
RTDX Module

Application Program Interface 2-235

2.18 RTDX Module

The RTDX modules manage the real-time data exchange settings.

RTDX Data Declaration
Macros

❏ RTDX_CreateInputChannel
❏ RTDX_CreateOutputChannel

Function Macros ❏ RTDX_disableInput
❏ RTDX_disableOutput
❏ RTDX_enableInput
❏ RTDX_enableOutput
❏ RTDX_read
❏ RTDX_readNB
❏ RTDX_sizeofInput
❏ RTDX_write

Channel Test Macros ❏ RTDX_channelBusy
❏ RTDX_isInputEnabled
❏ RTDX_isOutputEnabled

Configuration
Properties

The following list shows the properties that can be configured in a
DSP/BIOS TextConf script, along with their types and default values. For
details, see the RTDX Manager Properties and RTDX Object Properties
headings. For descriptions of data types, see Section 1.4, DSP/BIOS
TextConf Overview, page 1-4.

Module Configuration Parameters.

Instance Configuration Parameters.

Description The RTDX module provides the data types and functions for:
❏ Sending data from the target to the host.
❏ Sending data from the host to the target.

Name Type Default (Enum Options)

ENABLERTDX Bool true

MODE EnumString "JTAG" ("HSRTDX", "Simulator")

RTDXDATASEG Reference prog.get("IDRAM")

BUFSIZE Int16 1032

INTERRUPTMASK Int16 0x00000000

Name Type Default (Enum Options)

comment String "<add comments here>"

channelMode EnumString "output" ("input")

RTDX Module

2-236

Data channels are represented by global structures. A data channel can
be used for input or output, but not both. The contents of an input or
output structure are not known to the user. A channel structure has two
states: enabled and disabled. When a channel is enabled, any data
written to the channel is sent to the host. Channels are initially disabled.

The RTDX assembly interface, rtdx.i, is a macro interface file that can be
used to interface to RTDX at the assembly level.

RTDX Manager
Properties

The following target configuration properties can be set for the RTDX
module in the RTDX Manager Properties dialog of the Configuration Tool
or in a DSP/BIOS TextConf script:

❏ Enable Real-Time Data Exchange (RTDX). This box should be
checked if you want to link RTDX support into your application.
TextConf Name: ENABLERTDX Type: Bool

Example: RTDX.ENABLERTDX = true;
❏ RTDX Mode. Select the port configuration mode RTDX should use

to establish communication between the host and target. The default
is JTAG for most targets. Set this to simulator if you use a simulator.
The HS-RTDX emulation technology is also available. If this property
is set incorrectly, a message says “RTDX target application does not
match emulation protocol“ when you load the program.
TextConf Name: MODE Type: EnumString

Options: "JTAG", "HSRTDX", "Simulator"
Example: RTDX.MODE = "JTAG";

❏ RTDX Data Segment (.rtdx_data). The memory segment used for
buffering target-to-host data transfers. The RTDX message buffer
and state variables are placed in this segment.
TextConf Name: RTDXDATASEG Type: Ref

Example: RTDX.RTDXDATASEG =
prog.get("myMEM");

❏ RTDX Buffer Size (MADUs). The size of the RTDX target-to-host
message buffer, in minimum addressable data units (MADUs). The
default size is 1032 to accommodate a 1024-byte block and two
control words. HST channels using RTDX are limited by this value.
TextConf Name: BUFSIZE Type: Int16

Example: RTDX.BUFSIZE = 1032;
❏ RTDX Interrupt Mask. This mask identifies RTDX clients and

protects RTDX critical sections. The mask specifies the interrupts to
be temporarily disabled inside RTDX critical sections. This also
temporarily disables other RTDX clients and prevents another RTDX
function call. See the RTDX on-line help for details.

