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Dimensional Analysis, Similitude and Modeling --- Tools for Solving Problems in the Lab 
 

Pre-Lab Activities  
 (1) Every student should have a lab partner.  Do this before you come to your first lab.   

 (2) Each lab pair should have access to a computer during the lab. 

 (3) Read this handout in conjunction with Section 1.5 of Fundamentals of Thermal-Fluid  
Sciences by Cengel & Turner.  Be sure that you understand 

• the difference between a “dimension” and a “unit,” 
• the difference between a “primary” and a “secondary” unit or dimension, and 
• what it means to say that an equation is dimensionally homogeneous. 
• what it means to say that a dimensionally homogeneous equation uses consistent units. 
• what it means to say than an equation is dimensionally inconsistent. 

NOTE:  For additional help you may consult almost any fluid mechanics text in the library.  They have sections on 
dimensional analysis and/or similitude.  For example, Sections 1.4 and 5.1-5.5 in Fluid Mechanics by F. White 
cover this material.  Section 1.2 and Chapter 7 of Fundamentals of Fluid Mechanics by Munson, Young & Okiishi 
do as well.   
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Dimensional Analysis, Similitude and Modeling--- Tools for Solving Problems in the Lab 
 
Introduction  

Engineering science education currently emphasizes the development and solution of mathematical models to pre-
dict the behavior of engineering systems.  Historically, many important engineering problems could not be solved 
easily or at all using mathematical models.  Even today with the availability of high-speed computers and advanced 
computational techniques, there are still significant problems that cannot for various reasons be solved without re-
course to the physical laboratory. 

This laboratory will introduce you to a broad class of techniques often called dimensional analysis.  These tech-
niques allow us to predict the behavior of engineering systems from experiments without having precise mathemati-
cal models.   The success of this approach, however, does rely on the underlying assumption that mathematical rela-
tions do exist between the various physical quantities that describe the system of interest.   

Specifically, we will provide you with hands-on experiences that introduce the power and usefulness of three tech-
niques that can be used to model the behavior of physical systems without recourse to a mathematical model:   

• Dimensional Analysis (Method of Repeating Variables) ,   
• The Method of Parameter Variation, and   
• Similitude and Modeling 

Lab Objectives—After completing this lab and the associated reading, a student should be able to do the following: 
1. Given a mathematical equation that involves physical quantities, determine the dimensions of each term in the 

equation and whether the equation is dimensionally homogeneous.  
2. Given a list of physical variables describing a problem or phenomena, use the method of repeating variables to 

develop a valid set of pi terms. 
3. Given a set of pi terms (or developing one as in objective 2) and a set of experimental measurements for the 

pertinent physical variables, use the method of parameter variation to determine the functional relationship be-
tween the pi terms. 

4. Given a graphical or mathematical relationship between a set of pi terms and the values of the pertinent physical 
variables, determine the value of an unknown physical variable. 

5. Given a scale model of  a prototype, use the pertinent pi terms to determine how the important physical vari-
ables scale to achieve complete similarity between the prototype and the model. 

 
Units vs. Dimensions 

While driving an interstate in a Great Plains state, we see a sign that says “Roseyville 
127.”  A natural way to interpret the sign is “127 miles to Roseyville.”  If, however, 
one mile later there is a ramp for the Roseyville exit, the first sign has been misinter-
preted.  It was actually saying Roseyville had a population of 127.   We had no idea 
what type of thing was being measured.    

Let’s reconsider the sign.  If we arrive at Roseyville in 67 minutes, we are driving at over 110 miles per hour 
(which is highly unlikely) or the sign presented the distance in kilometers.   

In the first case, we missed the “qualitative” aspect 
of the number.  This relates to dimensions.  Was it 
a length or mass or time, etc.?  In the second case, 
we knew it represented a distance (a length), but 
missed the quantitative aspect of the number; we 
had no idea what “127” really meant.  What units 
did the number have?  

 
Systems of Dimensions and Units 

A dimensional system is a set of primary (fundamental) dimensions upon which all other physical quantities can 
be described.  The other physical quantities that can be expressed in terms of the primary dimensions are referred to 
as secondary (derived) dimensions. 

Dimensions

Units

Physical Quantity 

Roseyville   127 
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Associated with each primary (and secondary) dimension is a corresponding primary (and secondary) unit. 

Common dimension systems for mechanics are mass-length-time (MLT) or force-length-time (FLT). 
When thermal effects are important, we must add temperature (θ ). 

 When electrical effects are important, we must add electrical current ( I ). 

The International System of Units, the SI system, is a system of units based on seven primary (base or fundamen-
tal) units.  The corresponding primary dimensions are time, length, mass, amount of substance, thermodynamic tem-
perature, electric current, and luminous intensity.  Each of these units has associated with it a set of operational pro-
cedures that can be used to duplicate the seven SI base units in the laboratory.   

The most commonly used set of units in the United States is what was once called the English system.  It is also 
known as the United States Customary System (USCS).  

