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EC581 DSP Projects: Lab Project #2 
Dept. of Electrical and Computer Engineering 

Rose-Hulman Institute of Technology 
FIR Filter Implementation in MATLAB and in C 

Adapted for the 6711 DSK by Mark A. Yoder, 18-Mar-2004 
Last Modified on 3/8/2002 (KEH) 

I. FIR Digital Filter Design and Implementation in MATLAB 
The MATLAB function, or “M-file”, shown in Listing 1 on Page 5 provides an example of how to design 
and use finite impulse response (FIR) filters using the FIR filter design function fir1(N,Wn), the digital filter 
response calculating function freqz(A,B), and the digital filtering function filter( B,A,X) which are provided 
in the “MATLAB Signal Processing Toolbox”, which is described at  

(http://www.mathworks.com/access/helpdesk/help/toolbox/signal/signal.shtml). 

Make sure that you completely understand this M-file.   MATLAB provides “help” documentation for these 
three routines:  (For example, you may obtain information on the FIR1 function when running MATLAB by 
typing “helpwin FIR1” at the MATLAB prompt): 
 
Note that in the example M-file of Listing 1, we must set the pole coefficient array, A, equal to 1, which 
implies that a1 = 1, and all the other coefficients, a2, a3, a4, .... = 0, since an FIR filter has no poles. 

A. Download the M-file of Listing 1, called lab02.m, from G:\ee\yoder\ece581\Labs\Lab02 
 
Start MATLAB and execute this M-file.  Verify that this function does what you expect.   

B. Now modify this M-file to obtain the sixteen FIR filter coefficients that correspond to a  
1. 16th-order band-pass FIR filter with a pass-band between 4800 Hz and 14.4 kHz, and a sampling 

frequency of 48 kHz.  
2. 16th-order high-pass FIR filter with unity-gain passband above 12.0 kHz, and a sampling frequency of 

48 kHz.   
 
Include a printout of each of these sets of FIR coefficients as Attachment A in your lab report.   
 
II. Real-Time, Floating Point FIR Digital Filter Implementation  
 
Study the digital filtering program shown in Listing 2 on Page 6.  This FIR filtering program was written to 
be easily understood, and is therefore not very efficient.  For example, the “for loop” in the ISR that updates 
the input sample storage array, x[ ], by shifting the newly converted sample into x[0], what was in x[0] goes 
into x[1], what was in x[1] goes into x[2], etc., is certainly not efficient, though it makes the convolution 
calculation very straightforward. The use of a circular input buffer to hold the last N input samples leads to 
much more efficient code, though the subscript variable management becomes trickier.  In this case, a 
reference pointer (that points to the most recent input sample in the buffer) is simply rotated around the 
circular buffer, allowing the previous inputs in the buffer remain in their original position within the buffer.  
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This real-time FIR filtering program implements the digital band-stop filter that corresponds to the 
MATLAB M-file of Listing 1. Recall that this was a stop-band filter with a stop band between 9.6 kHz and 
14.4 kHz at a sampling frequency of 48 kHz.    
 

A. Create a new project called Lab02 based on your Lab01.  Download FIRFilter.c from the previously 
cited AFS network class directory.  Add FIRFilter.c to your project and call it from your 
ProcessBuffer() routine.  The will look something like: 

 if(DIP_get(DIP_3) == 0) 
  FIRfilter(Right, Right, coeff, BUFFER_COUNT, NUMCOEFFS-1);  
B. Place this file in a subdirectory, along with the other relevant linker command, assembly, and library 

files, and follow the steps outlined in Lab 1 to build the project.   

Run the program.  Display the CPU Load Graph to be sure your CPU has time enough to do all the 
processing.  Mine used only 25% of the CPU without optimization.  If yours is running too slow, see this 
footnote1 for suggestions.  Verify, using a function generator and an oscilloscope, that this filter 
attenuates audio signals roughly between 9.6 kHz and 14.4 kHz, as expected.  Replace the oscilloscope 
with a loudspeaker.  Note that the attenuation in the stop band is not as apparent with the loudspeaker, 
since your hearing responds logarithmically rather than linearly.  Remember, the codec rolls off at high 
frequencies.  Use your data from Lab01 to correct your readings in this lab. 

B.  Now insert the seventeen filter coefficients you obtained in Part I (B.1) above for the bandpass filter.  
Run the program.  Listen to the output of this filter when you speak into the microphone.  Your voice 
should have that characteristic band-limited “telephone sound”!     