RTDX Module

Application Program Interface 2-237

TextConf Name: INTERRUPTMASK Type: Int16
Example: RTDX.INTERRUPTMASK = 0x00000000;

RTDX Object
Properties

To create an RTDX object in a configuration script, use the following
syntax. The DSP/BIOS TextConf examples that follow assume the object
has been created as shown here.

var myRtdx = RTDX.create("myRtdx");
The following properties can be set for an RTDX object in the RTDX
Object Properties dialog of the Configuration Tool or in a DSP/BIOS
TextConf script:

❏ comment. Type a comment to identify this RTDX object.
TextConf Name: comment Type: String

Example: myRtdx.comment = "my RTDX";
❏ Channel Mode. Select output if the RTDX channel handles output

from the DSP to the host. Select input if the RTDX channel handles
input to the DSP from the host.
TextConf Name: channelMode Type: EnumString

Options: "input", "output"
Example: myRtdx.channelMode = "output";

Examples The rtdx.xls example is in the c:\ti\examples\hostapps\rtdx
folder. (If you installed in a path other than c:\ti, substitute your
appropriate path.) The examples are described below.

❏ Ta_write.asm. Target to Host transmission example. This example
sends 100 consecutive integers starting from 0. In the rtdx.xls file,
use the h_read VB macro to view data on the host.

❏ Ta_read.asm. Host to target transmission example. This example
reads 100 integers. Use the h_write VB macro of the rtdx.xls file to
send data to the target.

❏ Ta_readNB.asm. Host to target transmission example. This
example reads 100 integers. Use the h_write VB macro of the
rtdx.xls file to send data to the target. This example demonstrates
how to use the non-blocking read, RTDX_readNB, function.

Note:
Programs must be linked with C run-time libraries and contain the
symbol _main.

RTDX_channelBusy

2-238

C Interface

Syntax int RTDX_channelBusy(RTDX_inputChannel *pichan);

Parameters pichan /* Identifier for the input data channel */

Return Value int /* Status: 0 = Channel is not busy. */
/* non-zero = Channel is busy. */

Assembly Interface Use C function calling standards.

Reentrant yes

Description RTDX_channelBusy is designed to be used in conjunction with
RTDX_readNB. The return value indicates whether the specified data
channel is currently in use or not. If a channel is busy reading, the
test/control flag (TC) bit of status register 0 (STO) is set to 1. Otherwise,
the TC bit is set to O.

Constraints and
Calling Context

❏ RTDX_channelBusy cannot be called by an HWI function.

See Also RTDX_readNB

RTDX_channelBusy Return status indicating whether data channel is busy

RTDX_CreateInputChannel

Application Program Interface 2-239

C Interface

Syntax RTDX_CreateInputChannel(ichan);

Parameters ichan /* Label for the input channel */

Return Value none

Assembly Interface Use C function calling standards.

Reentrant no

Description This macro declares and initializes to 0, the RTDX data channel for input.

Data channels must be declared as global objects. A data channel can
be used either for input or output, but not both. The contents of an input
or output data channel are unknown to the user.

A channel can be in one of two states: enabled or disabled. Channels are
initialized as disabled.

Channels can be enabled or disabled via a User Interface function. They
can also be enabled or disabled remotely from Code Composer or its
COM interface.

Constraints and
Calling Context

❏ RTDX_CreateInputChannel cannot be called by an HWI function.

See Also RTDX_CreateOutputChannel

RTDX_CreateInputChannel Declare input channel structure

RTDX_CreateOutputChannel

2-240

C Interface

Syntax RTDX_CreateOutputChannel(ochan);

Parameters ochan /* Label for the output channel */

Return Value none

Assembly Interface Use C function calling standards.

Reentrant no

Description This macro declares and initializes the RTDX data channels for output.

Data channels must be declared as global objects. A data channel can
be used either for input or output, but not both. The contents of an input
or output data channel are unknown to the user.

A channel can be in one of two states: enabled or disabled. Channels are
initialized as disabled.

Channels can be enabled or disabled via a User Interface function. They
can also be enabled or disabled remotely from Code Composer Studio or
its OLE interface.

Constraints and
Calling Context

❏ RTDX_CreateOutputChannel cannot be called by an HWI function.

See Also RTDX_CreateInputChannel

 RTDX_CreateOutputChannel Declare output channel structure

RTDX_disableInput

Application Program Interface 2-241

C Interface

Syntax void RTDX_disableInput(RTDX_inputChannel *ichan);

Parameters ichan /* Identifier for the input data channel */

Return Value void

Assembly Interface Use C function calling standards.

Reentrant yes

Description A call to a disable function causes the specified input channel to be
disabled.

