&

TMS320C62x Multichannel
Evaluation Module
Reference Guide

Literature Number: SPRU308
February 1999

b TEXAS

INSTRUMENTS

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tlwarrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
representthat any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 00 1999, Texas Instruments Incorporated

About This Manual

Preface

Read This First

This manual provides technical reference information for the TMS320C62x
('C62x) multichannel evaluation module (McEVM). It includes support
software documentation, application programming interface (API) references,
and hardware descriptions for the 'C62x McEVM.

The 'C62x McEVM is a peripheral component interconnect (PClI) plug-in card
that is compliant with the PCI Local Bus Specification Revision 2.1. The 'C62x
McEVM helps you evaluate characteristics of the 'C62x digital signal
processor (DSP) to determine if it meets your application requirements. It is
a high-performance platform targeted for multichannel telecom and datacom
applications. The 'C62x McEVM is intended for use in a PCl expansion slot
inside the PC™. It can also be operated outside the PC on a desktop or lab
bench with the use of an external power supply and emulator (XDS510 or
XDS510WS). The power supply and emulator are not included in the kit.

'C62x MCEVM support software and APIs enable you to use the board to
create applications for the 'C62x. Software utilities are provided with the 'C62x
McEVM for board diagnostics, board configuration, and common object file
format (COFF) DSP application loading. McEVM schematics and logic
equations are included in this manual to ease your hardware development
efforts and reduce time to market.

This manual assumes that you are familiar with working in a Windows 9500 ,
Windows 9801 , or a Windows NTO environment and understand general and
technical PC terminology. This manual specifically addresses the 'C62x
McEVM and its support software. Detailed information about the 'C62x DSP
and Tl code development support tools is provided separately (see the
Related Documentation From Texas Instruments section in this Preface for a
list of documents and ordering information). For up-to-date information on the
'C62x MCEVM, as well as related products, visit the 'C6000 website at
http://www.ti.com/sc/c6000/.

How to Use This Manual / Notational Conventions

How to Use This Manual

This reference guide provides the following types of information about the
'C62x MCEVM:

Chapter 1 describes the theory of operation for the 'C62x EVM
hardware, including key component identification, detailed
information about each functional area, and interface descriptions.

Chapter 2 describes the host support software utilities. It includes a
complete API reference that allows you to write your own applications
forthe 'C62x McEVM and also includes example applications that use
the API calls.

Chapter 3 describes the DSP support software. It includes an
overview of all the DSP support software components and a complete
API reference that allows you to write your own DSP applications for
the 'C62x McEVM. Examples applications that use the API calls are
also provided.

[0 Reference material , consisting of Appendixes A through E, provides
quick reference information for the 'C62x McEVM:

Notational Conventions

Appendix A provides the MCEVM connector pinouts.
Appendix B contains the MCEVM schematics.

Appendix C provides the McEVM complex programmable logic
device (CPLD) equations.

Appendix D summarizes the McEVM PCI configuration EEPROM.

Appendix E provides a glossary of terms used in this manual.

This document uses the following conventions:

[0 Program listings, program examples, and interactive displays are shown
in a special typeface . Some examples use a bold version for
emphasis; interactive displays use a bold version to distinguish
commands that you enter from items that the system displays (such as
prompts, command output, error messages, etc.).

Notational Conventions

Here is a sample program listing with the evm6x_close() function
highlighted for emphasis:

#include <windows.h>
#include <evm6xdll.h>

" HANDLE h_board:
h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

exit(-1);
}

evm6x_close(h_board);

In syntax descriptions, the instruction or command is in a bold face , and
parameters are in jtalics. Portions of a syntax that are in bold should be
entered as shown; portions of a syntax that are in jtalics describe the type
of information that should be entered. Here is an example of a command
syntax:

evmo6xldr filename

Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
do not enter the brackets themselves. Here is an example of a command
that has optional parameters.

evmbéxtst [options] [log_filename]

evmextst is the command. This command has two optional parameters,
indicated by options and log_filename.

Device pins often are represented in groups. Device pin group notation
consists of the pin name followed by brackets containing the range of pins
included in the group. A colon separates the numbers in the range. For
example, GD[31:0] represents the global data bus pins on a device.

Read This First \Y;

Notational Conventions / Information About Cautions and Warnings

[0 The TMS320C62x family of devices is referred to as the 'C62x. The
following abbreviations are used in this manual for Tl devices on the 'C62x

McEVM:

Abbreviation Device Definition

'C6201 TMS320C6201

'ALVCH16244 SN74ALVCH16244

'CBT3257 SN74CBT3257
'CBTD3384 SN74CBTD3384
'LVT125 SN74LVT125

'ALVCH16245 SN74LVCH16245

Information About Cautions and Warnings

This book contains cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you .

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.

vi

Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

The following books describe the 'C62x processor and related support tools.
To obtain a copy of any of these Tl documents, call the Texas Instruments
Literature Response Center at (800)477-8924. When ordering, please
identify the book by its title and literature number.

TMS320C6000 Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the 'C6000 generation of devices.

TMS320C6x C Source Debugger User’'s Guide (literature number
SPRU188) tells you how to invoke the 'C6x simulator and emulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger, including command entry, code
execution, data management, breakpoints, profiling, and analysis.

TMS320C6000 Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the ’'C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces
assembly language source code for the 'C6000 generation of devices.
The assembly optimizer helps you optimize your assembly code.

TMS320C6000 CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the 'C6000 CPU architecture, instruction
set, pipeline, and interrupts for these digital signal processors.

TMS320C6201/C6701 Peripherals Reference Guide (literature number
SPRU190) describes common peripherals available on the
TMS320C6201/C6701 digital signal processors. This book includes
information on the internal data and program memories, the external
memory interface (EMIF), the host port, multichannel buffered serial
ports, direct memory access (DMA), clocking and phase-locked loop
(PLL), and the power-down modes.

TMS320C6000 Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the TMS320C6000
DSPs and includes application program examples.

TMS320C6000 Technical Brief (literature number SPRU197) gives an
introduction to the 'C6000 platform of digital signal processors,
development tools, and third-party support.

XDS51x Emulator Installation Guide (literature number SPNUQ70)
describes the installation of the XDS5100, XDS510PPC, and
XDS510WSO emulator controllers. The installation of the XDS5110
emulator is also described.

Read This First Vii

Related Documentation from Texas Instruments / Related Documentation

TMS320 DSP Development Support Reference Guide (literature number
SPRUO011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

TMS320C6x Peripheral Support Library Programmer’s Reference
(literature number SPRU273) describes the contents of the 'C6x
peripheral support library of functions and macros. It lists functions and
macros both by header file and alphabetically, provides a complete
description of each, and gives code examples to show how they are
used.

TMS320C62x Multichannel Evaluation Module User’s Guide (literature
number SPRU285) is a high-performance, multichannel telephony
platform for the development, analysis, and testing of 'C62x digital signal
processor (DSP) algorithms and applications. The 'C62x McEVM allows
you to evaluate the 'C62x DSP and algorithms to determine if they meet
your application requirements.

TMS320C6201, TMS320C6201B Digital Signal Processors Data Sheet
(literature number SPRSO051) describes the features of the
TMS320C6201 and TMS320C6201B fixed-point DSPs and provides
pinouts, electrical specifications, and timings for the devices.

Related Documentation

For up-to-date information on the 'C62x McEVM, as well as related products,
visit the 'C6000 website at:

http://www.ti.com/sc/docs/dsps/tools/c6000/index.htm

You can use the following specification to supplement this reference guide:

PCI Local Bus Specification Revision 2.1 , PCl Special Interest Group,
June 1, 1995.

http://www.pcisig.com/specs.html

MVIP-90 Reference Manual, GO-MVIP, Inc. 1990
(http://vww.mvip.org/MemOrder.htm)

The MVIP Book , GO-MVIP, Inc., ISBN 0-936648-76-7.

viii

Trademarks / Obtaining Technical Support

Trademarks

320 Hotline On-line, VelociTl, XDS510, XDS510PP, XDS510WS, and XDS511
are trademarks of Texas Instruments Incorporated.

ABEL and Synario are registered trademarks of the DATA I/O Corporation.

Altera, ByteBlaster, and MAX+ PLUS are trademarks of the Altera
Corporation.

AMCC is a registered trademark of Applied Micro Circuits Corporation.
IBM and PC are trademarks of International Business Machines Corporation.
Intel and Pentium are trademarks of Intel Corporation.

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft
Corporation.

MVIP, MVIP-90, MVIP Bus and Multi-Vendor Integration Protocol are
trademarks of GO-MVIP, Inc.

OpenWindows, Solaris, and SunOS are trademarks of Sun Microsystems, Inc.

SPARCstation is a trademark of SPARC International, Inc., but licensed
exclusively to Sun Microsystems, Inc.

X Window System is a trademark of the Massachusetts Institute of
Technology.
Obtaining Technical Support

Before contacting Texas Instruments Technical Support, please have the
following information available:

[Assembly number of your 'C62x McEVM (D600860-0001) located on the
bottom side of the board

(1 Revision number of your’C62x McEVM located in parentheses next to the
assembly number on the bottom side of the board

] Serial number located on the bottom side of the board

(1 Record of the 'C62x McEVM confidence test utility results that identifies
potential problems and other revision numbers (software, EEPROM,
CPLD). TMS320C62x McEVM User’s Guide, Chapter 3, Running the
Board Confidence Test, explains how to run the test.

(1 Computer’s PCI BIOS brand name and version number

Read This First ¢

Obtaining Technical Support

1 Amount of memory in your computer system

(1 Version of the software and operating environment you are using such as
Windows NT 4.0

[Version of the code generation tools you are using

L

Version of the debugger you are using

(1 Ifyouare using Windows 95, print out a report of your system configuration
by performing the following steps:

1) Right click on the My Computer icon on the desktop.
2) Select the Properties menu item.

3) Select the Device Manager tag.

4) Select the Print button.

5) Select the System summary radio button.

6) Click on the OK button to print a system resource summary.

[If you are using Windows NT, perform the following steps to get system
information:

1) Select the Run... menu item from the Windows NT Start menu.

2) Type winmsd at the Open prompt, and press Enter.

3) Select the Resources tab of the Windows NT Diagnostics window.
4) Click on the Print button to get a report.

5) Click on OK at the Create Report window.

Have this system resource summary available when you contact technical
support.

Note:

Check the system resource summary to see if the IRQ assigned to
TI TMS320C62x McEVM is shared with another device. If it is, this is
probably the problem.

Once you have this information ready, contact Texas Instruments Technical
Support as specified in the If You Need Assistance section that follows.

If You Need Assistance

If You Need Assistance . . .

1 World-Wide Web Sites

Tl Online http://www.ti.com

Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps

320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.htm

1 North America, South America, Central America

Product Information Center (PIC) (972) 644-5580

Tl Literature Response Center U.S.A. (800) 477-8924

Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285

U.S. Technical Training Organization (972) 644-5580

DSP Hotline Email: dsph@ti.com

DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

1 Europe, Middle East, Africa

European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33130701169 Fax: +33130 701032
Email: epic@ti.com
Deutsch +49 8161 803311 or+33 130701168
English +33 130701165
Francais +33130701164
Italiano +33130701167
EPIC Modem BBS +33 130701199
European Factory Repair +33 493 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 8040 10
1 Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 25512804 Fax: +82 2551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/T1/
1 Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

1 Documentation

When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.
Mail: Texas Instruments Incorporated Email: dsph@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

Read This First Xi

Xii

Contents

1 TMS320C62x MCEVM Hardware 1-1
Describes the TMS320C62x McEVM hardware components and how they operate.

1.1 TMS320C62x McEVM Hardware Detailed Block Diagram 1-2

1.2 TMS320C6201 DSP ..ttt e e 1-4

1.3 DSP ClIOCKS . .ttt 1-7

1.4 EXternal MmOy ...ttt e e e e e 1-8

1.4 SBSRAM .. 1-10

1.4.2 SDRAM 1-11

1.4.3 EXPansion MEMOIYt 1-12

1.4.4 DSP MemOrYy MapsS . ..ottt ittt et et e 1-13

1.45 DSP EMIF REQISIEIS . ..ottt e e e 1-16

1.5 EXpansion INterfaCcescouii i 1-18

1.5.1 Expansion Memory Interface i 1-18

1.5.2 Expansion Peripheral Interface i 1-19

1.5.3 Daughterboard 1-21

1.6 PClINterface 1-23

1.6.1 PClInterface Implementation i 1-24

1.6.2 PCI Controller Operation Registerscoo ... 1-28

1.6.3 PCI Add-On Bus Operation Registersc.couuiiiiiiinennannnn. 1-29

1.6.4 PCISIave SUPPOIT . ..ottt e e e e e e 1-30

1.6.5 PClIMaster SUPPOIt . . oot e e 1-33

1.7 JTAG EMUIAtiON 1-38

1.8 Programmable LOgICot 1-40

1.8.1 ReSet CoNntrolo 1-42

1.8.2 Power Management e 1-44

1.8.3 Dual DSP Clock Oscillator Control 1-45

1.8.4 PCI Controller/lJTAG TBC Interface Controlt 1-46

1.8.5 PCI Controller/DSP Interface Control 1-47

1.8.6 PCIl Memory-Mapped Board Control/Status Registers 1-48

1.8.7 DSP Memory-Mapped Control/Status Registers 1-58

1.8.8 PCland DSP Interrupt Control i 1-71

1.8.9 CE1 Memory Decoding/Data Transceivers Control 1-74

1.8.10 User Options Controlou i e e 1-74

1.9 MVIP Interface and Switch 1-78

1.0 TUELINErfaCet e e e e 1-82

Contents

Xiv

1.11 HandsetInterface 1-84
1.12 POWEr SUPPIIES .« ot e 1-86
1.12.1 3.3-V Voltage Regulator 1-86
1.12.2 1.8-V Voltage Regulator ...t 1-86
1.12.3 External Power CONNECIOrttt 1-86
1.12.4 Fan Power CONNECIONttt e e e 1-87
1.13 Voltage SUPEIVISION e e e e 1-88
114 USer OptioNS .ot e e e e 1-89
1.14.1 DIP SWItChES ot 1-89
1.14.2 Jumper OPLiONS . ..ottt e et e e e e 1-90
L.A5 INAICALOIS .« oottt et 1-91
TMS320C62x MCEVM Host Support Software ... 2 -1

Describes the McEVM host support software components and low-level Windows drivers;
provides an alphabetical summary of the Win32 DLL API functions and examples of how the
McEVM host support software can be used by user-generated Win32 applications.

2.1 Host Support Software COmMpPoNeNntS ...ttt 2-2
2.2 MCEVM Low-Level WINdOWS DIiVEISo 2-2
2.3 MCEVM WIN32 DLL APl o e 2-3

2.3.1 MCEVMWIN32 DLL API Data TYPES .. vviii it it 2-3

2.3.2 McEVMWIn32 DLL APIFUNCtioNS o 2-5
2.4 McEVM Host Support Software Example i 2-51
TMS320C62x MCEVM DSP Support Software ... 3 -1

Describes the McEVM DSP support software components; provides an alphabetical summary
of the McBSP driver, MVIP library, VBAP library, T1/E1 framer library, and board support library
API functions and examples of how the McEVM DSP support software can be used by
user-generated DSP applications.

3.1 DSP Support Software COmponentsuuiiiii it 3-2
3.2 Using the DSP Support Software Componentsciiiiiiinenennnn. 3-4
3.3 MCBSP Driver APl . 3-6
3.3.1 MCBSP Driver MacCrOS . . oo ettt et e e et et 3-6
3.3.2 MCBSP Driver Data TYPES ..o vii ittt et 3-7
3.3.3 MCBSP Driver FUNCLIONS o 3-10
3.4 FMIC Support Library APl ... 3-24
3.4.1 FMIC DIVEIr MACIOS ..ottt et ettt e ettt 3-24
3.4.2 FMIC Driver Data TYPES ..ottt ettt ettt 3-25
3.4.3 FMIC Library API FUNCLIONS 3-25
3.5 Board Support Library APl 3-38
3.6 TLI/EL Framer Driver Libraryooii e 3-44
3.6.1 TI1/E1 API Data Structures and ENUMS, 3-44
3.6.2 Siemens PEB 2255 T1/E1 Framer and Line Interface Registers 3-46
3.6.3 TLELAPIFUNCHONS e et e 3-46
3.7 VBAP Driver Library APl ... o e 3-56

Contents

3.7.1 VBAP APIENUMS ... 3-56
3.7.2 VBAP Library API FUNCLIONS 3-56
3.8 PCI/AMCC Driver Library APl 3-58
3.8.1 PCI/AMCC Library Data Types and Macrosc.c.oouuiunnnnn. 3-58
3.8.2 PCI/AMCC Library API FUNCEIONSt 3-58
3.9 Cl/OInterface Library APl e 3-76
TMS320C62x MCEVM Connector PINOULS e e A -1
Identifies the connector pins on the TMS320C62x McEVM
Al TMS320C62x MCEVM ConNector SUMMAIYvvi et e i A-2
A.2 Microphone Input Jack (MONO) ...t e e e A-2
A.3 Handset EarOUt MONOttt e ettt A-3
A4 RJI-4A8C TL/ELl Interface CONNECIOrottt e A-3
A5 MVIP-90 Interface e A-4
A.6 MVIP/C2 Termination JUMPETttt e e e et e et A-6
A7 MVIP/C4 Termination JUMPETttt e e e et e e A-6
A.8 CPLD ISP Header e e e A-7
A.9 Expansion Memory Interface CoOnNNector ...t A-8
A.10 Expansion Peripheral Interface Connectort A-9
A1l TMS320C62x JTAG Emulation Headert A-10
A.12 External Power CONNECIOrot e e e e A-11
A.13 DSP Fan Power CONNECIOrttt e e e e e e A-11
A.14 PCIlLocal BUS CONNECIONttt ettt ettt et e e A-12
TMS320C6x MCEVM SchematiCs e B -1
Contains the schematics for the TMS320C6x EVM
TMS320C62x MCEVM CPLD EQUAtiONSt C -1
Contains the CPLD equations for the TMS320C62x McEVM
C.1 Overview of the MCEVM CPLD o e C-2
C.2 MCEVM CPLD EQUAtIONS . ..ottt ettt et et et ettt C-15
TMS320C62x McEVM PCI Configuration EEPROM i, D -1
Summarizes the contents of the EEPROM on the TMS320C62x McEVM
GlOS Ay ottt E-1

Defines acronyms and key terms used in this book

Contents

XV

Figures

TTTT

AR
P O 00 ~NOOhA,WNPRE

RN
[=S = S
g rwNPRO

X
=

XVi

TMS320C62x McEVM Detailed Block Diagram 1-3
TMS320C6201 Core, Peripherals, and External Interfaces 1-6
EMIF Data Bus TOPOIOgYot e e e e e 19
EMIF Address BUS TOPOIOQY . . .ottt ettt et 1-10
Daughterboard Envelopes and Connections on the '62x MCEVM 1-22
PCI Interface Implementation i e 1-27
JTAG Emulation Selection 1-39
'C2x EVM CPLD Interfaces and FUNCtiONS e 1-41
Reset Configuration e 1-44
DSP Clock Selection Configuration 1-46
Dual-Use Option SUPPOIT . ..o e e e e e 1-77
MCEVM’'S MVIP INterfaceo e e 1-79
MCBSPO SeleCtion 1-81
MCEVM VBAP Configurationottt 1-84
External Power CONNECIOr i et 1-87
TMS320C62x MCEVM CPLD Source Files e C-3

o

N -

w

~

(&)

~N O

©

= O

N

w

N

o O

o

o ©

=

N

w

N

o

PR R RPRRPRRPRPRRPRPRPRPRPRPRPRPRPRPRPRPEPRPREPRPRPRPRPRERRERRPRERRERRERRERRR
WWWWWWWRNNRNRNNNMNNNNNRPRPRPRRPRERPRPRLRRPPRLOO~NODADWNR

»

DSP CIOCK SUMMANY . . oottt e e e e e e e e e 1-7
TMS320C62x MCcEVM DSP Memory Map (MAP 0) ...t 1-14
TMS320C62x MCEVM DSP Memory Map (MAP 1) i 1-15
TMS320C62x McEVM CE Memory Space Initialization Summary 1-16
EMIF SDRAM Control Register Timing Fields i 1-17
EMIF SDRAM Timing Register Valuesco i 1-17
TMS320C62x MCEVM PCIBAR Definitionso 1-25
S5933 PCI Bus Operation RegiSterso.ii et 1-28
PCI Add-on Bus Operation Registers Summarycoiiinennaennennn. 1-29
DSP HPI Registers (BARS) . ..ottt e e e 1-31
Power Management Device Control Summary, 1-45
PCl Memory-Mapped CPLD RegiSters 1-49
PCI CNTL Register Bit Definitions e 1-51
PCI STAT Register Bit Definitions e 1-52
PCI SWOPT Register Bit Definitions i i 1-52
PCI SWBOOT Register Bit Definitions e 1-53
PCI DIPOPT Register Bit Definitions oo e 1-53
PCI DIPBOOT Register Bit Definitions i 1-54
PCI DSPOPT Register Bit Definitionsoo i 1-54
PCI DSPBOOT Register Bit Definitions 1-55
PCI CPLDREV Register Bit Definitions e 1-55
PCI SEMO Register Bit Definitions 1-56
PCI SEM1 Register Bit Definitions i 1-57
DSP Memory-Mapped Control/Status CPLD Registersot 1-59
DSP CNTL Register Bit Definitionso e 1-61
DSP STAT Register Bit Definitionso e 1-62
DSP DIPOPT Register Bit Definitions 1-62
DSP DIPBOOT Register Bit Definitions i i 1-63
DSP DSPOPT Register Bit Definitions i 1-63
DSP DSPBOOT Register Bit Definitions i i 1-64
DSP FIFOSTAT Register Bit Definitions 1-64
DSP SDCNTL Register Bit Definitions i 1-65
DSP OSC B Register Bit Definitions 1-66
DSP SEMO Register Bit Definitions i 1-66
DSP SEM1 Register Bit Definitions 1-67
Master Timing Select Modes i e 1-68

Tables

1-37
1-38
1-39
1-40
1-41
1-42
1-43
1-44
1-45
1-46
3-1
3-2
A-1
A-2
A-3
A-4
A-5
A-6
A7
A-8
A-9
A-10
A-11
A-12
A-13
A-14

X
=

XViii

DSP FALC Control Register Bit Definitions i 1-68
DSP Interrupt Control Register Bit Definitions i i, 1-69
DSP Miscellaneous Status Register Bit Definitions 1-70
DSP Interrupts Usageo 1-72
User OptioNS SUMMAATYottt et e e ettt e e e e e et 1-75
MVIP FMIC ReQISIEIS .ot 1-80
User Option DIP SWItChesS e e e 1-89
Valid Boot Mode Selectionsot 1-90
JUMPETN OPLIONS . . .ottt e e e e e e e e e e e 1-90
LED Summary Table ... 1-91
MCBSP Driver APl State MacroSot e e 3-6
FMIC Driver APl State MacCrOSottt et 3-24
TMS320C62x MCEVM CoNNECtors SUMMaryouuiiuienieiaeeann, A-2
Stereo Microphone Input Connector J1 Pinout A-2
Handset Output Connector J2 PiNOULt e A-3
T1/E1 Interface Connector J3 PINOULSottt i i A-3
MVIP-90 Interface J4 Connector PINOULttt A-4
MVIP/C2 Termination Jumper J5 Connector Pinoutc.oo i, A-6
MVIP/C4 Termination Jumper J6 Connector Pinout, A-6
CPLD ISP J7 PINOUL . . . oot e e e e e e e A-7
Expansion Memory Interface J8 Connector Pinout oo, A-8
Expansion Peripheral Interface J9 Connector Pinout A-9
TMS320C62x JTAG Emulation Header JIO Pinoutiiiiiiinnennn... A-10
External Power J11 Connector PiNOULttt A-11
DSP Fan Power J12 Connector PiNOUtt A-11
PCI Local Bus P1 Connector PiNOUL ot e e A-12
TMS320C62x MCEVM CPLD Pin SUMMAIYt C-2
TMS320C62x CPLD I/O Pins Sorted by SignalNamet C-4
TMS320C62x CPLD I/O Pins Sorted by Pin Number C-9
PCI Configuration EEPROM Summary D-2

O.)CIA)I'\)I\J
N EF, NP

Examples

WiIN32 DLL APl Data TYPES .. e ettt et e e ettt e e e e e e 2-3
MCEVM Win32 DLL Sample Codeo e 2-51
MCBSP Driver APl Data TYPES . ..ottt ettt et e ettt 3-7
FMIC Driver APl Data TYPES . o v vttt et ettt et e et e ettt 3-25

Contents XiX

XX

Chapter 1

TMS320C62x McEVM Hardware

This chapter describes the TMS320C62x McEVM hardware, its key compo-
nents and how they operate, and its various interfaces. Detailed programmer
interface information such as memory maps, register definitions, interrupt
usage, and required software initialization tasks are also provided.

The hardware can be divided into 14 functional areas. Each of these areas is
discussed in detail in this chapter.

Topic Page
1.1 TMS320C62x McEVM Hardware Detailed Block Diagram 1-2
1.2 TMS320C6201 DSP e 1-4
1.3 DSP CIOCKS ..ttt e e 1-7
1.4 EXternal MEMOIYttt 1-8
1.5 Expansion Interfaces 1-18
1.6 PClINterfacec.ooiiiiiii 1-23
1.7 JTAG Emulation 1-38
1.8 Programmable LOQIC ...ttt 1-40
1.9 MVIP Interface and Switch 1-78
1.10 TLELINterfacet 1-82
1.11 Handset Interfacettt 1-84
1.12 Power SUPPlES ...t 1-86
1.13 Voltage SUPErVISIONttt e 1-88
1.14 USer OPpLiONS . ..ottt ittt et et e e e 1-89
1.15 INAICAOIS . ..ttt 1-91

1-1

hi

1.1 TMS320C62x McEVM Hardware Detailed Block Diagram

Figure 1-1 provides a detailed block diagram of the 'C62x McEVM hardware.
Itidentifies the key components described in this chapter and shows how they
interface to each other.

