
TMS320C62x DSP Library
Programmer’s Reference

Literature Number: SPRU402A
April 2002

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the
time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
TI patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. TI is not responsible or
liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

iiiRead This First

Preface

��������	�
��	�

About This Manual

Welcome to the TMS320C62x digital signal processor (DSP) Library, or
DSPLIB for short. The DSPLIB is a collection of 33 high-level optimized DSP
functions for the TMS320C62x device. This source code library includes C-
callable functions (ANSI-C language compatible) for general signal process-
ing math and vector functions.

This document contains a reference for the DSPLIB functions and is organized
as follows:

� Overview – an introduction to the TI C62x DSPLIB

� Installation – information on how to install and rebuild DSPLIB

� DSPLIB Functions – a quick reference table listing of routines in the library

� DSPLIB Reference – a description of all DSPLIB functions complete with
calling convention, algorithm details, special requirements and imple-
mentation notes

� Information about performance, fractional Q format and customer support

How to Use This Manual

The information in this document describes the contents of the TMS320C62x
DSPLIB in several different ways.

� Chapter 1 provides a brief introduction to the TI C62x DSPLIB, shows the
organization of the routines contained in the library, and lists the features
and benefits of the DSPLIB.

� Chapter 2 provides information on how to install, use, and rebuild the TI
C62x DSPLIB

� Chapter 3 provides a quick overview of all DSPLIB functions in table for-
mat for easy reference. The information shown for each function includes
the syntax, a brief description, and a page reference for obtaining more
detailed information.

Notational Conventions

iv

� Chapter 4 provides a list of the routines within the DSPLIB organized into
functional categories. The functions within each category are listed in al-
phabetical order and include arguments, descriptions, algorithms, bench-
marks, and special requirements.

� Appendix A describes performance considerations related to the C62x
DSPLIB and provides information about the Q format used by DSPLIB
functions.

� Appendix B provides information about software updates and customer
support.

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays are shown
in a special typeface.

� In syntax descriptions, the function or macro appears in a bold typeface
and the parameters appear in plainface within parentheses. Portions of a
syntax that are in bold should be entered as shown; portions of a syntax
that are within parentheses describe the type of information that should be
entered.

� Macro names are written in uppercase text; function names are written in
lowercase.

� The TMS320C62x is also referred to in this reference guide as the C62x.

Related Documentation From Texas Instruments

The following books describe the TMS320C6x devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number. Many of these documents
can be found on the Internet at http://www.ti.com.

TMS320C62x/C67x Technical Brief (literature number SPRU197) gives an
introduction to the ’C62x/C67x digital signal processors, development
tools, and third-party support.

TMS320C6000 CPU and Instruction Set Reference Guide (literature num-
ber SPRU189) describes the C6000 CPU architecture, instruction set,
pipeline, and interrupts for these digital signal processors.

Trademarks

vRead This First

TMS320C6000 Peripherals Reference Guide (literature number SPRU190)
describes common peripherals available on the TMS320C6000 digital
signal processors. This book includes information on the internal data
and program memories, the external memory interface (EMIF), the host
port interface (HPI), multichannel buffered serial ports (McBSPs), direct
memory access (DMA), enhanced DMA (EDMA), expansion bus, clock-
ing and phase-locked loop (PLL), and the power-down modes.

TMS320C6000 Programmer’s Guide (literature number SPRU198) de-
scribes ways to optimize C and assembly code for the TMS320C6000
DSPs and includes application program examples.

TMS320C6000 Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler di-
rectives, macros, common object file format, and symbolic debugging di-
rectives for the C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the C6000 generation of devices. The
assembly optimizer helps you optimize your assembly code.

TMS320C6000 Chip Support Library (literature number SPRU401) de-
scribes the application programming interfaces (APIs) used to configure
and control all on-chip peripherals.

TMS320C62x Image/Video Processing Library (literature number
SPRU400) describes the optimized image/video processing functions
including many C-callable, assembly-optimized, general-purpose
image/video processing routines.

Trademarks

TMS320C6000, TMS320C62x, TMS320C62x, and Code Composer Studio
are trademarks of Texas Instruments.

Contents

vii

������	

1 Introduction 1-1.
Provides a brief introduction to the TI C62x DSPLIB, shows the organization of the routines
contained in the library, and lists the features and benefits of the DSPLIB.

1.1 Introduction to the TI C62x DSPLIB 1-2.
1.2 Features and Benefits 1-4.

2 Installing and Using DSPLIB 2-1.
Provides information on how to install and rebuild the TI C62x DSPLIB.

2.1 How to Install DSPLIB 2-2.
2.1.1 De-Archive DSPLIB 2-3.

2.2 Using DSPLIB 2-4.
2.2.1 DSPLIB Arguments and Data Types 2-4.
2.2.2 Calling a DSPLIB Function From C 2-5.
2.2.3 Calling a DSP Function From Assembly 2-5.
2.2.4 How DSPLIB is Tested – Allowable Error 2-6.
2.2.5 How DSPLIB Deals With Overflow and Scaling Issues 2-6.
2.2.6 Interrupt Behaviour of DSPLIB Functions 2-6.

2.3 How to Rebuild DSPLIB 2-7.

3 DSPLIB Function Tables 3-1.
Provides tables containing all DSPLIB functions, a brief description of each, and a page
reference for more detailed information.

3.1 Arguments and Conventions Used 3-2.
3.2 DSPLIB Functions 3-3.
3.3 DSPLIB Function Tables 3-4.

4 DSPLIB Reference 4-1.
Provides a list of the functions within the DSPLIB organized into functional categories.

4.1 Adaptive Filtering 4-2.
DSP_firlms2 4-2.

4.2 Correlation 4-4.
DSP_autocor 4-4.

4.3 FFT 4-6.
DSP_bitrev_cplx 4-6.
DSP_radix2 4-9.
DSP_r4fft 4-11.
DSP_fft16x16r 4-14.

Contents

viii

4.4 Filtering and Convolution 4-23.
DSP_fir_cplx 4-23.
DSP_fir_gen 4-25.
DSP_fir_r4 4-27.
DSP_fir_r8 4-29.
DSP_fir_sym 4-31.
DSP_iir 4-33.
DSP_iirlat 4-35.
DSP_dotp_sqr 4-37.
DSP_dotprod 4-38.
DSP_maxval 4-39.
DSP_maxidx 4-40.
DSP_minval 4-41.
DSP_mul32 4-42.
DSP_neg32 4-44.
DSP_recip16 4-45.
DSP_vecsumsq 4-47.
DSP_w_vec 4-48.

4.5 Matrix 4-50.
DSP_mat_mul 4-50.
DSP_mat_trans 4-52.

4.6 Miscellaneous 4-53.
DSP_bexp 4-53.
DSP_blk_move 4-54.
DSP_blk_eswap16 4-55.
DSP_blk_eswap32 4-57.
DSP_blk_eswap64 4-59.
DSP_fltoq15 4-61.
DSP_minerror 4-62.
DSP_q15tofl 4-64.

A Performance/Fractional Q Formats A-1.
Describes performance considerations related to the C62x DSPLIB and provides information
about the Q format used by DSPLIB functions.

A.1 Performance Considerations A-2.
A.2 Fractional Q Formats A-3.

A.2.1 Q3.12 Format A-3.
A.2.2 Q.15 Format A-3.
A.2.3 Q.31 Format A-4.

B Software Updates and Customer Support B-1.
Provides information about software updates and customer support.

B.1 DSPLIB Software Updates B-2.
B.2 DSPLIB Customer Support B-2.

C Glossary C-1.

Tables

ixContents

�����	

2–1 DSPLIB Data Types 2-4.
3–1 Argument Conventions 3-2.
3–2 Adaptive Filtering 3-4.
3–3 Correlation 3-4.
3–4 FFT 3-4.
3–5 Filtering and Convolution 3-4.
3–6 Math 3-5.
3–7 Matrix 3-5.
3–8 Miscellaneous 3-6.
A–1 Q3.12 Bit Fields A-3.
A–2 Q.15 Bit Fields A-3.
A–3 Q.31 Low Memory Location Bit Fields A-4.
A–4 Q.31 High Memory Location Bit Fields A-4.

1-1

������������

This chapter provides a brief introduction to the TI C62x DSP Library
(DSPLIB), shows the organization of the routines contained in the library, and
lists the features and benefits of the DSPLIB.

Topic Page

1.1 Introduction to the TI C62x DSPLIB 1-2.

1.2 Features and Benefits 1-4.

Chapter 1

Introduction to the TI C62x DSPLIB

 1-2

1.1 Introduction to the TI C62x DSPLIB

The TI C62x DSPLIB is an optimized DSP Function Library for C programmers
using TMS320C62x devices. It includes C-callable, assembly-optimized gen-
eral-purpose signal-processing routines. These routines are typically used in
computationally intensive real-time applications where optimal execution
speed is critical. By using these routines, you can achieve execution speeds
considerably faster than equivalent code written in standard ANSI C language.
In addition, by providing ready-to-use DSP functions, TI DSPLIB can signifi-
cantly shorten your DSP application development time.

The TI DSPLIB includes commonly used DSP routines. Source code is pro-
vided that allows you to modify functions to match your specific needs.

The routines contained in the library are organized into the following seven dif-
ferent functional categories:

� Adaptive filtering

� DSP_firlms2

� Correlation

� DSP_autocor

� FFT

� DSP_bitrev_cplx

� DSP_radix 2

� DSP_r4fft

� DSP_fft16x16r

� Filtering and convolution

� DSP_fir_cplx

� DSP_fir_gen

� DSP_fir_r4

� DSP_fir_r8

� DSP_fir_sym

� DSP_iir

� DSP_iirlat

Introduction to the TI C62x DSPLIB

1-3

� Math

� DSP_dotp_sqr

� DSP_dotprod

� DSP_maxval

� DSP_maxidx

� DSP_minval

� DSP_mul32

� DSP_neg32

� DSP_recip16

� DSP_vecsumsq

� DSP_w_vec

� Matrix

� DSP_mat_mul

� DSP_mat_trans

� Miscellaneous

� DSP_bexp

� DSP_blk_move

� DSP_blk_eswap16

� DSP_blk_eswap32

� DSP_blk_eswap64

� DSP_fltoq15

� DSP_minerror

� DSP_q15tofl

Features and Benefits

 1-4

1.2 Features and Benefits

� Hand-coded assembly-optimized routines

� C and linear assembly source code

� C-callable routines, fully compatible with the TI C6x compiler

� Fractional Q.15-format operands supported on some benchmarks

� Benchmarks (time and code)

� Tested against C model

2-1

��	�������������	����������

This chapter provides information on how to install and rebuild the TI C62x
DSPLIB.

Topic Page

2.1 How to Install DSPLIB 2-2.

2.2 Using DSPLIB 2-4.

2.3 How to Rebuild DSPLIB 2-7.

Chapter 2

How to Install DSPLIB

 2-2

2.1 How to Install DSPLIB

Note:

You should read the README.TXT file for specific details of the release.

The archive has the following structure:

dsp62x.zip

|

+–– README.txt Top–level README file

|

+–– lib

| |

| +–– dsp62x.lib Library archive

| |

| +–– dsp62x.src Full source archive

| | (Hand–assembly and headers)

| +–– dsp62x_sa.src Full source archive

| | (Linear asm and headers)

| +–– dsp62x_c.src Full source archive

| (C and headers)

|

+–– include

| |

| +–– header files Unpacked header files

|

+–– support Support files

|

+–– doc

 |

 +–– dsp62xlib.pdf This document

How to Install DSPLIB

2-3Installing and Using DSPLIB

2.1.1 De-Archive DSPLIB

The lib directory contains the library archive and the source archive. Please
install the contents of the lib directory in a directory pointed by your C_DIR en-
vironment. If you choose to install the contents in a different directory, make
sure you update the C_DIR environment variable, for example, by adding the
following line in autoexec.bat file:

SET C_DIR=<install_dir>/lib;<install_dir>/include;%C_DIR%

or under Unix/csh:

setenv C_DIR ”<install_dir>/lib;<install_dir>/include;
$C_DIR”

or under Unix/Bourne Shell:

C_DIR=”<install_dir>/lib;<install_dir>/include;$C_DIR”;
export C_DIR

The include directory contains the header files necessary to be included in the
C code when you call a DSPLIB function from C code.

Using DSPLIB

 2-4

2.2 Using DSPLIB

2.2.1 DSPLIB Arguments and Data Types

2.2.1.1 DSPLIB Types

Table 2–1 shows the data types handled by the DSPLIB.

Table 2–1. DSPLIB Data Types

Name
Size
(bits) Type Minimum Maximum

short 16 integer –32768 32767

int 32 integer –2147483648 2147483647

long 40 integer –549755813888 549755813887

pointer 32 address 0000:0000h FFFF:FFFFh

Q.15 16 fraction –1.0 0.9999694824...

Q.31 32 fraction –1.0 0.99999999953...

IEEE float 32 floating point 1.17549435e-38 3.40282347e+38

IEEE double 64 floating point 2.2250738585072014e-308 1.7976931348623157e+308

Unless specifically noted, DSPLIB operates on Q.15-fractional data type ele-
ments. Appendix A presents an overview of Fractional Q formats.

2.2.1.2 DSPLIB Arguments

TI DSPLIB functions typically operate over vector operands for greater effi-
ciency. Even though these routines can be used to process short arrays, or
even scalars (unless a minimum size requirement is noted), they will be slower
for these cases.

� Vector stride is always equal to 1: Vector operands are composed of vector
elements held in consecutive memory locations (vector stride equal to 1).

� Complex elements are assumed to be stored in consecutive memory loca-
tions with Real data followed by Imaginary data.

� In-place computation is not allowed, unless specifically noted: Source op-
erand cannot be equal to destination operand.

Using DSPLIB

2-5Installing and Using DSPLIB

2.2.2 Calling a DSPLIB Function From C

In addition to correctly installing the DSPLIB software, you must follow these
steps to include a DSPLIB function in your code:

� Include the function header file corresponding to the DSPLIB function

� Link your code with dsp62x.lib

� Use a correct linker command file for the platform you use. Remember
some functions in dsp62x.lib are written assuming little-endian mode of
operation.