Constraints and
Calling Context

❏ RTDX_disableInput cannot be called by an HWI function.

See Also RTDX_disableOutput
RTDX_enableInput
RTDX_read

RTDX_disableInput Disable an input data channel

RTDX_disableOutput

2-242

C Interface

Syntax void RTDX_disableOutput(RTDX_outputChannel *ochan);

Parameters ochan /* Identifier for an output data channel */

Return Value void

Assembly Interface Use C function calling standards.

Reentrant yes

Description A call to a disable function causes the specified data channel to be
disabled.

Constraints and
Calling Context

❏ RTDX_disableOutput cannot be called by an HWI function.

See Also RTDX_disableInput
RTDX_enableOutput
RTDX_read

RTDX_disableOutput Disable an output data channel

RTDX_enableInput

Application Program Interface 2-243

C Interface

Syntax void RTDX_enableInput(RTDX_inputChannel *ichan);

Parameters ochan /* Identifier for an output data channel */
ichan /* Identifier for the input data channel */

Return Value void

Assembly Interface Use C function calling standards.

Reentrant yes

Description A call to an enable function causes the specified data channel to be
enabled.

Constraints and
Calling Context

❏ RTDX_enableInput cannot be called by an HWI function.

See Also RTDX_disableInput
RTDX_enableOutput
RTDX_read

RTDX_enableInput Enable an input data channel

RTDX_enableOutput

2-244

C Interface

Syntax void RTDX_enableOutput(RTDX_outputChannel *ochan);

Parameters ochan /* Identifier for an output data channel */

Return Value void

Assembly Interface Use C function calling standards.

Reentrant yes

Description A call to an enable function causes the specified data channel to be
enabled.

Constraints and
Calling Context

❏ RTDX_enableOutput cannot be called by an HWI function.

See Also RTDX_disableOutput
RTDX_enableInput
RTDX_write

RTDX_enableOutput Enable an output data channel

RTDX_isInputEnabled

Application Program Interface 2-245

C Interface

Syntax RTDX_isInputEnabled(ichan);

Parameter ichan /* Identifier for an input channel. */

Return Value 0 /* Not enabled. */
non-zero /* Enabled. */

Assembly Interface Use C function calling standards.

Reentrant yes

Description The RTDX_isInputEnabled macro tests to see if an input channel is
enabled and sets the test/control flag (TC bit) of status register 0 to 1 if
the input channel is enabled. Otherwise, it sets the TC bit to 0.

Constraints and
Calling Context

❏ RTDX_isInputEnabled cannot be called by an HWI function.

See Also RTDX_isOutputEnabled

RTDX_isInputEnabled Return status of the input data channel

RTDX_isOutputEnabled

2-246

C Interface

Syntax RTDX_isOutputEnabled(ohan);

Parameter ochan /* Identifier for an output channel. */

Return Value 0 /* Not enabled. */
non-zero /* Enabled. *

Assembly Interface Use C function calling standards.

Reentrant yes

Description The RTDX_isOutputEnabled macro tests to see if an output channel is
enabled and sets the test/control flag (TC bit) of status register 0 to 1 if
the output channel is enabled. Otherwise, it sets the TC bit to 0.

Constraints and
Calling Context

❏ RTDX_isOutputEnabled cannot be called by an HWI function.

See Also RTDX_isInputEnabled

RTDX_isOutputEnabled Return status of the output data channel

RTDX_read

Application Program Interface 2-247

C Interface

Syntax int RTDX_read(RTDX_inputChannel *ichan, void *buffer, int bsize);

Parameters ichan /* Identifier for the input data channel */
buffer /* A pointer to the buffer that receives the data */
bsize /* The size of the buffer in address units */

Return Value > 0 /* The number of address units of data */
/* actually supplied in buffer. */

0 /* Failure. Cannot post read request */
/* because target buffer is full. */

RTDX_READ_ERROR /* Failure. Channel currently busy or
not enabled. */

Assembly Interface Use C function calling standards.

Reentrant yes

Description RTDX_read causes a read request to be posted to the specified input
data channel. If the channel is enabled, RTDX_read waits until the data
has arrived. On return from the function, the data has been copied into
the specified buffer and the number of address units of data actually
supplied is returned. The function returns RTDX_READ_ERROR
immediately if the channel is currently busy reading or is not enabled.