1-2

TMS320C62x McEVM Hardware Detailed Block Diagram

WLX
ZH
(1@xeiq soer > Jawioysuel »> (nrewel) [+ zsezt
Bununow uo) renp lanosuen T3/TL |0nuod g3 % 19sal pleoq/dsa
o8y < Tvix .
aoepa| TI/TL N €20TL H1-07vd ZHN 18151631 snyes/|0u0d |Od
562z 93d ¥8E°9T ‘|01U0D Ul ‘9p02aP AIOWAN
< . ‘|onuod m:m_ao 19sn
(o0 Avan mery siaisiboy 101u09 Jajsuel} |Od ‘j0au0d 420D _
1A0EId syoer @|' XN <> LEDVOZENDL d (reuondo) ad _\,mmw_vwm_w
Bununow oipny sdai Y
1PN Boreue 8v0'C Jso ! 19501
uws'e £8EXVIN -y ﬂm:cms_
soejion > avapmerd LR
9EOVOZEWDL s (@1d2) 658l ENURW/iDd > Josinadns | o AEEr
(preo jo doy) ispeay . a1Bo| 18say pleog abeyjon e
uid—o dIAN < a|qewwelboid SgoLXYN [ASTU8TH
QepIaIUl dIAN 0T8061WN S952/Nd3 r_omﬁ_u@mw_ﬁ_n_
(sdaw 8v0°2) wreans Wal areds umop Jemod A A AsnEs (e “URIPUB Y{90] ‘apoll 100!
erep [euas siasibay Mo (® O<._.mn:o:.o ‘_wmvr 10 ‘apou 100g)
10198UU0 UId—08 sdgin 8v0°Z >
«0G0'X0S0" NS d3pues T
< Siajsuel;
Dl > TeIxX 10d 1915y no/erep/ >
/1 fesayduad TeIX AEE+ 01 AG+ a1do woly 1o7e1ep/Ippy
:o_wcmgx.m_ NE'E+ 0} AG+ B XN T2 aj8s lod [elies
QoepRI| : $88£a18D. 152e180. (2) siajsuen 13][01)U0D
preog 0 sdaw 8v0°Z 104 19681 10d
Jybneq eIl LNI/WIL TdSEoN 0dSaoN TEIX AB T+ 01 NG+ 0ee6ss
<
Kiowew < a1 | B X NE'E «—> 20NV
uoisuedx3 v8e€a1a. (2) Wo¥d ,3
-130 - <> eusas
Spg 1elxX 18]|0U02 SNQ 158} 8XMT
> X g V1L
) VPZOTHOATY. [A AETEE 01 AGH R D V800VZLY
110 3 B1eq IppY (2] - V3 oW wmwm_wm_wm
(130) oufisy | Hmszoer £ (suid zx2)
SI9AIRISURI) @ < JpeSH OVLL
SVZITHOATY. |« P Xa3 @)
(9) % EERZELA
(zHw ooT) (e ozjee) 1318S OVLL
AVNAS AvHdS €— » VOISO paiayng
® NVHSES dsa 7 10913S #0010 a7do o/woli4
ZEX Ny [ean 102900285 L v
9T¥9S6SOL sieyng a3 ® < (9) s@3148sn a7
x) |onuod abpa 20[D /NU Jomod
[€E) (@HN 00T) NS €|/ X AT+ 0 AGH [« R usaIo
Wvdas SZTLIAT Y 3SO
aoepaUl A P o vas o \ N_Em__a.mc
fousou 9T¥9S65DL HNm_U i 8080 | ZHWN 0005 101enBas afejon
[eusaixgy <aan . *_ (Xew ve) ABT/SZ+ OdAGC/8T+ !
(zHW £€T) o = , 3.0v91d J0193uu0y
NvHSES - J90MATO _ 103109 | oomad
zex < P XSS 3aow100d sQJT poulyep-138n 9 aouanbas uey uid-z
Zoow oo XT1d_ 'NVION31 EQ0A |« Jomod 107e|nBa1 aBeljon
e+ [eubig <« g
ﬂ AE'e+ [eubig XeU Ve A e er mmﬁ\vwmm < % N
aidd woly 10128UU0D
sjeufis 1amod “1xe
j01u0D AG+ NI < X3|0N uld—
(eoepayul [esayduad uoisuedxa 01) AZT+ Bojeuy ¢ A N%T.
(eoepaul [esayduad uoisuedxa 01) AZT- Bojeuy < A=

weibeiq 420/g pajre1dd WAFIN XZ920ZESWL “T—T anbi-

1-3

TMS320C62x McEVM Hardware

TMS320C6201 DSP

1.2 TMS320C6201 DSP

1-4

The TMS320C6201 DSP is the brain of the 'C62x McEVM. The 'C6201 DSP
has the following key features:

[VelociTlO advanced very long instruction word (VLIW) architecture

W Load/store architecture

W Instruction packing for reduced code size

W 100% conditional instructions for faster execution

B Intuitive, reduced instruction set computing with RISC-like instruction
set

O CPU

W Eight independent functional units (including two 16-bit multipliers
with 32-bit results and six arithmetic logic units (ALUs) with 32/40 bit
results)

W 32 32-bit registers

Bl 1600 million instructions per second (MIPS)

B 5-nscycle time

W Up to eight 32-bit instructions per cycle

B Byte-addressable with 8-, 16- and 32-bit data

Bl 32-bit address range

W Little- and big-endian support

W Saturation

B Normalization

W Bit-field instructions (extract, clear, left-most bit detection)

(1 Memory/peripherals

Glueless external memory interface to synchronous memories such
as SBSRAM and SDRAM

Glueless external memory interface to asynchronous memories such
as SRAM and EPROM

4-channel direct memory access (DMA)

Host portinterface (HPI) with dedicated auxiliary DMA channel provid-
ing access to entire processor memory space

Two multichannel buffered serial ports (McBSPs) for direct interfacing
to telecommunication, audio, and other serial devices

TMS320C6201 DSP

B Two general-purpose timers

B Multiply-by-4 phase locked loop (PLL) and multiply-by-1 PLL-bypass
options

B 1M-bit on-chip memory (2K x 256 bits of program memory/64K bytes
of data memory)

[Miscellaneous

B |EEE-1149.1 (JTAG) boundary-scan compatible for emulation and
test support

B 352-lead ball grid array (BGA) package
B 0.18-micron/5-level metal process with CMOS technology
B 3.3-V /O and 1.8-V internal core voltages

Figure 1-2 shows the 'C6201 core, peripherals, and external interfaces.

Because the 'C62x McEVM is a hardware reference design intended to pro-
vide you with maximum flexibility, it supports all of the DSP’s external inter-
faces. The 'C62x McEVM uses the PLL clock generator interface to support
multiply-by-1 and multiply-by-4 clock modes with CPU clock rates of
33.25 MHz, 50 MHz, 133 MHz, and 200 MHz. The JTAG test/emulation inter-
face supports both embedded and external emulation for source code debug-
ging. The control interface resets the DSP, provides external interrupts,
chooses data endian mode, and selects the DSP’s boot method. The external
memory interface (EMIF) supports synchronous SBSRAM and SDRAM me-
mories and asynchronous accesses to the CPLD registers, Multi-Vendor In-
tegration Protocol (MVIP) flexible MVIP interface circuit (FMIC), T1/E1 trans-
ceiver, PCI controller, and expansion memory. The EMIF is also brought out
to an expansion memory interface connector for daughterboard use. The host
port interface (HPI) is used for bidirectional data transfers between the PC and
the DSP. The timer interfaces are provided on the expansion peripheral inter-
face connector for daughterboard use. The multichannel buffered serial ports
provide interfaces to an onboard MVIP FMIC and/or a daughterboard con-
nected to the expansion peripheral interface.

TMS320C62x McEVM Hardware 1-5

TMS320C6201 DSP

Figure 1-2. TMS320C6201 Core, Peripherals, and External Interfaces

Program RAM/cache
32-bit address
256-bit data
512K-bit RAM

Data RAM

32-bit address
8-, 16-, 32-bit data
512K-bit RAM

EMIF

Program/data buses

S

'C62x CPU core

DMA

Program fetch

Instruction dispatch

Instruction decode

Control
registers

Data path 1 Data path 2

B register file

A register file

Control
logic

>

Q| 19 |Q
S| | T
N [l o

@]
>
w

Test

Emulation

Auxiliary
channel

Interrupts

Data

B

1-6

Power management

Host
port

Peripheral bus

§ 88 0 O

JTAG test/
emulation
control

Multichannel
buffered
serial port

Multichannel
buffered
serial port

Timer

Timer

PLL clock
generator

1.3 DSP Clocks

DSP Clocks

The 'C62x McEVM provides quad DSP clock support, which allows you to run
the DSP core at these rates:

(1 Full speed (200 MHz)
[J Speed of the SBSRAM (133 MHz)
(1 Multiply-by-1 clock modes (33.25 MHz and 50 MHz)

Typically, you will use either the full-speed or SBSRAM-speed DSP clock. De-
pending on the application, one speed may be more efficient than the other.
You can perform benchmarks using both clocks to determine optimal perfor-
mance for a particular application.

The McEVM uses two half-size oscillators, along with a TI SN74LVT125 quad
bus buffer device, to provide 33.25- and 50-MHz CLKIN signals to the 'C6201.
The use of the 'LVT125 device provides multiple functions, including 5-V to
3.3-V signal level translation, clock selection, and clock edge control with fast
rise and fall times required by the DSP.

The clock selection is made via a DIP switch during external operation or via
a software switch for internal PCI operation. Clock select control logic in the
complex programmable logic device (CPLD) controls the 'LVT125 buffer out-
put enable that corresponds to the selected clock oscillator. The CPLD pro-
vides break-before-make clock switching between the two clock oscillators to
prevent any output contention.

The McEVM provides user options for selecting the CLKIN frequency (33.25
or 50-MHz) and the clock mode (multiply-by-1 or multiply-by-4), so the
CLKOUT1 (CPU clock) frequency can be 33.25 MHz, 50 MHz, 133 MHz, or
200 MHz (see Table 1-1). The SBSRAM clock (SSCLK) can be configured by
the DSP software to be one-half the CPU clock (CLKOUT1) or the same as
CLKOUT1. The SDRAM clock (SDCLK) is always one-half of CLKOUTL1. The
CPLD also controls the DSP’s CLKMODE and PLLFREQ control inputs based
on the clock mode selection.

Table 1-1. DSP Clock Summary

Clock SSCLK
Source Clock Mode CLKOUT1 (1/2 rate/1x rate) SDCLK

33.25 MHz Multiply-by-1 33.25 MHz 16.625/33.25 MHz 16.625 MHz

50.00 MHz Multiply-by-1 50.00 MHz ~ 25/50 MHz 25 MHz
33.25 MHz Multiply-by-4 133 MHz 66.5/133 MHz 66.5 MHz
50.00 MHz Multiply-by-4 200 MHz 100 MHzt 100 MHz

T 1x SSCLK rate is invalid when CLKOUT1 is 200 MHz.

TMS320C62x McEVM Hardware 1-7

External Memory

1.4 External Memory

1-8

The 'C62x McEVM provides one bank of 128K x 32-bit words of 7.5-ns
(133-MHz) SBSRAM and two banks of 4M x 32-bit words of 10-ns (100-MHz)
SDRAM. An expansion memory connector is also provided to enable asyn-
chronous memory and memory-mapped devices to be added using a daugh-
terboard. The external SBSRAM and SDRAM devices on the board are 3.3-V
devices. The expansion memory connector is able to support both 3.3-V and
5-V devices because 'ALVCH16245 5-V-tolerant buffers are used.

The EMIF address and data busses are connected to the high-speed
SBSRAM and SDRAM memories using series termination. Buffers and trans-
ceivers are used to buffer signals to other memory-mapped devices to pre-
serve signal integrity, limit loading on the 'C6201 outputs, and provide the nec-
essary drive to meet timing requirements. Low-voltage data transceivers that
are 5-V tolerant provide voltage translation and the necessary drive to a
daughterboard.

Figure 1-3 and Figure 1-4 show the topologies of the EMIF data and address
busses on the MCEVM, respectively.

Figure 1-3. EMIF Data Bus Topology

Legend: ED

GD

XD

AOD

Note:
layout.

64K x 32,
133/200 MHz 22 133 MHz
c6201 AN, » SBSRAM
DsP ED[31..0] D[31..0]
(CEO)
1M x 32, 1M x 32,
100 MHz 100 MHz
SDRAM SDRAM
BANK > BANK
1 D[31..0] o
(CE3) il (CE2)

DSP EMIF data
Global data bus

X:X e

GD[31..0]

A

Expansion memory data

PCI add-on data

X X XX

(2) 'ALVCH16245

(2) '"ALVCH16245

External Memory

GD[31..0]
(CPLD,MVIPTI/EL)

AOD[31..0]
(PCI)

XD[31..0]
(Daughterboard)

The transceiver signal assignments provide a functional overview only. The actual signal assignments are optimized for

TMS320C62x McEVM Hardware 1-9

External Memory

Figure 1-4. EMIF Address Bus Topology

133/200 MHz
'C6201
DSP

EA[21..2]

Note:
layout.

1.41 SBSRAM

1-10

LEGEND
221 SBA[18:2]
> . EA — DSP EMIFAddress
SBA — SBSRAM Address
SBSRAM SDA - SDRAM Address
GA - CGlobal Address
XA — Expansion Memory Address
Y SDA[15:13,11:2]]
SDRAM SDRAM SDRAM SDRAM
v BANK BANK BANK BANK
0 0 1 1
@ High Low High Low
'ALVCH16244
GA[21:2]
> (CPLD,MVIPT1/E1)
GA[21:2]
XA[21:2]

(Daughterboard)

)
'ALVCH16244

The buffer signal assignments provide a functional overview only. The actual signal assignments are optimized for

The McEVM provides 128K x 32-bit words of SBSRAM. The SBSRAM used
on the McEVM is directly connected to the DSP with no glue logic or buffers
required, because the 'C6201 EMIF provides a direct interface to industry-
standard SBSRAM devices. The bank of SBSRAM is mapped into the DSP’s
CEO memory space, allowing it to be used for program booting, assuming that
it has been initialized by host software or the emulator. It has a 7.5-ns cycle
time (133 MHz) and provides 128K x 32-bit words of memory in a single
100-pin thin quad flat pack (TQFP) package.

The SBSRAM device can be clocked by the 'C6201 at the CPU clock speed
when operating at 133 MHz, one-half the clock speed when operating at
200 MHz, or at either the same as or one-half the clock speed when operating
in the multiply-by-1 clock mode (33.25 MHz and 50 MHz). This selection is
made based on the setting of the SSCRT bitin the EMIF global control register.
Additionally, various boot modes inherently select the clock speed used for the

142 SDRAM

External Memory

SBSRAM interface. You must correctly select the SBSRAM clock rate for the
selected CPU clock rate.

The 'C6201 EMIF provides signals that directly correspond to the SBSRAM
pins. Because the 'C6201 can generate a new address every cycle, the
SBSRAM’s ADV control input, which allows the device to generate its own ad-
dresses internally, does not have to be used. This SBSRAM control input is
pulled high on the MCEVM.

The SBSRAM device supports a snooze power-down mode when its ZZ input
signal is a logic high. The ZZ input is controlled directly by the voltage supervi-
sor’s logic high reset output; so, when the board is held in reset, the SBSRAM
is disabled and placed into a power-down mode. Data in the SBSRAM is re-
tained during the power-down mode.

The McEVM provides two banks of 4M x 32-bit words of SDRAM. Each bank
is comprised of two 1M x 4 banks x 16-bit devices. The 3.3-V SDRAM used
on the 'C62x McEVM requires no glue logic to interface to the DSP because
the 'C6201 EMIF generates all the required SDRAM control and refresh signal
sequences. The two banks of SDRAM are mapped into the DSP’s CE2 and
CE3 memory spaces. Each bank uses all of its respective memory space’s
16M-byte address space.

The SDRAM devices are always clocked at one-half the CPU clock rate. This
means thatwhen the DSP core runs at 133 MHz, the SDRAM runs at 66.5 MHz
(15ns), and whenthe DSP core runs at 200 MHz, the SDRAM runs at 100 MHz
(10 ns). The McEVM’s SDRAM devices are rated for 100-MHz operation.

The four SDRAM devices are driven by the DSP’s SDCLK output signal that
is optimally routed in an 'H’ configuration. Data, address, and control signals
to the SDRAM devices are directly connected (via series termination resistors)
to the DSP using carefully designed routing. There is no margin in the DSP’s
SDRAM timing for any buffering with bus operation of 100 MHz.

The SDRAM must be refreshed periodically to maintain its data. The 'C62x
McEVM uses the DSP’s SDRAM refresh capability so the RFEN bit in the
DSP’s SDRAM control register must be set to 1. The refresh period can be a
maximum of 15.625 ps.

The McEVM's CPLD includes SDRAM enable bits that are controlled via the
DSP memory-mapped SDCNTL register. After reset is released, these
SDRAM enables, which are connected to the SDRAM clock enable (CKE)
pins, default to active, enabling the SDRAMs. When the board is held in reset
or DSP software explicitly clears the register control bits, the SDRAMs are dis-
abled and placed into a power-down mode.

TMS320C62x McEVM Hardware 1-11

External Memory

An additional use of the CPLD SDRAM enable bits is the ability to indepen-
dently disable the CE2 and CE3 SDRAM banks to allow these memory spaces
to be used for asynchronous expansion memory on a daughterboard. When
an SDRAM bank is disabled, the respective memory space can be used for
asynchronous expansion memory.

1.4.3 Expansion Memory

1-12

The McEVM provides an asynchronous expansion memory interface connec-
tor (J8) to allow you to add memory or memory-mapped devices via a daugh-
terboard. The expansion memory interface is mapped into the lower 3M bytes
of the DSP’s 4M-byte asynchronous CE1 memory space. Expansion memory
in the CE1 space is addressed from 0x1000000-12FFFFF in MAP 0 and
0x1400000-16FFFFF in MAP 1 mode. The upper 1M bytes of the CE1l
memory space is allocated for onboard peripherals. This division of the CE1
memory space allows both the onboard devices and the expansion memory
interface to coexist without conflicts.

Because the McEVM’s MVIP FMIC, T1/E1 transceiver, PCI controller, and
CPLD registers are also accessed in the DSP’s asynchronous CE1 memory
space, the CPLD provides transceiver control logic that prevents the expan-
sion memory space from conflicting with the onboard use of the CE1 space.
The CPLD monitors the CE1 signal along with the upper address signals
(EA[21:20]) to determine when the lower 3M-byte expansion memory space
is being accessed and enables the expansion memory transceivers accor-
dingly. CE1 decoding in the upper 1M byte is handled by the CPLD for control
of onboard peripherals.

The EMIF CE2 and CE3 memory space enables are available on the expan-
sion peripheral interface connector (J9). These two memory spaces can also
be used for asynchronous memory on the daughterboard when their respec-
tive SDRAM enable bits are not asserted in the CPLD register. The SDRAM
enable bits control the SDRAM clock enables, as well as enabling the expan-
sion memory transceivers to be turned on during CE2 and CE3 memory space
accesses. This capability supports applications that do not require one or both
banks of SDRAM, but need to interface to faster or additional asynchronous
memory on a daughterboard.

External Memory

All expansion memory interface signals are buffered using Tl low-voltage, 5-V
tolerant buffers/transceivers to allow both 3.3- and 5-V devices to be used on
the daughterboard and to isolate the daughterboard from the onboard EMIF.
The three memory space enables (CE1-CE3) are buffered versions of the
DSP outputs and are not generated by decode logic. This allows fast daughter-
board logic to be used as required for the application without incurring addi-
tional delay. The expansion memory transceivers isolate the daughterboard
and onboard data busses to prevent bus contention.

One potential use of the expansion memory interface is to provide nonvolatile
memory such as ROM or Flash memory on a daughterboard that can be used
for ROM boot operation. This allows the McCEVM to be autobooted at power
up and reset with an application stored in nonvolatile memory. The MCEVM
can operate in this mode inside the PC or, more typically, in an external operat-
ing environment.

1.4.4 DSP Memory Maps

Table 1-2 and Table 1-3 show the 'C62x McEVM DSP memory maps for
MAP 0 and MAP 1 modes, respectively.

TMS320C62x McEVM Hardware 1-13

External Memory

Table 1-2. TMS320C62x McEVM DSP Memory Map (MAP 0)

External
Memory Size
Start Address End Address Space (Bytes) Description
00000000 0007FFFF CEO 512K SBSRAM
00080000 OOFFFFFF CEO 16M - 512K Unused
01000000 012FFFFF CEl 3M Asynchronous expansion memory
01300000 0130003F CE1 64 PCI add-on registers
01300040 0130FFFF CE1 64K — 64 Unused
01310000 01310003 CE1l 4 PCI FIFO register
01310004 0133FFFF CE1l 192K — 4 Unused
01340000 0134000F CE1l 16 MVIP FMIC
01340010 0134FFFF CE1l 64K — 16 Unused
01350000 013500FF CE1 256 T1/E1 transceiver
01350100 0137FFFF CE1l 192K — 256 Unused
01380000 01380037 CEl 56 DSP control/status registers
01380038 013FFFFF CE1l 512K - 56 Unused
01400000 0140FFFF N/A 64K Internal program memory (IPM)
01410000 017FFFFF N/A 4M - 64K Reserved (future IPM)
01800000 01BFFFFF N/A 4M Internal peripherals
01C00000 O1FFFFFF N/A 4M Reserved
02000000 02FFFFFF CE2 16M SDRAM (bank 0) or asynchronous
expansion memory
03000000 03FFFFFF CE3 16M SDRAM (bank 1) or asynchronous
expansion memory
04000000 7TFFFFFFF N/A 1984M Reserved
80000000 8000FFFF N/A 64K Internal data memory (IDM)
80010000 803FFFFF N/A 4AM—-64K Reserved (future IDM)
80400000 FFFFFFFF N/A 2044M Reserved

1-14

External Memory

Table 1-3. TMS320C62x McEVM DSP Memory Map (MAP 1)

External
Memory Size
Start Address End Address Space (Bytes) Description

00000000 0000FFFF N/A 64K Internal program memory (IPM)
00010000 003FFFFF N/A 4M—-64K Reserved (future IPM)
00400000 007FFFFF CEO 256K SBSRAM
00800000 013FFFFF CEO 16M — 256K Unused
01400000 016FFFFF CE1l 3M Asynchronous expansion memory
01700000 0170003F CEl 64 PCI add-on registers
01700040 0170FFFF CE1l 64K — 64 Unused
01710000 01710003 CE1l 4 PCI FIFO register
01710004 0173FFFF CE1l 192K -4 Unused
01740000 0174000F CE1l 16 MVIP FMIC

64K — 16 Unused
01750000 017500FF CEl 256 T1/E1 transceiver
01750100 0177FFFF CE1l 192K — 256 Unused
01780000 01780037 CE1 56 DSP control/status registers
01780038 017FFFFF CE1l 512K — 56 Unused
01800000 01BFFFFF N/A aM Internal peripherals
01C00000 O1FFFFFF N/A 4M Reserved
02000000 02FFFFFF CE2 16M SDRAM (bank 0) or optional asyn-

chronous expansion memory
03000000 03FFFFFF CE3 16M SDRAM (bank 1) or optional asyn-
chronous expansion memory

04000000 TFFFFFFF N/A 1984M Reserved
80000000 8000FFFF N/A 64K Internal data memory (IDM)
80010000 803FFFFF N/A 4AM—-64K Reserved (future IDM)
80400000 FFFFFFFF N/A 2044M Reserved

TMS320C62x McEVM Hardware 1-15

External Memory

1.4.5 DSP EMIF Registers

The DSP EMIF registers must be initialized before the external memory on the
'C62x McEVM can be accessed by DSP or host software. The DSP EMIF reg-
isters must be initialized by the DSP software before it accesses external
memory in the no-boot and ROM-boot modes. When the HPI-boot mode is se-
lected, the host software must initialize the EMIF registers via the HPI before
HPI memory accesses are performed on external memory. This section identi-
fies the required and recommended EMIF register values for proper MCEVM
operation.

The EMIF global control register must be initialized to enable the various DSP
output clocks and select clock polarities, the SBSRAM clock rate (one-half the
CPU clock or the same as the CPU clock), and the requester arbitration mode.
The CLKOUT?2 signal is routed to the expansion peripheral connector for
daughterboard use. The 'C62x McEVM does not use the CLKOUT1 output, So
these clocks should be disabled to minimize EMI emissions. The SDCLK out-
put is used to clock the McEVM'’s four SDRAM devices. The SBSRAM clock
rate (SSCLK) can be either one-half the CPU clock or the same as the CPU
clock when the CPU clock rate is 33.25 MHz, 50 MHz, or 133 MHz. When the
CPU clock rate is 200 MHz, only one-half the CPU clock rate is valid for
SSCLK. The requester arbitration mode selection is application dependent.
For a one-half-rate SSCLK operation, a value of 0x3068 is recommended. For
a full-rate SSCLK operation, a value of 0x306C is recommended.

The EMIF CE space control registers for the CEO—CE3 must be initialized to
select the external memory configuration of the 'C62x McEVM. The CE1
memory space control register must be configured for a strobe period of 3
CLKOUT1 cycles for proper operation. Table 1-4 summarizes the CE space
allocation of the 'C62x McCEVM.

Table 1-4. TMS320C62x McEVM CE Memory Space Initialization Summary

CE Control
Memory Register
Space Memory Type Memory Characteristics Address Control Register Value
CEO SBSRAM 133 MHz maximum 0x1800008 0x40
CE1 PCI controller, 32-bit async, strobe =3 0x1800004 200 MHz: 0x50F50323
CPLD registers, 133 MHz: 0x40F40323
MVIP FMIC, T1/E1 50 MHz: 0x10D10321
transceiver, and 33.25 MHz: 0x10D10321
expansion memory
CE2 SDRAM (bank 0) 100 MHz maximum 0x1800010 0x30
CE3 SDRAM (bank1) 100 MHz maximum 0x1800014 0x30

1-16

External Memory

Because the 'C62x McEVM includes SDRAM, the EMIF SDRAM control and
timing registers must be initialized to select timing and device width, enable
refresh, initialize the SDRAM devices, and control the SDRAM refresh period.
The SDRAM timing selection is dependent on the CPU clock speed, so the
host or DSP software must determine its clock speed to properly initialize the
timing control bits. The host and DSP can each read CPLD registers to deter-
mine the CPU clock speed based on the clock selection (33.25 MHz or
50 MHz) and clock mode (multiply-by-1 or multiply-by-4). The SDRAM de-
vices have a tgc (refresh/active-to-refresh/active) period of 84 ns, a trp (pre-
charge-to-active) period of 24 ns, and a trcp (active-to-read/write) period of
24 ns. Based on the determined CPU clock period, the TRC, TRP, and TRCD
fields of the EMIF SDRAM control register can be initialized based on the
CLKOUT2 period, as summarized in Table 1-5.

Table 1-5. EMIF SDRAM Control Register Timing Fields

CPU Clock CLKOUT2 TRCD
(MHz) Period (ns) TRC Field TRP Field Field
33.25 60 1 0 0

50 40 2 0 0
133 15 5 1 1
200 10 8 2 2

The SDRAM control register’s INIT bit must be set to 1 to initialize the SDRAM
in each CE space configured for SDRAM (CE2/CE3). The RFEN bit must be
set to 1 to enable EMIF SDRAM refreshes. The SDWID bit must also be set
to 1 to select two, 16-bit SDRAM devices per SDRAM CE space.