For example, if you want to call the Autocorrelation DSPLIB function, you
would add:

#include <DSP_autocor.h>

in your C file and compile and link using

cl6x main.c –z –o autocor_drv.out –lrts6200.lib –
ldsp62x.lib

Code Composer Studio Users

Assuming your C_DIR environment is correctly set up (as mentioned in
section 2.1), you would have to add DSPLIB under Code Composer Studio en-
vironment by choosing dsp62x.lib from the menu Project → Add Files to
Project. Also, you should make sure that you link with the run-time support li-
brary rts6200.lib.

2.2.3 Calling a DSP Function From Assembly

The C62x DSPLIB functions were written to be used from C. Calling the func-
tions from assembly language source code is possible as long as the calling
function conforms to the Texas Instruments C62x C compiler calling conven-
tions. For more information, refer to section 8, Runtime Environment, of
TMS320C6000 Optimizing C Compiler User’s Guide (SPRU187).

Using DSPLIB

 2-6

2.2.4 How DSPLIB is Tested – Allowable Error

DSPLIB is tested under the Code Composer Studio environment against a ref-
erence C implementation. You can expect identical results between Reference
C implementation and its Assembly implementation when using test routines
that deal with fixed-point type results. The test routines that deal with floating
points typically allow an error margin of 0.000001 when comparing the results
of reference C code and DSPLIB assembly code.

2.2.5 How DSPLIB Deals With Overflow and Scaling Issues

The DSPLIB functions implement the same functionality of the reference C
code. The user is expected to conform to the range requirements specified in
the API function, and in addition, take care to restrict the input range in such a
way that the outputs do not overflow.

2.2.6 Interrupt Behaviour of DSPLIB Functions

Most DSPLIB functions are interrupt–tolerant but not interruptible. The cycle
count formula provided for each function can be used to estimate the number
of cycles during which interrupts cannot be taken.

How to Rebuild DSPLIB

2-7Installing and Using DSPLIB

2.3 How to Rebuild DSPLIB

If you would like to rebuild DSPLIB (for example, because you modified the
source file contained in the archive), you will have to use the mk6x utility as
follows:

 mk6x dsp62x.src –l dsp62x.lib

3-1

�������
�������������	

This chapter provides tables containing all DSPLIB functions, a brief descrip-
tion of each, and a page reference for more detailed information.

Topic Page

3.1 Arguments and Conventions Used 3-2.

3.2 DSPLIB Functions 3-3.

3.3 DSPLIB Function Tables 3-4.

Chapter 3

Arguments and Conventions Used

 3-2

3.1 Arguments and Conventions Used

The following convention has been followed when describing the arguments
for each individual function:

Table 3–1. Argument Conventions

Argument Description

x,y Argument reflecting input data vector

r Argument reflecting output data vector

nx,ny,nr Arguments reflecting the size of vectors x,y, and r, respectively. For
functions in the case nx = ny = nr, only nx has been used across.

h Argument reflecting filter coefficient vector (filter routines only)

nh Argument reflecting the size of vector h

w Argument reflecting FFT coefficient vector (FFT routines only)

DSPLIB Functions

3-3DSPLIB Function Tables

3.2 DSPLIB Functions

The routines included in the DSP library are organized into eight functional
categories and listed below in alphabetical order.

� Adaptive filtering

� Correlation

� FFT

� Filtering and convolution

� Math

� Matrix functions

� Miscellaneous

DSPLIB Function Tables

 3-4

3.3 DSPLIB Function Tables

Table 3–2. Adaptive Filtering

Functions Description Page

long DSP_firlms2(short *h, short *x, short b, int nh) LMS FIR (radix 2) 4-2

Table 3–3. Correlation

Functions Description Page

void DSP_autocor(short *r, short *x, int nx, int nr) Autocorrelation 4-4

Table 3–4. FFT

Functions Description Page

void DSP_bitrev_cplx (int *x, short *index, int nx) Complex Bit-Reverse 4-6

void DSP_radix2 (int nx, short x[], short w[]) Complex Forward FFT (radix 2) 4-9

void DSP_r4fft (int nx, short x[], short w[]) Complex Forward FFT (radix 4) 4-11

void DSP_fft16x16r(int nx, short *x, short *w, unsigned
char *brev, short *y, int radix, int offset, int nmax)

Cache optimized mixed radix FFT
with scaling and rounding, digit
reversal, out of place. Input and
output: 16 bits, Twiddle factor: 16
bits

4-14

Table 3–5. Filtering and Convolution

Functions Description Page

void DSP_fir_cplx (short *x, short *h, short *r, int nh, int
nx)

Complex FIR Filter (radix 2) 4-23

void DSP_fir_gen (short *x, short *h, short *r, int nh, int nr) FIR Filter (general purpose) 4-25

void DSP_fir_r4 (short *x, short *h, short *r, int nh, int nr) FIR Filter (radix 4) 4-27

void DSP_fir_r8 (short *x, short *h, short *r, int nh, int nr) FIR Filter (radix 8) 4-29

void DSP_fir_sym (short *x, short *h, short *r, int nh, int nr,
int s)

Symmetric FIR Filter 4-31

void DSP_iir(short *r1, short *x, short *r2, short *h2, short
*h1, int nr)

IIR with 5 Coefficients per Biquad 4-33

void iirlat(short *x, int nx, short *k, int nk, int *b, short *r) All-pole IIR Lattice Filter 4-35

DSPLIB Function Tables

3-5DSPLIB Function Tables

Table 3–6. Math

Functions Description Page

int DSP_dotp_sqr(int G, short *x, short *y, int *r, int nx) Vector Dot Product and Square 4-37

int DSP_dotprod(short *x, short *y, int nx) Vector Dot Product 4-38

short DSP_maxval (short *x, int nx) Maximum Value of a Vector 4-39

int DSP_maxidx (short *x, int nx) Index of the Maximum Element of
a Vector

4-40

short DSP_minval (short *x, int nx) Minimum Value of a Vector 4-41

void DSP_mul32(int *x, int *y, int *r, short nx) 32-bit Vector Multiply 4-42

void DSP_neg32(int *x, int *r, int nx) 32-bit Vector Negate 4-44

void DSP_recip16 (short *x, short *rfrac, short *rexp, short
nx)

16-bit Reciprocal 4-45

int DSP_vecsumsq (short *x, int nx) Sum of Squares 4-47

void DSP_w_vec(short *x, short *y, short m, short *r, short
nr)

Weighted Vector Sum 4-48

Table 3–7. Matrix

Functions Description Page

void DSP_mat_mul(short *x, int r1, int c1, short *y, int c2,
short *r, int qs)

Matrix Multiplication 4-50

void DSP_mat_trans(short *x, short rows, short columns,
short *r)

Matrix Transpose 4-52

DSPLIB Function Tables

 3-6

Table 3–8. Miscellaneous

Functions Description Page

short DSP_bexp(int *x, unsigned nx) Max Exponent of a Vector (for
scaling)

4-53

void DSP_blk_move(short *x, short *r, int nx) Move a Block of Memory 4-54

void blk_eswap16(void *x, void *r, int nx) Endian-swap a block of 16-bit
values

4-55

void blk_eswap32(void *x, void *r, int nx) Endian-swap a block of 32-bit
values

4-57

void blk_eswap64(void *x, void *r, int nx) Endian-swap a block of 64-bit
values

4-59

void DSP_fltoq15 (float *x,short *r, int nx) Float to Q15 Conversion 4-61

int DSP_minerror (short *GSP0_TABLE,short *errCoefs,
int max_index)

Minimum Energy Error Search 4-62

void DSP_q15tofl (short *x, float *r, int nx) Q15 to Float Conversion 4-64

4-1

����������������

This chapter provides a list of the functions within the DSP library (DSPLIB)
organized into functional categories. The functions within each category are
listed in alphabetical order and include arguments, descriptions, algorithms,
benchmarks, and special requirements.

Topic Page

4.1 Adaptive Filtering 4-2.

4.2 Correlation 4-4.

4.3 FFT 4-6.

4.4 Filtering and Convolution 4-23.

4.5 Matrix 4-50.

4.6 Miscellaneous 4-53.

Chapter 4

DSP_firlms2

4-2

4.1 Adaptive Filtering

LMS FIR (radix 2)DSP_firlms2

Function long DSP_firlms2(short *h, short *x, short b, int nh)

Arguments h[nh] Coefficient Array (Q.15)

x[nh] Input Array (16-bit)

b Error from previous FIR (Q.15)

nh Number of coefficients. Must be multiple of 2.

return long Output sample (Q.30)

Description This is an Least Mean Squared Adaptive FIR Filter. Given the error from the
previous sample and pointer to the next sample it computes an update of the
coefficients and then performs the FIR for the given input.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

long DSP_firlms2(short *h, short *x, short b, int nh)

{

int i;

long r = 0;

for (i = 0; i < nh; i++)

{

h[i] += (x[i] * b) >> 15;

r += x[i + 1] * h[i];

}

return r;

}

DSP_firlms2

4-3 DSPLIB Reference

Special Requirements The number of coefficients nh must be a multiple of 2.

Implementation Notes
� The loop is unrolled once.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles 3 * nh/2 + 26
For nh = 24: 62 cycles
For nh = 16: 50 cycles

Codesize 256 bytes

DSP_autocor

4-4

4.2 Correlation

AutocorrelationDSP_autocor

Function void DSP_autocor(short *r, short *x, int nx, int nr)

Arguments r[nr] Resulting array of autocorrelation.

x[nr+nx] Input array. Must be word aligned.

nx Length of autocorrelation. Must be multiple of 8.

nr Length of lags. Must be a multiple of 2.

Description This routine performs an autocorrelation of an input vector x. The length of the
autocorrelation is nx samples. Since nr such autocorrelations are performed,
input vector x needs to be of length nx + nr. This produces nr output results
which are stored in an output array r.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_autocor(short r[],short x[], int nx, int nr)

{

int i,k,sum;

for (i = 0; i < nr; i++)

{

sum = 0;

for (k = nr; k < nx+nr; k++)

sum += x[k] * x[k–i];

r[i] = (sum >> 15);

}

}

Special Requirements
� nx must be a multiple of 8.

� nr must be a multiple of 2.

� x[] must be word aligned.

Implementation Notes
� The inner loop is unrolled eight times and the outer loop is unrolled twice.

� The outer loop is conditionally executed in parallel with the inner loop. This
allows for a zero overhead outer loop.

DSP_autocor

4-5 DSPLIB Reference

� Bank Conflicts: nr/2 – 1 memory hits occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles nr * nx /2 + 31 + (nr/2 – 1)
For nx = 24, nr = 8: 130 cycles
For nx = 40, nr = 10: 237 cycles

Codesize 544 bytes

DSP_bitrev_cplx

4-6

4.3 FFT

Complex Bit-ReverseDSP_bitrev_cplx

Function void DSP_bitrev_cplx (int *x, short *index, int nx)

Arguments x[nx] Pointer to complex input vector x of size nx. Each element
consists of a complex 16-bit data pair.

index[] Array of size ≈ sqrt(nx) created by the routine bitrev_index to
allow the fast implementation of the bit reversal.

nx Number of elements in vector x. nx must be a power of 2.

Description This function bit-reverses the position of elements in the complex vector x.
This function is used in conjunction with FFT routines to provide the correct
format for the FFT input or output data. The bit-reversal of a bit-reversed order
array yields a linear-order array.

The array index[] can be generated by the program bitrev_index provided in
the directory ‘support\fft’. This index should be generated at compile time not
by the DSP.

Algorithm TI retains all rights, title and interest in this code and only authorizes the use
of this code on TI TMS320 DSPs manufactured by TI. This is the C equivalent
of the assembly code without restrictions. Note that the assembly code is hand
optimized and restrictions may apply.

void DSP_bitrev_cplx (int *x, short *index, int nx)

{

int i;

short i0, i1, i2, i3;

short j0, j1, j2, j3;

int xi0, xi1, xi2, xi3;

int xj0, xj1, xj2, xj3;

short t;

int a, b, ia, ib, ibs;

int mask;

int nbits, nbot, ntop, ndiff, n2, halfn;

short *xs = (short *) x;

nbits = 0;

DSP_bitrev_cplx

4-7 DSPLIB Reference

i = nx;

while (i > 1){

i = i >> 1;

nbits++;}

nbot = nbits >> 1;

ndiff = nbits & 1;

ntop = nbot + ndiff;

n2 = 1 << ntop;

mask = n2 – 1;

halfn = nx >> 1;

for (i0 = 0; i0 < halfn; i0 += 2) {

b = i0 & mask;

a = i0 >> nbot;

if (!b) ia = index[a];

ib = index[b];

ibs = ib << nbot;

j0 = ibs + ia;

t = i0 < j0;

xi0 = x[i0];

xj0 = x[j0];

if (t){x[i0] = xj0;

x[j0] = xi0;}

i1 = i0 + 1;

j1 = j0 + halfn;

xi1 = x[i1];

xj1 = x[j1];

x[i1] = xj1;

x[j1] = xi1;

i3 = i1 + halfn;

j3 = j1 + 1;

xi3 = x[i3];

xj3 = x[j3];

if (t){x[i3] = xj3;

x[j3] = xi3;}

}

}

DSP_bitrev_cplx

4-8

Special Requirements
� nx must be a power of 2.

� The index array must be set up by bitrev_index before the function
DSP_bitrev_cplx is called.

� If nx ≤ 4K, one can use the char (8-bit) data type for the “index” variable.
This would require changing the LDH when loading index values in the as-
sembly routine to LDB. This would further reduce the size of the Index
Table by half its size.

Implementation Notes

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles (nx/4 + 2) * 7 + 18
For nx = 256: 480 cycles

Codesize 352 bytes

DSP_radix2

4-9 DSPLIB Reference

Complex Forward FFT (radix 2)DSP_radix2

Function void DSP_radix2 (int nx, short x[], short w[])

Arguments nx Number of complex elements in vector x. Must be a power of 2
such that 16 ≤ nx ≤ 32768.

x[2*nx] Pointer to input and output sequences.

w[nx] Pointer to vector of FFT coefficients.