C.  Use the Microsoft EXCEL spreadsheet to plot the observed filter magnitude response of this band-pass 
filter in decibels versus frequency, where 
 
                                                 AvdB = 20log(Voutpeak/Vinpeak)  
 
Vary the frequency using a function generator over a range of 100 Hz – 3.7 kHz.  Be sure that the 
amplitude of the function generator is not turned up too high, since we do not want the filter output to 
become distorted at any frequency within the specified range.  Use an oscilloscope to measure the gain at 
(at least) eleven evenly-spaced frequencies of 100 Hz, 500 Hz, 900 Hz, 1.3 kHz, 1.7 kHz, 2.1 kHz, 2.5 
kHz, 2.9 kHz, 3.3 kHz, 3.7 kHz.  You may want to take additional measurements at frequencies where 
the response of the filter is changing dramatically.  You may have trouble estimating the amplitude of the 
output sinusoid at the higher frequencies, since there are fewer samples per cycle, although the CODEC 
data sheet claims to provide the proper reconstruction low-pass filtering, with a break frequency of Fs/2.  
Compare the observed frequency response with that predicted by MATLAB for this band-pass filter.  
Include both of these plots in your report memo as Attachment B.  The experimentally measured 

                                                           
1 To make sure that the C67x C compiler produces well-optimized code, make sure that compiler 
optimization is enabled compiler optimization in Code Composer Studio 2 by clicking on Project – Build 
Options – Basic.  Make sure that “Speed Most Critical” option is selected in the “Opt Speed vs. Size” box.  
Also, in the “Opt Level” box, choose “Register –o0”.  The “Generate Debug Info” box should normally have 
“Full Symbolic Debug” selected, when you are in the process of debugging your code, though I have found 
that program execution is substantially speeded up by changing this to “No Debug” after you code is 
debugged, allowing you to go to a higher sampling rate. 
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frequency response plot of gain (in dB) vs. frequency should have the same shape as the MATLAB-
predicted plot, however, it may differ by an additive constant, since the gain of the mixer box is not 
known (unless the mixer box is bypassed.) 

D. We saw in lab01 that the codec has a very poor frequency response when just passing a signal through.  
Repeat part C with the filter turned off.  Use this data to correct the data taken in part C. 

E.  Now change the coefficients to those of Part I (B.2) above (for the high-pass filter).  Hint:  Create a 
different include file.  (Isn’t it amazing that changing the coefficient values can so thoroughly change the 
“personality” of the filter!)  Then repeat Parts B, C and D.  Include both the observed (corrected) and the 
MATLAB predicted frequency response curves plotted on the same axis for this high-pass filter in your 
report memo as Attachment C.    

III. Fixed-Point FIR Filter Implementation 

Modify the floating point FIR band-pass filtering program that you obtained in Part I (B) so it can be run on 
the (cheaper and faster) C62x DSP chip, which executes the (fixed-point) subset of the C67 instruction set.  
The C62x DSP has the same instructions and architecture (even the same pinout!) as the C67x DSP chip.   
Now the “rules of the game” have changed: you may no longer use any floating point variables or operations 
in your C program, since floating point operations cannot be efficiently executed by the C62. 
 
Obviously, you will have to translate your filter coefficients into integer form.  In order to take advantage of 
the full dynamic range of the C62’s 32-bit integer representation, you should multiply these coefficients by 
0x7FFF.  This will convert (scale up) these original floating point coefficients into signed 16-bit integer 
quantities (of type “short int”), since the FIR coefficients of a unity gain filter range between (-1.0, 1.0).  
These (short int) coefficient values should be entered into your new program, and declared to be of the “short 
int” data type.  In your filtering program, you should multiply by the signed 16-bit input sample in the lower 
half of the 32-bit integer coming in from the CODEC, corresponding to the right CODEC channel.  You 
should use a “C compiler intrinsic function” which forces the use of a specific C62x/67x machine instruction 
that has no direct counterpart in the C language.  The intrinsic C function that is “just what the doctor 
ordered” in this particular case is “_mpy” (multiply), and it may be invoked by a line of C code similar to 
this: 

 
temp = _mpy(sample, coeff); 

This line of C code forces the in-line insertion of the “MPY” C62x/C67x  DSP chip’s “16 X 16” integer 
multiply instruction.  This instruction multiplies the 16 LSBs of the first (32-bit) integer argument (sample) 
by the 16 LSBs of second (32-bit) integer argument (coeff), and returns a 32-bit signed integer product to the 
integer variable “temp”.   
 