The SDRAM timing register, which selects the SDRAM refresh period, must
be initialized for a maximum period of 15.625 ps. The refresh period is based
on CLKOUT2 cycles, so the SDRAM timing register period must have maxi-
mum values as summarized in Table 1-6.

Table 1-6. EMIF SDRAM Timing Register Values

Maximum
CPU Clock CLKOUT2 Register
(MHz) Period (ns) Value

33.25 60 0x103
50 40 0x185
133 15 0x410
200 10 0x619

See the TMS320C6201/C6701 Peripherals Reference Guide for detailed in-
formation about the DSP’s EMIF registers.

TMS320C62x McEVM Hardware 1-17

Expansion Interfaces

1.5 Expansion Interfaces

The 'C62x McEVM provides two expansion connectors that allow a daughter-
board to be connected to the board. Daughterboards can be used to extend
the capabilities of the MCEVM and to provide custom and application-specific
I/0. One expansion connector provides the DSP’s asynchronous EMIF, and
the other provides access to the DSP’s peripherals and control/status signals.
Both connectors also provide power to the daughterboard.

Most of the expansion connector signals are buffered so that the daughter-
board cannot directly influence the operation of the MCEVM board. The use
of low-voltage, 5-V tolerant interface devices allows the use of either 5- or
3.3-V devices to be used on the daughterboard.

The 'C62x McEVM's expansion memory and peripheral interfaces are pro-
vided with two dual-row, 80-pin connectors. These surface-mount connectors
are low profile and have a 0.050-inch (1.27-mm) pitch. The recommended
mating connectors provide 0.465-inch board spacing, allowing ample space
for daughterboard components.

The expansion memory interface connector has a reference designator of J8
on the McEVM. The expansion peripheral interface connector is J9. See
Appendix A for the pinouts of the expansion connectors.

1.5.1 Expansion Memory Interface

1-18

The expansion memory interface provides the DSP’s asynchronous EMIF sig-
nals to a daughterboard. External asynchronous memories and memory-
mapped devices can be added to the McEVM, including nonvolatile memory
that can be used to boot the MCEVM upon reset.

The expansion memory interface includes:

[0 20 external address signals (EA[21:2]). All of the DSP’s 20 external ad-
dress signals are available on the expansion memory interface, allowing
up to 4M bytes of external memory to be addressed. However, because
the CE1 memory space must be shared with onboard peripherals, only the
lower 3M bytes are available to a daughterboard. If CE2 or CE3 is used
for external asynchronous memory instead of SDRAM, an additional
4M bytes in each memory space can be addressed.

[0 32externaldatasignals (ED[31:0]). Allofthe DSP’s 32 external data sig-
nals are available on the expansion memory interface to support full 32-bit
word accesses to the daughterboard.

[0 CE1 memory space enable. The DSP’s CE1 memory space enable is
available on the expansion memory interface to allow asynchronous ac-
cesses to daughterboard memory and memory-mapped devices.

u

a

Expansion Interfaces

Four byte enables (BE[3:0]). The DSP’s four byte enables are available
on the expansion memory interface to support byte (8-bit), halfword
(16-bit), and word (32-bit) daughterboard memory accesses.

Four asynchronous control signals. The DSP’s asynchronous control
signals (ARE, AWE, AOE, and ARDY) are provided to control asynchro-
nous memory accesses to a daughterboard.

Power signals . The expansion memory interface also provides ground,
5-V, and 3.3-V power signals to the daughterboard.

1.5.2 Expansion Peripheral Interface

The expansion peripheral interface provides the DSP’s peripheral signals to
a daughterboard. This peripheral expansion capability allows serial devices
and communication devices to be added to the McEVM via a daughterboard.

The expansion peripheral interface includes:

a

Seven signals for each of the serial ports (McBSPO and McBSP1).

The DSP’s seven McBSP1 signals are available on the expansion periph-
eral interface. These signals are buffered by a’'CBTD3384 device to sup-
port both 5- and 3.3-V serial devices using McBSP1 on a daughterboard.

The DSP’s seven McBSPO signals are also available when the DSP soft-
ware controls onboard 'CBT3257 multiplexers that connect them to the ex-
pansion connector rather than the MVIP FMIC. This architecture provides
a daughterboard with access to both of the DSP’s serial ports, which is
useful in many DSP applications. Because a 'CBT3257 multiplexer is
used, both 5- and 3.3-V serial devices can use McBSPO on a daughter-
board.

Two input/output signals for each of the timers (timer 0 and timer 1).

The expansion peripheral interface includes each of the DSP timers’ input
and output signals. This allows timer signals to be sent to the daughter-
board, or timer input or events to be counted to come from the daughter-
board. Each timer has one input and one output signal.

Interrupt, interrupt acknowledge, and identification signals. A DSP
external interrupt (DB_INT) is included on the expansion peripheral inter-
face to allow the daughterboard to interrupt the 'C6201 to notify it of data
transfers and other significant events. This interrupt is pulled down on the
McEVM, so the daughterboard must drive it high to interrupt the DSP. Ad-
ditionally, the DSP’s interrupt acknowledge (IACK) and interrupt identifica-
tion number signals (INUM[3:0])are available to the daughterboard.

Four DMA completion flags. The DMA action complete flags
(DMACI[3:0]) are available to the daughterboard on the expansion periph-

TMS320C62x McEVM Hardware 1-19

Expansion Interfaces

1-20

eral interface. These pins provide a method of feedback to external logic
generating an event for each DMA channel. The DMAC pins can also be
used for general-purpose output control signals controlled from the DSP’s
DMA channel secondary control register.

Four general-purpose input/output flags. ~ Two general-purpose control
inputs and two status outputs are brought to the expansion peripheral in-
terface to allow the DSP to control and monitor various signals on a daugh-
terboard. The XCNTL[0:1] and XSTAT[0:1] signals can be controlled with
DSP software by accessing the CPLD’s DSP memory-mapped CNTL and
STAT registers, respectively.

Power-down signal. The DSP’s power-down indication signal (DSP_PD)
is also brought to the expansion peripheral interface so that a daughter-
board can be powered down, if desired.

Reset signal. The expansion peripheral interface also provides a reset
signal that is active low when the board is in the reset state. This allows
circuitry on the daughterboard to be setin a known state. The reset signal
is asserted for a minimum of 140 ms upon power up, via a manual reset
pushbutton or under software control. A memory-mapped register bit in
the CPLD’s CNTL register allows DSP software to directly control this re-
set signal.

CLKOUT2 signal for the synchronization clock. The DSP’s CLKOUT2
signal (CPU clock divide by 2) is brought out to the peripheral expansion
interface for synchronization needs on daughterboards.

Buffered CE2 and CES3 signals for possible memory space use when

the respective SDRAMs are disabled. @ The DSP’'s CE2 and CES3
memory space decodes are buffered and brought out to the expansion pe-
ripheral interface to provide additional fast memory decodes. This can be
useful on daughterboards that have multiple devices that need fast
memory decodes. The CE2 and CE3 are dedicated to SDRAM use on the
McEVM board, but the EMIF control registers can be initialized for asyn-
chronous operation, which disables the respective SDRAM banks and al-
lows expansion asynchronous memory to be used instead. The CE2 and
CE3 SDRAM enable bits in the CPLD’s DSP memory-mapped registers
must also be used to shut down the respective SDRAM bank and allow the
CPLD logic to enable the external data transceivers for the CE2/CE3 ac-
cesses.

Power signals. The expansion peripheral interface also provides ground,
12-Vv, -12-V, 5-V, and 3.3-V power signals to the daughterboard.

Expansion Interfaces

1.5.3 Daughterboard

The 'C62x McEVM supports the mating of a daughterboard that has two 80-pin
0.050-inch x 0.050-inch TFEM-series connectors from Samtec. The recom-
mended mating connector (part number TFM—-140-32-S-D-LC) is a surface-
mount connector that provides a 0.465-inch mated height.

The McEVM supports two sizes of daughterboards that both use the two
80-pin connectors. The small daughterboard measures approximately 3.15
inches x 3.4 inches and mounts in the center of the board over the low-profile
buffers and memories. This format is intended for daughterboards that do not
require an I/O connection on the mounting bracket.

The large daughterboard measures approximately 7.5 inches x 3.4 inches
and mounts from the center of the board over to the mating connector end of
the board. This format is intended for daughterboards that require an I/O con-
nection on the mounting bracket or need more space than the small daughter-
board provides.

A daughterboard mounts with its component side down. This ensures that the
PCI height requirement is met and no components are exposed to possible
damage due to board insertions and extractions.

The McEVM provides four standoff mounting holes to support daughterboard
connections. Mounting holes M3 and M4 support small daughterboards, and
all four mounting holes support large daughterboards. The four mounting
holes are electrically connected to the digital ground plane to provide addition-
al daughterboard grounding.

Figure 1-5 shows the small and large daughterboard envelopes, the relation-
ship between the two expansion connectors, and the relative location of the
four mounting holes on the component side of the 'C62x McEVM board.

TMS320C62x McEVM Hardware 1-21

Expansion Interfaces

Figure 1-5. Daughterboard Envelopes and Connections on the '62x McEVM

22.00 94.00

15.24

5.00
(0.197)
|

(0.866) (3.70)

5.00
(0.197)

T 60)

15.24
(0.60)

I 800
(0.315)

(3.39)

5.00
(0.197)
|

635
& (0.250)
4 Places
M5 3.175
(0.125)
Optional
1/0

Connector

Area Large Daughterboard

Extension Envelope

9

J8
(Expansion Memory Connector)

Small Daughterboard
Envelope

(Expansion Peripheral Connector)
J9

191.00

5.00

(0.197)

80[oo
(3.15)

Notes: 1)

(752)

5.00
(0.197)
|

5.00

(0.197)
|

0)

Itis important to note that this figure is showing the top side of the
McEVM, not the actual daughterboard.

All dimensions are shown in millimeters. Inch dimensions are shown in parentheses.

2) Drawing shows daughterboard envelopes and connections on the component side of McEVM board.
3) Standard-size daughterboard is 80.0 mm x 86.2 mm (3.15 in. x 3.39 in.).
4) Full-size daughterboard is 191.0 mm x 86.2 mm (7.52 in. x 3.39 in.).

5) Daughterboard connectors are Samtec .050-in. x .050-in. Micro Strips (SFM-140-L2—-S-D-LC).
6) Daughterboard mating connectors are Samtec TFM-140-32—-S-D-LC.
7) Mating height is 0.465 in. (11.81 mm).
8) There are four plated holes (M2-M5) on the McEVM for standoff mounting.
9) Mounting holes M2—M5 are electrically connected to digital ground.

1-22

1.6 PCI Interface

PCI Interface

The 'C62x McEVM’s peripheral component interconnect (PCI) interface pro-
vides plug-and-play functionality along with the ability to support high-speed
target (slave) and initiator (master) modes of data transfers.

The plug-and-play feature of PCl is intended to eliminate the resource conflicts
associated with ISA cards that result from user configuration of addresses and
interrupts. PCI devices each provide a configuration register space within the
system that can be accessed by the host prior to it being mapped into the sys-
tem memory or I/O space. Access to the configuration registers is the key to
PCI's plug-and-play functionality. The PC’'s BIOS executes configuration
cycles after reset to identify devices on the PCI bus and to determine each of
their system resource requirements, such as I/0 and memory space and inter-
rupts. PCI devices are automatically configured by the PC BIOS, to prevent
system resource conflicts. The McEVM'’s Windows drivers obtain information
from the McEVM'’s PCI controller’s configuration registers to determine where
the board is located and what interrupt it uses. This allows you to simply plug
the board into a PCI slot without setting any jumpers or switches.

The PClI bus operates synchronously at up to 33 MHz with a multiplexed 32-bit
address/data bus. The power of PCl is its support for multiple devices to mas-
ter the bus and communicate in bursts at up to 132M bhytes/second
(33 MHz x 4 bytes/word). A burst consists of a single 32-bit address phase,
followed by sequential 32-bit data words. Only one device can be mastering
the bus at any one time, but for the period that it does, it can burst data at that
rate if its hardware can keep up. If it is not fast enough, a ready signal is used
to throttle the transfer at the rate at which it can read or write data. Because
there are typically multiple devices onthe PCl bus, such as the video controller,
they must all timeshare the bandwidth, so the effective transfer rate for each
device is typically much lower than 132M bytes/second. The key to maximiz-
ing transfer throughput on the PCI bus is to use burst transfers when possible
to avoid repetitive PCl bus arbitration and the overhead associated with single-
word transfers. The PCI bridge provides a hidden central arbitration mecha-
nism where multiple bus masters can request and be granted the bus. It also
controls the length of the bursts that each device can generate. PCI transfer
rates are very machine-dependent because burst transfer support varies
among the various bridges used in different PCs.

TMS320C62x McEVM Hardware 1-23

PCI Interface

1.6.1 PCI Interface Implementation

1-24

The 'C62x McEVM implements a fully-compliant PCI Revision 2.1 interface
using an industry-standard application-specific integrated circuit (ASIC)
(AMCCUO part number S5933). The S5933 PCI controller interfaces directly to
the PCI bus connector (P1) and handles all of the PClI-side transactions, free-
ing the McEVM hardware from having to handle them directly. The 'C62x
McEVM'’s 32-bit PCl interface operates at up to 33 MHz in a 5-V signaling envi-
ronment. The McCEVM cannot be used in a 3.3-V PCI slot.

The S5933 provides PCI configuration registers that are always accessible to
host software—even before the board has been mapped into the system re-
sources. Accesses to these configuration registers are made by host software
by specifying the device’s bus number, device number, and function number.
The PCI configuration registers are in a unique address space, so they are not
directly mapped into either the host’s I/O or memory spaces. Nonvolatile, serial
EEPROM memory on the 'C62x McEVM is used to store PCI configuration in-
formation for the board including its vendor and device IDs, memory space re-
qguirements, and operational parameters. The MCEVM’s vendor ID is 0x104C
(Texas Instruments), and its device ID is 0x1003.

The S5933 provides a glueless interface to the serial EEPROM that can be ac-
cessed from both the host and DSP software via memory-mapped register ac-
cess. The contents of the EEPROM are automatically loaded into S5933 con-
figuration registers at power-up reset to identify the system resource require-
ments and operating characteristics of the MCEVM. This information is used
by the PC BIOS for system resource allocation.

The McEVM uses an AT24C08A 1Kx8 serial EEPROM. The S5933 only re-
quires 64 bytes for configuration information. Another 64 bytes is reserved for
future use, so there are 896 free bytes, located from offsets 0x80 to Ox3FF, that
can be used to store miscellaneous information, if desired.

The S5933 provides five base address registers (BARs). Each BAR is initial-
ized upon power up by the nonvolatile memory to the desired size of a
memory-mapped region for the device. The BIOS overwrites the BAR values
with the address that it allocates to each region. The 'C62x McEVM takes ad-
vantage of all five BARs. The first BAR (BARO) is reserved for the PCI control-
ler’'s operation registers. The other four BARs (BAR1-BAR4) are used to inter-
face to the JTAG test bus controller (TBC), MCEVM control and status regis-
ters, and the 'C6201 HPI. Table 1-7 summarizes the 'C62x McEVM PCI BAR
definitions.

PCI Interface

Table 1-7. TMS320C62x McEVM PCI BAR Definitions

BAR Size
Number (Bytes/DWORDS) Bus Width/Bits Used Description
0 64/16 32/32 S5933 PCI operation registers
1 128/32 32/16 JTAG TBC registers
2 128/32 32/8 McEVM board control/status registers
3 16/4 16/32 HPI control, address, and data registers
4 256K/64K 16/32 HPI data register (with autoincrement)

The S5933 provides three physical interfaces:

J PClbus
(] Add-on bus
[A nonvolatile memory interface

Data movement can occur between the PCI bus and the add-on bus, as well
as between the add-on or PCI bus and the nonvolatile memory. Data transfers
between the PCl and add-on buses can take place through mailbox registers,
FIFOs, or the pass-through data path, which is a generic memory-mapped in-
terface.

Mailbox registers are used to pass single 32-bit values between the host and
DSP. Interrupts can be used to indicate when the mailbox registers are full and
empty. The S5933 has eight mailboxes that are useful for passing command
and status information between the host and the DSP. There are four incoming
(host-to-DSP) and four outgoing (DSP-to-host) mailboxes. The host incoming
and the DSP outgoing mailboxes are the same internally. The DSP incoming
and the host outgoing mailboxes are the same internally. The mailbox status
can be monitored from both sides in two ways. A mailbox status register avail-
able to both sides indicates the empty/full status of bytes within the mailboxes.
The mailboxes can also be configured to generate interrupts to the host and
DSP. One outgoing and one incoming mailbox on each side can be configured
to generate interrupts.

FIFO transfers between the PCI and add-on buses can be performed under
software control or directly by hardware using the device as a bus master. This
means that the DSP software can access the S5933 FIFOs directly to read and
write data from and to the PClI bus, or it can program its DMA controller to han-
dle the transfers automatically in the background.

The pass-through data path is used when the McEVM is a PCl target for JTAG
TBC and DSP HPI transactions.

TMS320C62x McEVM Hardware 1-25

PCI Interface

1-26

The S5933 registers and FIFOs are memory mapped into both the host and
DSP memory spaces. The host can read the S5933 configuration registers to
determine where the McCEVM is located in physical memory and what host in-
terrupt has been assigned to it. The host software also configures the S5933
through the registers for master bus transfers because it knows the physical
addresses of its memory buffers and other PCI devices.

The McEVM is configured for PCl-initiated bus master transfers. In this config-
uration, the DSP cannot access the master read/write address and transfer
count registers, and the DSP cannot be interrupted when the transfer counts
reach 0. The DSP can access the other S5933 registers to read/write mail-
boxes, determine interrupt status, and read/write the FIFOs. Because the DSP
typically uses DMA to control bus master transfers, a’'C62x DMA interrupt can
be used to indicate the end of a transfer.

The S5933 supports both PCI (INTA#) and add-on interface (IRQ#) interrupts.
This allows the host software and DSP software to be notified upon PCI
events, such as the end of bus master transfers (host only), mailbox empty/full,
and bus errors. The DSP is interrupted via its EXT_INT4 interrupt when the
S5933 asserts its IRQ interrupt. The device also allows the host to control the
system reset (SYSRST#) signal directly from software, so a software board
reset can be invoked via the PCI bus.

Figure 1-6 provides a block diagram that shows the 'C62x McEVM'’s PCl inter-
face implementation based on the S5933 PCI controller.

Figure 1-6. PCI Interface Implementation

PCI bus

Nonvolatile memory interface

PCI configuration
EEPROM
(1 K bytes)

A

A4

A

v

Configuration space
registers (64 bytes)

A

Write FIFO
(8 x32)

PCI Interface

A

A

v

Operation
registers

A

v

A

A\ 4

Read FIFO
(8 x32)

A

v

Mailbox registers
(4 x 32)

A

A 4

v

Mailbox registers
(4 x32)

A

PCI bus

v

Pass-through
interface

A

v

A\ 4

'C6201
DSP

JTAG TBC

A

A

v

A\ 4

DSP HPI

AMCC S5933
PCI controller

Add-on bus

CPLD registers

TMS320C62x McEVM Hardware

1-27

PCI Interface

1.6.2 PCI Controller Operation Registers

The S5933 PCI operation registers allow the host software to:

Configure the device and monitor its status
Read and write mailboxes

Reset the board

Initiate bus master transfers

Access the FIFOs

I I

Table 1-8 identifies the S5933 PCI operation registers, along with their BARO
offsets and access types. All registers are 32 bits wide and are addressed on
doubleword (DWORD) boundaries.

Table 1-8. S5933 PCI Bus Operation Registers

Host Byte Address PCI Operation Register Description Access

BARO + 0x00 OMB1 Outgoing mailbox register 1 Read/write
BARO + 0x04 OMB2 QOutgoing mailbox register 2 Read/write
BARO + 0x08 OMB3 Outgoing mailbox register 3 Read/write
BARO + 0x0C OMB4 Outgoing mailbox register 4 Read/write
BARO + 0x10 IMB1 Incoming mailbox register 1 Read only
BARO + 0x14 IMB2 Incoming mailbox register 2 Read only
BARO + 0x18 IMB3 Incoming mailbox register 3 Read only
BARO + 0x1C IMB4 Incoming mailbox register 4 Read only
BARO + 0x20 FIFO FIFO register port (bidirectional) Read/write
BARO + 0x24 MWAR Master write address register Read/write
BARO + 0x28 MWTC Master write transfer count register Read/write
BARO + 0x2C MRAR Master read address register Read/write
BARO + 0x30 MRTC Master read transfer count register Read/write
BARO + 0x34 MBEF Mailbox empty/full status register Read only
BARO + 0x38 INTCSR Interrupt control/status register Read/write
BARO + 0x3C MCSR Bus master control/status register Read/write

1-28

1.6.3 PCI Add-On Bus Operation Registers

PCI Interface

The S5933 add-on bus operation registers allow the 'C6201 DSP software to:

[0 Read and write mailbox messages

(] Read and write FIFO data

(1 Control interrupts

[0 Provide read and write access to the PCI controller’'s configuration

EEPROM

The PCl add-on bus operation registers are mapped into the DSP’s CE1 asyn-
chronous memory space starting at 0x01300000 (MAP 0) or 0x01700000

(MAP 1).

Table 1-9 summarizes the S5933 PCI controller’s 64-byte bank of add-on bus
operation registers. Registers in the address offset range of 0x24—0x33 are
not available because they are either under direct hardware control or are in-
accessible with PCl-initiated bus mastering.

Table 1-9. PCI Add-on Bus Operation Registers Summary

DSP Byte Address Add-on Bus .

MAP 1 (MAP 0) Operation Register Description Access
01700000 (01300000) AIMB1 Add-on incoming mailbox register 1 Read only
01700004 (01300004) AIMB2 Add-on incoming mailbox register 2 Read only
01700008 (01300008) AIMB3 Add-on incoming mailbox register 3 Read only
0170000C (0130000C) AIMB4 Add-on incoming mailbox register 4 Read only
01700010 (01300010) AOMB1 Add-on outgoing mailbox register 1 Read/write
01700014 (01300014) AOMB2 Add-on outgoing mailbox register 2 Read/write
01700018 (01300018) AOMB3 Add-on outgoing mailbox register 3 Read/write
0170001C (0130001C) AOMB4 Add-on outgoing mailbox register 4 Read/write
01700020 (01300020) AFIFO Add-on FIFO register port Read/write
01700024-01700033 - Unavailable None
(01300024—-01300033)

01700034 (01300034) AMBEF Add-on mailbox empty/full status Read only
01700038 (01300038) AINT Add-on interrupt control Read/write
0170003C (0130003C) AGCSTS Add-on general control/status Read/write

TMS320C62x McEVM Hardware 1-29

PCI Interface

The PCl add-on FIFOs can be accessed at offset 0x20 of the PCl add-on regis-
ter address space (AFIFO) for general-purpose data transfers. However, the
dedicated FIFO access addresses (0x01710000/0x01310000) must be used
during PCI bus master transfers.

1.6.4 PCI Slave Support

1.6.4.1 JTAG TBC

The 'C62x McEVM's PCI slave support enables the host, or other PCl device,
to access its PCI controller, JTAG TBC, CPLD, and DSP HPI registers. Once
the base addresses of these devices are obtained by the host driver upon init-
ialization, their registers can be accessed like system memory. When the host
accesses the MCEVM’s slave devices, the S5933 PCI controller activates the
pass-through bus to indicate that a data transfer is to take place. A state ma-
chine controller implemented in the McEVM’s CPLD manages the interface
between the S5933 and the three targets. This state machine monitors and as-
serts signals that result in the transfer of data between the S5933’s pass-
through data register and the target interfaces. The S5933 decouples the state
machine from the PCI bus by handling all the PCI-side transactions, so it only
has to manage the reading and writing of data between the S5933 and the tar-
gets via the pass-through interface.

The 'C62x McEVM’s onboard JTAG TBC enables host software to control the
'C6201 JTAG interface for testing and emulation purposes. The debugger
uses this interface to control and monitor the DSP. The 'C62x McEVM debug-
ger shipped with the McCEVM kit can be used for source code debugging on
the board without requiring any additional hardware, such as an XDS510.

The JTAG TBC has 24 registers that are memory mapped at DWORD offsets
starting at the address defined by the S5933's base address register 1 (BAR1).
The TBC is a 16-bit device, so the upper 16 bits of data transfers are not used.

1.6.4.2 CPLD Registers

1-30

The 'C62x McEVM'’s CPLD provides 11 memory-mapped board control and
status registers that the host software accesses via the PCl bus. The registers
are located at DWORD offsets starting at the address defined by the S5933’s
BAR2. These registers allow the host software to control and monitor the 'C62x
McEVM board. Host software can reset the TBC and the DSP, configure and
pollinterrupts, monitor several board status signals, control software switches,
observe DIP switch and DSP option signals, check the revision number of the
CPLD, and utilize two hardware semaphores. The CPLD registers are only
eight bits wide, so the upper 24 bits of data transfers are not used.

PCI Interface

See section 1.8.6, PCI Memory-Mapped Board Control/Status Registers, for
details on the PCI memory-mapped CPLD registers.

Similar to the other target interfaces, the add-on bus state machine provides
the control signals that enable data transfers between the PCI controller and
the board control and status registers. Whenever the S5933 indicates either
a PCl read or write access to the board control and status registers (BAR2),
the state machine acknowledges it by asserting S5933 and register control
signals required to complete the data transfer. The lower eight bits of the
S5933 add-on data bus are connected to the registers. The CPLD latches the
register address during the PCl address phase and the state machine asserts
register clock enable and output enable signals. The register address decod-
ing and enable signals are used to clock data into and read data from the nine
registers.

No voltage translation is required because the CPLD has 5-V tolerant inputs.

1.6.4.3 DSP HPI Interface

The'C62x McEVM provides DSP host portinterface (HPI) access from the PCI
bus, giving host software read and write access to all of the DSP’s memory
space. The 'C62x McEVM supports both random and sequential accesses us-
ing the PCI controller's BAR3 and BAR4 memory regions, respectively.

The three 'C6201 HPI registers are memory mapped on the 'C62x McEVM at
DWORD offsets starting at the address defined by the S5933’s base address
register 3 (BAR3). The fourth address in the BAR3 region simply aliases to the
HPID register. The three registers map directly to the DSP’s HPI control
(HPIC), address (HPIA), and data (HPID) registers. Table 1-10 summarizes
the HPI registers mapped into BAR3.

