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EC581 DSP Projects: Lab Project #3 
Dept. of Electrical and Computer Engineering 

Rose-Hulman Institute of Technology 
IIR Digital Filter Design Using MATLAB fdatool Filter Design Program 

 IIR Filter Implementation via C-language Program, 
 and Digital Wah-Wah Sound Effect 

Last Modified on 3/15/2002 (KEH) 
Adapted to MATLAB and 6711DSK by Mark A. Yoder (1-Apr-2004) 

 
 
Part 1. Use of fdatool Digital Filter Design Program in MATLAB 
1. In this project we consider the design and real-time implementation of an infinite impulse response 

(IIR) digital filter.  We again use MATLAB to design, evaluate, and even perform (off-line) IIR 
digital filtering in much the same way as we used MATLAB to design FIR filters in Lab Project 2.  To 
learn more about designing IIR filters in MATLAB, enter MATLAB and type HELP followed by one 
of these keywords (BUTTER, BESSELF, CHEBY1, CHEBY2, or ELLIP)  Here we shall use an even 
more convenient and powerful digital filter design program called fdatool. You can read more 
about this program by entering helpwin fdatool in Matlab, then clicking on index and searching 
for fdatool. 

2. Start this program by staring Matlab and entering fdatool.  You should see: 

 
 
3. Click the IIR (infinite impulse response) option option on the bottom left and select elliptic.  Also 

select the desired filter type.  (In this case, choose Band pass).    
 

4. A Band pass Filter prototype will appear, below it are boxes into which the user must enter the 
desired parameters of the bandpass filter.  As an example, let’s design a band pass filter (BPF) that 
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band-limits audio speech digitized at an 48000 Hz sampling rate, which extends from 1800 to 12,000 
Hz.  Enter the following numbers into the dialog box: 
 

Sampling Frequency 48000 
Fstop1 1500 
Fpass1 1800 
Fpass2 12000 
Fstop2 13000 
Units dB 
Astop1 20 
Apass 3  
Astop2 20 

 
To implement this design, hit the Design Filter button at the bottom of the window.  In a moment the 
frequency response for the filter will appear in the graph.  To the left, note that for this particular set of 
specifications, a 6th order elliptic filter is needed.   You should keep in mind, however, that sometimes 
other filter types should be chosen, even if they are of higher order.  For example, if no pass-band or 
stop-band ripple is wanted, you should pick the Butterworth (maximally flat) design.  If nearly 
constant delay over the filter’s passband (linear phase shift) is required to eliminate delay distortion of 
the in-band waveshape, you should pick the Bessel design.   You could also elect to enter a different 
order design for the selected filter, although if the order number that is entered is lower than the one 
recommended, the indicated filter specifications will not be met.  

The filter will be implemented and its associated performance plots will be displayed.   Note from the 
“log magnitude (dB)” frequency response Bode plot that the filter performance that was specified 
above is met.  You may have to zoom in to clear see the following.  For example, note that in the 
passband (between 1800 and 12000 Hz), the filter’s gain magnitude ripples between 0 dB and -3 dB.  
Likewise, in the stop bands (between 0 Hz and 1500 Hz, as well as between 15000 Hz and above), the 
filter’s gain magnitude must never exceed –20 dB.   Obtain a hard copy of this plot for your report, 
and include this as Attachment A.  Mark on your printout the various design specs.   
 
Go to the Analysis menu and select Group Delay Response.  The “Group Delay” plot shows that the 
filter will offer different delays at different frequencies within the 1800 to 12000 Hz passband.  This 
means that this filter will somewhat distort the waveshape of “in-band” multi-frequency signals, since 
different frequency components within the passband will arrive at the filter’s output at different times.  
However, this is no problem when filtering audio signals, since the human ear has the remarkable 
property of being essentially “phase insensitive”.   Obtain a hard copy of this plot for your report, and 
include this as Attachment B. 
 
Finally, obtain a copy of the resulting “Pole-Zero” plot of the filter’s transfer function, H(z) 
(Analysis:Pole/Zero Plot).  In your report, you must “graphically interpret” the sinusoidal steady 
state response of the filter represented by this plot, showing that the indicated positions of the poles 
and zeros correspond to a rather sharp 1800 – 12000 Hz bandpass filter, as represented by the 
companion “log magnitude” plot.  Recall that the sampling frequency, Fs = 48 kHz.   
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5. Save your design specifications and filter design coefficients.  Do these by clicking on File –> Save 
Session As.  This saves your design specifications.  To save your coefficients in a ‘C’ readable from 
click File->Export to C Header file.   Include a printout of this IIR filter coefficient text file as 
Attachment D. 
 