Description This routine is used to compute FFT of a complex sequence of size nx, a power
of 2, with “decimation-in-frequency decomposition” method. The output is in
bit-reversed order. Each complex value consists of interleaved 16-bit real and
imaginary parts. To prevent overflow, input samples may have to be scaled by
1/nx.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_radix2 (short x[],short nx,short w[])

{

short n1,n2,ie,ia,i,j,k,l;

short xt,yt,c,s;

n2 = nx;

ie = 1;

for (k=nx; k > 1; k = (k >> 1)) {

n1 = n2;

n2 = n2>>1;

ia = 0;

for (j=0; j < n2; j++) {

c = w[2*ia];

s = w[2*ia+1];

ia = ia + ie;

for (i=j; i < nx; i += n1) {

l = i + n2;

xt = x[2*l] – x[2*i];

x[2*i] = x[2*i] + x[2*l];

yt = x[2*l+1] – x[2*i+1];

DSP_radix2

4-10

x[2*i+1] = x[2*i+1] + x[2*l+1];

x[2*l] = (c*xt + s*yt)>>15;

x[2*l+1] = (c*yt – s*xt)>>15;

}

}

ie = ie<<1;

}

}

Special Requirements
� 16 ≤ nx ≤ 32768 (nx is a power of 2)

� Input x and coefficients w should be in different data sections or memory
spaces to eliminate memory bank hits. If this is not possible, they should
be aligned on different word boundaries to minimize memory bank hits.

� x data is stored in the order real[0], image[0], real[1], ...

� The coefficient array w[] must be setup as follows:

w[2*i] = –k * cos(i * delta), w[2*i+1] = –k * sin(i * delta)

where delta = 2*π/nx, k = 32767 and i = 0..nx/2

� The program tw_radix2 provided in the directory ‘support’ may be used
to generate the coefficient array.

Implementation Notes
� Loads input x and coefficient w as words.

� Both loops j and i0 shown in the C code are placed in the inner loop of the
assembly code.

� Bank Conflicts: See Benchmarks.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles log2(nx) * (4 * nx/2 + 7) + 34 + nx/4
(The term nx/4 is due to bank conflicts)
For nx = 256: 4250 cycles

Codesize 800 bytes

DSP_r4fft

4-11 DSPLIB Reference

Complex Forward FFT (radix 4)DSP_r4fft

Function void DSP_r4fft (int nx, short x[], short w[])

Arguments nx Number of complex elements in vector x. Must be a power of 4
such that 4 ≤ nx ≤ 65536

x[2*nx] Pointer to input and output sequences. Must be aligned at a
4*nx byte boundary.

w[3*nx/4] Pointer to vector of FFT coefficients.

Description This routine is used to compute FFT of a complex sequence size nx, a power
of 4, with “decimation-in-frequency decomposition” method. The output is in
digit-reversed order. Each complex value is with interleaved 16-bit real and
imaginary parts.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_r4fft (int nx, short x[], short w[])

{

int n1, n2, ie, ia1, ia2, ia3, i0, i1, i2, i3,

j, k;

short t, r1, r2, s1, s2, co1, co2, co3, si1,

si2, si3;

n2 = nx;

ie = 1;

for (k = nx; k > 1; k >>= 2) {

n1 = n2;

n2 >>= 2;

ia1 = 0;

for (j = 0; j < n2; j++) {

ia2 = ia1 + ia1;

ia3 = ia2 + ia1;

co1 = w[ia1 * 2 + 1];

si1 = w[ia1 * 2];

co2 = w[ia2 * 2 + 1];

si2 = w[ia2 * 2];

DSP_r4fft

4-12

co3 = w[ia3 * 2 + 1];

si3 = w[ia3 * 2];

ia1 = ia1 + ie;

for (i0 = j; i0 < nx; i0 += n1) {

i1 = i0 + n2;

i2 = i1 + n2;

i3 = i2 + n2;

r1 = x[2 * i0] + x[2 * i2];

r2 = x[2 * i0] – x[2 * i2];

t = x[2 * i1] + x[2 * i3];

x[2 * i0] = r1 + t;

r1 = r1 – t;

s1 = x[2 * i0 + 1] + x[2 * i2 + 1];

s2 = x[2 * i0 + 1] – x[2 * i2 + 1];

t = x[2 * i1 + 1] + x[2 * i3 + 1];

x[2 * i0 + 1] = s1 + t;

s1 = s1 – t;

x[2 * i2] = (r1 * co2 + s1 * si2) >>

15;

x[2 * i2 + 1] = (s1 * co2–r1 *

si2)>>15;

t = x[2 * i1 + 1] – x[2 * i3 + 1];

r1 = r2 + t;

r2 = r2 – t;

t = x[2 * i1] – x[2 * i3];

s1 = s2 – t;

s2 = s2 + t;

x[2 * i1] = (r1 * co1 + s1 * si1)

>>15;

x[2 * i1 + 1] = (s1 * co1–r1 *

si1)>>15;

x[2 * i3] = (r2 * co3 + s2 * si3)

>>15;

x[2 * i3 + 1] = (s2 * co3–r2 *

si3)>>15;

}

}

ie <<= 2;

}

}

DSP_r4fft

4-13 DSPLIB Reference

Special Requirements
� 4 ≤ nx ≤ 65536 (nx a power of 4)

� x[] is aligned on a 4*nx Byte (nx*word) boundary for circular buffering

� Input x[] and coefficients w[] should be in different data sections or memory
spaces to eliminate memory bank hits. If this is not possible, they should
be aligned on an odd word boundaries to minimize memory bank hits

� x[] data is stored in the order real[0], image[0], real[1], ...

� The coefficient array w[] must be setup as follows:

w[2*i] = k * sin(i * delta), w[2*i+1] = k * cos(i * delta)

where delta = 2*π/nx, k = 32767 and i = 0..3*nx/4

� The program tw_r4fft provided in the directory ‘support’ may be used to
generate the coefficient array.

Implementation Notes
� Loads input x and coefficient w as words.

� Both loops j and i0 shown in the C code are placed in the INNERLOOP of
the assembly code.

� Bank Conflicts: See Benchmarks.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles log4(nx) * (10 * nx/4 + 29) + 36 + nx/4
(The term nx/4 is due to bank conflicts)
For nx = 256: 2776 cycles

Codesize 736 bytes

DSP_fft16x16r

4-14

Complex Forward Mixed Radix 16- x 16-bit FFT With RoundingDSP_fft16x16r

Function void DSP_fft16x16r(int nx, short *x, short *w, unsigned char *brev, short *y, int
radix, int offset, int nmax)

Arguments nx Length of FFT in complex samples. Must be power of 2 and
≤16384

x[2*nx] Pointer to complex 16-bit data input

w[2*nx] Pointer to complex FFT coefficients (see Description)

brev[64] Pointer to bit reverse table containing 64 entries (See
Implementation Notes.)

y[2*nx] Pointer to complex 16-bit data output (normal order).

radix Smallest FFT butterfly used in computation used for
decomposing FFT into sub-FFTs. See notes.

offset Index in complex samples of sub-FFT from start of main FFT.

nmax Size of main FFT in complex samples.

Description This routine computes a complex forward split-radix FFT. To avoid overflow
this routine applies scaling by � after each stage. Input data x[], output data
y[] and coefficients w[] are 16-bit. The output is returned in the separate array
y[] in normal order. Each complex value is stored as interleaved 16-bit real and
imaginary parts. The routine can be called in a multi-pass fashion as to reduce
cycle overhead due to cache misses. The code uses a special ordering of FFT
coefficients (twiddle factors). The program tw_fft16x16 provided in the directo-
ry ‘support’ may be used to generate the coefficient array.

This redundant set of twiddle factors is size 2*N short samples. As pointed out
later dividing these twiddle factors by 2 will give an effective divide by 4 at each
stage to guarantee no overflow. The function is accurate to about 68dB of sig-
nal to noise ratio to the DFT function below:

 void dft(int n, short x[], short y[])

 {

 int k,i, index;

 const double PI = 3 4159654;

 short * p_x;

 double arg, fx_0, fx_1, fy_0, fy_1, co, si;

DSP_fft16x16r

4-15 DSPLIB Reference

 for(k = 0; k<n; k++)

 {

 p_x = x;

 fy_0 = 0;

 fy_1 = 0;

 for(i=0; i<n; i++)

 {

 fx_0 = (double)p_x[0];

 fx_1 = (double)p_x[1];

 p_x += 2;

 index = (i*k) % n;

 arg = 2*PI*index/n;

 co = cos(arg);

 si = –sin(arg);

 fy_0 += ((fx_0 * co) – (fx_1 * si));

 fy_1 += ((fx_1 * co) + (fx_0 * si));

 }

 y[2*k] = (short)2*fy_0/sqrt(N);

 y[2*k+1] = (short)2*fy_1/sqrt(N);

 }

 }

Scaling takes place at each stage except the last one. This is a divide by 2 to
prevent overflow. All shifts are rounded to reduce truncation noise power by
3dB. The function takes the table and input data and calculates the FFT pro-
ducing the frequency domain data in the y[] array. As the FFT allows every
input point to effect every output point, in a cache based system this causes
cache thrashing. This is mitigated by allowing the main FFT of size N to be di-
vided into several steps, allowing as much data reuse as possible. For exam-
ple the following function:

DSP_fft16x16r(1024,&x[0], &w[0], y,brev,4, 0,1024);

is equivalent to:

DSP_fft16x16r(1024,&x[2*0], &w[0] ,y,brev,256, 0,1024);

DSP_fft16x16r(256, &x[2*0], &w[2*768],y,brev,4, 0,1024);

DSP_fft16x16r(256, &x[2*256],&w[2*768],y,brev,4, 256,1024);

DSP_fft16x16r(256, &x[2*512],&w[2*768],y,brev,4, 512,1024);

DSP_fft16x16r(256, &x[2*768],&w[2*768],y,brev,4, 768,1024);

DSP_fft16x16r

4-16

Notice how the first FFT function is called on the entire 1K data set it covers
the first pass of the FFT until the butterfly size is 256.

The following 4 FFTs do 256-point FFTs 25% of the size. These continue down
to the end when the butterfly is of size 4. They use an index to the main twiddle
factor array of 0.75*2*N. This is because the twiddle factor array is composed
of successively decimated versions of the main array.

N not equal to a power of 4 can be used, i.e. 512. In this case to decompose
the FFT the following would be needed :

DSP_fft16x16r(512, &x[0], &w[0], y,brev,2, 0,512);

is equivalent to:

DSP_fft16x16r(512, &x[0], &w[0], y,brev,128, 0,512);

DSP_fft16x16r(128, &x[2*0], &w[2*384],y,brev,2, 0,512);

DSP_fft16x16r(128, &x[2*128],&w[2*384],y,brev,2, 128,512);

DSP_fft16x16r(128, &x[2*256],&w[2*384],y,brev,2, 256,512);

DSP_fft16x16r(128, &x[2*384],&w[2*384],y,brev,2, 384,512);

The twiddle factor array is composed of log4(N) sets of twiddle factors, (3/4)*N,
(3/16)*N, (3/64)*N, etc. The index into this array for each stage of the FFT is
calculated by summing these indices up appropriately. For multiple FFTs they
can share the same table by calling the small FFTs from further down in the
twiddle factor array, in the same way as the decomposition works for more data
reuse.

Thus, the above decomposition can be summarized for a general N, radix “rad”
as follows:

DSP_fft16x16r(N, &x[0], &w[0], brev,y,N/4,0, N)

DSP_fft16x16r(N/4,&x[0], &w[2*3*N/4],brev,y,rad,0, N)

DSP_fft16x16r(N/4,&x[2*N/4], &w[2*3*N/4],brev,y,rad,N/4, N)

DSP_fft16x16r(N/4,&x[2*N/2], &w[2*3*N/4],brev,y,rad,N/2, N)

DSP_fft16x16r(N/4,&x[2*3*N/4],&w[2*3*N/4],brev,y,rad,3*N/4,N)

As discussed previously, N can be either a power of 4 or 2. If N is a power of
4, then rad = 4, and if N is a power of 2 and not a power of 4, then rad = 2. “rad”
is used to control how many stages of decomposition are performed. It is also
used to determine whether a radix-4 or radix-2 decomposition should be per-
formed at the last stage. Hence when “rad” is set to “N/4” the first stage of the
transform alone is performed and the code exits. To complete the FFT, four
other calls are required to perform N/4 size FFTs. In fact, the ordering of these
4 FFTs amongst themselves does not matter and hence from a cache perspec-
tive, it helps to go through the remaining 4 FFTs in exactly the opposite order
to the first. This is illustrated as follows:

DSP_fft16x16r

4-17 DSPLIB Reference

DSP_fft16x16r(N, &x[0], &w[0], brev,y,N/4,0, N)

DSP_fft16x16r(N/4,&x[2*3*N/4],&w[2*3*N/4],brev,y,rad,3*N/4,N)

DSP_fft16x16r(N/4,&x[2*N/2], &w[2*3*N/4],brev,y,rad,N/2, N)

DSP_fft16x16r(N/4,&x[2*N/4], &w[2*3*N/4],brev,y,rad,N/4, N)

DSP_fft16x16r(N/4,&x[0], &w[2*3*N/4],brev,y,rad,0, N)

In addition this function can be used to minimize call overhead, by completing
the FFT with one function call invocation as shown below:

DSP_fft16x16r(N, &x[0], &w[0], y, brev, rad, 0, N)

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_fft16x16r(int nx, short x[], short w[], unsigned char
brev[], short y[], int radix, int offset, int nmax)

{

 int n1, n2, ie, ia1, ia2, ia3, i0, i1, i2, i3, i, l0;

 short co1, co2, co3, si1, si2, si3;

 short xt0, yt0, xt1, yt1, xt2, yt2;

 short xh0,xh1,xh20,xh21,xl0,xl1,xl20,xl21;

 short * ptr_x0, * y0;

 unsigned int j0, j1, k0, k1, k, j;

 short x0, x1, x2, x3, x4, x5, x6, x7;

 short xh0_0, xh1_0, xh0_1, xh1_1;

 short xl0_0, xl1_0, xl0_1, xl1_1;

 short yt3, yt4, yt5, yt6, yt7;

 n2 = n;

 ie = 1;

 for (k = n; k > radix; k >>= 2)

 {

 n1 = n2;

 n2 >>= 2;

 ia1 = 0;

 for (j = 0; j < n2; j++)

 {

 ia2 = ia1 + ia1;

 ia3 = ia2 + ia1;

 co1 = w[2 * ia1];

DSP_fft16x16r

4-18

 si1 = w[2 * ia1 + 1];

 co2 = w[2 * ia2];

 si2 = w[2 * ia2 + 1];

 co3 = w[2 * ia3];

 si3 = w[2 * ia3 + 1];

 ia1 = ia1 + ie;

 for (i0 = j; i0 < n; i0 += n1)