Table 1-10. DSP HPI Registers (BAR3)

Host Byte Address HPI Register ~ Description Access

BARS3 + 0x00 HPIC HPI control register Read/write
BAR3 + 0x04 HPIA HPI address register Read/write
BAR3 + 0x08 HPID HPI data register Read/write
BAR3 + 0x0C HPID HPI data register (alias) Read/write

TMS320C62x McEVM Hardware 1-31

PCI Interface

1-32

Before HPI data transfers are performed successfully, the HPIC register must
be properly initialized. The 'C62x McEVM handles HPI data transfers with the
first halfword being the least significant word for compatibility with the little-en-
dian PCI bus. The 'C6201 HPIC register bit HWOB must, therefore, be set to
1 to select this data ordering. A value of 0x00010001 should be written to the
HPIC register at BAR3 offset 0. Any subsequent writes to the HPIC register,
such as controlling host and DSP interrupts, must keep bits 0 and 16 high in
the HPIC to maintain the low-word/high-word transfer order.

The 'C62x McEVM CPLD accepts data transfer requests from the S5933 PCI
controller and asserts the DSP’s HPI control signals required to transfer two
16-bit words. The CPLD also handles the HPI ready control signal monitoring,
so software handshaking is not required.

Byte enables asserted during the host write to the HPID register are trans-
ferred to the HPI byte enables (HBE[1:0]) by the 'C62x MCEVM’s CPLD. The
'C62x McEVM therefore supports byte, word, and doubleword data writes to
anywhere in the DSP’s memory space. This capability is useful for modifying
individual bytes and words in memory or memory-mapped registers without
corrupting the other bytes in a 32-bit word. A standard 32-bit access to the
HPID register results in all four bytes being modified in the DSP memory
space. From a software perspective, the pointer to the HPID register is simply
modified and cast accordingly to perform byte and word write operations. As-
suming a doubleword pointer to the HPID register is named HP1_DATA, a write
access to byte 3 (MShyte) of a 32-bit word would be performed as follows in
C:

*((*unsigned char)(((unsigned long)HPI_DATA)+3)) = ByteValue;

Host access to the HPI via the BAR3 memory region therefore allows random
read and write accesses anywhere in the DSP memory space with byte, word,
and doubleword support. BAR3 accesses require that the HPIA register be up-
dated for each transfer to a different address.

The 'C62x McEVM also provides support, using the BAR4 memory region, for
sequential data transfers between the host and the DSP by taking advantage
of the HPI support for read and write autoincrement accesses. This capability
allows blocks of data to be moved more efficiently between the host and the
DSP without incurring the overhead associated with passing the memory ad-
dress each time.

PCI Interface

The HPI dataregisters in BAR4 are used when data is transferred between the
host and DSP in autoincrement mode. This separate region eases the decod-
ing and makes the transfers more efficient over the PCI bus with support for
sequential and burst transfers. The HPI controller in the CPLD does not care
about the addresses in this range, only that an access is within the address
range. Allaccesses to BAR4 are written directly to the HPID register, assuming
that the HPIA and HPIC registers have been initialized previously with autoin-
crement mode selected.

Sequential HPI data accesses with burst support is provided with host ac-
cesses to the memory-mapped region defined by BAR4. BAR4 provides a 64K
DWORD (256K byte) memory window that host software can address as a lin-
ear array or a circular buffer. Accesses to the BAR4 memory region result in
sequential data words being transferred to the HPI data register. The BAR4
offset address isignored, since itis assumed that the HPI's address autoincre-
ment feature has been selected. If the host cannot access memory past the
256K byte BAR4 allocation, the PCI controller ignores the request. The 'C62x
McEVM'’s sequential address burst support eliminates the need for the host to
arbitrate for the PCI bus as often and eliminates the need to pass the board
for every data transfer.

The burst transfers to the HPI cannot occur at the full 132M bytes/s PCI data
rate because the 'C6201 HPI is not a 32-bit-wide, synchronous interface. The
HPI presents only a 16-bitinterface; hardware handshaking via its ready signal
requires multiple PCI clocks per 32-bit data transfer.

Because the 'C6201 is not 5-V signal tolerant, the S5933 outputs are trans-
lated to 3.3-V-compatible signals using two T1 'CBTD3384 buffer devices.

1.6.5 PCI Master Support

The 'C62x McEVM supports bus mastering of the PCI bus, enabling the
McEVM to take control of the PCI bus and transfer data between the host and
McEVM memory. The S5933 PCI controller handles the bus mastering trans-
fers on the PClI bus. Transfers can be driven directly by 'C6201 software or au-
tomatically in the background with the DMA controller. This bus mastering sup-
port allows data transfers to be under McEVM control without continuous host
intervention. The host does need to get involved initially to configure the
S5933's PCl address and transfer counters and initiate the transfer, butitis not
involved at all in the actual data transfers. The host initialization is required be-
cause only the host knows the address of its, and other PCI devices’, memory
buffers.

TMS320C62x McEVM Hardware 1-33

PCI Interface

1-34

The S5933 supports bus master transfers by using two on-chip FIFOs for read
and write transfers between the 'C6201 and the PClI bus. Each FIFO is 32 bits
wide and 8 words deep. These FIFOs are addressed asynchronously from the
DSP-side because the PCI controller and the DSP operate at different rates.
The S5933 provides two FIFO flags that indicate the status of each FIFO
(RDEMPTY/WRFULL). These FIFO flags are used to control the flow of data
to and from the DSP.

The S5933 registers and FIFOs are memory mapped into the DSP’s CE1
asynchronous memory space, along with the MVIP FMIC and T1/E1 trans-
ceiver control registers, DSP memory-mapped CPLD registers, and asynchro-
nous expansion memory. State machines in the CPLD manage the interface
between the 'C6201 and the S5933 read and write FIFOs. They monitor S5933
FIFO flags and accesses by the DSP to the S5933 FIFO at address 0x1310000
(0x1710000), and generate the external interrupts to the DSP to control the
data transfers. The FIFOs must be accessed using the dedicated memory-
map address, rather than the PCI add-on register offset, for the external inter-
rupts to be generated.

Master read transfer support and master write transfer support are indepen-
dently enabled by the DSP by setting two bits in the CPLD’s memory-mapped
FIFOSTAT register. When the PCIMREN bit (bit 1) is set, the CPLD generates
EXT_INT5 interrupts to the DSP whenever data is available to be read in the
PCI controller’s read FIFO. When the PCIMWEN bit (bit 0) is set, the CPLD
generates EXT_INTG6 interrupts to the DSP whenever the write FIFO is not full
and can accept data. Typically, the DSP triggers DMA read and write transfers
on these interrupts for the most efficient transfers. However, the FIFO flags in
the CPLD’s FIFOSTAT register or the interrupts themselves can also be polled
to drive the data transfers. The PCIMREN and PCIMWEN bits must be dis-
abled at the completion of a bus master transfer and reenabled before the next
one begins.

Both the host and DSP software must perform certain initialization and control
actions to configure the 'C62x McEVM for PCI bus master transfers. The host
and DSP software actions can be performed independently and do not require
any synchronization. Depending on the application, it may be necessary for
the host software to notify the DSP software about the DSP memory space
source/destination address and number of words to be transferred. The PCI
bus mastering operation begins only when both sides have completed their ac-
tions.

The following subsections identify the actions that must be performed by the
host and DSP software to perform PCI bus master transfers.

PCI Interface

1.6.5.1 Host Software Actions

The 'C62x McEVM is factory-configured for PCI (host) initiated bus master
transfers. This means that only the host software can enable, control, and
monitor the S5933 PCI controller’s FIFO bus master on the PCI bus. The
McEVM uses the PCl-initiated configuration because only the host software
knows the physical memory addresses of its memory, as well as other PCI de-
vices’ memory. For PCl-initiated bus mastering, the host software must com-
plete certain actions to set up the FIFO bus mastering.

a

Define interrupt capabilities. The host can be interrupted independently
at the end of read and write transfers when the transfer counters reach 0.
The S5933 INTCSR register’s bits 14 and 15 must be set accordingly.

Reset FIFO flags. The FIFO state must be initialized to empty by resetting
the FIFO flags. The S5933 MCSR register’s bits 25 and 26 can be set to
reset these flags.

Define FIFO management scheme. The FIFOs must be configured for
the desired times that the S5933 should request mastering the PCI bus.
For reads, the PCI bus can be requested when there are at least one or
at least four vacant FIFO locations. For writes, the PCI can be requested
whenthere are atleast one or at least four filled FIFO locations. The S5933
does not have to request the bus as often when four or more data words
are transferred during each bus grant period; using this FIFO manage-
ment scheme improves throughput in most applications. The FIFO man-
agement scheme is selected by initializing the S5933's MCSR register’s
bits 9 and 13.

Define PCI-to-McEVM and McEVM-to-PClI priority. It is recommended
that write versus read priority be set equal by setting bits 8 and 12 of the
S5933’s MCSR register.

Define transfer source/destination address. ~ The start of the PCI-side
source address must be written to the S5933’'s MRAR register for bus
master reads, and the destination address must be written to the MWAR
register for bus master writes. This address is the system’s physical
memory address that is presented on the PCI bus. This address must be
on a 32-bit word address (lower two address bits 0).

Define transfer byte count. The S5933's MWTC and MRTC registers
must be initialized with the number of bytes to be transferred for bus mas-
ter writes and bus master reads, respectively. The number of bytes must
be a multiple of four because the 'C62x McEVM only supports 32-bit, bus
master data transfers.

TMS320C62x McEVM Hardware 1-35

PCI Interface

[Enable bus mastering. After the other actions have been done, the read
and write bus master operations can be independently enabled by setting
bits 10 and 14 of the S5933's MCSR register. This enables the S5933’s
hardware to begin requesting the PCI bus to move data to and from its
FIFOs.

(1 Provide DSP software with data transfer information. In most applica-
tions, the host software must notify the DSP software of the data transfer
information, such as the DSP memory space source or destination ad-
dress and the number of 32-bit words to be transferred. This allows the
DSP software to initialize its DMA controller to handle the transfers from
the S5933 to its memory space properly. This data transfer information
can be sent to the DSP via the HPI or, more commonly, through the mail-
box.

(O Provide application-specific response to end-of-transfer interrupt. If
interrupts were enabled, the host software must provide an interrupt ser-
vice routine to handle PCI interrupts. The host software can perform an
application-specific action in response to the end-of-transfer interrupt
generated by the S5933. One example action is to prepare for the next
data transfer.

The DSP must also perform certain actions in order for the bus mastering to
begin.

1.6.5.2 DSP Software Actions

1-36

The'C62x McEVM's DSP software is responsible for moving the data between
its memory space and the S5933 PCI controller’s bidirectional FIFO to com-
plete the data transfers. The DSP typically uses DMA to handle the reading
and writing of the data from and to the S5933’s FIFO. Optionally, the DSP soft-
ware can perform this data movement itself using an interrupt service routine
or by polling the status of the interrupts or FIFO flags themselves.

The 'C62x McEVM uses EXT_INT5 to control read bus master transfers from
the S5933 read FIFO to the DSP memory space and EXT_INT6 to control write
bus master transfers from the DSP memory space to the S5933 write FIFO.
Logic in the CPLD, when explicitly enabled by the DSP software, monitors the
FIFO flags and DSP accesses to the S5933 FIFO and controls the interrupts
to the DSP.

PCI Interface

The DSP software must perform the following actions to support PCl bus mas-
tering:

a

Initialize 'C62x DMA control registers. The primary DMA control regis-
ter must be configured for incrementing address modification, 32-bit ele-
ments, and split-mode disabled. The transfers must be synchronized for
reads or writes by initializing the RSYNC and WSYNC bits appropriately.
For bus master reads, read synchronization based on EXT_INT5 must be
selected. For bus master writes, write synchronization based on
EXT_INT6 must be selected.

The secondary DMA control register can be configured to interrupt the
DSP upon the transfer completion.

Initialize 'C62x DMA source/destination address register. The source
address register must be initialized for bus master writes, and the destina-
tion address register must be initialized for bus master reads.

Initialize ’C62x DMA transfer counter register. The transfer counter
register's FRAME COUNT and ELEMENT COUNT values must be set to
selectthe number of frames and 32-bit elements that are to be transferred.
This value must match the number of transfers that the host software indi-
cates.

Start the 'C62x DMA controller. The DMA controller can be started by
writing 01b to the START bits of the primary DMA control register.

Enable CPLD mastertransfer support. Before bus master transferinter-
rupts are generated to the DSP, the respective CPLD control bits must be
set to 1 as needed. For bus master writes, the CPLD's FIFOSTAT
PCIMWEN bit must be set to 1. For bus master reads, the PCIMREN bit
must be setto 1. These enables activate a state machine in the CPLD that
generates the external interrupts to the DSP.

Provide application-specific response to end-of-transfer interrupt. If
interrupts were disabled, the DSP software must provide an interrupt ser-
vice routine to handle internal DMA block transfer complete interrupts. The
DSP software can perform an application-specific action in response to
the interrupt generated internal to the DSP. One example action is to pre-
pare for the next data transfer.

Disable CPLD master transfer support. To disable the bus master inter-
rupts to the DSP and put the CPLD state machine in an idle state, the PCI
bus master enable bits in the CPLD’s FIFOSTAT register must be cleared
to 0. The bus master enable bits must be disabled before another master
transfer is started.

TMS320C62x McEVM Hardware 1-37

JTAG Emulation

1.7 JTAG Emulation

1-38

The McEVM provides embedded JTAG emulation, which is accessible via the
PCI bus, as well as support for an external XDS510 emulator. The selected
JTAG method is user configurable via the DIP switches when the board is op-
erated outside the PC or via the software switches when it is in the PC.

The TI SN74ACT8990 JTAG test bus controller (TBC) provides memory-
mapped control of the 'C6201's JTAG interface. This allows the 'C62x MCEVM
C source debugger to be used with the McEVM without an external emulator.

The 'C62x McEVM’s embedded emulation support provides several benefits:

(1 Emulation is supported without external cabling, monitor software, or con-
sumption of user resources.

[Easy access to the 'C6201 supports high-level language (HLL) debug-
gers, factory testing, and field diagnostics.

[Systemboot ROMs are not needed. The host can download all necessary
program and data information through the emulation port.

The TBC is presented to the PC host software as 24 memory-mapped regis-
ters. Each register is mapped at 32-bit (DWORD) address boundaries, but
only the lower 16 bits of data words are connected to the 16-bit TBC device.
The PCI controller’s pass-through interface is used to access the slave TBC.
The CPLD includes a state machine that manages the S5933-to-TBC data
transfers via the pass-through interface.

A 14-pin (two rows of seven pins) header on the McCEVM (J10) supports an ex-
ternal XDS510 or XDS510WS emulator connection. This connection is re-
quired for debugging the McEVM outside of a PC. Two TI CBT quad 2:1 multi-
plexer devices (SN74CBT3257) are used to provide the 5-V to 3.3-V transla-
tion required from the TBC to the 'C6201 and the selection between internal
and external JTAG emulation. The JTAG interface to the 'C6201 consists of
sevensignals: TMS, TDO, TDI, TCLK, TRST, EMU1, and EMUO. The two quad
multiplexer devices are required to switch and translate seven signals. The
use of the CBT devices also allows 3.3- or 5-V external emulator connections.
Figure 1-7 shows how the DSP’s JTAG signals are selected between the TBC
and the external JTAG header using the CBT multiplexers.

JTAG Emulation

Figure 1-7. JTAG Emulation Selection

SN74CBT3257
, TMS2/EVNTO multiplexer
) L
< TMS3/EVNT1 EMUO MUX <
TMS5/EVNT3 | XEMUO
7T4ACT8990 EMU1 MUX <
JTAG T™MS0 XEMUL ¢— EMUO
TBC _ TDI o
- 7 TRST MUX EMU1
TDO XTRST —»
TCK TMS MUX | TRSL
XTMS —»
T™S 'C6201
JTAG SELECT > DSP
(from CPLD) TDI
—4— XEMUO "
TDO
—4— XEMU1 > TDIMUX |
—_— XTDI =P
—» XTRST TeK,
TDO MUX <
External |—p» XTMS <
ITAG XTDO‘T
header —p XTDI »
TCK MUX
-<¢— XTDO XTCK—P—
»
XTCK »| SPARE MUX
v
PD GND XTCK_RET SN74CBT3257
v | multiplexer
5V -

The TBC does not directly provide pins dedicated for the EMUO, EMU1, and
TRST signals that are present on the external JTAG header. However, the TBC
can control and monitor these signals using the available TMSx pins. The
TMS2 and TMS3 signals monitor the EMUO and EMUL1 signals from the
'C6201, respectively. The TMS5 signal controls the DSP’s TRST signal. The
host emulation software monitors and controls these signals viathe TBC’s PCI
interface.

You can select between internal and external JTAG emulation via DIP switch
SW2-9 during external operation or via a software switch for internal PCI
operation. The selection controls the multiplexers’ select input signal
accordingly.

A 10.368-MHz JTAG clock (TCK) is provided by the XDS510 or XDS510WS
when external JTAG emulation is selected. The McEVM provides a
16.625-MHz clock when the JTAG TBC is used for embedded emulation. The
16.625-MHz clock is derived from the McEVM’s 33.25-MHz oscillator output
using a single SN74F74 D-type flip-flop device configured for a divide-by-2 op-
eration.

TMS320C62x McEVM Hardware 1-39

Programmable Logic

1.8 Programmable Logic

1-40

The 'C62x McEVM uses a CPLD (Altera™ part number EPM7256S) to imple-
ment the board’s required glue logic and to provide control and status inter-
faces for both host and DSP software. The CPLD provides the following func-
tions:

Reset control

Power management

Dual DSP clock oscillator control

PCI controller/DSP interface control

PCI memory-mapped board control/status registers
DSP memory-mapped control/status registers
PCI and DSP interrupt control

CE1 memory decoding

Data transceivers control

User options control

Dual hardware semaphores

(Y I I I I Y Y Y Y

The EPM7256S CPLD is a 208-pin plastic quad flat pack (PQFP) device that
provides 5000 usable gates, 160 user I/O pins, and a 10-ns pin-to-pin delay.
The device is EEPROM-based and is in-system programmable via a dedi-
cated JTAG interface presented as a 10-pin header on the MCEVM. This head-
er is a factory option that is not installed.

The EPM7256S uses 5 V for internal operation and input buffers and 3.3 V for
output drivers. This provides an optimal design with fastinternal speed and the
ability to interface with both 3.3- and 5-V devices on the MCEVM.

Figure 1-8 provides an overview of the CPLD’s functions and their associated
interfaces.

Figure 1-8. 'C2x EVM CPLD Interfaces and Functions

Programmable Logic

Reset
Pushbutton
| Board/DSP Reset and Board
voltage | ¥ Power Management Logic Devices
Supervisor j.
Dual DSP Clock Oscillator
Oscillator Control Buffer
- » PCI Controller / JTAG TBC ITAG TBC
Interface Control
PCI” PCI Controller / DSP
Controller > Interface Control
(HPI / EMIF)
y R PCI & DSP Memory—Mapped
Control/Status Registers
DIP ‘—F User Options
Switches |* Li (DIP / Software Switches)
Daughter
Board 'C6201
DSP
Interrupt Control
TBC
FALC
e
FMIC |
L, CE1 Memory Decoding /
Expansion | | Transceivers Control
Memory
Transceivers «—

DNA Enterprises, Inc.
BGC-12/21/97

TMS320C62x McEVM Hardware

Programmable Logic

1.8.1 Reset Control

1-42

The CPLD works in tandem with a Maxim MAX708S voltage supervisor to pro-
vide several types of reset signals on the 'C62x McEVM.

The McEVM supports several methods to reset the board, DSP, JTAG TBC,
and daughterboard. There are five reset sources:

Power-up and undervoltage resets from the voltage supervisor
Manual pushbutton reset

PCI system reset from the PCI controller

Daughterboard reset under DSP software control

DSP and TBC resets under host software control

Uoooo

The MAX708S voltage supervisor asserts an active low reset to the CPLD
whenever the 3.3-V supply is below 3.0V, such as during power up and brown-
out conditions. Additionally, the voltage supervisor supports an external reset
control signal generated by the CPLD that forces a board reset whenever the
reset pushbutton is pressed or a PCI system or software reset is received. The
MAX708S provides an output signal that indicates when the 1.8-V or 2.5-V
supply has an undervoltage condition that the CPLD uses to control the DSP
reset. The DSP is held in reset whenever either its core or 1/0O voltage is below
a defined threshold.

The S5933 PCI controller provides a SYSRST# output that causes a reset
whenever the PCI bus is reset, such as when a system is rebooted with Ctrl-
Alt-Del or when the host software sets a bit in its MCSR register. The
SYSRST# signal provides an automatic reset signal as well as a software-con-
trolled reset control, similar to the voltage supervisor’s support for automatic
and manual reset.

The DSP software has access to a memory-mapped CPLD register bit that di-
rectly controls the reset to the daughterboard. This daughterboard reset
(XRESET#) is asserted low during reset but defaults to an inactive high upon
release of reset. This provides a reset to the daughterboard whenever the
McEVMi s inreset, butit does not hold the daughterboard in reset. Subsequent
control over the daughterboard reset is exclusively under DSP software con-
trol.

Both the DSP and JTAG TBC can be individually reset under host software
control. PCl memory-mapped CPLD register bits allow the host software to di-
rectly control the reset signals to both the 'C6201 DSP and JTAG TBC. This
is useful when doing controlled booting such as an HPI boot, performing a sim-
ple DSP reset operation, or putting the TBC in a known state. During board
reset, the DSP and JTAG TBC are also held in reset. The DSP is also forced
into reset whenever the board is in reset or its core voltage is not within

Programmable Logic

specification. When the board reset is released, the two register bits default
to not active so that the DSP and TBC are not held in reset in the external envi-
ronment. The host software-controlled DSP and TBC resets are only available
with internal PCI operation.

The board reset is produced when either the MAX708S indicates a reset (pow-
er up, undervoltage condition, or manual switch reset) or the PCI controller in-
dicates a reset (PCl reset or manual software reset). The MAX708S provides
two board reset signals: one active low and the other active high. The active-
low board reset is routed to the CPLD, which directly controls the reset to the
DSP, JTAG TBC, and daughterboard. The active-high board reset from the
MAX708 is routed directly to the SBSRAM snooze (ZZ) input to put the device
in an inactive, low-power state. When the MCEVM board is held in reset, it can-
not respond to host PCI accesses.

The PCI bus can only reset the PCI controller at power up and whenever the
systemisreset. The BIOS only assigns the memory region addresses and the
host interrupt upon reset of the host PC.

In the PCI environment, the MCcEVM software drivers can put several board
devices in a low-power state by holding the board in reset. The PCI specifica-
tionrecommends that PCl boards that dissipate more than 10 watts implement
a default power reduction mode. This can be supported under driver control.

Figure 1-9 summarizes the 'C62x McEVM's reset configuration.

TMS320C62x McEVM Hardware 1-43

Programmable Logic

Figure 1-9. Reset Configuration

PCI BUS

RST#

S5933
PCI
Controller

+3.3V

|

+1.8/2.5V

|

MAX708S
Voltage
Supervisor

BRD_RST——»

MAN_RST#

SBSRAM ZZ
(Power—down)

|

SW_RST#

Pushbutton

2 TN
*dua

PCI_SYSRST#

Data, Addr & Ctr

PCI

TMS320C6201
DSP

Memory—Mapped >
Registers

DSP

Data , Addr & Ctr

[«——DSP_RESET#

Memory—Mapped >
Registers

1.8.2 Power Management

1-44

The PCI Local Bus Specification Revision 2.1 recommends that PCI boards
that can dissipate more than 10 watts under full operation have a power-saving
state. The 'C62x McEVM CPLD includes logic that provides a power manage-
ment capability that does not require additional devices. Various devices on
the McEVM can be placed in a low-power state to reduce power consumption.

The McEVM'’s power management feature is activated when the board is held
in reset by the host software. This is achieved when the host software asserts
the PCI controller’'s SYSRST# signal (setting bit 24 of the S5933 PCI control-

EPM7256S CPLD

~ ® 0w @ O

O —Q O

Reset
Switch

TBC_RST#——|

JTAG TBC

FALC_RST—

FALC

EXSDEN——p

SDRAM

MCBSPO_SEL——3p

McBSPO Mux

XRESET#——p]

Daughter
Board

VBAP_SEL——

VBAP

FMIC_RST#—»

FMIC

ler's MCSR register).

Programmable Logic

When the McEVM board is held in reset, CPLD logic directly controls devices
to power them down or put them into a low-power state. The 'C6201 DSP is
held in reset, which forces it to power down. The SBSRAM is powered down
by asserting its ZZ sleep input signal. The SBSRAM is disabled and put into
a low-power mode by deasserting its CKE clock enable input signal. Both an
external reset and the DSP’s power-down indication are provided to the ex-
pansion peripheral interface to enable power-down support on a daughter-
board. Other devices on the board, such as the buffers, are indirectly placed
into a low-power mode, since their inputs are static when the other devices are
inactive. Table 1-11 lists the MCEVM devices that are directly controlled by
CPLD logic and the control signals that are used to implement the power man-
agement feature of each device.

Table 1-11. Power Management Device Control Summary

Power Management

Device Control Signals
DSP RESET =0
SBSRAM ZZ=1
SDRAM CKE =0

Daughterboard XRESET =0,
DSP_ PD=1

1.8.3 Dual DSP Clock Oscillator Control

The 'C62x McEVM includes dual DSP clock oscillator support to enable opera-
tion at the 200-MHz core clock rate with one-half-rate SBSRAM timing or at
the full 133-MHz SBSRAM clock rate. You have the flexibility to select the clock
rate that provides the best performance for your application. This clock selec-
tion can be made with the McEVM DIP switches or from host software using
the support software switches. For external operation, only the DIP switches
are used to select the clock. For internal (PCI) operation, the DIP switches are
selected for control by default unless overridden by host software using the
software switches.

The user clock selection is used by CPLD logic to control two clock buffer en-
ables. Each clock oscillator’s output is connected to an ’LVT125 buffer that has
independent output enables. The two clock buffer outputs are connected to-
gether to drive the DSP’s CLKIN input. To provide the 2:1 clock selection func-
tion and ensure that there is no contention between the oscillators, the CPLD
logic performs a “break-before-make” function that ensures that only one clock
oscillator is driving the DSP’s CLKIN input. Figure 1-10 summarizes the DSP
clock selection configuration.

TMS320C62x McEVM Hardware 1-45

Programmable Logic

Figure 1-10. DSP Clock Selection Configuration

Clock mode/select __
software switches

33.25
MHz
osc

Clock mode/select
DIP switches

2

Y

2P

EPM7256S
CPLD

(Switch MUX
and
clock control)

\4
OSC_A CLKMODE

50 MHz
0sc

and PLLFREQ

A 4

33.25, 50, 133,
or 200 MHz

&—>—| CLKIN CLKOUT1|—»

'C6201
0OSC_B DspP

\ 4

VoV

'LVT125

1.8.4 PCI Controller/JTAG TBC Interface Control

1-46

The CPLD includes a PCl add-on bus state machine that monitors and controls
the interfaces between the S5933 PCI controller and the PCI memory-mapped
devices on the McEVM, including the JTAG TBC.