Part II. Real-Time IIR Digital Filtering Program in C 
1. A C-language digital filtering program is given in Appendix A that implements the following digital 

filtering equations for each: 
 
                               w(n) = x(n) + a1w(n - 1) + a2w(n – 2) 
                               y(n) = w(n) + b1w(n – 1) + b2w(n – 2) 
 
Note that the output value from one 2nd-order stage becomes the input value for the next stage.  Note 
that this program also performs a single final multiplication by the “Overall Gain Coefficient”, Hd.  
This routine is designed to use the .h file generated by fdatool.  To use it call: 
  IIRfilter(Right, Right, NUM, DEN, BUFFER_COUNT, DLY, MWSPT_NSEC); 
DLY is a buffer that holds past sample values.  Define it in your calling routine as: 
  static float DLY[4][2] = {0,0,0,0,0,0,0,0}; 
Look in the file fdatool generated file to see how the other variables are defined. 
 

2. Set the function generator to deliver a 6-kHz sine wave whose amplitude is adjusted so as not to 
distort the output waveform over the entire passband frequency range.  As you vary the frequency of 
the input sine wave between 600 Hz and 24 kHz, observe that the sine wave is only heard over the 
intended passband (1800 to 12000 Hz).   
 

3. Now connect an oscilloscope in place of the audio amplifier, and measure the gain at several (at least 
10) frequencies, which include points in the filter’s stop bands, transition bands, and in its passband.  
Plot these measured gain values (in dB) directly over the log-magnitude gain plot obtained by 
fdatool.  Your observations should fall reasonably close to the predicted filter’s gain magnitude.  
As in the previous FIR digital filter lab, you may have to add a constant offset (in dB) to the measured 
dB gain data, in order to account for the unknown gain of the mixer box (unless the mixer box is 
bypassed).  Include this gain plot, along with the hand-plotted gain values plotted directly over the 
fdatool  predicted filter gain plot, as Attachment E. 
 

Part III.  Digital Wah-Wah Audio Special Effect Program 
The “Wah-Wah” audio sound effect mimics the characteristic human “wah” sound that is made as the lips 
are gradually changed from a small “o” to a big “O” shape.  At the same time, the vocal cords are forced 
to emit an impulse train of constant pitch (frequency).  This impulse train is created by “puffs of air” 
periodically escaping through the cords held together under a certain tension, which sets the pitch period.   
Try making this sound yourself right now!  The vocal cords typically vibrate at a relatively low 
fundamental frequency, perhaps 100 Hz.  However, the spectrum of an impulse train is “spectrally flat”, 
thus all harmonics are present with equal amplitude.  (Of course, the waveform emitted by the vocal cords 
is not a perfect impulse train, so the harmonics are still strong, though they do decrease with harmonic 
number.)  Thus many frequencies are present in the impulse train produced by the vocal cords, consisting 
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of a 100 Hz, 200 Hz, 300 Hz ... sinusoids.  Thus, this waveform is “spectrally rich”. As the lip and mouth 
shape gradually change while making the “wah” sound, the vocal tract acts something like a lowpass filter 
with a pronounced resonance peak near its cutoff frequency.   As the lips are gradually changed from the 
small “o” to the big “O” shape, the cutoff frequency of the lowpass filter formed by the vocal chords 
changes in two ways.  The break (cutoff) frequency gradually changes from a low value to a higher value 
and the height of the resonance peak (Q of the filter) changes.  Thus, as the vocal tract filter goes through 
these changes, at first only a few of the lower frequency harmonics are emphasized at the output (mouth).  
However, as the mouth becomes wider and wider as the “wah” sound is carried to completion, the break 
frequency of the lowpass filter rises, and more and more of the higher frequency harmonics come out of 
the mouth. 
 
The classic “Wah Wah” audio effects pedal consists of a pedal-operated, lowpass analog filter with a 
continuously variable cutoff frequency. The pedal uses a variable analog lowpass filter with a strong 
resonance peak near its cutoff point.  Because this peak especially emphasizes the harmonics near the 
break frequency, it is a little hard to characterize this as a lowpass filter or a bandpass filter.  This effect is 
especially interesting when applied to a “spectrally rich” audio signal, such as that obtained by playing a 
guitar through a signal clipping network (distortion box), which serves to spectrally richen the guitar 
waveform.  To hear audible examples of classic guitar “wah-wah”, visit the following URL: 
 
       http://www.betterguitar.com/Equipment/Effects/WahTechniques/WahTechniques.html  
 
Your assignment is to see how close you can come to digitally emulating the sound of a classic analog 
Wah-wah circuit on the C67 DSK.  Modify the digital IIR filtering program of Appendix A so it switches, 
at regular intervals, from one set of filter coefficients to another. Each successive set of coefficients 
corresponds to a bandpass filter of slightly higher passband. 
 
Use fdatool to determine coefficients for eight (or more!) 4th-order Chebysheff IIR lowpass filters 
(LPFs). The eight LPFs should have break frequencies at 200 Hz, 400 Hz, 800Hz, 1200 Hz, 1600 Hz, 
2000 Hz, 2500 Hz, and 3000 Hz.  (You can put in any reasonable pass frequency, stop frequency, and 
stopband and passband ripple values that you want.)  
 