When RTDX_read is used, the target application notifies the RTDX Host
Library that it is ready to receive data and then waits for the RTDX Host
Library to write data to the target buffer. When the data is received, the
target application continues execution.

The specified data is to be written to the specified output data channel,
provided that channel is enabled. On return from the function, the data
has been copied out of the specified user buffer and into the RTDX target
buffer. If the channel is not enabled, the write operation is suppressed. If
the RTDX target buffer is full, failure is returned.

When RTDX_readNB is used, the target application notifies the RTDX
Host Library that it is ready to receive data, but the target application does
not wait. Execution of the target application continues immediately. Use
RTDX_channelBusy and RTDX_sizeofInput to determine when the
RTDX Host Library has written data to the target buffer.

Constraints and
Calling Context

❏ RTDX_read cannot be called by an HWI function.

See Also RTDX_channelBusy
RTDX_readNB

RTDX_read Read from an input channel

RTDX_readNB

2-248

C Interface

Syntax int RTDX_readNB(RTDX_inputChannel *ichan, void *buffer, int bsize);

Parameters ichan /* Identifier for the input data channel */
buffer /* A pointer to the buffer that receives

the data */
bsize /* The size of the buffer in address units */

Return Value RTDX_OK /* Success.*/
0 (zero) /* Failure. The target buffer is full. */
RTDX_READ_ERROR /*Channel is currently busy reading. */

Assembly Interface Use C function calling standards.

Reentrant yes

Description RTDX_readNB is a nonblocking form of the function RTDX_read.
RTDX_readNB issues a read request to be posted to the specified input
data channel and immediately returns. If the channel is not enabled or the
channel is currently busy reading, the function returns
RTDX_READ_ERROR. The function returns 0 if it cannot post the read
request due to lack of space in the RTDX target buffer.

When the function RTDX_readNB is used, the target application notifies
the RTDX Host Library that it is ready to receive data but the target
application does not wait. Execution of the target application continues
immediately. Use the RTDX_channelBusy and RTDX_sizeofInput
functions to determine when the RTDX Host Library has written data into
the target buffer.

When RTDX_read is used, the target application notifies the RTDX Host
Library that it is ready to receive data and then waits for the RTDX Host
Library to write data into the target buffer. When the data is received, the
target application continues execution.

Constraints and
Calling Context

❏ RTDX_readNB cannot be called by an HWI function.

See Also RTDX_channelBusy
RTDX_read
RTDX_sizeofInput

RTDX_readNB Read from input channel without blocking

RTDX_sizeofInput

Application Program Interface 2-249

C Interface

Syntax int RTDX_sizeofInput(RTDX_inputChannel *pichan);

Parameters pichan /* Identifier for the input data channel */

Return Value int /* Number of sizeof units of data actually */
/* supplied in buffer */

Assembly Interface Use C function calling standards.

Reentrant yes

Description RTDX_sizeofInput is designed to be used in conjunction with
RTDX_readNB after a read operation has completed. The function
returns the number of sizeof units actually read from the specified data
channel into the accumulator (register A).

Constraints and
Calling Context

❏ RTDX_sizeofInput cannot be called by an HWI function.

See Also RTDX_readNB

RTDX_sizeofInput Return the number of MADUs read from a data channel

RTDX_write

2-250

C Interface

Syntax int RTDX_write(RTDX_outputChannel *ochan, void *buffer, int bsize);

Parameters ochan /* Identifier for the output data channel */
buffer /* A pointer to the buffer containing the data */
bsize /* The size of the buffer in address units */

Return Value int /* Status: non-zero = Success. 0 = Failure. */

Assembly Interface Use C function calling standards.

Reentrant yes

Description RTDX_write causes the specified data to be written to the specified
output data channel, provided that channel is enabled. On return from the
function, the data has been copied out of the specified user buffer and
into the RTDX target buffer. If the channel is not enabled, the write
operation is suppressed. If the RTDX target buffer is full, Failure is
returned.

Constraints and
Calling Context

❏ RTDX_write cannot be called by an HWI function.

See Also RTDX_read

RTDX_write Write to an output channel