Whenever the S5933 indicates either a PCl read or write TBC access, the state
machine acknowledges it by asserting S5933 and TBC control signals re-
quired to complete the data transfer. The lower 16 bits of the S5933 add-on
data bus are connected to the TBC data bus interface. The CPLD latches the
TBC register address during the PCI address phase, and the state machine
asserts the TBC read and write strobes to enable data transfers.

Programmable Logic

1.8.5 PCI Controller/DSP Interface Control

The CPLD’s add-on bus state machine supports PCI transfers with the DSP’s
HPI, as well as DSP EMIF transfers with the S5933 PCI controller. These capa-
bilities allow the host and DSP software to communicate with one another. The
host software has read/write access to the DSP’s memory space and can ex-
change messages with the DSP software using the S5933’s mailboxes. The
DSP software has read/write access to the host PC’'s memory space and can
also exchange messages with the host software using S5933’s mailboxes.
The S5933's bidirectional FIFOs can also be used to pass data between the
host and DSP software, although they are typically only used for bus master
transfers.

The DSP HPI can be accessed by the host software with BAR3 and BAR4 PCI
accesses. Whenever the S5933 indicates either a PCI read or write HPI ac-
cess, the state machine acknowledges it by asserting S5933 and HPI control
signals required to complete the data transfer. The lower 16 bits of the S5933
add-on data bus are connected to the HPI data bus interface, with TI'CBT de-
vices used to translate from 5- to 3.3-V signals. The internal byte-lane switch-
ing feature of the S5933 allows the low and high words of the 32-bit PCI data
transfers to be output on the lower 16 bits of the add-on bus during the low and
high word data transfer times to the HPI. The CPLD latches the HPI register
address during the PCl address phase, and the state machine asserts the HPI
control signals to enable data transfers.

CPLD output pins are shared to support both the TBC address and HPI control
signals. Because an access can only be directed to one of the two at any one
time, the outputs can be used for both interfaces and controlled as required
for the different accesses. This is possible since the TBC address signals are
don't cares unless the TBC read/write strobes are asserted, and the HPI con-
trol signals are don't cares unless the HPI chip and data select signals are as-
serted.

HPI data transfers are 16 bits wide, so a 32-bit data transfer between the host
and DSP requires two HPI data transfers. The CPLD state machine manages
each 16-bit data transfer by controlling the appropriate byte enable and other
control signals. The state machine includes monitoring of the HPI ready output
signal to determine when the next write can proceed and when read data is
available.

Because the state machine is synchronous to the 33-MHz PCI clock, there is
a minimum of 30 ns between control signal transitions. Therefore, the maxi-
mum transfer rate between the host and DSP is defined by the required HPI
transfer protocol to transfer two 16-bit words and the 30-ns state machine
clock period.

TMS320C62x McEVM Hardware 1-47

Programmable Logic

CPLD arbitration logic allows both PCl and DSP EMIF transfers to share the
common PCI add-on bus. The add-on state machine controls DSP EMIF ac-
cesses to the S5933 controller’s registers and FIFOs. Because the state ma-
chine may be inthe process of transferring data between the S5933 and anoth-
er device when the DSP attempts to access the S5933, the state machine pro-
vides arbitration logic that holds off the EMIF access viathe DSP’s ARDY input
until the current add-on transfer is finished. Burst transfers are finished as
soon as possible to allow EMIF accesses to have priority over the add-on bus.
Logic is also included that disables the EMIF data bus connection to the add-
on bus while the add-on bus is being used for other transfers to prevent data
bus contention. When an EMIF access to the S5933 is taking place, PCl trans-
fers are held until the add-on bus is released.

The CPLD add-on bus state machine controls the add-on bus control signals
during EMIF accesses to the S5933 registers and FIFOs. When the EMIF is
granted the add-on bus, the state machine latches the register address from
the DSP’s address lines and presents them on the add-on address bus. The
other add-on bus control signals are also asserted by the state machine to pro-
vide data to the DSP EMIF data bus or to latch the data into the selected S5933
register or FIFO.

There is a 32-bit data interface between the DSP EMIF and the S5933 PCI
controller. The DSP’s EMIF 32-bit data bus is buffered with ’ALVCH16245 and
'CBTD3384 devices to isolate it from the PCI add-on bus and to provide volt-
age translation between 5V and 3.3 V.

1.8.6 PCIl Memory-Mapped Board Control/Status Registers

1-48

The CPLD’s add-on bus state machine supports PCI transfers with eleven
memory-mapped board control and status registers that are also implemented
in the CPLD. These registers provide the host with the following capabilities:

Interrupt the DSP (nonmaskable interrupt)
Enable interrupts from the DSP and TBC
Reset the DSP and TBC

Monitor status of MCEVM devices

Read the user-option DIP switches

Select the user options via software switches
Read the selected DSP options

Read the CPLD revision number

Utilize two hardware semaphores

Uoouuououuoo

Table 1-12 summarizes the PClI memory-mapped CPLD registers.

TMS320C62x McEVM Hardware Detailed Block Diagram

0 | | | | | | | |
M - - - - - - - -
T3SIOd - - - - - - - - TNIS 82X0 + 2dve
M = - - - _ _ _ |
OW3SIOd = = = = = = = = ON3S ¥2X0 + zdvd
<] o o | < | < | o < | uolsinal
0A3HO TAIHO ZAIHO EAIHD YAIHO SAIHO 9ATIHD LAFHD aldd AJ™ATdD 0ZX0 + 2dve
| S| d | o - - - apouw 100q
o3aowd T3A0oNg Z3aong €3aong y3aowg = = = -dSd 1009dSa OJTX0 +zdvd
bS] S| S| bS] bS] bS] S| - suondo
043sn T43sSN z43asn 13S9OVIC NVIAN3 RELS) JAOWMTD - -dSA 1dOdSa 8TX0 + zdvd
< | o d | < | - - - apouw 100q
03AONg S TIAOWD S 23AOWNd S €3AOWg S +¥3IAONG S = - - —UyaIms did 10049dIid ¥TIX0 + zdva
o o o bS] bS] bS] bS] - suondo
0d3sN's TH3ISN' S Z43ISN'S TASOVLLCS NVYIANT S 13SM10° S JAOWMTD S - — youms dia 1d0did 0TX0 + ¢dvd
T 0 T 0 0 = - (youms d1a) o
M M M M M = = M apow 100q
03AONd H TIAONd H 23AONd H €3dONd H ¥3dOoWd H - - T3ISMS —Youms M\S 1OO9MS D0X0 + zdvd
0 0 0 (xa) 0 (amm) o (v 2s0) 0 (rx) 0 -
M M M M M M M - suondo
0d3sN H Td3SN H ZdasSN H TISOVLIC H NVIANT H 13SM10 H IAOAMTO H - = Youms MS 1dOMS 80X0 + zdvd
S| S| S| S| S| = S| =
0a3a1™¥3ISN TAITHIASN 0TLNOX TTLNOX addsa = avazooA = snyeis 1VIS ¥0X0 + zdvd
(lesarou)o (w@saiou) 0 - - - (palgesip) 0 (pajgesip) 0 (INN ou) 0
M M o S| S| M M M
1S¥dsa 1540491 INIHdSa INIO9L AQdO9l NILNIH NILNIOFL INNdSA |onuod TLNO 00%X0 + zdvd
oug Tug zug cug vug sug 9ug Lng uonduosaq aweN ssaIppy

sivisibay adidD padde-Aiowsw [Dd 'ZI—T 9/qel

1-49

TMS320C62x McEVM Hardware

TMS320C62x McEVM Hardware Detailed Block Diagram

1-50

Programmable Logic

The following subsections describe each of the PCI memory-mapped CPLD
registers.

Note:

All register bits are active high (1) for consistency and ease of use. For exam-
ple, to reset the DSP, bit 0 of the CNTL register must be setto a 1. Highlighted
register values denote the power-up default values.

1.8.6.1 PCI CNTL Register (BAR2 + 0x00)

The CNTL register enables the host software to interrupt and reset the DSP,
enable interrupts from the DSP, and monitor TBC and DSP status. The host
can be interrupted whenever the TBC or DSP host interrupts are asserted, or
it can poll the status of these interrupt signals directly. The nonmaskable inter-
rupt (NMI) and reset bits must be manually toggled to assert and deassert the
respective signals. Table 1-13 summarizes the function of each bit in the
CNTL register. Highlighted register values denote the power-up default val-
ues.

Table 1-13. PCI CNTL Register Bit Definitions

Bit Name Access Description

7 DSPNMI RW Controls DSP’s NMI (0 = no NMI, 1 = assert NMI)

6 TBCINTEN RW TBC interrupt enable (0 = disable TBC interrupt , 1 = enable TBC interrupt)

5 HINTEN RW DSP hostinterrupt enable (0 = disable hostinterrupt , 1 =enable host interrupt)
4 TBCRDY TBC ready status (0 = TBC not ready, 1 = TBC ready)

3 TBCINT TBC interrupt status (0 = no TBC interrupt, 1 = TBC interrupt)

2 DSPHINT R DSP host interrupt status (O = no host interrupt, 1 = host interrupt)

1 TBCRST RW TBC hardware reset (0 = no TBC reset , 1 = TBC reset)

0 DSPRST RW DSP hardware reset (0 = no DSP reset, 1 = DSP reset)

TMS320C62x McEVM Hardware 1-51

Programmable Logic

1.8.6.2 PCI STAT Register (BAR2 + 0x04)

The STAT register enables the host software to monitor the DSP core voltage,
DSP power down, daughterboard control, and user-defined LED status.
Table 1-14 summarizes the function of each bit in the STAT register.

Table 1-14. PCI STAT Register Bit Definitions

Bit Name Access Description

7 - - -

6 VCC2BAD R DSP core voltage status (0 = core voltage OK, 1 = core voltage bad)

4 DSPPD R DSP power-down status (0 = DSP notin power down, 1 = DSP in power down)
3 XCNTL1 R Control signal from DSP to daughterboard (0 = TTL low, 1 = TTL high)

2 XCNTLO R Control signal from DSP to daughterboard (0 = TTL low, 1 = TTL high)

1 USERLED1 R User LED 1 status (0 = LED extinguished, 1 = LED illuminated)

0 USERLEDO R User LED 0 status (0 = LED extinguished, 1 = LED illuminated)

1.8.6.3 PCI SWOPT Register (BAR2 + 0x08)

The SWOPT register enables the host software to override the MCEVM’s on-
board user option DIP switches. This capability provides software switches,
which allow the DSP options to be controlled without having to remove the
PC'’s cover. The values in this register are not used unless the SWSEL bit in
the SWBOOT register is set to 1. Table 1-15 summarizes the function of each
bitinthe SWOPT register. Highlighted register values denote the power-up de-
fault values.

Table 1-15. PCI SWOPT Register Bit Definitions

Bit Name Access Description

7 — — —

6 H_CLKMODE RW Host clock mode (0 = x4 mode, 1 = x1 mode)

5 H_CLKSEL RW Host clock select (0 = OSC_A = 33.25 MHz, 1 = OSC_B =50 MHz)
4 H_ENDIAN RW Host endian control (0 = little endian , 1 = big endian)

3 H_JTAGSEL RW Host JTAG selection (0 = external XDS510, 1 = onboard JTAG TBC)
2 H_USER2 RW Host user-defined option 0 (0 = on, 1 = off)

1 H_USER1 RW Host user-defined option 1 (0 = on, 1 = off)

0 H_USERO RW Host user-defined option 2 (0 = on, 1 = off)

1-52

Programmable Logic

1.8.6.4 PCISWBOOT Register (BAR2 + 0x0C)

The SWBOOT register enables the host software to override the MCEVM'’s
boot mode DIP switches. This capability provides software switches, which al-
low the DSP boot mode to be controlled without having to remove the PC’s
cover. The values in this register do not get used unless the SWSEL bit is set
to 1. Table 1-16 summarizes the function of each bit in the SWBOOT register.
Highlighted register values denote the power-up default values.

Table 1-16. PCI SWBOOT Register Bit Definitions

Bit Name Access Description

7 SWSEL RW Software switch select (0 = DIP switches , 1 = software switches)
6 — — —

5 — — —

4 H_BMODE4 RW Host boot mode 4 (0)

3 H_BMODE3 RW Host boot mode 3 (0)

2 H_BMODE2 RW Host boot mode 2 (1)

1 H_BMODE1 RW Host boot mode 1 (0)

0 H_BMODEO RW Host boot mode 0 (1)

1.8.6.5 PCIDIPOPT Register (BAR2 + 0x10)

The DIPOPT register enables the host software to read the MCEVM’s onboard
user option DIP switches. Table 1-17 summarizes the function of each bit in
the DIPOPT register.

Table 1-17. PCI DIPOPT Register Bit Definitions

Bit Name Access Description

7 — — —

6 S_CLKMODE R Switch clock mode (0 = x4 mode, 1 = x1 mode)

5 S CLKSEL R Switch clock select (0 = OSC_A = 33.25 MHz, 1 = OSC_B =50 MHz)
4 S_ENDIAN R Switch endian control (0 = little endian, 1 = big endian)

3 S_JTAGSEL R Switch JTAG selection (0 = external XDS510, 1 = onboard JTAG TBC)
2 S_USER2 R Switch user-defined option 0 (0 = on, 1 = off)

1 S_USER1 R Switch user-defined option 1 (0 = on, 1 = off)

0 S_USERO R Switch user-defined option 2 (0 = on, 1 = off)

TMS320C62x McEVM Hardware 1-53

Programmable Logic

1.8.6.6 PCI DIPBOOT Register (BAR2 + 0x14)

The DIPBOOT register enables the host software to read the MCEVM's on-
board boot mode DIP switches. Table 1-18 summarizes the function of each
bit in the DIPBOOT register.

Table 1-18. PCI DIPBOOT Register Bit Definitions

Bit Name Access Description

7 - - -

6 — — —

5 — — —

4 S _BMODE4 R Switch boot mode 4
3 S BMODE3 R Switch boot mode 3
2 S BMODE2 R Switch boot mode 2
1 S _BMODE4 R Switch boot mode 1
0 S _BMODE4 R Switch boot mode 0

1.8.6.7 PCIDSPOPT Register (BAR2 + 0x18)

The DSPOPT register enables the host software to read the DSP options,
which may either be from the DIP switches or the software switches, depend-
ing on which is selected. Table 1-19 summarizes the function of each bit in the
DSPOPT register.

Table 1-19. PCI DSPOPT Register Bit Definitions

Bit Name Access Description

7 - - —

6 CLKMODE R Clock mode (0 = x1 mode, 1 = x4 mode)

5 CLKSEL R Clock select (0 = OSC_A =33.25 MHz, 1 = OSC_B = 50 MHz)
4 LENDIAN R Endian control (0 = big endian, 1 = little endian)

3 JTAGSEL R JTAG selection (0 = external XDS510, 1 = onboard JTAG TBC)
2 USER2 R User-defined option 0 (0 = on, 1 = off)

1 USER1 R User-defined option 1 (0 = on, 1 = off)

0 USERO R User-defined option 2 (0 = on, 1 = off)

1-54

Programmable Logic

1.8.6.8 PCIDSPBOOT Register (BAR2 + 0x1C)

The DSPBOOT register enables the host software to read the DSP’s boot,
which can either be from the DIP switches or the software switches, depending
on which is selected. Table 1-20 summarizes the function of each bit in the
DSPBOOT register.

Table 1-20. PCI DSPBOOT Register Bit Definitions

Bit Name Access Description
7 - - -

6 - - -

5 — — —

4 BMODE4 R Boot mode 4
3 BMODE3 R Boot mode 3
2 BMODE2 R Boot mode 2
1 BMODE1 R Boot mode 1
0 BMODEO R Boot mode 0

1.8.6.9 PCI CPLDREV Register (BAR2 + 0x20)

The CPLDREV register provides the revision of the McEVM’s CPLD. This in-
formation may be useful in assisting technical support. The revision number
can be up to eight bits in length. Table 1-21 summarizes the function of each
bit in the CPLDREYV register.

Table 1-21. PCI CPLDREYV Register Bit Definitions

Bit Name Access Description
CREV7 R CPLD revision bit 7
CREV6 CPLD revision bit 6

CPLD revision bit 5

CREV5
CPLD revision bit 4
CREV3 CPLD revision bit 3
CREV2 CPLD revision bit 2

CREV1

7

6

5

4 CREV4
3

2

1 CPLD revision bit 1
0

J U XN X XV XV X

CREVO CPLD revision bit 0

TMS320C62x McEVM Hardware 1-55

Programmable Logic

1.8.6.10 PCI SEMO Register (BAR2 + 0x24)

The SEMO register provides a single semaphore flag that can be used to share
devices or coordinate activities between the host and the DSP. Only bit O (PCI-
SEMO) is valid in this register. A semaphore is requested by writing a ‘1’ to this
bit. The bit is read back to determine if the semaphore was granted. If PCI-
SEMO is read back as ‘1’, then the host owns the semaphore. If it is read back
as a’0’, then the host does not own the semaphore. It is important to note that
a semaphore request must be explicitly made each time, since pending re-
guests are not supported. When the host wants to relinquish the semaphore,
a ‘0’ should be written to the PCI SEMO bit. Table 1-22 summarizes the func-
tion of each bit in the semaphore 0 register.

The DSP accesses the same semaphore as the host, but only the host or the
DSP can own it at any one time. At reset, the semaphore is set to '0’ on both
sides, so neither one owns the semaphore.

Table 1-22. PCI| SEMO Register Bit Definitions

Bit Name Access Description

S N W b~ 00 O N

PCISEMO RW Semaphore 0 Flag (For reads:
0=not owned, 1=owned; For
writes: O=relinquish, 1=re-
quest)

1.8.6.11 PCl SEM1 Register (BAR2 + 0x28)

1-56

The SEML1 register provides a single semaphore flag that can be used to share
devices or coordinate activities between the host and the DSP. Only bit 0 (PCI-
SEM1) is valid in this register. A semaphore is requested by writing a ‘1’ to this
bit. The bit is read back to determine if the semaphore was granted. If PCI-
SEM1isreadbackasa‘l’, thenthe host owns the semaphore. Ifitis read back
as a’'0’, then the host does not own the semaphore. It is important to note that
a semaphore request must be explicitly made each time, since pending re-
guests are not supported. When the host wants to relinquish the semaphore,

Programmable Logic

a ‘0’ should be written to the PCISEM1 bit. Table 1-23 summarizes the func-
tion of each bit in the semaphore 1 register.

Table 1-23. PCI| SEM1 Register Bit Definitions

@

Name

Access

Description

SO B N W b~ 0o o N

PCISEM1

RW

Semaphore 1 Flag (For reads:
0=not owned, 1=owned; For
writes: O=relinquish, 1=re-
quest)

TMS320C62x McEVM Hardware 1-57

Programmable Logic

1.8.7 DSP Memory-Mapped Control/Status Registers

1-58

The 'C62x McEVM'’s CPLD provides fourteen control and status registers that
are memory-mapped into the DSP’s CE1 memory space. All registers are
eight bits wide and are mapped into the least-significant byte of the EMIF data
bus (ED[7:0]). The registers are mapped on DWORD address boundaries for
little-endian mode, but, for big-endian mode, the registers are offset by 3 to ac-
cess ED[7:0]. The memory-mapped DSP registers provide the DSP software
to perform the following functions:

Control the two user-defined LEDs

Control and monitor the daughterboard

Control DSP NMI

Determine the interrupt status

Determine the operating environment

Read the user options DIP switches

Read the selected DSP options

Monitor and control the PCI controller FIFO

Control the two SDRAM banks

Use two hardware semaphores

Control the MVIP FMIC and local stream connections
Reset the FMIC and FALC devices

Support FALC and daughterboard interrupts

Control four T1/E1 status LED indicators

Enable and select y-Law and A-Law handset interfaces

I I I I I I I I I I iy Iy Y

Address decoding generates the clock and output enable controls for the re-
gisters. Register clock enables are generated whenever the specific register
is being addressed. The rising edge of the EMIF AWE output is used to clock
the lower eight bits of the EMIF data bus into the registers. Data is output on
the lower eight bits of the EMIF data bus when the CPLD register space is read.
This register space is allocated 64K bytes in the CE1 memory space, as shown
in Table 1-2 and Table 1-3. The eight registers are addressed sequentially on
DWORD address boundaries.

The lower eight bits of the EMIF data bus are buffered by an 'ALVCH16245
transceiver to provide the global data bus (GD[7:0]) that is connected to the
CPLD.

Table 1-24 summarizes the fourteen DSP memory-mapped control and sta-
tus registers implemented in the CPLD.

Q
g 0 - - - - - - -
3 M - = = = = = = 0 (¥2008€T0)
m O0W3SdSa = = = = = = = aloydewss WES ¥2008.T0
[
m 0 T 0 0 T T 0 0 (zZHW 05)
8 d d o o o d d o fouanbai (02008€£T0)
I 10344 JXoE|SE! JIoEISE! 10344 JXoE}SE! 10344 JXoEISE! -,0344 g 101e||19SO g0S0 02008.T0
a
(a1qeUd) T (a10eUB) T - - - - - - (€32/23D)
M Mo = = = = = = |0U0D (0T008ET0)
N3IAS 23> N3IAAS €30 = = = = = = AVYAS 1LNOAS OT008.TO
(palgesip) 0 (paigesip) 0 - - - - - - jon
Mo M o d o o - - -uoa/sniels 8T008ET0)
NIMINIDd NIHNIOd TINAHM ALdANIAY LNIMWIDD LNIYNIOC - - —0di410d 1V1SO4Id 8T008.T0
o S| S| S| S| = = S| apow 100q (¥T008ET0)
03Aond T3Aong Zaaond £3d0ond »3A0Nd = = TISMS -dsSa 10089dsa ¥T008.T0
S| S| S| S| S| S| S| - suondo (0T008ETO0)
0d3sn T43SN z43sn 13SOVIC NYIAN3TT T3S0 JAOWMTO - -dSd 1dodsa 0T008.T0
S| S| S| S| o = = = apouwl 100q (00000€70)
03AONg S TIAONG S <23IAONE S €3AONd S ¥3AONd S - - - —yaums did 10oddid 00008.T0
d d d d o o d - suondo (80008€£T10)
0d3asn's IESES Zd3aSN'S TISOVLLS NVIANT S T3ISHTIO S IAOWMTO S - —youms did 1dodid 80008.T0
S| S| - - d S| S| d (70008€T0)
13a1od AINIIOd = = INNdSA 1NIgd 0LVLSX TIVLSX snels VIS ¥00082T0
(o) 0 (o) 0 (aa)o - (polgesip) 0 (w@saiou)o (SAndERUI) O (sanoeur) o
MY MY MY - M MY M M (00008€T0)
0a31 a3l 73S0dS - NIIAN 13S34X 0TLNOX TTLNOX |0AU0D TLND 00008210
o¥g THg zvg €ug als! g 9ug Lvd uonduasaq aweN SsaIppy

s191sibay d1dD sneisy/jonuo) padden-AiowsiN 4SAd vZ—T 9lqel

1-59

TMS320C62x McEVM Hardware

Programmable Logic

= 0 0 0 0 0 0 0 jon
= S| M M M MY M M -uo) snoau (7£008€T0)
= dY3DINA NIdVEA MYV NN CERREIN a3ia3ad A3TONAS a31doon -e|199sIN OSIN ¥€008.T0
0 0 - - - - - -
MY MY - - o o o o |01U0D (0£008€T0)
AINIDTV4D 1NI9ad - - AINIOTVA 1NIgd AINIDTVALT 1NIgall dnusiul TLNOLNI 0£008.T0
0 0 0 0 0 0 0 0
Mo Mo Mo Mo MY My Mo MY |013U0D TLIND (0zZ008€ET0)
1S¥O7TvA 1SHOINA dMS0zd1 dMSTEQT 0T3S IRER rAER €13aS DING/OTvA -07v4 02008.T0
O — — p— — p— — p—
Mo - - - - - - = T (82008€£T10)
TNISdSA - - - - - - - aloydewss TNTS 82008210
ong T1g zug eug vug sug 9ug Lug uonduoseq aweN SsaIppy

1-60

Programmable Logic

The following subsections describe each of the fourteen DSP memory-
mapped CPLD registers.

Note:

All register bits are active high (1) for consistency and ease of use. For exam-
ple, to illuminate LEDO, bit 0 of the CNTL register must be set to a 1. High-
lighted register values denote the power-up default values.

1.8.7.1 DSP CNTL Register (0x01380000/0x01780000)

The CNTL register enables the DSP software to control the daughterboard,
enable and select the NMI interrupt source, select the McBSPO connection,
and control the user-defined LEDs. Table 1-25 summarizes the function of
each bitinthe CNTL register. Highlighted register values denote the power-up
default values.

Table 1-25. DSP CNTL Register Bit Definitions

Bit Name Access Description

7 XCNTL1 RW Control signal to daughterboard (0 = TTL low, 1 = TTL high)

6 XCNTLO RwW Control signal to daughterboard (0 = TTL low, 1 = TTL high)

5 XRESET RW Daughterboard reset signal (0 = no reset , 1 = asserts active low reset)
4 NMIEN RW NMI interrupt enable (0 = disable NMI to DSP , 1 = enable NMI to DSP)
3 — — —

2 SPOSEL RW McBSPO selection (0 = daughterboard , 1 = MVIP FMIC)

1 LED1 RW User-defined LED #1 on top of board (0 = extinguished , 1 = illuminated)
0 LEDO RW User-defined LED #0 on bracket (0 = extinguished , 1 = illuminated)

TMS320C62x McEVM Hardware 1-61

Programmable Logic

1.8.7.2 DSP STAT Register (0x01380004/0x01780004)

The STAT register enables the DSP software to monitor the daughterboard,
interrupts, and PCI detection indicator. Table 1-26 summarizes the function
of each bit in the STAT register.

Table 1-26. DSP STAT Register Bit Definitions

Bit Name Access Description

7 XSTAT1 R Status signal from daughterboard (0 = TTL low, 1 = TTL high)

6 XSTATO R Status signal from daughterboard (0 = TTL low, 1 = TTL high)

5 DBINT R Daughterboard interrupt status (0 = no interrupt, 1 = interrupt)

4 DSPNMI R DSP NMI interrupt (0 = no NMI, 1 = NMI)

3 — — —

2 — — —

1 PCIINT R PCI interrupt status (0 = no PCl interrupt, 1 = PCl interrupt asserted)
0 PCIDET R PCI detection indicator (0O = external operation, 1 = PCI operation)

1.8.7.3 DSP DIPOPT Register (0x01380008/0x01780008)

The DIPOPT register enables the DSP software to read the DIP switch user
options. Table 1-27 summarizes the function of each bit in the DIPOPT regis-
ter.