 {

 i1 = i0 + n2;

 i2 = i1 + n2;

 i3 = i2 + n2;

 xh0 = x[2 * i0] + x[2 * i2];

 xh1 = x[2 * i0 + 1] + x[2 * i2 + 1];

 xl0 = x[2 * i0] – x[2 * i2];

 xl1 = x[2 * i0 + 1] – x[2 * i2 + 1];

 xh20 = x[2 * i1] + x[2 * i3];

 xh21 = x[2 * i1 + 1] + x[2 * i3 + 1];

 xl20 = x[2 * i1] – x[2 * i3];

 xl21 = x[2 * i1 + 1] – x[2 * i3 + 1];

 x[2 * i0] = (xh0 + xh20 + 1)>>1;

 x[2 * i0 + 1] = (xh1 + xh21 + 1)>>1;

 xt0 = xh0 – xh20;

 yt0 = xh1 – xh21;

 xt1 = xl0 + xl21;

 yt2 = xl1 + xl20;

 xt2 = xl0 – xl21;

 yt1 = xl1 – xl20;

 x[2 * i2]= (xt1 * co1 + yt1 * si1 +
0x00008000)>> 16;

 x[2 * i2 + 1]= (yt1 * co1 – xt1 * si1 +
0x00008000)>> 16;

DSP_fft16x16r

4-19 DSPLIB Reference

 x[2 * i1]= (xt0 * co2 + yt0 * si2 +
0x00008000)>> 16;

 x[2 * i1 + 1]= (yt0 * co2 – xt0 * si2 +
0x00008000)>> 16;

 x[2 * i3]= (xt2 * co3 + yt2 * si3 +
0x00008000)>> 16;

 x[2 * i3 + 1]= (yt2 * co3 – xt2 * si3 +
0x00008000)>> 16;

 }

 }

 ie <<= 2;

 }

 j = 0;

 ptr_x0 = x;

 y0 = y;

 l0 = _norm(n) – 17;

 if(radix == 2 || radix == 4) for (i = 0; i < n; i += 4)

 {

 j0 = (j) & 0x3F;

 j1 = (j >> 6) & 0x3F;

 k0 = brev[j0];

 k1 = brev[j1];

 k = (k0 << 6) | k1;

 if (l0 < 0) k = k << –l0;

 else k = k >> l0;

 j++;

 x0 = ptr_x0[0]; x1 = ptr_x0[1];

 x2 = ptr_x0[2]; x3 = ptr_x0[3];

 x4 = ptr_x0[4]; x5 = ptr_x0[5];

 x6 = ptr_x0[6]; x7 = ptr_x0[7];

 ptr_x0 += 8;

DSP_fft16x16r

4-20

 xh0_0 = x0 + x4;

 xh1_0 = x1 + x5;

 xh0_1 = x2 + x6;

 xh1_1 = x3 + x7;

 if (radix == 2)

 {

 xh0_0 = x0;

 xh1_0 = x1;

 xh0_1 = x2;

 xh1_1 = x3;

 }

 yt0 = xh0_0 + xh0_1;

 yt1 = xh1_0 + xh1_1;

 yt4 = xh0_0 – xh0_1;

 yt5 = xh1_0 – xh1_1;

 xl0_0 = x0 – x4;

 xl1_0 = x1 – x5;

 xl0_1 = x2 – x6;

 xl1_1 = x3 – x7;

 if (radix == 2)

 {

 xl0_0 = x4;

 xl1_0 = x5;

 xl1_1 = x6;

 xl0_1 = x7;

 }

 yt2 = xl0_0 + xl1_1;

 yt3 = xl1_0 – xl0_1;

 yt6 = xl0_0 – xl1_1;

DSP_fft16x16r

4-21 DSPLIB Reference

 yt7 = xl1_0 + xl0_1;

 if (radix == 2)

 {

 yt7 = xl1_0 – xl0_1;

 yt3 = xl1_0 + xl0_1;

 }

 y0[k] = yt0; y0[k+1] = yt1;

 k += n>>1

 y0[k] = yt2; y0[k+1] = yt3;

 k += n>>1;

 y0[k] = yt4; y0[k+1] = yt5;

 k += n>>1;

 y0[k] = yt6; y0[k+1] = yt7;

 }

 }

Special Requirements
� In-place computation is not allowed.

� nx must be a power of 2 or 4.

� Complex input data x[], and twiddle factors w[] must be double-word
aligned.

� Real values are stored in even word, imaginary in odd.

� Output array is double word aligned.

� All data is in short precision or Q.15 format

� Output results are returned in normal order.

� FFT coefficients (twiddle factors) are generated using the program
tw_fft16x16 provided in the directory ‘support’.

Implementation Notes
� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

DSP_fft16x16r

4-22

� The routine uses log4(nx) – 1 stages of radix-4 transform and performs ei-
ther a radix-2 or radix-4 transform on the last stage depending on nx. If nx
is a power of 4,then this last stage is also a radix-4 transform, otherwise
it is a radix-2 transform.

� A special sequence of coefficients used as generated above produces the
FFT. This collapses the inner 2 loops in the traditional Burrus and Parks
implementation.

� The revised FFT uses a redundant sequence of twiddle factors to allow a
linear access through the data. This linear access enables data and in-
struction level parallelism.

� The butterfly is bit reversed, i.e. the inner 2 points of the butterfly are
crossed over, this has the effect of making the data come out in bit re-
versed rather than in radix 4 digit reversed order. This simplifies the last
pass of the loop. A simple table is used to do the bit reversal out of place.

 unsigned char brev[64] = {

 0x0, 0x20, 0x10, 0x30, 0x8, 0x28, 0x18, 0x38,

 0x4, 0x24, 0x14, 0x34, 0xc, 0x2c, 0x1c, 0x3c,

 0x2, 0x22, 0x12, 0x32, 0xa, 0x2a, 0x1a, 0x3a,

 0x6, 0x26, 0x16, 0x36, 0xe, 0x2e, 0x1e, 0x3e,

 0x1, 0x21, 0x11, 0x31, 0x9, 0x29, 0x19, 0x39,

 0x5, 0x25, 0x15, 0x35, 0xd, 0x2d, 0x1d, 0x3d,

 0x3, 0x23, 0x13, 0x33, 0xb, 0x2b, 0x1b, 0x3b,

 0x7, 0x27, 0x17, 0x37, 0xf, 0x2f, 0x1f, 0x3f

 };

� For more aggressive overflow control the shift in the DC term can be ad-
justed to 2 and the twiddle factors shifted right by 1. This gives a divide by
4 at each stage. For better accuracy the data can be pre-asserted left by
so many bits so that as it builds in magnitude. The divide by 2 prevents too
much growth. An optimal point for example with an 8192-point FFT with
input data precision of 8 bits is to assert the input 4 bits left to make it 12
bits. This gives an SNR of 68dB at the output. By trying combinations the
optimal can be found. If scaling is not required it is possible to replace the
MPY by SMPY this will give a shift left by 1 so a shift right by 16 gives a
total 15 bit shift right. The DC term must be adjusted to give a zero shift.

Benchmarks Cycles 2.5 * N * ceil[log4(nx)] – nx/2 + 164

Code size 1344 bytes

DSP_fir_cplx

4-23 DSPLIB Reference

4.4 Filtering and Convolution

Complex FIR FilterDSP_fir_cplx

Function void DSP_fir_cplx (short *x, short *h, short *r, int nh, int nr)

Arguments x[2*(nr+nh–1)] Pointer to complex input array. Must point to element
x[2*(nh–1)].

h[2*nh] Pointer to complex coefficient array. Coefficients must be
in normal order.

r[2*nr] Pointer to complex output array.

nh Number of complex coefficients in vector h. Must be a
multiple of 2.

nr Number of complex output samples to calculate. nh * nr
must be >=4.

Description This function implements the FIR filter for complex input data. The filter has
nr output samples and nh coefficients. Each array consists of an even and odd
term with even terms representing the real part and the odd terms the imagi-
nary part of the element. The coefficients are expected in normal order.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_fir_cplx(short *x, short *h, short *r,short nh, short
nr)

{

short i,j;

int imag, real;

for (i = 0; i < 2*nr; i += 2){

imag = 0;

real = 0;

for (j = 0; j < 2*nh; j += 2){

real += h[j] * x[i–j] – h[j+1] * x[i+1–j];

imag += h[j] * x[i+1–j] + h[j+1] * x[i–j];

}

r[i] = (real >> 15);

r[i+1] = (imag >> 15);

}

}

DSP_fir_cplx

4-24

Special Requirements
� The number of coefficients nh must be a multiple of 2.

� nr * nh must be >= 4.

� The input data pointer x must point to the (nh)th complex element, i.e. ele-
ment 2*(nh–1).

Implementation Notes
� The inner loop is unrolled twice.

� The outer loop is conditionally executed in parallel with the inner loop.

� Both the inner and outer loops are software pipelined.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles 2* nh * nr + 20

Code size 384 bytes

DSP_fir_gen

4-25 DSPLIB Reference

FIR Filter (general purpose)DSP_fir_gen

Function void DSP_fir_gen (short *x, short *h, short *r, int nh, int nr)

Arguments x[nr+nh–1] Pointer to input array of size nr + nh – 1.

h[nh] Pointer to coefficient array of size nh. Coefficients must be
in reverse order.

r[nr] Pointer to output array of size nr.

nh Number of coefficients. Must be ≥5.

nr Number of output samples to calculate.

Description Computes a real FIR filter (direct-form) using coefficients stored in vector h[].
The real data input is stored in vector x[]. The filter output result is stored in
vector r[]. It operates on 16-bit data with a 32-bit accumulate. The filter calcu-
lates nr output samples using nh coefficients.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_fir_gen(short x[], short h[], short r[],

int nh, int nr)

{

int i, j, sum;

for (j = 0; j < nr; j++) {

sum = 0;

for (i = 0; i < nh; i++)

sum += x[i + j] * h[i];

r[j] = sum >> 15;

}

}

Special Requirements nh, the number of coefficients, must be greater than or equal to 5.

Implementation Notes
� The inner loop is unrolled four times, but the last three accumulates are

executed conditionally to allow for a number of coefficients that is not a
multiple of four.

� The outer loop is unrolled twice, but the last store is executed conditionally
to allow for a number of output samples that is not a multiple of two.

DSP_fir_gen

4-26

� Both the inner and outer loops are software pipelined.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles [9 + 4 * ceil(nh/4)] * ceil(nr/2) + 18
For nh = 13, nr = 19: 268 cycles

Code size 640 bytes

DSP_fir_r4

4-27 DSPLIB Reference

FIR Filter (radix 4)DSP_fir_r4

Function void DSP_fir_r4 (short *x, short *h, short *r, int nh, int nr)

Arguments x[nr+nh–1] Pointer to input array of size nr + nh – 1.

h[nh] Pointer to coefficient array of size nh. Must be in reverse
order.

r[nr] Pointer to output array of size nr.

nh Number of coefficients. Must be multiple of 4 and ≥8.

nr Number of samples to calculate. Must be multiple of 2.

Description Computes a real FIR filter (direct-form) using coefficients stored in vector h[].
The real data input is stored in vector x[]. The filter output result is stored in
vector r[]. This FIR operates on 16-bit data with a 32-bit accumulate. The filter
calculates nr output samples using nh coefficients.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_fir_r4(short x[], short h[], short r[], int nh,

int nr)

{

int i, j, sum;

for (j = 0; j < nr; j++) {

sum = 0;

for (i = 0; i < nh; i++)

sum += x[i + j] * h[i];

r[j] = sum >> 15;

}

}

Special Requirements
� nh, the number of coefficients, must be a multiple of 4 and greater than or

equal to 8.

� nr, the number of outputs computed, must be a multiple of 2.

DSP_fir_r4

4-28

Implementation Notes
� The routine performs 2 output samples at a time. The inner loop is unrolled

four times. The outer loop is unrolled twice. Both the inner and outer loops
are software pipelined.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles (8 + nh) * nr/2 + 14
For nh=20 and nr=42: 602 cycles

Code size 544 bytes

DSP_fir_r8

4-29 DSPLIB Reference

FIR Filter (radix 8)DSP_fir_r8

Function void DSP_fir_r8 (short *x, short *h, short *r, int nh, int nr)

Arguments x[nr+nh–1] Pointer to input array of size nr + nh – 1. Must be word
aligned.

h[nh] Pointer to coefficient array of size nh. Coefficients must be
in reverse order. Must be word-aligned.

r[nr] Pointer to output array of size nr.

nh Number of coefficients. Must be multiple of 8 and ≥ 8.

nr Number of samples to calculate. Must be multiple of 2.

Description Computes a real FIR filter (direct-form) using coefficients stored in vector h[].
The real data input is stored in vector x[]. The filter output result is stored in
vector r[]. This FIR operates on 16-bit data with a 32-bit accumulate. The filter
calculates nr output samples using nh coefficients.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_fir_r8 (short x[], short h[], short r[],

int nh, int nr)

{

int i, j, sum;

for (j = 0; j < nr; j++) {

sum = 0;

for (i = 0; i < nh; i++)

sum += x[i + j] * h[i];

r[j] = sum >> 15;

}

}

Special Requirements
� nh, the number of coefficients, must be a multiple of 8 and greater than or

equal to 8.

� nr, the number of outputs computed, must be a multiple of 2.

� Arrays x[] and h[] must be word-aligned

DSP_fir_r8

4-30

Implementation Notes
� The assembly routine performs 2 output samples at a time. The inner loop

is unrolled eight times. The outer loop is unrolled twice. Both the inner and
outer loops are software pipelined.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles nh * nr/2 + 28
For nh=24 and nr=42: 532 cycles

Code size 544 bytes

DSP_fir_sym

4-31 DSPLIB Reference

Symmetric FIR FilterDSP_fir_sym

Function void DSP_fir_sym (short *x, short *h, short *r, int nh, int nr, int s)

Arguments x[nr+2*nh] Pointer to input array of size nr + 2*nh.

h[nh+1] Pointer to coefficient array of size nh + 1. Must be word
aligned.

r[nr] Pointer to output array of size nr.

nh Number of coefficients. Must be multiple of 8.

nr Number of samples to calculate. Must be multiple of 2.

s Number of insignificant digits to truncate.

