next_inactive up previous
Up: MA479 / CSSE479 Schedule Page

Perfect Secrecy

What is a cryptosystem?

Probability distributions

Perfect Secrecy

Definition
A cryptosystem has perfect secrecy (or perfect security, or unconditional security) if for every P $ \in$ $ \mathcal {P}$ and C $ \in$ $ \mathcal {C}$,

Pr$\displaystyle \nolimits_{{\mathcal{P}}}^{}$(P | C) = Pr$\displaystyle \nolimits_{{\mathcal{P}}}^{}$(P).

Criterion 1
If a system has perfect secrecy, then for all P $ \in$ $ \mathcal {P}$, C $ \in$ $ \mathcal {C}$, there is a k $ \in$ $ \mathcal {K}$ such that ek(P) = C.

Criterion 2
If a system has perfect secrecy, then

$\displaystyle \left\vert\vphantom{\mathcal{K}}\right.$$\displaystyle \mathcal {K}$$\displaystyle \left.\vphantom{\mathcal{K}}\right\vert$ $\displaystyle \geq$ $\displaystyle \left\vert\vphantom{\mathcal{C}}\right.$$\displaystyle \mathcal {C}$$\displaystyle \left.\vphantom{\mathcal{C}}\right\vert$ $\displaystyle \geq$ $\displaystyle \left\vert\vphantom{\mathcal{P}}\right.$$\displaystyle \mathcal {P}$$\displaystyle \left.\vphantom{\mathcal{P}}\right\vert$.

Criterion 3
Suppose $ \left\vert\vphantom{\mathcal{K}}\right.$$ \mathcal {K}$$ \left.\vphantom{\mathcal{K}}\right\vert$ = $ \left\vert\vphantom{\mathcal{C}}\right.$$ \mathcal {C}$$ \left.\vphantom{\mathcal{C}}\right\vert$ = $ \left\vert\vphantom{\mathcal{P}}\right.$$ \mathcal {P}$$ \left.\vphantom{\mathcal{P}}\right\vert$. Then a system has perfect secrecy if and only if
(a)
every key is used with equal probability, and

(b)
for every P $ \in$ $ \mathcal {P}$ and C $ \in$ $ \mathcal {C}$, there is exactly one key k $ \in$ $ \mathcal {K}$ such that ek(P) = C.

About this document ...

Perfect Secrecy

This document was generated using the LaTeX2HTML translator Version 2K.1beta (1.57)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The command line arguments were:
latex2html -link 0 -split +0 -html_version 3.2,math perfect-secrecy.tex

The translation was initiated by Joshua R Holden on 2004-04-11


next_inactive up previous
Up: MA479 / CSSE479 Schedule Page
Prof. Joshua Holden
Rose-Hulman Institute of Technology
Math 479 / CSSE 479, Spring 2003--2004
2004-04-11