Table 1-27. DSP DIPOPT Register Bit Definitions

Bit Name Access Description

7 = - -

6 S_CLKMODE R Switch clock mode (0 = x4 mode, 1 = x1 mode)

5 S _CLKSEL R Switch clock select (0 = OSC_A = 33.25 MHz, 1 = OSC_B = 50 MHz)
4 S _ENDIAN R Switch endian control (0 = little endian, 1 = big endian)

3 S_JTAGSEL R Switch JTAG selection (0 = external XDS510, 1 = onboard JTAG TBC)
2 S_USER2 R User-defined switch 0 (0 = on, 1 = off)

1 S_USER1 R User-defined switch 1 (0 = on, 1 = off)

0 S_USERO R User-defined switch 2 (0 = on, 1 = off)

1-62

Programmable Logic

1.8.7.4 DSP DIPBOOT Register (0x0138000C/0x0178000C)

The DIPBOOT register enables the DSP software to read the DIP switch boot
mode selection. Table 1-28 summarizes the function of each bit in the
DIPBOOT register.

Table 1-28. DSP DIPBOOT Register Bit Definitions

Bit Name Access Description

7 - - -

5 - - -

4 S _BMODE4 Switch boot mode 4 (see Table 1-44 on page 1-90 for valid values)

3 S BMODES3 Switch boot mode 3

2 S BMODE2 Switch boot mode 2

1 S BMODEL1 Switch boot mode 1

g U X1V XV T

0 S _BMODEO Switch boot mode 0

1.8.7.5 DSP DSPOPT Register (0x01380010/0x01780010)

The DSPOPT register enables the DSP software to read the actual DSP op-
tions. Table 1-29 summarizes the function of each bitin the DSPOPT register.

Table 1-29. DSP DSPOPT Register Bit Definitions

Bit Name Access Description

7 - — -

6 CLKMODE R Switch clock mode (0 = x1 mode, 1 = x4 mode)

5 CLKSEL - Switch clock select (0 = OSC_A = 33.25 MHz, 1 = OSC_B =50 MHz)

4 LENDIAN R Switch endian control (0 = big endian, 1 = little endian)

3 JTAGSEL R Switch JTAG selection (0 = external XDS510, 1 = onboard JTAG TBC)t
2 USER2 R User-defined switch 2 (0 = on, 1 = off)

1 USER1 R User-defined switch 1 (0 = on, 1 = off)

0 USERO R User-defined switch 0 (0 = on, 1 = off)

1 Bit 3 (JITAGSEL) is always 0 when the MCEVM is not installed in a PCI slot.

TMS320C62x McEVM Hardware 1-63

Programmable Logic

1.8.7.6 DSP DSPBOOT Register (0x01380014/0x01780014)

The DSPBOOT register enables the DSP software to read the DSP boot mode
selection. Table 1-30 summarizes the function of each bit in the DSPBOOT
register.

Table 1-30. DSP DSPBOOQOT Register Bit Definitions

Bit Name Access Description

7 SWSEL R Software switch select (0 = DIP switches, 1 = software switches)
6 - - —

5 - - —

4 BMODE4 R Boot mode 4 (see Table 1-44 on page 1-90 for valid values)

3 BMODE3 R Boot mode 3

2 BMODE2 R Boot mode 2

1 BMODE1 R Boot mode 1

0 BMODEO R Boot mode 0

1.8.7.7 DSP FIFOSTAT Register (0x01380018/0x01780018)

The FIFOSTAT register enables the DSP software to determine the FIFOs’
empty/full status and enable PCI bus master external interrupts based on the
FIFOs’ status. Table 1-31 summarizes the function of each bit in the
FIFOSTAT register. Highlighted register values denote the power-up default
values.

Table 1-31. DSP FIFOSTAT Register Bit Definitions

Bit Name Access Description

7 - - -

6 — — —

5 PCIMRINT R PCI master read interrupt (0O = inactive , 1 = active)

4 PCIMWINT R PCI master write interrupt (0 = inactive , 1 = active)

3 RDEMPTY R PCI controller read FIFO empty (0 = not empty, 1 = empty)
2 WRFULL R PCI controller write FIFO full (0 = not full , 1 = full)

1 PCIMREN RW PCI master read enable (0 = disable , 1 = enable)

0 PCIMWEN RW PCI master write enable (0 = disable , 1 = enable)

1-64

1.8.7.8 DSP SDCNTL

Programmable Logic

Register (0x0138001C/0x0178001C)

The SDCNTL register enables the DSP software to enable and disable the two
banks of SDRAM individually. When an SDRAM bank is disabled, the two as-
sociated devices are put into a power-down mode, and the CE memory space
is available for asynchronous expansion memory use. Table 1-32 summa-
rizes the function of each bit in the SDCNTL register. Highlighted register val-
ues denote the power-up default values.

Table 1-32. DSP SDCNTL Register Bit Definitions

Bit Name

Access Description

7 —

2 —

1 CE3SDEN

0 CE2SDEN

RW CE3 (bank 1) SDRAM enable (0 = disable, 1 = enable)

RW CE2 (bank 0) SDRAM enable (0 = disable, 1 = enable)

1.8.7.9 DSP OSCB Register (0x01380020/0x01780020)

The OSCB register enables the DSP software to read an integer value that rep-
resents the frequency (MHz) of DSP oscillator B. The value is 0x32 (decimal
50) for the McEVM. Table 1-33 summarizes the function of each bit in the Os-
cillator B frequency register.

TMS320C62x McEVM Hardware 1-65

Programmable Logic

Table 1-33. DSP OSC B Register Bit Definitions

Bit Name Access Description

7 FREQ7 R Frequency hit 7 (0)
6 FREQ®6 R Frequency bit 6 (0)
5 FREQ5 R Frequency bit 5 (1)
4 FREQ4 R Frequency bit 4 (1)
3 FREQS3 R Frequency bit 3 (0)
2 FREQ2 R Frequency bit 2 (0)
1 FREQ1 R Frequency bit 1 (1)
0 FREQO R Frequency hit 0 (0)

1.8.7.10 DSP SEMO Register (0x01380024/0x01780024)

The SEMO register provides a single semaphore flag that can be used to share
devices or coordinate activities between the host and the DSP. Only bit 0
(DSPSEMO) is valid in this register. A semaphore is requested by writing a ‘1’,
to this bit. The bit is read back to determine if the semaphore was granted. If
DSPSEMOisread back as a‘l’, thenthe DSP owns the semaphore. Ifitis read
back asa‘0’, then the DSP does not own the semaphore. Itis important to note
that a semaphore request must be explicitly made each time, since pending
requests are not supported. When the host wants to relinquish the semaphore,
a ‘0’ should be written to the DSPSEMO bit. Table 1-34 summarizes the func-
tion of each bit in the SEMO register.

The DSP accesses the same semaphore as the host, but only the host or the
DSP can own it at any one time. At reset, the semaphore is set to '0’ on both
sides, so neither one owns the semaphore.

Table 1-34. DSP SEMO Register Bit Definitions

1-66

Bit Name Access Description

7 - -

6 - -

Programmable Logic

Bit Name Access Description

1 — —

0 DSPSEMO RW Semaphore 0 Flag (For reads: O=not owned,
1=owned; For writes: O=relinquish, 1=re-
quest)

1.8.7.11 DSP SEM1 Register (0x01380028/0x01780028)

The SEM1 register provides a single semaphore flag that can be used to share
devices or coordinate activities between the host and the DSP. Only bit 0
(DSPSEML1) is valid in this register. A semaphore is requested by writing a ‘1’
to this bit. The bit is read back to determine if the semaphore was granted. If
DSPSEML1 is read back a a ‘a'l’, then the DSP does not own the semaphore.
It is important to note that a semaphore request must be explicitly made each
time, since pending requests are not supported. When the host wants to relin-
quish the semaphore, a ‘0’ should be written to the DSPSEML1 bit. Table 1-35
summarizes the function of each bit in the semaphore 1 register.

Table 1-35. DSP SEM1 Register Bit Definitions

Bit Name Access Description

7 — -

6 — —

5 — —

4 _ —

3 — —

2 — —

1 — —

0 DSPSEM1 RW Semaphore 1 Flag (For reads: O=not owned,
1=owned; For writes: O=relinquish, 1=re-
quest)

1.8.7.12 DSP FALC Control Register (0x0138002Cx0x0178002C)

The FALC control register controls the T1/E1 FALC and MVIP FMIC devices.
Bits 7 through 4 of the DSP FALC control register are decoded to provide 16
timing modes (0-15) for the McEVM. Only four modes (0-3) are used for the
current implementation. Modes 4-15 are equivalent to mode 0. The four
modes define the states of the FALC_SYNC signaland FMIC_FRM_EN signal

TMS320C62x McEVM Hardware 1-67

Programmable Logic

Table 1-36. Master Timing Select Modes

generated by the CPLD. The FALC_SYNC signal is connected to the SYNC
pin of the FALC. The FMIC_FRM_EN signal controls the source of the frame
signal connected to the EX_8KA pin of the FMIC. The four modes are defined
in Table 1-36.

Mode FALC_SYNC State FMIC_FRM_EN State
0 Logic 0 selected Logic 1 (daughterboard is timing master)
1 CLK2 from FMIC selected Logic 1 (daughterboard is timing master)
2 Logic 0 selected Logic 0 (FMIC is timing master)
3 CLK2 from FMIC selected Logic 0 (FMIC is timing master)

The FMIC provides four local serial data streams (LD-0 to LD-3). In normal op-
eration, LD-0 is connected to the DSP, LD-1 is connected to the daughter-
board, LD-2 is connected to the FALC, and LD-3 is connected to the VBAP. Bit
3 of the FALC control register permits the connections for LD-3 and LD-1 to
be swapped. Bit 2 of the FALC control register permits the connections for
LD-2 and LD-0 to be swapped. Bit 1 and bit 0 of the FALC control register are
used to generate reset signals to the FMIC and FALC respectively. Table 1-37
summarizes the function of each bitin the FALC control register. It is important
to note that O is the default at reset or powerup for bits 4-7.

Table 1-37. DSP FALC Control Register Bit Definitions

1-68

Bit Name Access Description
7 MSEL3 RW Bit 3 of the mode select code
6 MSEL2 RW Bit 2 of the mode select code
5 MSEL1 RW Bit 1 of the mode select code
4 MSELO RW Bit O of the mode select code
3 LD31SWP RW Swap the connections for LD-3 and LD-1 (0 =
normal operation , 1 = swap 3/1)
2 LD20SWP RW Swap the connections for LD-2 and LD-0 (0 =
normal operation , 1 = swap 2/0)
1 FMICRST RW Reset FMIC (0= enable, 1=reset)
0 FALCRST RW Reset FALC (O=enable, 1=reset)

Programmable Logic

1.8.7.13 DSP Interrupt Control Register (0x01380030/0x01780030)

The DSP interrupt control register provides access to raw and latched versions
of interrupt signals generated by the McEVM daughterboard and the T1/E1 in-
terface. Register bits 7 and 6 contain the state of the latched signals of the
daughterboard and T1/E1 interface interrupts, respectively. Register bits 5
and 4 contain the state of the raw signals of the daughterboard and T1/E1 inter-
face interrupts, respectively. Register bits 3 and 2 are not defined. Register bits
1 and 0 are used for clearing and masking the daughterboard and T1/E1 inter-
face interrupts respectively. A ‘0’ value in a clear/mask bit enables the corre-
sponding interrupt. A ‘1’ value in a clear/mask bit clears the corresponding in-
terrupt. While a clear/mask bit contains a 1, the corresponding interrupt is
masked. Table 1-38 summarizes the function of each bit in the interrupt con-
trol register.

Table 1-38. DSP Interrupt Control Register Bit Definitions

Bit Name Access Description
7 LTDBINT R Latched daughterboard interrupt (O = inactive, 1 = active)
6 LTFALCINT R Latched FALC interrupt (0 = inactive, 1 = active)
5 DBINT R Raw daughterboard interrupt (0 = inactive, 1 = active)
4 FALCINT R Raw FALC interrupt (0 = inactive, 1 = active)
3 - - -

2 - — -

1 CDBINT RW Clear/Mask daughterboard interrupt (O = enable, 1 = clear/

mask)
0 CFALCINT RW Clear/Mask FALC interrupt (O = enable, 1 = clear/mask)

1.8.7.14 DSP Miscellaneous Status Register (0x01380034/0x01780034)

The miscellaneous status register bits 7 through 4 control user-defined LED
indicators that are located on the mounting bracket. Bit 3 controls the selection
of WA-Law PCM encoding, and bit 2 controls the VBAP enable/disable func-
tion. Bit 1 is a status bit used to report a FMIC error condition. Table 1-39 sum-
marizes the function of each bit in the miscellaneous status register.

TMS320C62x McEVM Hardware 1-69

Programmable Logic

Table 1-39. DSP Miscellaneous Status Register Bit Definitions

Bit Name Access Description

7 GRNLED1 RW User-defined green LED #1 (O=LED off, 1=LED on)
6 GRNLED2 RW User-defined green LED #2 (O=LED off, 1=LED on)
5 REDLED3 RW User-defined red LED #3 (0=LED off , 1=LED on)

4 YELLED RW User-defined yellow LED (0=LED off, off, 1=LED on)
3 MU_ALAW RW WA-Law selection control (O=p, 1=A)

2 VBAPEN RW VBAP enable (O=disabled , 1=enabled)

1 FMICERR R Raw FMIC error signal (O=no error, 1=error)

0 — — —

1-70

Programmable Logic

1.8.8 PCIl and DSP Interrupt Control

The CPLD provides interrupt control that allows the host and DSP to interrupt
each other and supports various McEVM interrupts related to the daughter-
board, PCI controller, T1/E1 transceiver, and JTAG TBC. The CPLD also con-
trols DSP interrupts that are used to drive PCI bus master transfers.

The host can interrupt the DSP with three different interrupts using the follow-
ing methods:

[Setting the HPI control (HPIC) register DSPINT bit (DSPINT)
[Setting the PCI memory-mapped control register DSPNMI bit (NMI)
(1 Accessing a PCI controller mailbox (EXT_INT4)

The HPIC register can be accessed from the host by addressing offset 0 of PCI
BAR3. A host write to this address, with the DSPINT bit set to 1, causes a
DSPINT interrupt to the DSP. The CPLD provides a state machine that man-
ages the data transfers between the PCI controller and the DSP HPI.

The CPLD provides a PCI memory-mapped board control register (CNTL) that
can be accessed by the host at offset 0 of PCI BAR2. When the DSPNMI bit
of this register is set to 1, it causes an NMI interrupt to the DSP if the host is
selected by the DSP software as the NMI interrupt source.

The host can also interrupt the DSP by writing or reading a PCI controller mail-
box register mapped into PCI BARO. The incoming and outgoing mailbox reg-
isters can generate interrupts when they become full or empty. When the se-
lected mailbox register conditions occur, the DSP’s EXT_INT4 interrupt is as-
serted. The CPLD logic inverts the S5933's IRQ# active low output signal to
generate a rising-edge EXT_INT4 signal because the DSP defaults to rising-
edge interrupts.

The DSP caninterrupt the host by setting the HPIC register’'s HINT bitto 1. This
action forces the DSP’s HINT output signal to be asserted low. The CPLD in-
cludes a falling-edge detector that generates a pulse on the S5933's external
mailbox clock (EMBCLK) input, which causes an interrupt on INTA# to the
host. A second falling-edge detector is used to generate an interrupt to the host
when the TBC interrupt is asserted. The host software can enable HPI and
TBC interrupts via the PClI memory-mapped CNTL register.

Both the host and DSP software can poll interrupt signals by reading PCl and
DSP memory-mapped registers in the CPLD. The host can poll the DSP host
and TBC interrupts. The DSP can poll the daughterboard, host NMI, T1/E1
transceiver, and PCI interrupts. The ability to poll interrupt signals from the
software, as well as using them to interrupt execution flow, provides flexibility
to the programmer that may be useful in various applications.

TMS320C62x McEVM Hardware 1-71

Programmable Logic

The CPLD includes two state machines that drive PCI bus master read and
write operations based on the status of the PCI controller’s read and write
FIFO flags. The PCl bus master state machines are individually enabled by the
DSP software by setting bits in the DSP memory-mapped FIFOSTAT register
implemented inthe CPLD. When the PCIMREN bitis set, the master read state
machine generates EXT_INT5 interrupts to the DSP when the PCI controller’s
read FIFO flag (RDEMPTY) indicates that the read FIFO is not empty. The
DSP can respond to the external interrupt with background DMA transfers or
an interrupt service routine to read data from the PCI controller. The state ma-
chine waits for a DSP EMIF read of the FIFO before repeating the process. The
state machine must be disabled at the end of each PCI bus master read block
transfer. The CPLD provides a similar state machine for PCl bus master writes.
When the PCIMWEN bit is set, the master write state machine generates
EXT_INT6 interrupts to the DSP when the PCI controller’s write FIFO
flag (WRFULL) indicates that the write FIFO is not full. Similar to read trans-
fers, the DSP can use background DMA or an interrupt handler to write data
to the PCI controller.

The DSP can be interrupted with four external maskable interrupts and one
nonmaskable interrupt (NMI). All DSP interrupts on the 'C62x McEVM are as-
serted on rising edges. Table 1-40 summarizes the DSP interrupts on the
McEVM.

Table 1-40. DSP Interrupts Usage

1-72

DSP
Interrupt Description of Use

EXT_INT4 PCI controller interrupts

EXT_INT5 PCI bus master reads DMA synchronization

EXT_INT6 PCI bus master writes DMA synchronization

EXT_INT7 T1/Eltransceiver and expansion peripheral interface (XEXT_INT7)

NMI Host (PCI register)

EXT_INT4 indicates to the DSP that a significant event has occurred as a re-
sult of activity within the PCI controller. This activity may include mailbox full/
empty conditions, end of bus master transfers, a self-test request from the PCI
bus, and transfer errors.

EXT_INT5 and EXT_INT6 are used to synchronize PCI bus master reads and
writes, respectively. These interrupts are used to trigger the DSP’s DMA con-
trollers or a CPU interrupt service routine.

Programmable Logic

EXT_INT7 is provided to indicate an event associated with the T1/E1 trans-
ceiver has occurred. It is also shared with the expansion peripheral interface
(as DB_INT) so that a daughterboard can interrupt the DSP to indicate signifi-
cant events. The CPLD provides an interrupt controller that allows the daugh-
terboard and T1/E1 transceiver to share the DSP’s EXT_INT7 interrupt.

The NMI can be asserted by the host software via a memory-mapped control
register on the PCI bus.

TMS320C62x McEVM Hardware 1-73

Programmable Logic

1.8.9 CE1 Memory Decoding/Data Transceivers Control

The CPLD decodes DSP EMIF CE1 memory accesses to control various
McEVM hardware and other logic within the CPLD itself.

The McEVM uses 'ALVCH16245 data transceivers to provide data bus isola-
tion and voltage translation. These transceivers are enabled by CPLD memory
decode logic based on the CE1 memory accesses. DSP EMIF accessesto the
PCI controller’s registers and FIFOs enable the PCI add-on bus transceiver.
DSP EMIF accesses to the daughterboard enable the external data transceiv-
ers. DSP EMIF accesses to the MVIP FMIC, T1/E1 transceiver, handset audio
codecs, CPLD registers, and daughterboard enable the global data bus trans-
ceiver. The direction of these transceivers is controlled by the DSP’s output
enable (AOE) signal, which defines the direction of the data access.

A CPLD state machine, along with combinatorial logic, is used to generate the
asynchronous ready (ARDY) signal to the DSP. Because the McEVM includes
different types of devices in the CE1 space, there are different timing require-
ments for each. The CPLD generates the ARDY signal based on the type of
CE1 memory access. For PCI controller accesses, the ARDY signal is not as-
serted until the add-on bus in available, unless the board is operated stand-
alone. In stand-alone operation, the ARDY signal is always asserted for PCI
controller accesses so that the EMIF does not lock up waiting for ARDY. The
external ready from the daughterboard is presented to the DSP when expan-
sion memory is accessed. The CPLD provides the ready logic that extends the
asynchronous strobe time as needed for each particular access.

The CE2 and CE3 DSP memory spaces default to two banks of 4M x 32-bit
SDRAM. However, if one or both of these banks of SDRAM are not required
for an application, and more or faster asynchronous memory or memory-
mapped devices are required, CE2 and CE3 can support expansion memory
on a daughterboard. The CE3SDEN and CE2SDEN bits in the CPLD’s
SDCNRL register determine whether the SDRAM banks are enabled or dis-
abled. If a bank is disabled, it is put into a low-power mode and does not
respond to accesses. Additionally, CPLD logic enables external accesses to
asynchronous memory in these spaces by activating the expansion memory
data transceivers.

1.8.10 User Options Control

1-74

The McEVM provides user options to select the DSP’s input clock source, en-
dian and boot modes, and the JTAG emulation method. The CPLD includes
user options control logic that selects between hardware DIP switch and soft-
ware switch user options. Table 1-41 summarizes the MCEVM user options.

Programmable Logic

Table 1-41. User Options Summary

Number of
User Option Description Signals
Boot mode Selects no-boot, HPI-boot, or ROM-boot 5
Clock mode Selects multiply-by-1 (no PLL) or multiply-by-4 1
(PLL) clock mode
Clock select Selects 33.25 MHz or 50 MHz for CLKIN 1
Endian select Selects big- or little-endian memory addressing 1
JTAG select Selects internal or external JTAG emulation 1
User-defined User-defined options 3

The boot mode option selects how the DSP boots upon the release of its reset
input signal. It can begin execution immediately with no boot, or it can be
booted from ROM in the CE1 space or from the host port interface (HPI). The
five control signals select the type of boot, the type of memory located at ad-
dress 0, and the memory map (MAP 0 or MAP 1) that is to be used.

The clock mode selects whether the CPU clock (CLKOUT1) is the same as
CLKIN (multiply-by-1) or four times CLKIN (multiply-by-4). The 'C6201 pro-
vides two pins to select the clock mode. However, both pins have the same
value in each of these modes, so only one control signal needs to be used. The
clock mode pins are both set to 0 for multiply-by-1 mode and 1 for multiply-by-4
mode.

The clock selection determines which of the two onboard clock sources is
used. The McEVM provides both 33.25- and 50-MHz clocks. If multiply-by-4
clock mode is selected, this results in CPU clock rates of 133 MHz and
200 MHz, respectively.

The endian selection determines whether the DSP uses little- or big-endian
byte/halfword addressing.

The JTAG selection determines whether the onboard JTAG controller or an ex-
ternal XDS510 emulator is to be used for debugging. When the 'C62x McEVM
operates outside the PC in stand-alone mode, the JTAG selection is forced by
the CPLD to external XDS510 use.

Three user-defined options are provided for application use. These user op-
tions can be read by both the host and the DSP software via CPLD registers.

Because the McEVM can operate in both PCl and stand-alone environments,
it must support the selection of user options in both situations. When the

TMS320C62x McEVM Hardware 1-75

Programmable Logic

1-76

McEVM is operated outside the PC, DIP switches are used to configure the
board. When the McEVM is in the PC, configuration is done via software
switches under software control to eliminate the need to remove the PC'’s cov-
er. This dual-use option support is transparent because it defaults to the stan-
dard DIP switch control but allows for software switch override, if desired. If
software does not control the configuration from the host side, the McCEVM de-
faults to the DIP switch settings. Therefore, in external operation, the DIP
switches are used exclusively for user option selections.

Figure 1-11 shows how this dual-use option support is implemented in the
McEVM's CPLD.

The McEVM's CPLD includes a multiplexer that selects between the hardware
DIP switches and PClI-controlled software switches. Upon power up, the CPLD
defaults the configuration to the DIP switch settings, providing transparent op-
eration. Memory-mapped registers on the PCI bus allow the host MCEVM driv-
er to configure the board and DSP directly to override the hardware DIP switch
settings, if desired.

Memory-mapped registers in the CPLD allow both the host and DSP software
to observe DIP switches and the current DSP option selections. When the
McEVM is under software switch control, the 12 DIP switches can be used by
the DSP software for other purposes.

Based on the selected configuration, the CPLD provides control signals to the
DSP and external hardware for clock and JTAG selection. Transparent DIP
switch configuration is provided upon power up, providing power-up defaults
without the need for software control.

Figure 1-11.Dual-Use Option Support

9oeI8IUI UO-ppPe [Dd

Selects power-up defaults
and external user options

12-position DIP switch

Programmable Logic

12
PCI DSP
< DIPOPT/DIPBOOT [€—12 v 12— DIPOPT/DIPBOOT
registers registers
24:12
MUX
PCI 12, v
SWOPT/SWBOOT | Select (Selects between
registers DIP switches and
software switches)
PCI » DSP
< DSPOPT/DSPBOOT |-« »-{ DSPOPT/DSPBOOT
registers — 11 11— P registers
v
8
EPM7256S C'?C'(t
CPLD se e
logic
v?2
Output buffers
2 7 1
Clock selects To 'C6201 JTAG control
('LVT125 output enables) (BMODE, CLKMODE, LENDIAN) ('CBT3257 MUX ctrl)

TMS320C62x McEVM Hardware

1-77

MVIP Interface and Switch

1.9 MVIP Interface and Switch

1-78

The McEVM includes a fully compliant, enhanced MVIP-90 interface based on
the Mitel MT90810 Flexible MVIP Interface Circuit (FMIC). The MVIP interface
allows the MCEVM to interoperate with a large base of telephone interface re-
sources such as trunk interfaces, voice, video, fax, text-to-speech, and speech
recognition boards. The MVIP interface could also be used to interconnect
multiple McEVM boards via the MVIP TDM bus if desired. The TDM bus can
be accessed through a connector provided at the top of the McEVM board.

In addition to meeting the requirements of the MVIP interface, the FMIC pro-
vides a switch that provides 384x384 channel non-blocking connectivity be-
tween all telephony devices on the board and the DSP via its McBSPO serial
port. This design allows the DSP to have access to every MVIP, T1/E1 and
companded handset audio time slot on the board, resulting in optimal utiliza-
tion of the DSP’s serial port and providing a very flexible switching arrange-
ment. Additionally, audio monitoring and testing of various telephone channels
can be accomplished by transferring samples to and from the handset inter-
face via the FMIC.