Description This symmetric FIR filter assumes the number of filter coefficients is 2 * nh +
1. It operates on 16-bit data with a 40-bit accumulation. The filter calculates
nr output samples.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_fir_sym(short x[], short h[], short r[],

int nh, int nr, int s)

{

int i, j;

long y0;

long round = (long) 1 << (s – 1);

for (j = 0; j < nr; j++) {

y0 = round;

for (i = 0; i < nh; i++)

y0 += (short) (x[j + i] + x[j + 2 * nh – i]) * h[i];

y0 += x[j + nh] * h[nh];

r[j] = (int) (y0 >> s);

}

}

Special Requirements
� nh must be a multiple of 8.

� nr must be a multiple of 2.

� h[] must be word aligned.

DSP_fir_sym

4-32

Implementation Notes
� The load word instruction is used to simultaneously load two values form

h[] in a single clock cycle.

� The inner and outer loop is unrolled eight times.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles (3 * nh/2 + 10) * nr/2 + 20
For nh=24, nr=42: 986 cycles

Code size 416 bytes

DSP_iir

4-33 DSPLIB Reference

IIR With 5 Coefficients per BiquadDSP_iir

Function void DSP_iir (short *r1, short *x, short *r2, short *h2, short *h1, int nr)

Arguments r1[nr+4] Output array (used)

x[nr+4] Input array

r2[nr] Output array (stored)

h2[5] Auto-regressive filter coefficients

h1[5] Moving-average filter coefficients

nr Number of output samples.

Description The IIR performs an auto-regressive moving-average (ARMA) filter with 4
auto-regressive filter coefficients and 5 moving-average filter coefficients for
nr output samples. The output vector is stored in two locations. This routine
is used as a high pass filter in the VSELP vocoder. All data is assumed to be
16-bit.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_iir(short *r1, short *x, short *r2, short *h2,

short *h1, int nr)

{

int j,i;

int sum;

for (i=0; i<nr; i++){

sum = h2[0] * x[4+i];

for (j = 1; j <= 4; j++)

sum += h2[j]*x[4+i–j]–h1[j]*r1[4+i–j];

r1[4+i] = (sum >> 15);

r2[i] = r1[4+i];

}

}

DSP_iir

4-34

Special Requirements To avoid memory bank conflicts, r1[] and r2[] must be aligned on the next word
boundary following the alignment of x[].

Implementation Notes
� Output array r1[] contains nr + 4 locations, r2[] contains nr locations for

storing nr output samples. The output samples are stored with an offset
of 4 into the r1[] array.

� The inner loop is completely unrolled and software pipelined.

� Bank Conflicts: See Special Requirements.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles 5 * nr + 30
For nr = 40: 230 cycles

Code size 384 bytes

DSP_iirlat

4-35 DSPLIB Reference

All-pole IIR Lattice FilterDSP_iirlat

Function void iirlat(short *x, int nx, short *k, int nk, int *b, short *r)

Arguments x[nx] Input vector (16-bit)

nx Length of input vector.

k[nk] Reflection coefficients in Q.15 format

nk Number of reflection coefficients/lattice stages. Must be >=4.
Make multiple of 2 to avoid bank conflicts.

b[nk+1] Delay line elements from previous call. Should be initialized to
all zeros prior to the first call.

r[nx] Output vector (16-bit)

Description This routine implements a real all-pole IIR filter in lattice structure (AR lattice).
The filter consists of nk lattice stages. Each stage requires one reflection coef-
ficient k and one delay element b. The routine takes an input vector x[] and re-
turns the filter output in r[]. Prior to the first call of the routine the delay elements
in b[] should be set to zero. The input data may have to be pre-scaled to avoid
overflow or achieve better SNR. The reflections coefficients lie in the range
–1.0 < k < 1.0. The order of the coefficients is such that k[nk–1] corresponds
to the first lattice stage after the input and k[0] corresponds to the last stage.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void iirlat(short *x, int nx, short *k, int nk, int *b,
short *r)

{

 int rt; /* output */

 int i, j;

 for (j=0; j<nx; j++)

 {

 rt = x[j] << 15;

 for (i = nk – 1; i >= 0; i––)

 {

 rt = rt – (short)(b[i] >> 15) * k[i];

 b[i + 1] = b[i] + (short)(rt >> 15) * k[i];

DSP_iirlat

4-36

 }

 b[0] = rt;

 r[j] = rt >> 15;

 }

}

Special Requirements
� nk must be >= 4.

� no special alignment requirements

� see Bank Conflicts for avoiding bank conflicts

Implementation Notes
� Prolog and epilog of the inner loop are partially collapsed and overlapped

to reduce outer loop overhead.

� Bank Conflicts: nk should be a multiple of 2, otherwise bank conflicts oc-
cur causing a penalty of 2*nx cycles. r[] and k[] should be located in sepa-
rate memory halves on C620x devices, otherwise bank conflicts occur
causing a penalty of nx/4 cycles.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles (2 * nk + 8) * nx + 5 (without bank conflicts)

Codesize 352 bytes
4.5 Math

DSP_dotp_sqr

4-37 DSPLIB Reference

Vector Dot Product and SquareDSP_dotp_sqr

Function int DSP_dotp_sqr(int G, short *x, short *y, int *r, int nx)

Arguments G Sum-of-y-squared initial value (used in the VSELP coder).

x[nx] First input array

y[nx] Second input array

r Result of vector dot product of x and y.

nx Number of array elements. Must be multiple of 4 and ≥12.

return int New value of G.

Description This routine computes the dot product of x[] and y[] arrays, adding it to the val-
ue in the location pointed to by ’r’. Additionally, it computes the sum of the
squares of the terms in the y[] array, adding it to the argument G. The final value
of G is given as the return value of the function. This value is used by the
VSELP vocoder.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

int DSP_dotp_sqr (int G,short *x,short *y,int *r, int nx)

{

 int i;

 for (i = 0; i < nx; i++)

 {

 *r += x[i] * y[i];

 G += y[i] * y[i];

 }

 return G;

}

Special Requirements nx must be a multiple of 4 and greater than or equal to 12.

Implementation Notes
� Unrolled 4 times to maximize multiplier utilization.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles nx + 20

Codesize 192 bytes

DSP_dotprod

4-38

Vector Dot ProductDSP_dotprod

Function int DSP_dotprod(short *x, short *y, int nx)

Arguments x[nx] First vector array. Must be word aligned.

y[nx] Second vector array. Must be word aligned.

nx Number of elements of vector. Must be multiple of 2.

return int Dot product of x and y.

Description This routine takes two vectors and calculates their dot product. The inputs are
16-bit short data and the output is a 32-bit number.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

int DSP_dotprod(short x[],short y[], int nx)

{

int sum = 0;

int i;

for(i=0; i<nx; i++)

sum += (x[i] * y[i]);

return sum;

}

Special Requirements
� The input length nx must be a multiple of 2.

� Arrays x[] and y[] must be aligned on word boundaries.

� To avoid bank conflicts the input arrays x[] and y[] should be offset by 4
bytes.

Implementation Notes
� The loop is unrolled once.

� Bank Conflicts: No bank conflicts occur if the input arrays x[] and y[] are
offset by 4 8 bytes.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles nx / 2 + 12
 For nx = 40: 32 cycles

Codesize 160 bytes

DSP_maxval

4-39 DSPLIB Reference

Maximum Value of VectorDSP_maxval

Function short DSP_maxval (short *x, int nx)

Arguments x[nx] Pointer to input vector of size nx. Must be word aligned.

nx Length of input data vector. Must be multiple of 4 and ≥16.

return short Maximum value of x[].

Description This routine finds the element with maximum value in the input vector and re-
turns that value.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

short DSP_maxval(short x[], int nx)

{

int i, max;

max = –32768;

for (i = 0; i < nx; i++)

if (x[i] > max)

max = x[i];

return max;

}

Special Requirements
� nx must be a multiple of 4 and greater than or equal to 16.

� x[] must be word aligned.

Implementation Notes
� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles nx / 2 + 21

Codesize 224 bytes

DSP_maxidx

4-40

Index of Maximum Element of VectorDSP_maxidx

Function int DSP_maxidx (short *x, int nx)

Arguments x[nx] Pointer to input vector of size nx.

nx Length of input data vector. Must be multiple of 3 and ≥ 3.

return int Index for vector element with maximum value.

Description This routine finds the max value of a vector and returns the index of that value.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

int DSP_maxidx(short x[], int nx)

{

int max, index, i;

max = –32768;

for (i = 0; i < nx; i++)

if (x[i] > max)

{

max = x[i];

index = i;

}

return index;

}

Special Requirements nx must be a multiple of 3 and greater than or equal to 3.

Implementation Notes
� The loop is unrolled three times. After finding a new max value, multiply

units are used to move value between registers.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles 2 * nx / 3 + 13
For nx = 108: 85 cycles

Codesize 224 bytes

DSP_minval

4-41 DSPLIB Reference

Minimum Value of VectorDSP_minval

Function short DSP_minval (short *x, int nx)

Arguments x[nx] Pointer to input vector of size nx. Must be word aligned.

nx Length of input data vector. Must be multiple of 4 and ≥16.

return short Maximum value of a vector.

Description This routine finds the minimum value of a vector and returns the value.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

short DSP_minval(short x[], int nx)

{

int i, min;

min = 32767;

for (i = 0; i < nx; i++)

if (x[i] < min)

min = x[i];

return min;

}

Special Requirements
� nx must be a multiple of 4 and greater than or equal to 16.

� x[] must be word aligned.

Implementation Notes

� The input data is loaded using word wide loads.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles nx/2 + 21

Codesize 224 bytes

DSP_mul32

4-42

32-bit Vector MultiplyDSP_mul32

Function void DSP_mul32(int *x, int *y, int *r, short nx)

Arguments x[nx] Pointer to input data vector 1 of size nx. Must be word
aligned.

y[nx] Pointer to input data vector 2 of size nx. Must be word
aligned.

r[nx] Pointer to output data vector of size nx. Must be word
aligned.

nx Number of elements in input and output vectors. Must be
multiple of 2 and ≥8.

Description The function performs a Q.31 x Q.31 multiply and returns the upper 32 bits of
the 64-bit result (Q.30 format). The result of the intermediate multiplies are ac-
cumulated into a 40-bit long register pair as there could be potential overflow.
The contribution of the multiplication of the two lower 16-bit halves are not con-
sidered. Results are accurate to least significant bit.

Algorithm In the comments below, X and Y are the two input values. Xhigh and Xlow rep-
resent the upper and lower 16 bits of X. This is the C equivalent of the assembly
code without restrictions. Note that the assembly code is hand optimized and
restrictions may apply.

void DSP_mul32(const int *x, const int *y, int *r, short nx)

{

short i;

int a,b,c,d,e;

for(i=nx;i>0;i––)

{

a=*(x++);

b=*(y++);

c=_mpyluhs(a,b); /* Xlow*Yhigh */

d=_mpyhslu(a,b); /* Xhigh*Ylow */

e=_mpyh(a,b); /* Xhigh*Yhigh */

d+=c; /* Xhigh*Ylow+Xlow*Yhigh */

d=d>>16; /* (Xhigh*Ylow+Xlow*Yhigh)>>16 */

e+=d; /* Xhigh*Yhigh + */

 /* (Xhigh*Ylow+Xlow*Yhigh)>>16 */

*(r++)=e;

}

}

DSP_mul32

4-43 DSPLIB Reference

Special Requirements
� nx must be a multiple of 2 and greater than or equal to 8.

� Input and output vectors must be word aligned.

Implementation Notes
� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles 1.5 * nx + 26

Codesize 224 bytes

DSP_neg32

4-44

32-bit Vector NegateDSP_neg32

Function void DSP_neg32(int *x, int *r, int nx)

Arguments x[nx] Pointer to input data vector 1 of size nx with 32-bit elements.
Must be word aligned.

r[nx] Pointer to output data vector of size nx with 32-bit elements.
Must be word aligned.

nx Number of elements of input and output vectors. Must be a
multiple of 2 and ≥4.

Description This function negates the elements of a vector (32-bit elements).

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_neg32(int *x, int *r, int nx)

{

int i;

for (i = 0; i < nx; i++)

 r[i] = –x[i];

}

Special Requirements
� nx must be a multiple of 2 and greater than or equal to 4.

� The arrays x[] and r[] must be word aligned.

Implementation Notes
� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles nx + 18

Codesize 128 bytes

DSP_recip16

4-45 DSPLIB Reference

16-bit ReciprocalDSP_recip16

Function void DSP_recip16 (short *x, short *rfrac, short *rexp, short nx)

Arguments x[nx] Pointer to Q.15 input data vector of size nx.

rfrac[nx] Pointer to Q.15 output data vector for fractional values.

rexp[nx] Pointer to output data vector for exponent values.

nx Number of elements of input and output vectors.

Description This routine returns the fractional and exponential portion of the reciprocal of
an array x[] of Q.15 numbers. The fractional portion rfrac is returned in Q.15
format. Since the reciprocal is always greater than 1, it returns an exponent
such that:

(rfrac[i] * 2^rexp[i]) = true reciprocal

The output is accurate up to the least significant bit of rfrac, but note that this
bit could carry over and change rexp. For a reciprocal of 0, the procedure will
return a fractional part of 7FFFh and an exponent of 16.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_recip16(short *x, short *rfrac, short *rexp, short
nx)

{

int i,j,a,b;

short neg, normal;

for(i=nx; i>0; i––)

{

a=*(x++);

if(a<0) /* take absolute value */

{

a=–a;

neg=1;

}

else neg=0;

normal=_norm(a); /* normalize number */

a=a<<normal;

(rexp++)=normal–15; / store exponent */

DSP_recip16

4-46

b=0x80000000; /* dividend = 1 */

for(j=15;j>0;j––)

b=_subc(b,a); /* divide */

b=b&0x7FFF; /* clear remainder

/* (clear upper half) */

if(neg) b=–b; /* if originally

/* negative, negate */

(rfrac++)=b; / store fraction */

}

}

Special Requirements none

Implementation Notes
� The conditional subtract instruction, SUBC, is used for division. SUBC is

used once for every bit of quotient needed (15).

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interruptible.

Benchmarks Cycles 8 * nx + 14

Codesize 224 bytes

DSP_vecsumsq

4-47 DSPLIB Reference

Sum of SquaresDSP_vecsumsq

Function int DSP_vecsumsq (short *x, int nx)

Arguments x[nx] Input vector

nx Number of elements in x. Must be multiple of 2 and ≥8.

return int Sum of the squares

Description This routine returns the sum of squares of the elements contained in the vector
x[].