MLT AND FLT DIMENSION SYSTEMS 

Primary Dimensions & Units 

MLT System FLT System 
Name Symbol 

SI units USCS units SI units USCS units 

pound-mass lbm 
Mass M kilogram kg 

slug slug 
--- --- --- --- 

Force F --- --- --- --- newton N pound-force lbf 
Length L meter m foot ft meter m foot ft 
Time T second s second s second s second s 

MLT or FLT System Name Symbol 
SI units USCS units 

Thermodynamic 
Temperature θ kelvin K Rankine 

degree 
oR 

Current I ampere A ampere A 
Amount of       
substance N mole mol pound-mole lbmol 

Luminous       
Intensity  candela cd candela cd 

 

Secondary (Derived) Dimensions & Units  

Dimensions Units 
Name MLT System FLT System SI USCS  

Force MLT -2 --- newton N pound-force lbf 
pound-mass lbm 

Mass --- FT 2L-1 kilogram kg 
slug slug 

Pressure (Stress) ML-1T  -2 FL-2 pascal Pa --- lbf/in2 

Linear Momentum MLT -1 FT --- N⋅s --- lbf⋅s 
Electrical Charge IT IT coulomb C coulomb C 

Radian dimensionless dimensionless radians rad** radians rad** 
**Note that radians by definition are dimensionless as they are the ratio of two lengths; thus when performing unit conversions, it is unnecessary 
to “cancel out” the radians as they already have units of “1”. 
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An extended table of dimensions follows: 
 

Dimensions of Common Thermal-Fluid Parameters  

Name Symbol MLTθ System FLTθ System 
Absolute Viscosity μ ML-1T -1 FL-2T 

Acceleration a LT -2 LT -2 
Angle  1 {dimensionless} 1 

Angular Velocity ω T -1 T -1 
Area A L2 L2 

Density ρ ML-3 FL-4T  2 

Dynamic Viscosity μ ML-1T -1 FL-2T 
Energy E ML2T -2 FL 

Expansion Coefficient β θ -1 θ -1 
Force F MLT -2 F 

Frequency ω T -1 T -1 
Heat Transfer Q MLT -2 FL 

Kinematic Viscosity ν L2T -1 L2T -1 
Length  L L 

Linear Momentum  MLT -1 FT 
Mass m M FL-1T  2 

Mass Flow Rate m&  MT -1 FL-1T 

Mass Moment of Inertia  ML2 FLT 2 

Modulus of Elasticity  ML-1T -2 FL-2 
Moment M ML2T -2 FL 

Moment of Inertia Ixx L4 L4 

Power W&  ML2T -3 FLT -1 
Pressure  P ML-1T  -2 FL-2 

Shear Stress τ ML-1T  -2 FL-2 

Specific Heat c, cp, cv L2T  -2θ -1 L2T  -2θ  -1 
Specific Weight γ ML-2T  -2 FL-3 
Surface Tension σs MT  -2 FL-1 

Temperature Τ θ θ 
Thermal Conductivity k MLT  -3θ -1 FT  -1θ  -1 

Time t T T 
Torque  ML2T -2 FL 

Velocity  LT -1 LT -1 
Volume V L3 L3 

Volumetric Flow Rate ,V& Q L3T -1 L3T -1 
Work W ML2T -2 FL 
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Dimensionally Homogeneous Equations 

“We accept as a fundamental premise that all equations describing physical phenomena must be dimensionally 
homogeneous.”1   

An equation is dimensionally homogeneous if (1) both sides of the equation have identical dimensions and (2) every 
number that appears in the equation is a pure number. 

Occasionally, an equation is incorrectly stated or formulated.  Imagine an equation where some terms have units of 
mass and others have units or energy.  Such an equation is “dimensionally inconsistent” and being such is invalid as 
a scientific statement.   

In other cases, a number in an equation actually has units, i.e., it is not a pure number.  Often such a number is based 
on variables with specific units and the constant includes, among other things, unit conversions.  Both sides of the 
final equation may have the same dimensions, but the results may be incorrect unless specific units are used.  In 
such a case, the equation may be called “restricted homogeneous.” 

Dimensional Analysis → Finding dimensionless products known as “pi terms” 

“Dimensional analysis is based on the principle that each and every term of a relationship which describes an 
event in the physical world must have the same dimensions”  

-- P. W. Bridgman in Dimensional Analysis, Harvard University 
Press, Cambridge, Massachusetts, 1946. 

Buckingham Pi Theorem2 — Fundamental Theorem of Dimensional Analysis 

If an equation involving k variables is dimensionally homogeneous, it can be reduced to a relationship 
among k - r independent dimensionless products (pi terms), where r is the minimum number of reference 
dimensions required to describe the variables. 

 
Method of Repeating Variables3 — One approach to developing the pi terms.   

This is one simple, methodical approach to developing the pi terms.  This is similar to the method described in a 
number of fluid mechanics texts.  See a step-by-step procedure on the following page. 

 
Additional Comments 
• How do I know I have the right set of pi terms?  