The default MVIP configuration uses all four local streams operating with 32
timeslots at arate of 2.048 Mbps each. For some applications, other configura-
tions may be useful, such as when you may want to bring 64 or 128 timeslots
to the DSP. The FMIC supports different local stream modes of operation
which result in different local streams being active. The McCEVM design pro-
vides DSP-controlled local stream switching (viathe CPLD’s FALC control reg-
ister) to support this type of configuration. Local stream multiplexers on the
McEVM allow local streams 1 and 3, as well as 0 and 2 to be swapped in order
to support higher throughput FMIC modes of operation. Figure 1-12 shows
the MVIP FMIC interfaces. Note that the default local data stream assignments
are shown first, with the optional swapped local data streams indicated sec-
ond.

MVIP Interface and Switch

Figure 1-12. McEVM'’s MVIP interface

TMS320C6201
DSP
McBSPO
A
TCM320AC36
VBAP P
(p—law)
A
s vovas L0z
X h| Lo <— Clocks/Frame Sync —|
(A—law)
Mitel MVIP
MT90810 «———DSo[0:7+——» 4C0—Pin
MVIP FMIC onn.
D hterboard .
TOM Interface ¢ > LDx3/1 LOx2/0 [«———DSi[7:0—>
A
A
Siemens
PEB 2255 o R
(FALC-LH) RJ_48C
T1/EL Xirmr Jack
Transceiver < <
(Framer/LIU)

T1/E1 Interface

The FMIC supports eight pairs of 2.048 Mbit/sec data streams from the MVIP
telephony bus, along with four local pairs of 2.048 Mbit/sec data streams. All
data streams are synchronized to the same master clock and 8 kHz frame sync
signals. Four local serial interfaces connect the FMIC to the following compo-
nents:

TMS320C62x McEVM Hardware 1-79

MVIP Interface and Switch

'C6201 DSP
VBAP handset interface

T1/E1 transceiver

I N A I

A spare time-division multiplexed (TDM) port brought out to the expansion
peripheral connector

All data streams consist of 8-bit data (typically companded with p-law or A-law)
time slots sent at an 8-kHz rate, resulting in 64-Kbps time slots.

One of the MVIP FMIC'’s 2.048-Mbps local serial interfaces is connected to the
'C6201 McBSPO interface through a pair of TI’'CBT3257 quad 2:1 multiplexers
as shown in Figure 1-13. The 'CBT devices perform voltage translation be-
tween the 3.3-V DSP and the 5-V FMIC and allow the McBSPO serial port to
be connected to either the MVIP FMIC or a daughterboard at any one time,
depending on your application. This allows a daughterboard to use both of the
DSP’s serial ports, which is very important for many applications such as digi-
tal subscriber line technologies (xDSL). The McEVM defaults to connection to
the daughterboard, and the FMIC’s initialization library function controls a
memory-mapped register bit in the CPLD to connect the FMIC to the DSP’s
McBSPO interface.

The FMIC, which is mapped into the DSP’s asynchronous CE1 memory
space, provides an 8-bit microprocessor interface that is compatible with the
'C6201 EMIF timing when configured for Intel non-multiplexed bus timing. The
FMIC presents four read/write, 8-bit registers to the DSP which consist of mas-
ter control/status, low address, address mode, and indirect data registers. The
FMIC uses indirect addressing to allow the DSP to access other control regis-
ters, data memory, and connection memory. The DSP interfaces to the 5-V
FMIC via Tl 'ALVCH buffers and transceivers to perform voltage translation.

Table 1-42. MVIP FMIC Registers

1-80

DSP Address MVIP FMIC Register
MAP 1 (MAP 0) Description Access
01740000 (01340000) Master control/status register ~ Read/write
(MCR)
01740004 (01340004) Low address register (LAR) Read/write
01740008 (01340008) Address mode register (AMR) Read/write
0174000C (01340008) Indirect data register (IDR) Read/write

The DSP can configure the FMIC’s connection memory to select which time
slots are routed to other time slots. For example, the DSP can configure the

MVIP Interface and Switch

FMIC to send it only T1/E1 time slots or, as another example, some MVIP time
slots along with the handset audio time slots. The DSP has complete control
over where all time slots are sent.

The FMIC supports all of the MVIP clocking modes, allowing the MCEVM te-
lephony data streams to be synchronized by the MVIP master clock, a local
crystal, or an external 8-kHz clock that an on-chip PLL uses to generate a
4.096-MHz clock. The DSP controls which clock source is used as the master
clock.

The MVIP interface consists of a 40-pin, right-angle connector at the top of the
McEVM board. See Appendix A for the connector pinout.

Complete information on the MVIP FMIC device, including register definitions,
is available at the following URL.:

http://www.mitelsemi.com/products/pdf/mt90810.pdf

Figure 1-13. McBSPO Selection

SN74CBT3257
multiplexer
_ LDIO/LDI2
D DX0 MUX <
XDX0 4—
LDOO0/LDO2 -
< DRO MUX
MVIP XDRO —P DX0
FMIC FRAME .
FSX0 MUX DRO
XFSX0 ¢ - 0
CLK2 FSXO0
XFSRO 4p] FSROMUX | 4 N
FSRO 'C6201
i DSP
McBSPO_SEL CLKXO
»
4— XDX0 ¢ p| < CLKRQ
CLKX0 MUX
XCLKX0 4P
CLKSO
—» XDRO 0
[
CLKRO MUX
4P XFSX0 [XCLKRO 4P <
Expansion R
peripheral 4P XFSRO »
interface XCLKSO —p CLKSO0 MUX
connector | gy kxo >
. Spare MUX
4P XCLKRO I
SN74CBT3257
—— XCLKSO multiplexer

TMS320C62x McEVM Hardware 1-81

T1/E1 Interface

1.10 T1/E1 Interface

1-82

The McEVM provides a common T1/E1 interface that allows it to connect to
T1, E1, or Integrated Service Digital Network (ISDN) primary rate trunks oper-
ating at 1.544 Mbps or 2.048 Mbps. This T1/E1 interface provides a multi-
channel, digital telephone interface for the 'C6201 DSP that is ideal for proc-
essing multiple channels.

This interface is electrically compatible with T1, E1, and ISDN
services provided by the phone company. It is NOT certified or
approved for direct connections.

The T1/E1 interface is based on the Siemens FALC-LH (PEB2255) long-haul,
fully-integrated T1/E1 framer and line interface unit (LIU). The FALC-LH is a
5-V device which combines a sophisticated framer, transmit/receive slip buff-
ers, and a physical line interface into one device that supports both T1 and E1.
This eliminates the need to have two framers and associated interfaces on the
MCcEVM, resulting in a single framer/driver and minimal board space.

The FALC-LH provides a 2.048 Mbps serial data stream that is synchronized
to the board’s master clock. This is the common rate that is used for all inter-
faces, therefore the FALC-LH supports this system bus clock rate even when
1.544 Mbps of T1 data is being received. The serial data stream is routed to
the FMIC for switching to the desired output stream time slot, which could be
the handset, the DSP or the MVIP bus.

The DSP interfaces to the FALC-LH via an 8/16-bit microprocessor interface
that allows the DSP to control and receive status from the device. The FALC-
LH’s interface is compatible with the ‘C6201 EMIF asynchronous timing when
it is operating in the asynchronous Motorola (demultiplexed address/data)
mode. The FALC-LH is mapped into the DSP’s CE1 external memory space.
The FALC-LH provides many registers and features that can be controlled by
the DSP, such as alarm/error monitoring and signaling supervision. The DSP
can also putthe device in several different types of loopback modes (both ana-
log and digital) for diagnostics, maintenance and troubleshooting. Other ex-
tensive test and diagnostic functions, such as PRBS test pattern generation
are also available.

Another feature of FALC-LH is that it provides an interrupt output that is used
by a CPLD interrupt controller to notify the DSP of significant framer events
using the EXT_INT7 interrupt.

T1/E1 Interface

The FALC-LH’s physical line interface circuit recovers clock and data from
analog signals with +3 to -43 dB cable attenuation, appropriate for both short
(-18 dB) and long haul T1/E1 applications. Receive line equalization is pro-
vided and programmable transmit pulse shaping, using a minimum number of
external components, is provided. Data and clock jitter attenuation can be in-
serted on either the receive or transmit paths. A complementary driver output
is provided to couple 75/100/120 ohm lines via an external transformer.

The FALC-LH analog outputs are routed to a dual-transformer for the physical
interface to the T1 or E1 short-haul line.

The T1/E1 output is presented to the user as an RJ-48C twisted-pair modular
jack located on the mounting bracket. The jack’s wiring configuration is pro-
vided in Appendix A.

Complete information on the FALC-LH T1/E1 device, including register defini-
tions, is available at the following URL:

http://www.siemens.de/semiconductor/products/ics/33/falc_lh.htm

TMS320C62x McEVM Hardware 1-83

Handset Interface

1.11 Handset Interface

The McEVM includes a handset interface that allows the DSP to process voice
data or route it to the TI/E1 and MVIP interfaces. Likewise, T1/E1 and MVIP
data can be sentdirectly to the handset earphone for monitoring with or without
requiring DSP intervention.

The telephone handset interface supports both A-Law and py-Law PCM com-
panding. Two Tl voice-band audio processor (VBAP) devices, which are syn-
chronized to the master telephony clock and framing signals, are used to pro-
vide A-Law and p-Law PCM companding. Only one companding format is se-
lected and used at a time. The handset interface defaults at power up to p-Law
companding as a result of the default reset value of a register bit in the CPLD.

The DSP’s software directly controls the interface with a single memory-
mapped register bit in the CPLD. The value of the register bit results in two,
mutually exclusive control bits that are routed to the power-down (PDN) pins
of both VBAP devices. When one VBAP is enabled, the other one is in power-
down mode with its output amplifier disabled and its digital output tristated.
This design allows the two VBAP devices to be connected to support both
companding formats, appearing just like a single dual-mode device to the
DSP’s software. Figure 1-14 shows the configuration of the VBAP devices.

Figure 1-14. McEVM VBAP Configuration

1-84

0 = p—law
1=A-law

p—law
TMS320C6201 Power—down
DSP l
Ear
TCM320AC36
i VBAP ¢
EMIF CE1 Ml itaw)
Tﬁlepdhone
andset
4‘>Q DOUT/DIN/FSR/FSX To
L
C(;r;;;i?d Ear [+ MAX383 ¢
er —> Dual 2:1 2.048 Mbps MVIP FMIC
Register Mic >l Analog Data
Bit Mux —
@ a
CPLD 3.5mm
Audio Jacks
Ear
TCM320AC37
VBAP
Mie | (a-taw)
‘ A
A-law

Power—down

Handset Interface

The TI TCM320AC36 device provides the p-Law companding, and the
TCM320AC37 device provides the A-Law companding. The VBAPs are
single-supply devices with glueless interfaces to an electret microphone, an
earphone, and the MVIP switch. Only a few passive components (resistors
and capacitors) are required for biasing, gain, and DC blocking. Because the
VBAPs are interfaced to the 5-V MVIP FMIC switch and not directly to the
'C6201, no voltage translation is required, allowing a direct connection. Addi-
tionally, because one of the devices is always guaranteed to be in power-down
mode by the board’s CPLD logic, forcing its output to be tristated, the two de-
vices’ output data to the MVIP switch can be connected. This design eliminates
the need for a strap or switch option and saves a local serial port on the MVIP
switch that is brought out to the peripheral expansion connector, for external
use. An analog multiplexer is controlled by one of the VBAP control bits to con-
nect the microphone and earphone to the selected VBAP device.

The VBAPs can provide 13-bit linear outputs; however, for the telecom sub-
system, they are configured for 8-bit companding to be directly compatible with
the T1/E1 framer and MVIP data formats. The 'C6201 supports both A-Law
and p-Law PCM formats directly and converts them to linear format in hard-
ware for processing. An added benefit of the companded data formats is that
data can also be routed directly to and from the MVIP and the T1/E1 framer
to support a wide variety of applications, such as monitoring channels and
dropping and inserting voice and test signals.

The telephone handset interface is brought out to two 3.5mm audio jacks on
the McEVM's mounting bracket. One audio jack provides a mono microphone
input and the other provides a mono earphone output. Appendix A provides
the pinout of the audio jacks.

TMS320C62x McEVM Hardware 1-85

Power Supplies

1.12 Power Supplies

The McEVM requires 1.8-V, 3.3-V, and 5-V supplies. An optional daughter-
board —12-V supply is brought to the peripheral expansion interface from both
the PCI bus and the external power connector. The 5-V is obtained from the
PCI bus during internal operation or an external power connector during exter-
nal operation. The MCEVM’s PCI connector’'s PRSNT1# and PRSNT2# pins
are configured to indicate a maximum of 25-watts power dissipation. The 1.8-V
and 3.3-V voltages for MCEVM are provided by onboard switching regulators
that use the PCI or external 5-V supply as its input.

1.12.1 3.3-V Voltage Regulator

The DSP’s I/O buffers, SBSRAM, SDRAM, low-voltage buffers/transceivers,
and CPLD 1/O buffers require 3.3 V. The 3.3-V supply is provided by an inte-
grated switching regulator (ISR) (part number PT6405B). The PT6405B pro-
vides 3.3V atup to 3 A. The device’s output voltage defaults to 3.3 V, butit can
be adjusted in the range of 2.8 V-3.8 V by changing external resistors. The
McEVM layout supports the ability to adjust the voltage with resistors, but
these are not installed during manufacturing. This surface-mount device is an
efficient (85%) switching regulator that is mounted flat on the board with a
0.38-inch height that is compatible with a PCI slot. This regulator is positioned
on the board so that it does not interfere with the daughterboard interface.

The PT6405B only requires a couple of external capacitors, so its external in-
terface is similar to a linear regulator because it is a module. It therefore pro-
vides the advantages of a switching regulator (efficient and runs cool) in a
package that is easy to use, requiring no specialized layout or multiple devices
that are required by a custom switcher design. It has already been carefully
designed for minimal emissions and has been tested.

1.12.2 1.8-V Voltage Regulator

The PT6407E regulator provides the DSP’s 1.8 V core voltage with up to 3A
of current. Large dynamic current requirements of the DSP are supported by
the 100-u F external capacitor at the voltage regulator’s output. In addition to
a carefully designed bulk and decoupling capacitor arrangement.

1.12.3 External Power Connector

1-86

The 'C62x McEVM'’s external power connector is an industry-standard Molex
4-pin connector that is commonly used in PCs for disk-drive power. The exter-
nal power connector is located at the bottom of the board with its pins oriented
downward to prevent connection while the board is installed in the PC. When

Power Supplies

the MCcEVM operates outside the PC, the power connection is easily made at
the edge of the board.

The four pins on the connector are used for 5V, —=12 V, GND, and 12 V. The
standard disk-drive power cables do not supply —12 V, so if this is required by
a daughterboard, an appropriate power supply should be used. If =12 V is not
used on the daughterboard, then a standard disk-driver power cable can be
used.

The user-supplied, external power supply should provide the following volt-
ages and currents:

[S5Vpcat4A
(1 12 Vpc at 500 mA
(1 —-12 Vpc at 100 mA (if required by a daughterboard)

These are the voltages and their respective currents available to the 'C62x
McEVM in a PCI slot.

Figure 1-15 shows the orientation of the external power connector pins.

Figure 1-15. External Power Connector
Molex #15-24-4041

EEEE

Note: Drawing is not to scale.

Preventing Power Supply Damage

To prevent power supply damage, DO NOT connect power to the
external power connector on the McEVM board when it is installed
in a PCl slot on your computer. The external power connector is on
ly for use in standalone operation.

1.12.4 Fan Power Connector

The 'C62x McEVM includes a connector to supply 5 V (at 100 mA) for an op-
tional fan. The heat sink/fan is not required on TMS320C6201B.

TMS320C62x McEVM Hardware 1-87

Voltage Supervision

1.13 Voltage Supervision

1-88

The McEVM'’s dual-voltage supervision and reset generation are provided by
a single voltage supervisor device. The voltage supervisor monitors the 3.3-V
and 1.8-V power supplies, provides manual reset switch debounce, and gen-
erates a clean, 140-ms minimum reset pulse.

Because the 1.8-V and 3.3-V power supplies are derived from the 5-V power
supply, they reach their values after the 5 V, and their status inherently indi-
cates the status of the 5 V. The board is held in reset until the two voltages are
within specification. Whenever the 3.3-V supply is below 3V, including during
power up, the device forces a reset until the threshold is met. The voltage su-
pervisor supports the monitoring of a secondary voltage on its power failure
input. A threshold that causes reset to occur if there is a drop in the 1.8 V, is
set via two external resistors configured as a voltage divider.

The device also has a manual switch reset input that allows you to manually
resetthe DSP. Thisis important, particularly for the external McEVM operation.
The McEVM'’s CPLD asserts this manual reset input whenever you press the
manual reset pushbutton or a software reset is asserted by the PCI controller.

The voltage supervisor has two reset outputs: one is active low and the other
is active high. The active low reset is used for CPLD initialization and board
reset control. The active high reset is used directly to control the SBSRAM Z2Z
(snooze) input, which puts the SBSRAM in a power-down mode during reset.
This capability is part of the power management features that are included on
the 'C62x McEVM.

1.14 User Options

1.14.1 DIP Switches

User Options

The 'C62x McEVM includes a 12-position DIP switch (SW2-1 through
SW2-12) that allows selection of user options. The user options include the
DSP’s boot and clock modes, clock oscillator selection, endian mode, JTAG
selection, and three user-defined options.

Table 1-43 summarizes the 12 switches and their functions in both the ON and
OFF settings. Table 1-44 lists the valid boot mode selections for the MCEVM.
Highlighted table entries indicate the default switch settings. If a daughter-
board that provides boot memory is used, you must select the appropriate
ROM boot mode from the TMS320C6201/C6701 Peripherals Reference
Guide. An ON setting translates to a logic 0, and an OFF setting translates to
a logic 1.

Table 1-43. User Option DIP Switches

Switch

Number Name OFF Selection ON Selection

SW2-1- BOOTMODE4- See Table 1-44 See Table 1-44

SW2-5 BOOTMODEO

SW2-6 CLKMODE Multiply-by-1 mode Multiply-by-4 mode
(PLL bypassed)

SwW2-7 CLKSEL OSC B (50 MHz) OSC A (33.25 MHz)

SW2-8 ENDIAN Big endian Little endian

SW2-9 JTAGSEL? Internal (TBC) External (XDS510)

SW2-10 USER2 1 0

Sw2-11 USER1 1 0

SW2-12 USERO 1 0

T The JTAGSEL selection is ignored in stand-alone mode where external operation is forced.

TMS320C62x McEVM Hardware 1-89

User Options

Table 1-44. Valid Boot Mode Selections

Boot BM4 BM3 BM2 BM1 BMO
Mode Map Memory at Address 0O (Sw2-1) (SW2-2) (SW2-3) (SW2-4) (SW2-5)
None MAP O 1/2-rate SBSRAM ON ON ON OFF OFF
None MAP Q0 1x-rate SBSRAM ON ON OFF ON ON
None MAP 1 Internal ON ON OFF ON OFF
HPI MAP O External ON ON OFF OFF ON
HPI MAP 1 Internal ON ON OFF OFF OFF

1.14.2 Jumper Options

Two jumper options (J5 and J6) on the MCEVM are related to the MVIP inter-

face.

The MVIP 2.048 MHz (C20) and 4.096 (C4b) clocks can be terminated using
a series 1000 pF capacitor and 1 Kohm resistor. J5 is used for C20 termination
and J6 is used for C4b termination. Termination is selected by connecting pins
1 and 2 on these 3-pin headers. The manufacturing default is to connect pins
2 and 3 (no termination). Termination is only required if the MCEVM is on the

end of the MVIP bus.

Table 1-45 summarizes the jumper options. Note that all default settings are

to connect pins 2 and 3 as shown in boldface.

Table 1-45. Jumper Options

1-90

Jumper Selection

Jumper Setting

MVIP C2o terminated
MVIP C20 not terminated
MVIP C4b terminated

MVIP C4b not terminated

J5-1to J5-2

J5-2 to J5-3

J6-1 to J6-2

J6-2 to J6-3

1.15 Indicators

Indicators

The McEVM has seven LEDs that provide a power-on indication, two user-de-
fined status indications, and four T1/E1 status indicators.

A green LED is hardwired on the 5-V supply, which can originate from the PCI
bus during internal operation or the power connector during external opera-
tion. When the green LED is illuminated, it indicates that power is applied to
the board.

Two red LEDs are controlled by CPLD register bits that are memory mapped
in the DSP’s CE1 memory space. Both LEDs are located on top of the board.
They are also under user DSP control and are application dependent.

The T1/E1 status indicators include red alarm, yellow alarm, sync, and loop
indicators. Ared LED is used for the red alarm indication, a yellow LED is used
for the yellow alarm indication and the two green LEDs are used for the sync
and loop conditions. The red alarm LED will be illuminated when a red alarm
condition is declared for the received T1/E1 signal. The yellow alarm LED will
be illuminated when a yellow alarm signal is received from the far-end terminal
of the T1/E1 span. Because the LEDs are memory mapped in the DSP
memory space, the host software can also control them from the HPI via the
PCI bus. Table 1-46 provides a summary of the LED indicators.

Table 1-46. LED Summary Table

Bracket Location Name Color Intended Indication
Bottom Left GRN1 Green Sync (Green)

Top Left GRN2 Green Loop (Green)

Top Right RED3 Red Red Alarm

Bottom Right YEL Yellow Yellow Alarm

TMS320C62x McEVM Hardware 1-91

1-92

1-1

evme6x_abort_read

evm6x_abort
read

Syntax

Description

Return Value

Example

1-2

Terminates a Pending Read Transfer

#include <evm6xdll.h>
BOOL evm6x_abort_read(HANDLE h_device);

The evm6x_abort_read() function terminates a pending read operation for a
target board. This can be used by one thread to terminate the pending read
operation of another thread.

(1 The h_device parameter is the handle returned from a successful
evm6x_open() call.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_abort_read() function aborts a read op-
eration that has not finished. The evm6x_read call is pending in a separate
thread.

#include <windows.h>
#include <evmo6xdll.h>

"HANDLE h_board:

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* unable to open board */
exit(-1);

[* Start thread to receive data */

/* Do something else, then check that receive is */
[* complete *

. ll* Abort read operation that is not complete */
if (! evm6x_abort_read(h_board))

/* evm6x_abort_read() failed */

}

evmo6x_abort_
write

Syntax

Description

Return Value

Example

evmex_abort_write

Terminates a Pending Write Transfer

#include <evm6xdll.h>
BOOL evm6x_abort_write(HANDLE h_device);

The evm6x_abort_write() function terminates a pending write operation for a
target board. This can be used by one thread to terminate the pending write
operation of another thread.

(1 The h_device parameter is the handle returned from a successful
evm6x_open() call.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_abort_write() function aborts a write op-
eration that has not finished. The evm6x_write call is pending in a separate
thread.

#include <windows.h>
#include <evm6xdll.h>

"HANDLE h_board:

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

[* unable to open board */
exit(-1);

/* Start thread to send data */

. }* Do something else, then check that transfer is */
/* complete */

. }* Abort write operation that is not complete */
if (! evm6x_abort_write(h_board))

[* evm6x_abort_write() failed */

}

TMS320C62x McEVM Host Support Software 1-3

evmeéx_board_type
evm6x_board
type

Syntax

Description

Return Value

Example

1-4

Retrieves Board Type and Version Information

#include <evme6xdll.h>
BOOL evm6x_board_type(

HANDLE h_device,
PEVM6X_BOARD_TYPE p_ board_type,
PULONG p_rev_id);

The evm6x_board_type() function retrieves the board type and revision ID in-
formation that is stored in the PCI configuration space of the board. The return
value indicates the success of the function call.

(1 The h_device parameter is the handle returned from a successful
evm6x_open() call.

(1 The p_board_type and the p_rev_id parameters are pointers to the loca-
tions in which to place the requested information. After a successful
evm6x_board_type() function call to a McEVM board is made, the location
pointed to by the p_board _type parameter contains the enumerated value
TYPE_MCEVM. The location pointed to by the p_rev_id parameter con-
tains the board’s revision ID as retrieved from the board’s PCI configura-
tion space. The board revision ID is used to indicate McEVM board hard-
ware revisions.

The function returns TRUE or FALSE to indicate the success of the operation.
In the following example, the evm6x_board_type() function retrieves informa-
tion about the board type of the open board.

#include <windows.h>
#include <stdio.h>
#include <evmo6xdll.h>

" HANDLE h_board:
EVM6XDLL_BOARD_TYPE t_board_type;
ULONG ul_rev_id;

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

exit(-1);

if (levm6x_board_type(h_board, &t_board_type,
&ul_rev_id))

printf("ERROR: evm6x_board_type() failed.\n");

else

{

evmex_clear
message_event

Syntax

Description

Return Value

Example

evmeéx_clear_ me ssage_event

if (t_board_type == TYPE_EVM)
printf("EVM Board, Revision %d.\n", ul_rev_id);
else

printf(“Unknown board type.\n”);

}
}

Clears the Message Event

#include <evm6xdll.h>
BOOL evm6x_clear_message_event(HANDLE h_device);

The evm6x_clear_message_event() function sets the message event to the
nonsignaled state. Call this function to clear out any previous events before
setting up to receive new events.

(1 The h_device parameter is the handle returned from a successful
evm6x_open() call.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_clear_message_event() function clears
the message event for a MCEVM board to the nonsignaled state.

#include <windows.h>
#include <evm6xdll.h>

"HANDLE h_board;
h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* unable to open board */
exit(-1);

if (! evmo6x_clear_message_event(h_board))

/* evm6x_clear_message_event failed */
evm6x_close(h_board);
exit(-1);

}

TMS320C62x McEVM Host Support Software 1-5

evmex_close

evmo6x_close

Syntax

Description

Return Value

Example

1-6

Closes a Driver Connection to a Board

#include <evm6xdll.h>
BOOL evm6x_close(HANDLE h_device);

The evm6x_close() function closes a previously opened driver connection to
a board. The returned value is TRUE for a successful operation.

(1 The h_device parameter is the handle returned from a successful
evm6x_open() call.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_close() function closes a previously
opened driver connection to a McEVM board.

#include <windows.h>
#include <evm6xdIl.h>

"HANDLE h_board:
h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

exit(—1);

evm6x_close(h_board);

evmex_coff_
display

Syntax

Description

Return Value

Example

evm©6x_coff_display

Displays COFF Information

#include <evm6xdll.h>

BOOL evm6x_coff_display(
char *filename,
BOOL clear_bss flag,
BOOL dump_flag);

The evm6x_coff_display() function outputs COFF file information to stdout.
This information includes details for each section, including name, size, and
flags.

(1 The filename parameter is the filename of the COFF file to be processed.

(1 The clear_bss_flag parameter, if TRUE, causes the bss section to be set
to 0. This is not the default behavior of the DSP debugger.

[The dump_flag parameter, if TRUE, causes all of the data being written
to DSP memory to be displayed to stdout. This can be a very large amount
of data.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_coff_display() function displays the sec-
tion information of a COFF file to stdout.