Now modify the digital filtering program of Appendix A, so that it uses the first set of coefficients for 
about 0.1 seconds, the second set for about 0.1 seconds, the 3rd set for about 0.1 seconds, etc. Then allow 
the process to repeat.  You will probably want to do this by setting up a periodic software interrupt and 
changes a global variable.  You should be able to hear a “wah” sound as you listen to the output of this 
filter, whose LPF break frequency is varied, as a 50 Hz square wave is played into it. Why will the “wah” 
effect not be apparent if you use a 440 Hz sine wave instead of the spectrally rich 50 Hz square wave? 
You may have a problem with an annoying click or pop as you switch between different sets of filter 
coefficients.  If this is a problem, can you suggest ways to reduce the click?   Demonstrate this program to 
the lab instructor, get his signature on your program listing, and include this program listing as 
Attachment F. 
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Appendix A.  Real Time C-Language IIR Digital Filtering Program 
 
typedef float real32_T;  // real32_t is generated by fdatool. 
 
void IIRfilter(float *inbuf, float *outbuf,  
    const real32_T num[][3],  
    const real32_T denom[][3],  
    int buffSize, 
    float DLY[][2], int numSections) 
{ 
    int i,j; 
    float floatsamp, out, w; 
     
 for(j=0; j<buffSize; j++) { 
      
     floatsamp = inbuf[j];        /* Get sample */ 
      
     for (i = 1; i < numSections; i++) {  
           w = floatsamp - denom[i][1]*DLY[i][0] - denom[i][2]*DLY[i][1]; 
           out = w  + num[i][1]*DLY[i][0] + num[i][2]*DLY[i][1];     
           DLY[i][1] = DLY[i][0]; 
           DLY[i][0] = w; 
           floatsamp = out; 
         }     
          
     out *= num[0][0];   /* Overall Gain Coefficient */ 
   
     outbuf[j] = out; /* Put back in buffer */ 
     } 
} 
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I. Optional 

Recall that the magnitude of the transfer function of a filter that has a multiplicative constant “K” (whose 
value is not revealed by the Pole-Zero plot) contains n zeros (z1, z2, … zn) and k poles (p1, p2, … pk)  is 
given by 
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It is easily demonstrated that the magnitude of a product of complex numbers is the same as the product 
of the magnitude of the numbers, thus we may write 
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But each of the numerator terms of the form |z – zn| can be geometrically interpreted on the Pole-Zero plot 
as the distance between the observation (input signal) frequency and the nth zero, while each of the 
denominator terms of the form |z – pk| can be geometrically interpreted as the distance between the 
observation frequency and the kth pole.  Thus the magnitude of the digital filter’s transfer function |H(z)| is 
proportional to the product of the distances of the zeros to the observation frequency (signal frequency), 
divided by the product of the distances of the poles to the observation frequency.  Note that we say 
“proportional to” because we do not know the value of the multiplicative constant “K”, unless additional 
information is given, such as the gain magnitude at a given frequency.  In this case, we desire the gain of 
the filter to be unity in the middle of the bandpass filter’s passband, and from this additional requirement, 
K can be determined, if desired.  If the input signal to the filter is a sinusoid ranging in frequency from 0 
to Fs/2 = 24 kHz, recall that the analog sinusoidal steady state input signal frequency corresponds to a 
point somewhere on the upper half of the unit circle in the z-plane, where fTjez π2= where T = 1/Fs.   
 
Recall that the rightmost point on this unit circle corresponds to zero frequency, f = 0 Hz; the uppermost 
point on the unit circle corresponds to a steady-state input sinusoid of frequency f = Fs/4 = 12 kHz., and 
the leftmost point on the unit circle corresponds to a steady-state input sinusoid of frequency f = Fs/2.  
Locate as precisely as possible (you will need to use a protractor) the points on the upper-half of the unit 
circle on this filter’s Pole-Zero plot that represent the frequencies 1500 Hz, 2400Hz, 16800 Hz, and 21000 
Hz.  Note that the middle two of these given frequencies are just inside the specified filter passband, while 
the outer two are outside the passband).  Draw lines from the observation frequency on the unit circle to 
each of the poles and zeros.  Then measure the lengths of these lines carefully with a ruler (using any 
desired units – just so you use the same units for all distance measurements.)  Calculate the relative gain 
that corresponds to each of these four observation frequencies.   Recall that these gains will be accurate to 
within a multiplicative constant “K”; that is why I call them “relative gains”.   Include this Pole-Zero plot, 
along with your graphical measurements and calculations for the filter gains at the four sinusoidal test 
frequencies, as Attachment C.  Because this is a bandpass filter, the gains at the two middle test 
frequencies should be considerably greater than the gains at the two end test frequencies.  What is a 
reasonable value of “K” that will force the filter to exhibit unity passband gain? 


