response for the inductor current.

We’ll do this for t greater than zero.

At that point the switch is closed and since we are looking at natural response, the current source should be omitted from the circuit.

This is a parallel RLC circuit.

At this point we can say that omega not squared equals 1 over L*C.

Alpha does depend on parallel and series circuits.

We’ll put in the specific numerical values for the components.

[math equations]

We find that omega not, or the undamped resonant frequency is 4.47 radians per second.

Alpha, also known as the neper frequency is 1.67 units per second.

Compare these two values and we see that alpha is less than omega not.

We then conclude that we have an underdamped response.

So in general, we can say that the underdamped response for inductor current has this form.

The damped resonant frequency, which is slightly different than omega not, works out to be 4.15 radians per second.

That becomes the oscillation frequency of our sinusoids.

We then say that the overall step response would be the final inductor current plus this underdamped response.
Prior to time zero, it is some initial current, which is our initial value.

Some of these values we need to find, which are these two coefficients.

We can plug in other values we know.

We see that the initial value of the current is also 2 amps.

Those are not always the same however, depending on the circuit.

We had formerly calculated omega d, and alpha is also known.

So to find the two coefficients A and B, let’s evaluate our expression for current at time zero.

So cosine of zero is 1, sin of zero is 0.

At t equals zero, e raised to the alpha*t is simply 1.

So our initial current was 2 amps, so we conclude from this that A = 0.

Now to find the other coefficient B, we will first find the derivative of our inductor current with respect to time.

Using the product rule for derivatives, we get this rather formidable expression.

But, we need to evaluate this at time t = 0.

So cosine of zero is 1.

This expression is 1.

Sin of zero is 0.

This expression is 1.

[math equations]

This equation simplifies as follows.

Our problem statement gives us a specific value for the time rate of change of the current which was 60 amps per second.

Earlier, we had found A to be zero.

We also found our value for omega d, so B evaluates to 14.5.

Now my analytical function can be plotted using a number of different tools.  

I am using MatLab in this case.

Notice that we have the characteristic undulation of the damped oscillation.

In particular, I’ll compare the maximum value that I’m getting with my analytical expression to the result that I can find in my PSpice simulation.

Note that in the PSpice simulation that I have a switch and also an initial voltage on the capacitor.

Here I am probing the current flowing from top to bottom through the inductor.

So I can compare my PSpice plot side by side with my MatLab plot.

Then, using the curser function in PSpice I can find the maximum value which I find to be 10.322.

In MatLab, I then use the max function and find a value of 10.3371.

These are close enough to conclude that the analytical expression appears to be correct.

Now, to find the voltage as a function of time, we simply use the same process as before.

I’ll let you go through that yourself.

We do find, however that one place we need to be careful is that when time t = 0, we do not find the voltage before the switch closes but instead use the voltage after the switch closes.

The place we use the starting voltage is before t = 0 on our plot.

This is because the voltage across our inductor is actually discontinuous.

[math equations]

So what I’m highlighting here is the difference between finding the inductor current.

Here I am solving for the necessary coefficients for our inductor voltage.

So I’ll go ahead and plot that voltage in MatLab and once again we have a step discontinuity at time t = 0 where the voltage abruptly jumps to 6.

We see that eventually it ends up back at zero.

I’ll offer some final comments.

The voltage across the inductor in steady state is always zero.

When the capacitor is connected, however, we see a redistribution of energy, but eventually it ends up as a short circuit and we end up with zero volts.