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

int DSP_vecsumsq(short x[], int nx)

{

int i, sum=0;

for(i=0; i<nx; i++)

sum += x[i]*x[i];

return(sum);

}

Special Requirements nx must be a multiple of 2 and greater than or equal to 8.

Implementation Notes

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles nx/2 + 19

Codesize 192 bytes

DSP_w_vec

4-48

Weighted Vector SumDSP_w_vec

Function void DSP_w_vec(short *x, short *y, short m, short *r, short nr)

Arguments x[nr] Vector being weighted. Must be word aligned.

y[nr] Summation vector. Must be word aligned.

m Weighting factor (–32767 <= m <= 32767)

r[nr] Output vector. Must be word aligned.

nr Dimensions of the vectors. Must be multiple of 4.

Description This routine is used to obtain the weighted vector sum. Both the inputs and out-
put are 16-bit numbers.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_w_vec(short x[],short y[],short m, short r[], int nr)

{

int i;

for (i=0; i<nr; i++)

r[i] = ((m * x[i]) >> 15) + y[i];

}

Special Requirements
� nr must be a multiple of 4 and greater than or equal to 4.

� Vectors x[], y[] and r[] must be word aligned.

� m must not be –32768.

Implementation Notes
� This loop is unrolled 4x to make full use of the available memory band-

width.

� SMPY is used in conjunction with shifts and masks so that the m * x[i] terms
may be packed pairs within 32-bit registers. This allows us to use packed-
data processing for the rest of the algorithm, thereby maximizing our load/
store bandwidth.

DSP_w_vec

4-49 DSPLIB Reference

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles 3 * nr/4 + 19
For nr = 256: 211 cycles
For nr = 1000: 770 cycles

Codesize 192 bytes

DSP_mat_mul

4-50

4.5 Matrix

Matrix MultiplicationDSP_mat_mul

Function void DSP_mat_mul(short *x, int r1, int c1, short *y, int c2, short *r, int qs)

Arguments x [r1*c1] Pointer to input matrix of size r1*c1.

r1 Number of rows in matrix x.

c1 Number of columns in matrix x. Also number of rows in y.

y [c1*c2] Pointer to input matrix of size c1*c2.

c2 Number of columns in matrix y.

r [r1*c2] Pointer to output matrix of size r1*c2.

qs Final right-shift to apply to the result.

Description This function computes the expression ”r = x * y” for the matrices x and y. The
columnar dimension of x must match the row dimension of y. The resulting ma-
trix has the same number of rows as x and the same number of columns as
y.

Description The values stored in the matrices are assumed to be fixed-point or integer va-
lues. All intermediate sums are retained to 32-bit precision, and no overflow
checking is performed. The results are right-shifted by a user-specified
amount, and then truncated to 16 bits.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_mat_mul(short *x, int r1, int c1, short *y, int c2,
short *r, int qs)

{

 int i, j, k;

 int sum;

 /* –– */

 /* Multiply each row in x by each column in y. The */

 /* product of row m in x and column n in y is placed */

 /* in position (m,n) in the result. */

 /* –– */

DSP_mat_mul

4-51 DSPLIB Reference

 for (i = 0; i < r1; i++)

 for (j = 0; j < c2; j++)

 {

 sum = 0;

 for (k = 0; k < c1; k++)

 sum += x[k + i*c1] * y[j + k*c2];

 r[j + i*c2] = sum >> qs;

 }

}

Special Requirements
� The arrays x[], y[], and r[] are stored in distinct arrays. That is, in-place

processing is not allowed.

� The input matrices have minimum dimensions of at least 1 row and 1 col-
umn, and maximum dimensions of 32767 rows and 32767 columns.

Implementation Notes
� The outer two loops are unrolled 2x. For odd-sized dimensions, we end

up doing extra multiplies along the edges. This offsets the overhead of the
nested loop structure, though.

� The outer two levels of loop nest are collapsed, further reducing the over-
head of the looping structure.

� Bank Conflicts: Arrays x[] and y[] should be placed in different memory
halves on C620x and C670x devices to avoid bank conflicts.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles 0.5 * (r1’ * c2’ * c1) + 3 * (r1’ * c2’) + 24
with r1’ = r1 + (r1&1) and c2’ = c2 + (c2&1)
(r1 and c2 rounded up to next even)
For r1= 1, c1= 1, c2= 1: 38 cycles
For r1= 8, c1=20, c2= 8: 856 cycles

Codesize 448 bytes

DSP_mat_trans

4-52

Matrix TransposeDSP_mat_trans

Function void DSP_mat_trans (short *x, short rows, short columns, short *r)

Arguments x[rows*columns] Pointer to input matrix.

rows Number of rows in the input matrix.

columns Number of columns in the input matrix.

r[columns*rows] Pointer to output data vector of size rows*columns.

Description This function transposes the input matrix x[] and writes the result to matrix r[].

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_mat_trans(short *x, short rows, short columns, short
*r)

{

short i,j;

for(i=0; i<columns; i++)

for(j=0; j<rows; j++)

r[i * rows + j] = x[i + columns * j];

}

Special Requirements none

Implementation Notes
� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles 6 * floor(rows * columns / 3) + 11

Codesize 192 bytes

DSP_bexp

4-53 DSPLIB Reference

4.6 Miscellaneous

Block Exponent ImplementationDSP_bexp

Function int DSP_bexp(int *x, unsigned nx)

Arguments x[nx] Pointer to input vector of size nx. Must be word aligned.

nx Number of elements in input vector. Must be multiple of 2
and ≥6.

return int Return value is the minimum exponent.

Description Computes the exponents (number of extra sign bits) of all values in the input
vector x[] and returns the minimum exponent. This will be useful in determining
the maximum shift value that may be used in scaling a block of data.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

int DSP_bexp(const int *x, unsigned nx)

{

 int i;

 unsigned mask, mag;

 mask = 0;

 for (i = 0; i < nx; i++)

 mask |= x[i] ^ (x[i] >> 31);

 for (mag = 0; (1 << mag) < mask; mag++)

 ;

 return 31 – mag;

}

Special Requirements nx must be a multiple of 2 and at least 6.

Implementation Notes
� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles nx + 17
For nx = 32: 49 cycles

Codesize 128 bytes

DSP_blk_move

4-54

Block MoveDSP_blk_move

Function void DSP_blk_move(short *x, short *r, int nx)

Arguments x [nx] Block of data to be moved. Must be word aligned.

r [nx] Destination of block of data. Must be word aligned.

nx Number of elements in block. Must be multiple of 2 and ≥4.

Description This routine moves nx 16-bit elements from one memory location pointed to
by x to another pointed to by r.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_blk_move(short *x, short *r, int nx)

{

 int i;

 for (i = 0 ; i < nx; i++)

 r[i] = x[i];

}

Special Requirements
� nx must be a multiple of 2 and greater than or equal to 4.

� x[] and r[] must be word aligned.

Implementation Notes
� Twin input and output pointers are used.

� Unrolled 4 times to use parallel LDWs and STWs.

� Peeled off half-iteration to allow multiple of 2 instead of multiple of 4.

� Return branch issued from loop kernel to save cycles.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles MAX(2 * (nx >> 2) + 15, 21)
For nx <= 14: 21 cycles
For nx = 16: 23 cycles

Codesize 128 bytes

DSP_blk_eswap16

4-55 DSPLIB Reference

Endian-swap a block of 16-bit valuesDSP_blk_eswap16

Function void blk_eswap16(void *x, void *r, int nx)

Arguments x [nx] Source data. Must be word aligned.

r [nx] Destination array. Must be word aligned.

nx Number of 16-bit values to swap. Must be multiple of 8.

Description The data in the x[] array is endian swapped, meaning that the byte-order of the
bytes within each half-word of the r[] array is reversed. This is meant to facili-
tate moving big-endian data to a little-endian system or vice-versa.

When the r pointer is non-NULL, the endian-swap occurs out-of-place, similar
to a block move. When the r pointer is NULL, the endian-swap occurs in-place,
allowing the swap to occur without using any additional storage.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_blk_eswap16(void *x, void *r, int nx)

{

 int i;

 char *_x, *_r;

 if (r)

 {

 _x = (char *)x;

 _r = (char *)r;

 } else

 {

 _x = (char *)x;

 _r = (char *)r;

 }

 for (i = 0; i < nx; i++)

 {

 char t0, t1;

 t0 = _x[i*2 + 1];

 t1 = _x[i*2 + 0];

 _r[i*2 + 0] = t0;

 _r[i*2 + 1] = t1;

 }

}

DSP_blk_eswap16

4-56

Special Requirements
� Input and output arrays do not overlap, except in the very specific case that

”r == NULL” so that the operation occurs in-place.

� The input array and output array are expected to be word aligned, and a
multiple of 8 half-words must be processed.

Implementation Notes
� Bank Conflicts: No bank conflicts occur.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles 0.375 * nx + 19

Codesize 256 bytes

DSP_blk_eswap32

4-57 DSPLIB Reference

Endian-swap a block of 32-bit valuesDSP_blk_eswap32

Function void blk_eswap32(void *x, void *r, int nx)

Arguments x [nx] Source data. Must be word aligned.

r [nx] Destination array. Must be word aligned.

nx Number of 32-bit values to swap. Must be multiple of 2 and ≥4.

Description The data in the x[] array is endian swapped, meaning that the byte-order of the
bytes within each word of the r[] array is reversed. This is meant to facilitate
moving big-endian data to a little-endian system or vice-versa.

When the r pointer is non-NULL, the endian-swap occurs out-of-place, similar
to a block move. When the r pointer is NULL, the endian-swap occurs in-place,
allowing the swap to occur without using any additional storage.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_blk_eswap32(void *x, void *r, int nx)

{

 int i;

 char *_x, *_r;

 if (r)

 {

 _x = (char *)x;

 _r = (char *)r;

 } else

 {

 _x = (char *)x;

 _r = (char *)r;

 }

 for (i = 0; i < nx; i++)

 {

 char t0, t1, t2, t3;

 t0 = _x[i*4 + 3];

 t1 = _x[i*4 + 2];

 t2 = _x[i*4 + 1];

 t3 = _x[i*4 + 0];

DSP_blk_eswap32

4-58

 _r[i*4 + 0] = t0;

 _r[i*4 + 1] = t1;

 _r[i*4 + 2] = t2;

 _r[i*4 + 3] = t3;

 }

}

Special Requirements
� Input and output arrays do not overlap, except in the very specific case that

”r == NULL” so that the operation occurs in-place.

� The input array and output array are expected to be word aligned, and a
multiple of 2 words must be processed.

� The input array must be at least 4 words long.

Implementation Notes
� Bank Conflicts: No bank conflicts occur.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles 1.5 * nx + 20

Codesize 224 bytes

DSP_blk_eswap64

4-59 DSPLIB Reference

Endian-swap a block of 64-bit valuesDSP_blk_eswap64

Function void blk_eswap64(void *x, void *r, int nx)

Arguments x[nx] Source data. Must be double-word aligned.

r[nx] Destination array. Must be double-word aligned.

nx Number of 64-bit values to swap. Must be multiple of 2.

Description The data in the x[] array is endian swapped, meaning that the byte-order of the
bytes within each double-word of the r[] array is reversed. This is meant to facil-
itate moving big-endian data to a little-endian system or vice-versa.

When the r pointer is non-NULL, the endian-swap occurs out-of-place, similar
to a block move. When the r pointer is NULL, the endian-swap occurs in-place,
allowing the swap to occur without using any additional storage.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_blk_eswap64(void *x, void *r, int nx)

{

 int i;

 char *_x, *_r;

 if (r)

 {

 _x = (char *)x;

 _r = (char *)r;

 } else

 {

 _x = (char *)x;

 _r = (char *)r;

 }

 for (i = 0; i < nx; i++)

 {

 char t0, t1, t2, t3, t4, t5, t6, t7;

 t0 = _x[i*8 + 7];

 t1 = _x[i*8 + 6];

 t2 = _x[i*8 + 5];

 t3 = _x[i*8 + 4];

DSP_blk_eswap64

4-60

 t4 = _x[i*8 + 3];

 t5 = _x[i*8 + 2];

 t6 = _x[i*8 + 1];

 t7 = _x[i*8 + 0];

 _r[i*8 + 0] = t0;

 _r[i*8 + 1] = t1;

 _r[i*8 + 2] = t2;

 _r[i*8 + 3] = t3;

 _r[i*8 + 4] = t4;

 _r[i*8 + 5] = t5;

 _r[i*8 + 6] = t6;

 _r[i*8 + 7] = t7;

 }

}

Special Requirements
� Input and output arrays do not overlap, except in the very specific case that

”r == NULL” so that the operation occurs in-place.

� The input array and output array are expected to be double-word aligned,
and a multiple of 2 double-words must be processed.

� The input array must be at least 2 double-words long.

Implementation Notes
� Bank Conflicts: No bank conflicts occur.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles 3 * nx + 20

Codesize 224 bytes

DSP_fltoq15

4-61 DSPLIB Reference

Float to Q15 ConversionDSP_fltoq15

Function void DSP_fltoq15 (float *x, short *r, int nx)

Arguments x[nx] Pointer to floating-point input vector of size nx. x[] should
contain the numbers normalized between [–1.0,1.0).

r[nx] Pointer to output data vector of size nx containing the Q.15
equivalent of vector x.

nx Length of input and output data vectors. Must be multiple of 2.

Description Convert the IEEE floating point numbers stored in vector x[] into Q.15 format
numbers stored in vector r[]. Results will be rounded towards negative infinity.
All values that exceed the size limit will be saturated to 0x7fff if value is positive
and 0x8000 if value is negative.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_fltoq15(float x[], short r[], int nx)

{

int i, a;

for(i = 0; i < nx; i++)

{

 a = floor(32768 * x[i]);

 // saturate to 16–bit //

 if (a>32767) a = 32767;

 if (a<–32768) a = –32768;

 r[i] = (short) a;

} }

Special Requirements nx must be a multiple of 2.

