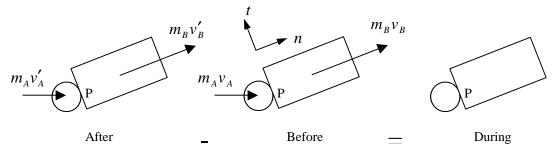

ES 204

Example Problem - Le 16

A 1 kg ball moving horizontally at 12 m/s strikes a 10 kg block. The Ex. coefficient of restitution of the impact is e=0.6, and the coefficient of kinetic friction between the block and the inclined surface is 0.4. What distance does the block slide before stopping?

Mechanical Systems


Known: $m_{\scriptscriptstyle A}=1~kg$, $m_{\scriptscriptstyle B}=10~kg$, $v_{\scriptscriptstyle A}=12~m/s$, e=0.6 , ${\bf m}_{\scriptscriptstyle k}=0.4$

COLM(FT) process $1\rightarrow 2$ Strategy:

COE(FT) process $2\rightarrow 3$

2 3

Process 1®2

Kinetics:

COLM(FT) n-direction

$$(m_A v'_{PA_n} + m_B v'_{PB_n}) - (m_A v_{PA_n} + m_B v_{PB_n}) = 0$$
 (1)

Constitutive Models:

Coefficient of Restitution

$$e = -\left(\frac{v'_{PB_n} - v'_{PA_n}}{v_{PB_n} - v_{PA_n}}\right) \tag{2}$$

Solving:

Note:
$$v_{PB_n} = 0$$
 , $v_{PA_n} = v_A \cos 25^\circ$, $v'_{PB} = v'_{PB_n}$

$$v'_{PB_n} = 1.58 \, m/s$$

 $v'_{PA_n} = -4.95 \, m/s$

Process 2®3

Kinetics:

$$\Delta E_{svs} = W = Fd \tag{3}$$

Solving:

$$d = 0.162 \ m$$