The upper 16 bits of this 32-bit variable “temp” holds the16-bit signed output sample.  Note that taking this 
upper 16-bit portion of the 32-bit product in “temp” as the result corresponds to dividing the 32-bit result by 
0x10000, since it lies in the upper 16 bits of the 32-bit integer.  However, we want to divide by 0x8000, 
which almost corrects for the multiplication of the coefficients by 0x7FFF that we had to perform earlier, in 
order to scale the coefficients for use in this fixed-point (integer) version of the FIR filtering program.  
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Therefore, one final right shift must be applied to our result to make the lower 16-bits of “temp” to be 
equivalent to the result divided by 0x8000. 

temp = temp >> 15; 

The 16-bit result is now in the proper position (lower-most 16 bits) to go out to the right channel of the 
CODEC.    
 
Demonstrate that your fixed-point FIR band-pass filter program passes frequencies with least attenuation in 
the range 800 Hz – 2.4 kHz .  Obtain the instructor’s validating signature on the program listing.  Include the 
listing of your modified “fixed-point” FIR filter program listing as Attachment D. 
 
IV.  More Efficient FIR Filter Implementation 
When it comes to DSP speed is important.  For this last part you are to either write a more efficient FIR 
routine, or use one from TI’s library. 

Write your own 
Write, and then demonstrate, the proper operation of a more efficient FIR floating-point band-pass filtering 
program.  As suggested earlier, a circular buffer should be used to replace the input sample storage array x[ ].  
This modification would eliminate the need for the time-wasting “for loop” that updates x[ ] each time the 
interrupt service routine.  (Of course, the most efficient FIR implementations would require use of C6x 
assembly-language coding.)   

Use IT’s 
Look in G:\ee\yoder\ece581\TI library.  Here you will find two zip files, FixedPointLibrary.zip and 
FloatingPointLibrary.zip.  First decide whether you want to use the fixed-point or the floating-point version.  
Then copy of corresponding zip file to your directory.  Unzip it and run the exe file.  This will create a 
directory with a docs folder in it.  Read the documentation in the docs folder and use the appropriate routine. 

Either Way 
Include the listing of your more efficient filter implementation as Attachment E, and on this listing, include 
comments on the CPU load for all of the parts of the lab. 

Comment: However, before sending 
the result (temp) out to the CODEC, the 
top 16 bits of temp should be masked 
out, to ensure that no residual noise will 
go out the CODEC on the left channel.
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Listing 1. Example Matlab m-file illustrating FIR filter design evaluation. 
% Finite Impulse Response filter design example 
% found in the MATLAB Signal Processing Toolbox 
% using the MATLAB FIR1 function (M-file)  
 
Fs=48e3;  %Specify Sampling Frequency 
Ts=1/Fs; %Sampling period. 
Ns=512;  %Nr of time samples to be plotted. 
 
t=[0:Ts:Ts*(Ns-1)];  %Make time array that contains Ns elements 
                     %t = [0, Ts, 2Ts, 3Ts,..., (Ns-1)Ts] 
f1=500*6; 
f2=1800*6; 
f3=2000*6; 
f4=3200*6; 
 
x1=sin(2*pi*f1*t); %create sampled sinusoids at different frequencies 
x2=sin(2*pi*f2*t); 
x3=sin(2*pi*f3*t); 
x4=sin(2*pi*f4*t); 
 
x=x1+x2+x3+x4;  %Calculate samples for a 4-tone input signal 
grid on; 
N=16;            %FIR1 requires filter order (N) to be EVEN  
                 %when gain = 1 at Fs/2. 
W=[0.4 0.8];     %Specify Bandstop filter with stop band between  
                 %0.4*(Fs/2) and 0.6*(Fs/2) 
 
B=FIR1(N,W,'DC-1'); %Design FIR Filter using default (Hamming window. 
B               %Leaving off semi-colon causes contents of  
                %B (the FIR coefficients) to be displayed. 
 