Implementation Notes
� Loop is unrolled twice.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles 7 * nx/2 + 12

Codesize 320 bytes

DSP_minerror

4-62

Minimum Energy Error SearchDSP_minerror

Function int DSP_minerror (short *GSP0_TABLE, short *errCoefs, int max_index)

Arguments GSP0_TABLE[256*9] GSP0 terms array. Must be word aligned

errCoefs[9] Array of error coefficients. Must be word aligned.

max_index Index to GSP0_TABLE[max_index], the first
element of the 9-element vector that resulted in the
maximum dot product.

return int Maximum dot product result.

Description Performs a dot product on 256 pairs of 9 element vectors and searches for the
pair of vectors which produces the maximum dot product result. This is a large
part of the VSELP vocoder codebook search.

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

int minerr

(

 const short *restrict GSP0_TABLE,

 short *restrict errCoefs,

 int *restrict max_index

)

{

 int val, maxVal = –50;

 int i, j;

 for (i = 0; i < GSP0_NUM; i++)

 {

 for (val = 0, j = 0; j < GSP0_TERMS; j++)

 val += GSP0_TABLE[i*GSP0_TERMS+j] * errCoefs[j];

 if (val > maxVal)

 {

 maxVal = val;

 *max_index = i*GSP0_TERMS;

 }

 }

 return (maxVal);

}

DSP_minerror

4-63 DSPLIB Reference

Special Requirements Arrays GSP0_TABLE[] and errCoefs[] must be word aligned.

Implementation Notes
� Inner loop is completely unrolled.

� Word-wide loads are used to read in GSP0_TABLE and errCoefs.

� Bank Conflicts: Align GSP0_TABLE[] and errCoefs[] at different memory
banks to avoid 4 bank conflicts.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles 1189

Codesize 576 bytes

DSP_q15tofl

4-64

Q15 to Float ConversionDSP_q15tofl

Function void DSP_q15tofl (short *x, float *r, int nx)

Arguments x[nx] Pointer to Q.15 input vector of size nx.

r[nx] Pointer to floating-point output data vector of size nx containing
the floating-point equivalent of vector x.

nx Length of input and output data vectors. Must be multiple of 2.

Description Converts the values stored in vector x[] in Q.15 format to IEEE floating point
numbers in output vector r[].

Algorithm This is the C equivalent of the assembly code without restrictions. Note that
the assembly code is hand optimized and restrictions may apply.

void DSP_q15tofl(short *x, float *r, int nx)

{

int i;

for (i=0;i<nx;i++)

r[i] = (float) x[i] / 0x8000;

}

Special Requirements nx must be a multiple of 2.

Implementation Notes
� Loop is unrolled twice

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles 5/2 * nx + 18

Codesize 288 bytes

A-1

Appendix A

������������
������������
�����	

This appendix describes performance considerations related to the C62x
DSPLIB and provides information about the Q format used by DSPLIB func-
tions.

Topic Page

A.1 Performance Considerations A-2.

A.2 Functional Q Formats A-3.

Appendix A

Performance Considerations

 A-2

A.1 Performance Considerations

Although DSPLIB can be used as a first estimation of processor performance
for a specific function, you should be aware that the generic nature of DSPLIB
might add extra cycles not required for customer specific usage.

Benchmark cycles presented assume best case conditions, typically assum-
ing all code and data are placed in internal data memory. Any extra cycles due
to placement of code or data in external data memory or cache-associated
effects (cache-hits or misses) are not considered when computing the cycle
counts.

You should also be aware that execution speed in a system is dependent on
where the different sections of program and data are located in memory. You
should account for such differences when trying to explain why a routine is tak-
ing more time than the reported DSPLIB benchmarks.

Fractional Q Formats

A-3Performance/Fractional Q Formats

A.2 Fractional Q Formats

Unless specifically noted, DSPLIB functions use Q15 format, or to be more ex-
act, Q0.15. In a Qm.n format, there are m bits used to represent the two’s com-
plement integer portion of the number, and n bits used to represent the two’s
complement fractional portion. m+n+1 bits are needed to store a general Qm.n
number. The extra bit is needed to store the sign of the number in the most-sig-
nificant bit position. The representable integer range is specified by (–2m,2m)
and the finest fractional resolution is 2–n.

For example, the most commonly used format is Q.15. Q.15 means that a
16-bit word is used to express a signed number between positive and negative
one. The most-significant binary digit is interpreted as the sign bit in any Q for-
mat number. Thus, in Q.15 format, the decimal point is placed immediately to
the right of the sign bit. The fractional portion to the right of the sign bit is stored
in regular two’s complement format.

A.2.1 Q3.12 Format

Q.3.12 format places the sign bit after the fourth binary digit from the right, and
the next 12 bits contain the two’s complement fractional component. The
approximate allowable range of numbers in Q.3.12 representation is (–8,8)
and the finest fractional resolution is 2–12 = 2.441 × 10–4.

Table A–1. Q3.12 Bit Fields

Bit 15 14 13 12 11 10 9 … 0

Value S I3 I2 I1 Q11 Q10 Q9 … Q0

A.2.2 Q.15 Format

Q.15 format places the sign bit at the leftmost binary digit, and the next 15 left-
most bits contain the two’s complement fractional component. The approxi-
mate allowable range of numbers in Q.15 representation is (–1,1) and the fin-
est fractional resolution is 2–15 = 3.05 × 10–5.

Table A–2. Q.15 Bit Fields

Bit 15 14 13 12 11 10 9 … 0

Value S Q14 Q13 Q12 Q11 Q10 Q9 … Q0

Fractional Q Formats

 A-4

A.2.3 Q.31 Format

Q.31 format spans two 16-bit memory words. The 16-bit word stored in the low-
er memory location contains the 16 least significant bits, and the higher
memory location contains the most significant 15 bits and the sign bit. The
approximate allowable range of numbers in Q.31 representation is (–1,1) and
the finest fractional resolution is 2–31 = 4.66 × 10–10.

Table A–3. Q.31 Low Memory Location Bit Fields

Bit 15 14 13 12 … 3 2 1 0

Value Q15 Q14 Q13 Q12 … Q3 Q2 Q1 Q0

Table A–4. Q.31 High Memory Location Bit Fields

Bit 15 14 13 12 … 3 2 1 0

Value S Q30 Q29 Q28 … Q19 Q18 Q17 Q16

B-1

Appendix A

���� �����!����	������	��������!!���

This appendix provides information about software updates and customer
support.

Topic Page

B.1 DSPLIB Software Updates B-2.

B.2 DSPLIB Customer Support B-2.

Appendix B

DSPLIB Software Updates

 B-2

B.1 DSPLIB Software Updates

C62x DSPLIB Software updates may be periodically released incorporating
product enhancements and fixes as they become available. You should read
the README.TXT available in the root directory of every release.

B.2 DSPLIB Customer Support

If you have questions or want to report problems or suggestions regarding the
C62x DSPLIB, contact Texas Instruments at dsph@ti.com.

C-1

Appendix A

"��		��#

A
address: The location of program code or data stored; an individually acces-

sible memory location.

A-law companding: See compress and expand (compand).

API: See application programming interface.

application programming interface (API): Used for proprietary applica-
tion programs to interact with communications software or to conform to
protocols from another vendor’s product.

assembler: A software program that creates a machine language program
from a source file that contains assembly language instructions, direc-
tives, and macros. The assembler substitutes absolute operation codes
for symbolic operation codes and absolute or relocatable addresses for
symbolic addresses.

assert: To make a digital logic device pin active. If the pin is active low, then a
low voltage on the pin asserts it. If the pin is active high, then a high volt-
age asserts it.

B
bit: A binary digit, either a 0 or 1.

big endian: An addressing protocol in which bytes are numbered from left to
right within a word. More significant bytes in a word have lower numbered
addresses. Endian ordering is specific to hardware and is determined at
reset. See also little endian.

block: The three least significant bits of the program address. These corre-
spond to the address within a fetch packet of the first instruction being
addressed.

Appendix C

Glossary

 C-2

board support library (BSL): The BSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control board level peripherals.

boot: The process of loading a program into program memory.

boot mode: The method of loading a program into program memory. The
C6x DSP supports booting from external ROM or the host port interface
(HPI).

BSL: See board support library.

byte: A sequence of eight adjacent bits operated upon as a unit.

C
cache: A fast storage buffer in the central processing unit of a computer.

cache controller: System component that coordinates program accesses
between CPU program fetch mechanism, cache, and external memory.

CCS: Code Composer Studio.

central processing unit (CPU): The portion of the processor involved in
arithmetic, shifting, and Boolean logic operations, as well as the genera-
tion of data- and program-memory addresses. The CPU includes the
central arithmetic logic unit (CALU), the multiplier, and the auxiliary regis-
ter arithmetic unit (ARAU).

chip support library (CSL): The CSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control all on-chip peripherals.

clock cycle: A periodic or sequence of events based on the input from the
external clock.

clock modes: Options used by the clock generator to change the internal
CPU clock frequency to a fraction or multiple of the frequency of the input
clock signal.

code: A set of instructions written to perform a task; a computer program or
part of a program.

coder-decoder or compression/decompression (codec): A device that
codes in one direction of transmission and decodes in another direction
of transmission.

compiler: A computer program that translates programs in a high-level lan-
guage into their assembly-language equivalents.

Glossary

C-3Glossary

compress and expand (compand): A quantization scheme for audio sig-
nals in which the input signal is compressed and then, after processing, is
reconstructed at the output by expansion. There are two distinct com-
panding schemes: A-law (used in Europe) and ∝ -law (used in the United
States).

control register: A register that contains bit fields that define the way a de-
vice operates.

control register file: A set of control registers.

CSL: See chip support library.

D
device ID: Configuration register that identifies each peripheral component

interconnect (PCI).

digital signal processor (DSP): A semiconductor that turns analog sig-
nals—such as sound or light—into digital signals, which are discrete or
discontinuous electrical impulses, so that they can be manipulated.

direct memory access (DMA): A mechanism whereby a device other than
the host processor contends for and receives mastery of the memory bus
so that data transfers can take place independent of the host.

DMA: See direct memory access.

DMA source: The module where the DMA data originates. DMA data is read
from the DMA source.

DMA transfer: The process of transferring data from one part of memory to
another. Each DMA transfer consists of a read bus cycle (source to DMA
holding register) and a write bus cycle (DMA holding register to destina-
tion).

DSP_autocor: Autocorrelation

DSP_bexp: Block exponent implementation

DSP_bitrev_cplx: Complex bit reverse.

DSP_blk_eswap16: 16-bit endian swap

DSP_blk_eswap32: 32-bit endian swap

DSP_blk_eswap64: 64-bit endian swap

Glossary

 C-4

DSP_blk_move: Block move

DSP_dotp_sqr: Vector dot product and square.

DSP_dotprod: Vector dot product.

DSP_fft16x16r: Complex forward mixed radix 16- x 16-bit FFT with round-
ing.

DSP_fir_cplx: Complex FIR filter (radix 2).

DSP_fir_gen: FIR filter (general purpose).

DSP_firlms2: LMS FIR (radix 2).

DSP_fir_r4: FIR filter (radix 4).

DSP_fir_r8: FIR filter (radix 8).

DSP_fir_sym: Symmetric FIR filter (radix 8).

DSP_fltoq15: Float to Q15 conversion.

DSP_iir: IIR with 5 coefficients per biquad.

DSP_iirlat_fwd: Forward lattice (radix 2).

DSP_lat_inv: Inverse lattice (radix 2).

DSP_mat_trans: Matrix transpose.

DSP_maxidx: Index of the maximum element of a vector.

DSP_maxval: Maximum value of a vector.

DSP_minerror: Minimum energy error search.

DSP_minval: Minimum value of a vector.

DSP_mat_mul: Matrix multiplication.

DSP_mul32: 32-bit vector multiply.

DSP_neg32: 32-bit vector negate.

DSP_q15tofl: Q15 to float conversion.

DSP_radix2: Complex forward FFT (radix 2)

DSP_recip16: 16-bit reciprocal.

DSP_r4fft: Complex forward FFT (radix 4)

Glossary

C-5Glossary

DSP_vecsumsq: Sum of squares.

DSP_w_vec: Weighted vector sum.

E
evaluation module (EVM): Board and software tools that allow the user to

evaluate a specific device.

external interrupt: A hardware interrupt triggered by a specific value on a
pin.

external memory interface (EMIF): Microprocessor hardware that is used
to read to and write from off-chip memory.

F
fast Fourier transform (FFT): An efficient method of computing the discrete

Fourier transform algorithm, which transforms functions between the
time domain and the frequency domain.

fetch packet: A contiguous 8-word series of instructions fetched by the CPU
and aligned on an 8-word boundary.

FFT: See fast fourier transform.

flag: A binary status indicator whose state indicates whether a particular
condition has occurred or is in effect.

frame: An 8-word space in the cache RAMs. Each fetch packet in the cache
resides in only one frame. A cache update loads a frame with the re-
quested fetch packet. The cache contains 512 frames.

G
global interrupt enable bit (GIE): A bit in the control status register (CSR)

that is used to enable or disable maskable interrupts.

Glossary

 C-6

H
HAL: Hardware abstraction layer of the CSL. The HAL underlies the service

layer and provides it a set of macros and constants for manipulating the
peripheral registers at the lowest level. It is a low-level symbolic interface
into the hardware providing symbols that describe peripheral registers/
bitfields and macros for manipulating them.

host: A device to which other devices (peripherals) are connected and that
generally controls those devices.

host port interface (HPI): A parallel interface that the CPU uses to commu-
nicate with a host processor.

HPI: See host port interface; see also HPI module.

I
index: A relative offset in the program address that specifies which of the

512 frames in the cache into which the current access is mapped.

indirect addressing: An addressing mode in which an address points to
another pointer rather than to the actual data; this mode is prohibited in
RISC architecture.

instruction fetch packet: A group of up to eight instructions held in memory
for execution by the CPU.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

interrupt: A signal sent by hardware or software to a processor requesting
attention. An interrupt tells the processor to suspend its current opera-
tion, save the current task status, and perform a particular set of instruc-
tions. Interrupts communicate with the operating system and prioritize
tasks to be performed.

interrupt service fetch packet (ISFP): A fetch packet used to service inter-
rupts. If eight instructions are insufficient, the user must branch out of this
block for additional interrupt service. If the delay slots of the branch do not
reside within the ISFP, execution continues from execute packets in the
next fetch packet (the next ISFP).

interrupt service routine (ISR): A module of code that is executed in re-
sponse to a hardware or software interrupt.

interrupt service table (IST): A table containing a corresponding entry for
each of the 16 physical interrupts. Each entry is a single-fetch packet and
has a label associated with it.

