Problem 3 - 32 points

The smoke stack located on the North side of Moench Hall is supported in part by a cable. The cable is attached to the stack at point A and to the roof of Moench at point D, with coordinates (0, -100, 60) ft. During a storm, a 40-mph-wind blowing from the southwest exerts a force, $\vec{F} = (150 \,\hat{i} - 400 \,\hat{j})$ lb, on the stack at point C (80 ft above the ground). Answer the questions below. (Neglect the weight of the smokestack.)

to D <----(0,-100,60) ft

(a) Draw the free body diagram of the smoke stack during the storm. (12 pts)

The correct equation of equilibrium for the forces acting on the smoke stack is

 $\sum F = \overrightarrow{T}_{AD} + \overrightarrow{B} + \overrightarrow{F} = 0.$

(b) \vec{T}_{AD} should be written as

i.
$$\vec{T}_{AD} = T_{AD}(0 \hat{\imath} - 0.8575 \hat{\jmath} + 0.5145 \hat{k})$$

ii.
$$\vec{T}_{AD} = T_{AD}(0 \hat{i} + 0.9285 \hat{j} + 0.3714 \hat{k}) - 2pt$$
 for wrong signs

iii.
$$\vec{T}_{AD} = T_{AD} (0 \hat{\imath} - 0.7071 \hat{\jmath} + 0.7071 \hat{k})$$

iv.
$$\overline{T}_{AD} = T_{AD}(0 \hat{\imath} - 0.9285 \hat{\jmath} - 0.3714 \hat{k})$$

v. $\overline{T}_{AD} = T_{AD}(0 \hat{\imath} - 100 \hat{\jmath} + 60 \hat{k})$

$$T_{AD} = T_{AD} (0 \hat{\imath} - 100 \hat{\jmath} + 60 \hat{k})$$

None of these (explain) ___

(c) \overline{F} should be written as

ii.
$$\vec{F} = 150 \hat{\imath}$$
 lb

 $\vec{F} = 427 \text{ lb}$

iii.
$$\vec{F} = 150\hat{\imath} - 400\hat{\jmath}$$
 lb

iv.
$$\vec{F} = -400 \,\hat{\jmath}$$
 lb

None of these (explain)

The correct equation of equilibrium for the moments acting about point B at the base of the smoke stack is: $\sum \vec{M}_B = \vec{r}_{BA} \times \vec{T}_{AD} + \vec{r}_{BB} \times \vec{B} + \vec{r}_{BC} \times \vec{F} + \vec{M}_B = 0$

(d) \vec{r}_{BA} should be written as

 $\vec{r}_{BA} = 0 \,\hat{\imath} - 100 \,\hat{\jmath} + 100 \,\hat{k}$ $\vec{r}_{BA} = 0 \,\hat{\imath} + 0 \,\hat{\jmath} + 100 \,\hat{k}$ $\vec{r}_{BA} = 0 \,\hat{\imath} + 0 \,\hat{\jmath} + 80 \,\hat{k}$ (all or nothing)

- $\vec{r}_{BA} = 0\,\hat{\imath} 100\,\hat{\jmath} 40\,\hat{k}$
- None of these (explain)

(e) \vec{r}_{BB} should be written as i. $\vec{r}_{BB} = 0 \ \hat{\imath} + 0 \ \hat{\jmath} + 0 \ \hat{k}$ ii. $\vec{r}_{BB} = 0 \ \hat{\imath} - 100 \ \hat{\jmath} - 40 \ \hat{k}$

(all or mothing)

- $\vec{r}_{BB} = 0 \hat{\imath} + 0 \hat{\jmath} + 80 \hat{k}$
- $\vec{r}_{BB} = 0 \,\hat{\imath} 100 \,\hat{\jmath} + 100 \,\hat{k}$
- None of these (explain)_

(f) \vec{r}_{BC} should be written as

should be written as $\vec{r}_{BC} = 0 \hat{i} + 0 \hat{j} - 80 \hat{k} \longrightarrow -2 p + \text{ for wrong Sign}$ $\vec{r}_{BC} = 0 \,\hat{\imath} + 0 \,\hat{\jmath} - 20 \,\hat{k}$

 $\vec{r}_{BC} = 0 \hat{i} + 0 \hat{j} + 80 \hat{k}$ $\vec{r}_{BC} = 0 \hat{i} - 100 \hat{j} + 100 \hat{k}$

None of these (explain)