“Usually our only guideline is to keep the pi terms as simple as possible. Also, it may be that certain pi terms 
will be easier to work with in actually performing experiments. The final choice remains an arbitrary one and 
generally will depend on the background and experience of the investigator. It should again be emphasized, 
however, that although there is no unique set of pit terms for a given problem, the number required is fixed in 
accordance with the pi theorem.”4 
If you have three pi terms, e.g. Π1, Π2, and Π3, you expect that there is a functional relationship of the form  

Π3 = f ( Π2 , Π1 ).  
It is equally correct to form a new pi term from some combination of the original three as  

Π2′ = Π2
a Π1

b 
where a and b are arbitrary exponents. Then the relationship of interest would become 

Π3 = f1 ( Π2′ , Π1 )    or    Π3 = f2 ( Π2′ , Π2 ) 
even though the number of pi terms has not changed 

• Is there a shorter way to find the pi terms? It is possible to form the pi terms by inspection without going 
through the detailed Method of Repeating Variables.  In this approach, the pi terms are formed by merely in-
specting the dimensions of the pertinent physical variables. A set of pi terms is correct if it has the correct num-
ber of independent and dimensionless pi terms.  

                                                 
1 Munson, Young, and Okiishi, Fundamentals of Fluid Mechanics, 3rd Ed, J. Wiley, New York, 1990. 
2 ibid. Section 7.2. 
3 ibid.  Section 7.3 
4 ibid. Section 7.4.3 
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Constructing a Set of Dimensionless Parameters 
 
 

Step 1 List all the important physical variables that are involved in the problem  (k = number of variables ). 

y = f (x1, x2 , x3 , x4 , . . ., xk -1 ) 

 
 
Step 2A  Select a dimension system, usually FLT or MLT. 

Step 2B  Express each of the variables in terms of the fundamental (primary) dimensions. 

Step 2C Determine the number of reference dimensions required to completely describe the dimensions of the 
variables (r = number of reference dimensions).   
Usually the number of reference dimensions equals the number of primary dimensions that must be 
used to write the dimensions of the variables.  Infrequently, some of the primary dimensions only oc-
cur in unique groupings that are repeated in some of the variables.  Keep on the lookout for these 
groups of dimensions.  When they occur, they must be treated as a single reference dimension.  For ex-
ample, if mass, length and time only appeared in the groupings LT -1 and M then there would only be 2 
reference dimensions even though 3 primary dimensions were involved. 

 
 
Step 3 Determine the required number of pi terms,   n  =  k – r . 
 
 
Step 4 Select independent repeating variables equal to the number of reference dimensions, r.  
 Lessons from experience 

• Do select variables whose dimensions are as close to “pure” as possible. 
• Try to select one repeating variable from each of the following categories: 

Geometry  Material Properties  External Effects 
where external effects are “any variable that produces or tends to produce a change in the system.” 

• Do not select the primary dependent variable as a repeating variable. 
• Do not select any variable as a repeating variable that has a questionable or minor influence on the 

problem. 
• Be sure that the repeating variables are dimensionally independent. 

 
 
Step 5 Form a pi term by multiplying one of the non-repeating variables by the product of repeating variables 

each raised to an exponent that will make the combination dimensionless.  (Sometimes this can be 
done by inspection.) 

 
 
Step 6 Repeat Step 5 for each of the remaining non-repeating variables. 
 
 
Step 7 Check each of the resulting pi terms to make sure they are dimensionless. 
 
 
Step 8 Express the final form as a relationship among the pi terms and think about what it means. 

Π1  = f ( Π2 , Π3, ... Πn ) 

 Note that the actual functional relationship between the pi terms can only be obtained from mathemati-
cal modeling or experimental data. 
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Method of Parameter Variation   

“Method of parameter variation ... can be defined as the procedure of repeatedly determining the performance 
of some material, process, or device while systematically varying the parameters that define the object of inter-
est or its conditions of operation.” 

-- Walter G. Vincenti, What Engineers Know and How They Know It, The 
Johns Hopkins University Press, Baltimore, 1990, pg. 139. 

 
Although this approach can be used with mathematical models to investigate the behavior of a system, it is most 
commonly used with working scale models to experimentally determine the behavior of a system.  In theory, each 
physical variable is varied over its entire range of values while holding all other variables constant.   In practice, this 
can result in a prohibitively large number of experiments, plus the uncertainty with using measurements from a scale 
model to predict the behavior of the full-scale device, commonly referred to as the prototype. 
Dimensional analysis helps reduce the number of data points and physical variables that must be exercised by group-
ing the important variables into a smaller number of dimensionless groups, the pi terms.  Then it is only necessary to 
exercise each pi term while holding the remaining pi terms constant to investigate the behavior of the system in 
question.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Modeling & Similitude   

To achieve complete similarity between a model and a prototype, the values of the pi terms for the model and the 
prototype must be equal.  When done correctly, this results in geometric, dynamic, and kinematic similarity between 
the model and the prototype.  For many problems, e.g. modeling the Mississippi River, incomplete similarity is used 
to retain the essential features of the prototype in the model.   
 
 
 