Glossary

C-7Glossary

internal peripherals: Devices connected to and controlled by a host device.
The C6x internal peripherals include the direct memory access (DMA)
controller, multichannel buffered serial ports (McBSPs), host port inter-
face (HPI), external memory-interface (EMIF), and runtime support tim-
ers.

IST: See interrupt service table.

L
least significant bit (LSB): The lowest-order bit in a word.

linker: A software tool that combines object files to form an object module,
which can be loaded into memory and executed.

little endian: An addressing protocol in which bytes are numbered from right
to left within a word. More significant bytes in a word have higher-num-
bered addresses. Endian ordering is specific to hardware and is deter-
mined at reset. See also big endian.

M
�-law companding: See compress and expand (compand).

maskable interrupt: A hardware interrupt that can be enabled or disabled
through software.

memory map: A graphical representation of a computer system’s memory,
showing the locations of program space, data space, reserved space,
and other memory-resident elements.

memory-mapped register: An on-chip register mapped to an address in
memory. Some memory-mapped registers are mapped to data memory,
and some are mapped to input/output memory.

most significant bit (MSB): The highest order bit in a word.

multichannel buffered serial port (McBSP): An on-chip full-duplex circuit
that provides direct serial communication through several channels to
external serial devices.

multiplexer: A device for selecting one of several available signals.

N
nonmaskable interrupt (NMI): An interrupt that can be neither masked nor

disabled.

Glossary

 C-8

O
object file: A file that has been assembled or linked and contains machine

language object code.

off chip: A state of being external to a device.

on chip: A state of being internal to a device.

P
peripheral: A device connected to and usually controlled by a host device.

program cache: A fast memory cache for storing program instructions al-
lowing for quick execution.

program memory: Memory accessed through the C6x’s program fetch in-
terface.

PWR: Power; see PWR module.

PWR module: PWR is an API module that is used to configure the power-
down control registers, if applicable, and to invoke various power-down
modes.

R
random-access memory (RAM): A type of memory device in which the in-

dividual locations can be accessed in any order.

register: A small area of high speed memory located within a processor or
electronic device that is used for temporarily storing data or instructions.
Each register is given a name, contains a few bytes of information, and is
referenced by programs.

reduced-instruction-set computer (RISC): A computer whose instruction
set and related decode mechanism are much simpler than those of mi-
croprogrammed complex instruction set computers. The result is a high-
er instruction throughput and a faster real-time interrupt service re-
sponse from a smaller, cost-effective chip.

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

RTOS: Real-time operating system.

Glossary

C-9Glossary

S
service layer: The top layer of the 2-layer chip support library architecture

providing high-level APIs into the CSL and BSL. The service layer is
where the actual APIs are defined and is the layer the user interfaces to.

synchronous-burst static random-access memory (SBSRAM): RAM
whose contents does not have to be refreshed periodically. Transfer of
data is at a fixed rate relative to the clock speed of the device, but the
speed is increased.

synchronous dynamic random-access memory (SDRAM): RAM whose
contents is refreshed periodically so the data is not lost. Transfer of data
is at a fixed rate relative to the clock speed of the device.

syntax: The grammatical and structural rules of a language. All higher-level
programming languages possess a formal syntax.

system software: The blanketing term used to denote collectively the chip
support libraries and board support libraries.

T
tag: The 18 most significant bits of the program address. This value corre-

sponds to the physical address of the fetch packet that is in that frame.

timer: A programmable peripheral used to generate pulses or to time
events.

TIMER module: TIMER is an API module used for configuring the timer reg-
isters.

W
word: A multiple of eight bits that is operated upon as a unit. For the C6x, a

word is 32 bits in length.

Index

Index-1

����$

A
A-law companding, defined C-1
adaptive filtering functions 3-4

DSPLIB reference 4-2
address, defined C-1
API, defined C-1
application programming interface, defined C-1
argument conventions 3-2
arguments, DSPLIB 2-4
assembler, defined C-1
assert, defined C-1

B
big endian, defined C-1
bit, defined C-1
block, defined C-1
board support library, defined C-2
boot, defined C-2
boot mode, defined C-2
BSL, defined C-2
byte, defined C-2

C
cache, defined C-2
cache controller, defined C-2
CCS, defined C-2
central processing unit (CPU), defined C-2
chip support library, defined C-2
clock cycle, defined C-2
clock modes, defined C-2
code, defined C-2
coder-decoder, defined C-2

compiler, defined C-2
compress and expand (compand), defined C-3
control register, defined C-3
control register file, defined C-3
correlation functions 3-4

DSPLIB reference 4-4
CSL, defined C-3
customer support B-2

D
data types, DSPLIB, table 2-4
device ID, defined C-3
digital signal processor (DSP), defined C-3
direct memory access (DMA)

defined C-3
source, defined C-3
transfer, defined C-3

DMA, defined C-3
DSP_autocor

defined C-3
DSPLIB reference 4-4

DSP_bexp
defined C-3
DSPLIB reference 4-53

DSP_bitrev_cplx
defined C-3
DSPLIB reference 4-6

DSP_blk_move
defined C-3, C-4
DSPLIB reference 4-54, 4-55, 4-57, 4-59

DSP_dotp_sqr
defined C-4
DSPLIB reference 4-37

DSP_dotprod
defined C-4
DSPLIB reference 4-38

Index

Index-2

DSP_fft16x16r
defined C-4
DSPLIB reference 4-14

DSP_fir_cplx
defined C-4
DSPLIB reference 4-23

DSP_fir_gen
defined C-4
DSPLIB reference 4-25

DSP_fir_r4
defined C-4
DSPLIB reference 4-27

DSP_fir_r8
defined C-4
DSPLIB reference 4-29

DSP_fir_sym
defined C-4
DSPLIB reference 4-31

DSP_firlms2
defined C-4
DSPLIB reference 4-2

DSP_fltoq15
defined C-4
DSPLIB reference 4-61

DSP_iir
defined C-4
DSPLIB reference 4-33

DSP_lat_fwd
defined C-4
DSPLIB reference 4-35

DSP_lat_inv, defined C-4

DSP_mat_trans
defined C-4
DSPLIB reference 4-52

DSP_maxidx
defined C-4
DSPLIB reference 4-40

DSP_maxval
defined C-4
DSPLIB reference 4-39

DSP_minerror
defined C-4
DSPLIB reference 4-62

DSP_minval
defined C-4
DSPLIB reference 4-41

DSP_mmul
defined C-4
DSPLIB reference 4-50

DSP_mul32
defined C-4
DSPLIB reference 4-42

DSP_neg32
defined C-4
DSPLIB reference 4-44

DSP_q15tofl
defined C-4
DSPLIB reference 4-64

DSP_r4fft
defined C-4
DSPLIB reference 4-11

DSP_radix2
defined C-4
DSPLIB reference 4-9

DSP_recip16
defined C-4
DSPLIB reference 4-45

DSP_vecsumsq
defined C-5
DSPLIB reference 4-47

DSP_w_vec
defined C-5
DSPLIB reference 4-48

DSPLIB
argument conventions, table 3-2
arguments 2-4
arguments and data types 2-4
calling a function from Assembly 2-5
calling a function from C 2-5

Code Composer Studio users 2-5
customer support B-2
data types, table 2-4
features and benefits 1-4
fractional Q formats A-3
functional categories 1-2
functions 3-3

adaptive filtering 3-4
correlation 3-4
FFT (fast Fourier transform) 3-4
filtering and convolution 3-4
math 3-5
matrix 3-5
miscellaneous 3-6

how DSPLIB deals with overflow and
scaling 2-6

Index

Index-3

DSPLIB (continued)
how to install 2-2
how to rebuild DSPLIB 2-7
include directory 2-3
introduction 1-2
lib directory 2-3
performance considerations A-2
Q.3.12 bit fields A-3
Q.3.12 format A-3
Q.3.15 bit fields A-3
Q.3.15 format A-3
Q.31 format A-4
Q.31 high-memory location bit fields A-4
Q.31 low-memory location bit fields A-4
reference 4-1
software updates B-2
testing, how DSPLIB is tested 2-6
using DSPLIB 2-4

DSPLIB reference
adaptive filtering functions 4-2
correlation functions 4-4
DSP_autocor 4-4
DSP_bexp 4-53
DSP_bitrev_cplx 4-6
DSP_blk_move 4-54, 4-55, 4-57, 4-59
DSP_dotp_sqr 4-37
DSP_dotprod 4-38
DSP_fft16x16r 4-14
DSP_fir_cplx 4-23
DSP_fir_gen 4-25
DSP_fir_r4 4-27
DSP_fir_r8 4-29
DSP_fir_sym 4-31
DSP_firlms2 4-2
DSP_fltoq15 4-61
DSP_iir 4-33
DSP_lat_fwd 4-35
DSP_mat_trans 4-52
DSP_maxidx 4-40
DSP_maxval 4-39
DSP_minerror 4-62
DSP_minval 4-41
DSP_mmul 4-50
DSP_mul32 4-42
DSP_neg32 4-44
DSP_q15tofl 4-64
DSP_r4fft 4-11
DSP_radix2 4-9
DSP_recip16 4-45

DSPLIB reference (continued)
DSP_vecsumsq 4-47
DSP_w_vec 4-48
FFT functions 4-6
filtering and convolution functions 4-23
math functions 4-36
matrix functions 4-50
miscellaneous functions 4-53

E
evaluation module, defined C-5

external interrupt, defined C-5

external memory interface (EMIF), defined C-5

F
fetch packet, defined C-5

FFT (fast Fourier transform)
defined C-5
functions 3-4

FFT (fast Fourier transform) functions, DSPLIB
reference 4-6

filtering and convolution functions 3-4
DSPLIB reference 4-23

flag, defined C-5

fractional Q formats A-3

frame, defined C-5

function
calling a DSPLIB function from Assembly 2-5
calling a DSPLIB function from C 2-5

Code Composer Studio users 2-5

functions, DSPLIB 3-3

G
GIE bit, defined C-5

H
HAL, defined C-6

host, defined C-6

host port interface (HPI), defined C-6

HPI, defined C-6

Index

Index-4

I
include directory 2-3

index, defined C-6

indirect addressing, defined C-6

installing DSPLIB 2-2

instruction fetch packet, defined C-6

internal interrupt, defined C-6

internal peripherals, defined C-7

interrupt, defined C-6

interrupt service fetch packet (ISFP), defined C-6

interrupt service routine (ISR), defined C-6

interrupt service table (IST), defined C-6

IST, defined C-7

L
least significant bit (LSB), defined C-7

lib directory 2-3

linker, defined C-7

little endian, defined C-7

M
maskable interrupt, defined C-7

math functions 3-5
DSPLIB reference 4-36

matrix functions 3-5
DSPLIB reference 4-50

memory map, defined C-7

memory-mapped register, defined C-7

miscellaneous functions 3-6
DSPLIB reference 4-53

most significant bit (MSB), defined C-7

µ-law companding, defined C-7

multichannel buffered serial port (McBSP),
defined C-7

multiplexer, defined C-7

N
nonmaskable interrupt (NMI), defined C-7

O
object file, defined C-8
off chip, defined C-8
on chip, defined C-8
overflow and scaling 2-6

P
performance considerations A-2
peripheral, defined C-8
program cache, defined C-8
program memory, defined C-8
PWR, defined C-8
PWR module, defined C-8

Q
Q.3.12 bit fields A-3
Q.3.12 format A-3
Q.3.15 bit fields A-3
Q.3.15 format A-3
Q.31 format A-4
Q.31 high-memory location bit fields A-4
Q.31 low-memory location bit fields A-4

R
random-access memory (RAM), defined C-8
rebuilding DSPLIB 2-7
reduced-instruction-set computer (RISC),

defined C-8
register, defined C-8
reset, defined C-8
routines, DSPLIB functional categories 1-2
RTOS, defined C-8

Index

Index-5

S

service layer, defined C-9

software updates B-2

STDINC module, defined C-9

synchronous dynamic random-access memory
(SDRAM), defined C-9

synchronous-burst static random-access memory
(SBSRAM), defined C-9

syntax, defined C-9

system software, defined C-9

T
tag, defined C-9
testing, how DSPLIB is tested 2-6
timer, defined C-9
TIMER module, defined C-9

U
using DSPLIB 2-4

W
word, defined C-9

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Tables
	Introduction
	Introduction to the TI C62x DSPLIB
	Features and Benefits

	Installing and Using DSPLIB
	How to Install DSPLIB
	De-Archive DSPLIB

	Using DSPLIB
	DSPLIB Arguments and Data Types
	DSPLIB Types
	DSPLIB Arguments

	Calling a DSPLIB Function >From C
	Code Composer Studio Users

	Calling a DSP Function From Assembly
	How DSPLIB is Tested – Allowable Error
	How DSPLIB Deals With Overflow and Scaling Issues
	Interrupt Behaviour of DSPLIB Functions

	How to Rebuild DSPLIB

	DSPLIB Function Tables
	Arguments and Conventions Used
	DSPLIB Functions
	DSPLIB Function Tables

	DSPLIB Reference
	Adaptive Filtering
	DSP_firlms2

	Correlation
	DSP_autocor

	FFT
	DSP_bitrev_cplx
	DSP_radiz2
	DSP_r4fft
	DDSP_fft16x16r

	Filtering and Convolution
	DSP_fir_cplx
	DSP_fir_gen
	DSP_fir_r4
	DSP_fir_r8
	DSP_fir_sym
	DSP_iir
	DSP_iirlat
	DSP_dotp_sqr
	DSP_dotprod
	DSP_maxval
	DSP_maxidx
	DSP_minval
	DSP_mul32
	DSP_neg32
	DSP_recip16
	DSP_vecsumsq
	DSP_w_vec

	Matrix
	DSP_mat_mul
	DSP_mat_trans

	Miscellaneous
	DSP_bexp
	DSP_blk_move
	DSP_blk_eswap16
	DSP_blk_eswap32
	DSP_blk_eswap64
	DSP_fltoq15
	DSP_minerror
	DSP_q15tofl

	Performance/Fractional Q Formats
	Performance Considerations
	Fractional Q Formats
	Q3.12 Format
	Q.15 Format
	Q.31 Format

	Software Updates and Customer Support
	DSPLIB Software Updates
	DSPLIB Customer Support

	Glossary
	Index