A=1;            %FIR filters have no poles, only zeros. 
 
figure(1) 
freqz(B,A,Ns,Fs);   %Plot frequency response - both amp and phase response. 
 
soundsc(x, Fs); 
 
% pause;        %User must hit any key on PC keyboard to go on. 
figure(2);       %Create a new figure window, so previous one isn't lost. 
subplot(2,1,1); %Two subplots will go on this figure window. 
Npts=200; 
plot(t(1:Npts),x(1:Npts)) %Plot first Npts of this 4-tone input signal 
title('Time Plots of Input and Output'); 
xlabel('time (s)'); 
ylabel('Input Sig'); 
   %Now apply this filter to our 4-tone test sequence 
 
y = filter(B,A,x); 
 
subplot(2,1,2);  %Now go to bottom subplot. 
plot(t(1:Npts),y(1:Npts)); %Plot first Npts of filtered signal.     
xlabel('time (s)'); 
ylabel('Filtered Sig'); 
 
soundsc(y, Fs); 
 
% pause; 
 
figure(3);  %Create a new figure window, so previous one isn't lost. 
subplot(2,1,1); 
xfftmag=(abs(fft(x,Ns)));   %Compute spectrum of input signal. 
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xfftmagh=xfftmag(1:length(xfftmag)/2); 
   %Plot only the first half of FFT, since second half is mirror imag 
   %the first half represents the useful range of frequencies from  
   %0 to Fs/2, the Nyquist sampling limit.  
f=[1:1:length(xfftmagh)]*Fs/Ns;   %Make freq array that varies from  
                                  %0 Hz to Fs/2 Hz. 
plot(f,xfftmagh);  %Plot frequency spectrum of input signal 
title('Input and Output Spectra'); 
xlabel('freq (Hz)'); 
ylabel('Input Spectrum'); 
subplot(2,1,2); 
yfftmag=(abs(fft(y,Ns))); 
yfftmagh=yfftmag(1:length(yfftmag)/2); 
   %Plot only the first half of FFT, since second half is mirror image 
   %the first half represents the useful range of frequencies from  
   %0 to Fs/2, the Nyquist sampling limit.  
plot(f,yfftmagh);  %Plot frequency spectrum of input signal 
xlabel('freq (Hz)'); 
ylabel('Filt Sig Spectrum'); 
 
Listing 2.  C-Language FIR Real-time Digital Filtering Program (FIRFilter.c) 
/////////////////////////////////////////////////////////////////////// 
// Filename: FIRfilter.c 
// 
// Synopsis: Does floating-point FIR filter. 
// 
// Authors:  Keith Hoover, with changes by Mark A. Yoder 
// 
// Date of Last Revision: 18-Mar-2004 
// 
/////////////////////////////////////////////////////////////////////// 
 
void FIRfilter(float *inbuf, float *outbuf, float *coeff, int buffSize, 
    int Norder) { 
    int i,j; 
    float sum; 
    static float x[20];   // BAD Hack.  Need to know number of coefficients. 
 
 for(j=0; j<buffSize; j++) {      
 /* 
  Update past input sample array, where x[0] holds present sample, x[1] holds  
  sample from 1 sample period ago, x[N] holds sample from N sampling periods ago. 
   
  This time-consuming loop could be eliminated if circular buffering were 
  to be employed.        
 */ 
     for(i=Norder; i >= 0;i--) 
   x[i]=x[i-1]; 
    
     x[0] = inbuf[j]; 
     sum = 0.0; 
     for(i=0; i<=Norder; i++)   /* Perform FIR filtering (convolution) */ 
   sum += x[i]*coeff[i];  
     
     outbuf[j] = sum; /* Send to buffer (both channels ) */ 
  } 
} 
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Listing 3.  Include file with filter coefficients  (coeff.h) 
/* Band-Stop Filter Coefficients Cut From MATLAB  
    B = 
  Columns 1 through 7  
   -0.0038    0.0000    0.0218    0.0000   -0.0821    0.0000    0.1625 
  Columns 8 through 14  
    0.0000    0.8031    0.0000    0.1625    0.0000   -0.0821    0.0000 
  Columns 15 through 17  
    0.0218    0.0000   -0.0038     
  */      
 
/* Here are the 17 coefficients corresponding */ 
/* to a 16th-order FIR band reject FIR filter */ 
/* FIR filter obtained using MATLAB FIR1  */ 
/* Fs = 48 kHz, rejects 9.6k to 14.4KHz   */ 
 
#define NUMCOEFFS 17 
float coeff[NUMCOEFFS] = { 
   -0.0038,  0.0000,  0.0218,  0.0000, -0.0821,  0.0000,  0.1625, 
    0.0000,  0.8031,  0.0000,  0.1625,  0.0000, -0.0821,  0.0000, 
    0.0218,  0.0000, -0.0038     
};   
 
 