#include <windows.h>
#include <evm6xdll.h>

N if (! evm6x_coff_display("example.out”, FALSE, FALSE))
{
[* COFF display failed */
}

TMS320C62x McEVM Host Support Software 1-7

evm6x_coff load

evmb6x_coff load

Syntax

Description

Return Value

1-8

Loads a COFF Image to a Board Using the HPI

#include <evm6xdll.h>
BOOL evm6x_coff_load(

HANDLE h_device,
LPVOID Ip_hpi,

char *filename,
BOOL verbose_flag,
BOOL clear _bss flag,
BOOL dump_flag);

The evm6x_coff _load() function reads a COFF image and writes the data to
DSP memory using the HPI. This function allows you to load data or execut-
able images from a COFF file to DSP memory.

a

a

The h_device parameter is the handle returned from a successful
evm6x_open() call.

The Ip_hpi parameter is either NULL or the handle returned from a suc-
cessful evm6x_open_hpi() call. If this parameter is NULL, the function
calls evm6x_open_hpi() to get its own handle to the HPI then closes it be-
fore returning. If the parameter is not NULL, the function uses the provided
handle to the HPI and does not close it before returning. If the HPI is cur-
rently open, it cannot be opened again because the HPI supports only one
user at a time.

The filename parameter is the filename of the COFF file to be processed.

The verbose_flag parameter, if TRUE, causes COFF file information to be
sent to stdout during COFF file processing.

The clear_bss_flag parameter, if TRUE, causes the bss section to be set
to 0. This is not the default behavior of the DSP debugger.

The dump_flag parameter, if TRUE, causes all of the data being written
to DSP memory to be displayed to stdout. This can be a very large amount
of data.

The function returns TRUE or FALSE to indicate the success of the operation.

Example

evm6x_coff_load

In the following example, the evm6x_coff load() function loads a COFF
executable to a DSP. The COFF executable is the file example.out, and the
verbose flag is set, which causes COFF section information to be displayed
to stdout during the load operation.

#include <windows.h>
#include <evm6xdll.h>

" HANDLE h_board:;

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* unable to open board */
exit(-1);

/* *
reset DSP into HPI boot mode
configure emif registers
load COFF executable
unreset DSP
* */
evm6x_reset_dsp(h_board, HPI_BOOT);
evm6x_init_emif(h_board, NULL);
if (! evm6x_coff_load(h_board, NULL, "example.out”,
TRUE, FALSE, FALSE))

/* COFF load failed */
}

evm6x_unreset_dsp(h_board);

TMS320C62x McEVM Host Support Software 1-9

evm6x_cpld read_all

evm6x_cpld_
read_all

Syntax

Description

Return Value

Example

Opcode

1-10

Reads the Contents of the CPLD Registers

#include <evm6xdll.h>

BOOL evm6x_cpld_read_all(
HANDLE h _device,
PULONG p _reg array);

The evm6x_cpld_read_all()function reads all the CPLD registers and stores
the values into the ULONG array provided by the user. Note that the low byte
of each ULONG is the only portion that is significant since the CPLD registers
are only 8 bits wide. This function is for testing and debugging purposes. Gen-
eral access to the CPLD registers is not required for user programs.

(1 The h_device parameter is the handle returned from a successful
evm6x_open() call.

[The p_reg_array parameter is a pointer to the array of ULONGs that will
be filled with the CPLD register contents. This array must be atleast 9 ele-
ments in size to hold all the CPLD registers of the EVM board.

The function returns TRUE or FALSE to indicate the success of the operation.

Inthe following example, the evm6x_cpld_read_all function is used to read the
current state of the CPLD registers.

#include <windows.h>
#include <evm6xdll.h>

HANDLE h_board;
ULONG reg_array[9];

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)
{

/* unable to open board */
exit(-1);
}

/* read the CPLD registers */
if (levm6x_cpld_read_all(h_board, reg_array))

{

/* evm6x_cpld_read_all function failed */

}

evmoéx_dll_
revision

Syntax

Description

Return Value

evm6x_dll_revision

Reads EVM DLL Revision Information

#include <evme6xdll.h>

BOOL evm6x_dll_revision(
PULONG p_RevMajor,
PULONG p_Rev_Minor,
PULONG p_BuildNum)

The evm6x_dll_revisiont() function reads the revision information from the
EVM DLL.

(1 The pRevMajor parameter is a pointer to where the major revision infor-
mation of the DLL will be written.

[The pRevMinor parameter is a pointer to where the minor revision infor-
mation of the DLL will be written.

(1 The pBuildNum parameter is a pointer to where the build number of the
DLL will be written.

The function returns TRUE or FALSE to indicate the success of the operation.

TMS320C62x McEVM Host Support Software 1-11

evmex_generate_nmi_int

Generates an NMI to a DSP
_nmi_int

Syntax

Description

Return Value

Example

1-12

#include <evm6xdll.h>
BOOL evm6x_generate_nmi_int(HANDLE h_device);

The evm6x_generate_nmi_int() function causes an NMl interrupt to be gener-
ated to the DSP. This interrupt can be disabled by the DSP.

(4 The h_device parameter is the handle returned from a successful
evm6x_open() call.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_generate_nmi_int() function generates
an NMI to the DSP on a McEVM board.

#include <windows.h>
#include <evmo6xdll.h>

"HANDLE h_board;
h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* unable to open board */
exit(-1);

/* send a NMI to the DSP */
if (! evmb6x_generate_nmi_int(h_board))

/* evm6x_generate_nmi_int function failed */

}

evmex_hpi_
close
Syntax

Description

Return Value

Example

evm6x_hpi_close

Closes the HPI for a Board

#include <evm6xdll.h>
BOOL evm6x_hpi_close(LPVOID h_hpi_map);

The evm6x_hpi_close() function closes an open HPI session that was started
with a successful evm6x_hpi_open() call.

(1 The h_hpi_map parameter is the handle returned from a successful
evm6x_hpi_open() call.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_hpi_close() function closes the HPI after
reading from DSP memory.

#include <windows.h>
#include <evm6xdll.h>

HANDLE h_board;
LPVOID h_hpi;
ULONG ul_ret_len;
ULONG ul_buffer[2];

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* unable to open board */
exit(-1);

h_hpi = evm6x_hpi_open(h_board);
if (h_hpi == NULL)

[* evm6x_hpi_open() failed */
evm6x_close(h_board);
exit(-1);

/* read DSP memory (2 words, 32bits each) */

ul_ret_len = 8;

evm6x_hpi_read(h_hpi, ul_buffer, &ul_ret_len,
0x1f0);

if (! evm6x_hpi_close(h_hpi))
/* evm6x_hpi_close failed */

}

TMS320C62x McEVM Host Support Software 1-13

evm6x_hpi_fill

evm6x_hpi_fill

Syntax

Description

Return Value

Example

1-14

Fills DSP Memory Using the HPI

#include <evme6xdll.h>

BOOL evm6x_hpi_fill(
LPVOID h_hpi_map,
ULONG fill_value,
PULONG p_length,
ULONG dest_addr);

The evm6x_hpi_fill() function fills target DSP memory space with a fixed data
value. The HPI is used to access DSP memory from the host.

[The h_hpi_map parameter is the handle returned from a successful
evm6x_hpi_open() call.

(1 The fill_value parameter is the 32-bit data value to be written to DSP
memory space.

(1 The p_length parameter is the address of the write length. The length is
updated with the actual transfer length. The length is the number of bytes
to be transferred but must be a multiple of 4 because all transfers are 32-bit
words.

(1 The dest_addrparameter is the fill starting address in the DSP’s memory
space. The address must be 32-bit word aligned. This address is from the
DSP’s point of view.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_hpi_fill() function fills 31 words (32 bits
each) of DSP memory starting with address 0x1f84 with the data pattern
0x1234cdef.

#include <windows.h>
#include <evmo6xdll.h>

"HANDLE h_board:
LPVOID h_hpi;
ULONG ul_ret_len;

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

[* unable to open board */
exit(-1);
}

h_hpi = evm6x_hpi_open(h_board);
if (h_hpi == NULL)

I* evm6x_hpi_open() failed */
evm6x_close(h_board);
exit(-1);

/* fill 31 words of DSP memory (32bits each) */

ul_ret_len = Ox7c;

if (! evm6x_hpi_fill(h_hpi, 0x1234cdef, &ul_ret_len,
0x1f84) || (ul_ret_len != 0x7c))

I* evm6x_hpi_fill() failed */
}

evm6x_hpi_close(h_hpi);

evm6x_hpi_fil

TMS320C62x McEVM Host Support Software 1-15

evmeéx_hpi_generate_int

evme6x_hpi_ Generates an Interrupt to a DSP Using the HPI
generate_int

#include <evm6xdll.h>
BOOL evm6x_hpi_generate_int(LPVOID h_hpi_map);

Syntax

Description

Return Value

Example

1-16

The evm6x_hpi_generate_int() function causes an HPI interrupt (DSPINT) on
the target DSP.

(4 The h_hpi_map parameter is the handle returned from a successful

evm6x_hpi_open() call.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_hpi_generate_int() function generates
an interrupt to a DSP using the HPI.

#include <windows.h>
#include <evmo6xdll.h>

"HANDLE h_board;

LPVOID h_hpi;

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* unable to open board */
exit(-1);

h_hpi = evm6x_hpi_open(h_board);
if (h_hpi == NULL)

/* evm6x_hpi_open() failed */
evm6x_close(h_board);
exit(-1);

}

/* generate an HPI interrupt */
if (! evm6x_hpi_generate_int(h_hpi)

[* evm6x_hpi_generate_int() failed */

}

evmex_hpi_
open

Syntax

Description

Return Value

Example

evmo6x_hpi_open

Opens the HPI for a Board

#include <evm6xdll.h>
LPVOID evm6x_hpi_open(HANDLE h_device);

The evm6x_hpi_open() function establishes a single connection per target
board to the HPI of atarget board. After the HPI has been successfully opened,
read and write operations can be performed to DSP memory.

(1 The h_device parameter is the handle returned from a successful
evm6x_open() call.

Note:

The various HPI accesses performed to a board’s HPI are protected by a
MUTEX. This prevents multiple operations from interfering with each other.
But, this also means that an operation may not begin immediately if another
HPI operation is in progress. This could cause an HPI interrupt to the DSP
to be delayed.

The function returns one of the following values:

Handle Handle to be used for HPI access
NULL Attempt to open the HPI failed

In the following example, the evm6x_hpi_open() function opens a handle to
the HPlon a McEVM board. This handle is required for access to DSP memory
through the HPI using the evm6x_hpi_read(), evm6x_hpi_write(), and
evm6x_hpi_fill() functions.

#include <windows.h>
#include <evm6xdll.h>

HANDLE h_board;
LPVOID h_hpi;
ULONG ul_ret_len;
ULONG ul_buffer[2];

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* unable to open board */
exit(-1);

TMS320C62x McEVM Host Support Software 1-17

evm6x_hpi_read

evm6x_hpi_read

Syntax

Description

Return Value

1-18

h_hpi = evm6x_hpi_open(h_board) ;
if (h_hpi == NULL)

/* evm6x_hpi_open() failed */
evm6x_close(h_board);
exit(—1);

}

/* read DSP memory (2 words, 32bits each) */
ul_ret_len = 8;
if (levm6x_hpi_read(h_hpi, ul_buffer, &ul_ret_len,
0x1f0) ||
(ul_ret_len = 8))

/* evm6x_hpi_read() failed */
}
evm6x_hpi_close(h_hpi);

Reads DSP Memory Using the HPI

#include <evm6xdll.h>

BOOL evm6x_hpi_read(
LPVOID h_hpi_map,
PULONG p_buffer,
PULONG p_length,
ULONG src_addr),

The evm6x_hpi_read() function transfers data from the target DSP memory
space to host memory. The HPI is used to access DSP memory from the host.

(1 The h_hpi_map parameter is the handle returned from a successful
evm6x_hpi_open() call.

(1 The p_bufferparameter is the address of the buffer to be filled by the read
operation. This address must be 32-bit word aligned.

[The p_length parameter is the address of the read length. The length is
updated with the actual transfer length. The length is the number of bytes
to be transferred but must be a multiple of 4 because all transfers are 32-bit
words.

(1 The src_addr parameter is the transfer starting address in the DSP’s
memory space. The address must be 32-bit word aligned. This address
is from the DSP’s point of view.

The function returns TRUE or FALSE to indicate the success of the operation.

Example

evm6x_hpi_read

In the following example, the evm6x_hpi_read() function reads two words
(32 bits each) from DSP memory at address 0x1fO0.

#include <windows.h>
#include <evm6xdll.h>

HANDLE h_board;
LPVOID h_hpi;
ULONG ul_ret_len;
ULONG ul_buffer[2];

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* unable to open board */
exit(-1);

h_hpi = evm6x_hpi_open(h_board);
if (h_hpi == NULL)

[* evm6x_hpi_open() failed */
evm6x_close(h_board);
exit(-1);

/* read DSP memory (2 words, 32bits each) */
ul_ret len =8;
if (! evm6x_hpi_read(h_hpi, ul_buffer, &ul_ret_len,
ox1fo) ||
(ul_ret_len!=18))

[* evm6x_hpi_read() failed */
}
evm6x_hpi_close(h_hpi);

TMS320C62x McEVM Host Support Software 1-19

evm6x_hpi_read_single

evm6x_hpi_read Reads a Single Byte Using the HPI
_single

Syntax #include <evm6xdll.h>
BOOL evm6x_hpi_read_single(
LPVOID h_hpi_map,
LPVOID p _data, inti_size,
ULONG src_addr)

Description The evm6x_hpi_read_single function reads a single 8—bit, 16—bit or 32—bit val-
ue from the target DSP memory space. The HPI is used to access DSP
memory from the host. Please note that this call reads a 32—bit aligned value
from DSP memory then returns the appropriate portion of the 32—bit value
based on the address and size of the request. Reads smaller than 32-bits are
not supported. Thus, if a read of all the bytes of a 32—bit aligned access will
produce undesirable results, then this call should not be used.

(1 The h_hpi_map parameter is the handle returned from a successful
evm6x_hpi_open call.

(1 The p_data parameter is the address of the location that will be filled by
the read operation. This address must be aligned for the size of the HPI
access requested.

[Thei_size parameter is the size of the HPI access in bytes. It can be 1
for an 8-bit access, 2 for a 16—bit access or 4 for a 32—bit access.

[The src_addr parameter is the address in the DSP’s memory space to be
read. This address must be aligned to the requested access size. This ad-
dress is from the DSP’s point of view.

Return Value The function returns TRUE or FALSE to indicate the success of the operation.

Example In the following example, the evm6x_hpi_read_single function is used to read
a byte (8-bits), a short (16-bits) and a long (32—bits) from DSP
memory at addresses 0x800001c3, 0x800001ca and 0x800001cc.

1-20

evm6x_hpi_read_single

#include <windows.h>
#include <evm6xdll.h>

HANDLE h_board;
LPVOID h_hpi;
UCHAR uc_temp;
USHORT us_temp;
ULONG ul_temp;

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)
{

/* unable to open board */
exit(-1);

h_hpi = evm6x_hpi_open(h_board);
if (h_hpi == NULL)

[* evm6x_hpi_open() failed */
evm6x_close(h_board);
exit(-1);

}

/* read a byte from DSP memory (8-bits) */

if (levm6x_hpi_read_single(h_hpi, &uc_temp, 1,
0x800001c3))

/* evm6x_hpi_read_single() failed */
}
/* read a short from DSP memory (16-bits) */
if (levm6x_hpi_read_single(h_hpi, &us_temp, 2,
0x800001ca))
{

[* evm6x_hpi_read_single() failed */

}

/* read a long from DSP memory (32—bits) */
if (levm6x_hpi_read_single(h_hpi, &ul_temp, 4,
0x800001cc))
/* evm6x_hpi_read_single() failed */

}
evm6x_hpi_close(h_hpi);

TMS320C62x McEVM Host Support Software

1-21

evmeéx_hpi_write

Syntax

Description

Return Value

Example

1-22

Writes to DSP Memory Using the HPI

#include <evme6xdll.h>

BOOL evm6x_hpi_write(
LPVOID h_hpi_map,
PULONG p_buffer,
PULONG p_length,
ULONG dest_addr);

The evm6x_hpi_write() function transfers data from host memory to the target
DSP memory space. The HPI is used to access DSP memory from the host.

(4 The h_hpi_map parameter is the handle returned from a successful
evm6x_hpi_open() call.

[The p_buffer parameter is the address of the buffer to be transferred by
the write operation. This address must be 32-bit word aligned.

(1 The p_length parameter is the address of the write length. The length is
updated with the actual transfer length. The length is the number of bytes
to be transferred but must be a multiple of 4 because all transfers are 32-bit
words.

(1 The dest_addr parameter is the transfer starting address in the DSP’s
memory space. The address must be 32-bit word aligned. This address
is from the DSP’s point of view.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_hpi_write() function writes two words
(32 bits each) to DSP memory at address 0x1f0.

#include <windows.h>
#include <evm6xdIl.h>

HANDLE h_board;
LPVOID h_hpi;
ULONG ul_ret_len;
ULONG ul_buffer[2];

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

[* unable to open board */
exit(-1);
}

evmex_hpi_write

h_hpi = evm6x_hpi_open(h_board);
if (h_hpi == NULL)

I* evm6x_hpi_open() failed */
evm6x_close(h_board);
exit(-1);

/* write 2 words to DSP memory (32bits each) */
ul_ret_len =8;
ul_buffer[0] = 0x12345678;
ul_buffer[1] = Oxfedcba98;
if (! evm6x_hpi_write(h_hpi, ul_buffer, &ul_ret_len,
ox1fo) ||
(ul_ret_len!=8))

[* evm6x_hpi_write() failed */
}
evm6x_hpi_close(h_hpi);

TMS320C62x McEVM Host Support Software

1-23

evme6x_hpi_write_single

Writes a Single Byte, Short or Long, Using the HPI
_single

Syntax #include <evme6xdll.h>
BOOL evm6x_hpi_write_single(
LPVOID h_hpi_map,
ULONG ul_data, inti_size,
ULONG dest_addr);

Description The evm6x_hpi_write_single function writes a single 8—bit, 16—bit or 32-bit
data value to the target DSP memory space. The HPI is used to access DSP
memory from the host. Please note that internal program memory does not
support byte accesses. Thus, any write smaller than 32—bits to internal pro-
gram memory will not modify memory as expected.

[The h_hpi_map parameter is the handle returned from a successful
evm6x_hpi_open call.

[The ul_data parameter contains the value to be written to DSP memory.

The low 8-bits or 16—bits of the value will be used for those size accesses.

[

(1 Thei_size parameter is the size of the HPI access in bytes. It can be 1
for an 8-bit access, 2 for a 16—bit access or 4 for a 32—bit access.

[The dest_addr parameter is the address in the DSP’s memory space to
be accessed. This address must be aligned to the requested access size.
This address is from the DSP’s point of view.

Return Value The function returns TRUE or FALSE to indicate the success of the operation.

Example In the following example, the evm6x_hpi_write_single function is used to write
a byte (8-bits), a short (16—bits) and a long (32—bits) to DSP memory
at addresses 0x800001f1, 0x800001f6 and 0x800001e0.

Opcode #include <windows.h>
#include <evm6xdll.h>

HANDLE h_board;
LPVOID h_hpi;
ULONG ul_temp;

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)
{

/* unable to open board */

1-24

evmex_hpi_write_single

exit(—1);
}

h_hpi = evm6x_hpi_open(h_board);
if (h_hpi == NULL)
{
[* evm6x_hpi_open() failed */
evmb6x_close(h_board);
exit(—1);
}

[* write a byte (8—bits) to DSP memory */
ul_temp = 0x3f;
if (levm6x_hpi_write_single(h_hpi, ul_temp, 1, 0x800001f1))
{
I* evm6x_hpi_write_single() failed */

}

[* write a short (16—bits) to DSP memory */
ul_temp = Oxbeef;
if (levm6x_hpi_write_single(h_hpi, ul_temp, 2, 0x800001f6))
{
I* evm6x_hpi_write_single() failed */

}

[* write a long (32—bits) to DSP memory */
ul_temp = 0x87654321;
if (levm6x_hpi_write_single(h_hpi, ul_temp, 4, 0x800001e0))
{

[* evm6x_hpi_write_single() failed */

}

evm6x_hpi_close(h_hpi);

TMS320C62x McEVM Host Support Software 1-25

evmex_init_emif

Syntax

Description

Return Value

Example

1-26

Initializes the EMIF Registers

#include <evm6xdll.h>

BOOL evm6x_init_emif(
HANDLE h_device,
LPVOID Ip_hpi);

The evm6x_init_emif() function sets the EMIF registers using HPI accesses
to the DSP memory space. This operation is used in conjunction with HPI boot
mode. Callthe evm6x_reset_dsp() function to resetthe DSP and putitinto HPI
boot mode (see page 1-35). Then, before loading code to memory, call the
evm6x_init_emif() function to initialize the EMIF registers so that external
memory on the board is accessible via the HPI.

[The h_device parameter is the handle returned from a successful
evm6x_open() call.

(1 The Ip_hpi parameter is the handle returned from a successful
evm6x_hpi_open() call or NULL if the HPI is not already open. If this pa-
rameter is NULL, the HPI is opened for this operation then closed at the
completion of the function. If this parameter is not NULL, the value is used
as the handle for HPI accesses and is not closed at the completion of the
function.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_init_emif() function properly configures
the EMIF registers of the DSP for the McEVM board. This step must be done
after resetting the DSP and before the DSP tries to access memory on the
McEVM board.

#include <windows.h>
#include <evm6xdll.h>

"HANDLE h_board:
h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

[* unable to open board */
exit(-1);

evm6x_mailbox_read

/* *
reset DSP into HPI boot mode
configure emif registers
load COFF executable
unreset DSP
* */
evmo6x_reset_dsp(h_board, HPI_BOOT);
if (! evmo6x_init_emif(h_board, NULL))

[* evm6x_init_emit call failed */

}

evm6x_coff_load(h_board, NULL, "example.out”,
FALSE, FALSE, FALSE);
evm6x_unreset_dsp(h_board);

evmo6x_mail- Reads From an EVM Mailbox

box_read

Syntax #include <evm6xdll.h>
BOOL evm6x_mailbox_read(
HANDLE h_device,
ULONG regNum,
PULONG p_data);

Description The evm6x_mailbox_read() function reads information from the EVM’s mail-
box register.

[The h_device parameter is the handle returned from a successful
evm6x_open() call.

[The regNum parameter represents the mailbox number to be read.

[1 The pData parameter is a pointer to the location in which the data will be
stored.

Return Value The function returns TRUE or FALSE to indicate the success of the operation.

TMS320C62x McEVM Host Support Software 1-27

evme6x_mailbox_write

evmo6x_mail- Writes To an EVM Mailbox
box_write

Syntax #include <evme6xdll.h>
BOOL evm6x_mailbox_write(
HANDLE h_device,
ULONG regNum,
ULONG data);

Description The evm6x_mailbox_write() function writes information to the EVM’s mailbox
register.

(1 The h_device parameter is the handle returned from a successful
evme6x_open() call.

[The regNum parameter represents the target mailbox number.

(1 The data parameter is the data to be written.

Return Value The function returns TRUE or FALSE to indicate the success of the operation.
evme6x_nvram_ Reads a Byte of NVRAM

read

Syntax #include <evme6xdll.h>

BOOL evm6x_nvram_read(
HANDLE h_device,
USHORT offset,
PUCHAR p data);

Description The evm6x_nvram_read() function reads a byte from a target board’s
NVRAM.

Avoiding Simultaneous NVRAM Accesses

Make sure that NVRAM read and/or write operations do not happen at
the same time from both the host and the DSP. Simultaneous accesses
to NVRAM will result in invalid operations and will possibly corrupt data
stored in NVRAM.

[The h_device parameter is the handle returned from a successful
evm6x_open() call.

[The offset parameter is the NVRAM byte offset to be read.

1-28

Return Value

Example

evmex_nvram_read

(1 The p_dataparameter is a pointer to the location in which to place the byte
read from NVRAM.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_nvram_read() function reads the byte
value stored in NVRAM at offset 0x83.

#include <windows.h>
#include <evm6xdll.h>

"HANDLE h_board;
UCHAR c_data;

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* unable to open board */
exit(-1);
}

if (! evm6x_nvram_read(h_board, 0x83, &c_data))
[* evm6x_nvram_read failed */
}

else

/* byte read from offset 0x83 is in c_data */

}

TMS320C62x McEVM Host Support Software 1-29

evmex_nvram_write

evme6x_nvram_

write

Syntax

Description

Return Value

Example

1-30

Writes a Byte to NVRAM

#include <evm6xdll.h>

BOOL evm6x_nvram_write(
HANDLE h_device,
USHORT offset,
UCHAR data);

The evm6x_nvram_write() function writes a byte to a target board’s NVRAM.
This write operation is not allowed to the lower 0x80 bytes of NVRAM. This
space is used for PCI configuration settings and should not be modified.

Avoiding Simultaneous NVRAM Accesses

Make sure that NVRAM read and/or write operations do not happen at
the same time from both the host and the DSP. Simultaneous accesses
to NVRAM will result in invalid operations and will possibly corrupt data
stored in NVRAM.

(1 The h_device parameter is the handle returned from a successful
evm6x_open() call.

(1 The offset parameter is the NVRAM byte offset to be written.
[0 The data parameter is the byte data value to be written to NVRAM.
The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_nvram_write() function writes the byte
value 0x3f to NVRAM at offset Oxc3.

#include <windows.h>
#include <evm6xdll.h>

"HANDLE h_board:
UCHAR c_data;
h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* unable to open board */
exit(-1);

c_data = 0x3f;
if (! evm6x_nvram_write(h_board, 0xc3, c_data))

[* evm6x_nvram_write failed */

}

evme6x_open

Syntax

Description

Return Value

Example

evmex_open

Opens a Driver Connection to a Board

#include <evm6xdll.h>

HANDLE evm6x_open(
int board_index,
BOOL exclusive_flag);

The evm6x_open() function opens a driver connection to a specific EVM or
McEVM board. The returned handle is used for all further accesses to the tar-
get board.

[The board_index parameteris a zero-based relative index. Valid index val-
ues depend on the number of EVM and McEVM boards in a system and
range from O to n—1, where n is the number of boards.

[The exclusive_flag parameter indicates an exclusive open request of the
target board. An exclusive open will fail if the target board is currently
open, and additional open requests will fail for a target board that has been
opened exclusively.

The function returns one of the following values:

HANDLE Handle to be used for all further accesses to
the target board

INVALID_HANDLE_VALUE Operation failed

In the following example, the evm6x_open() function performs a nonexclusive
open of the first EVM board in a system.

#include <windows.h>
#include <evmo6xdll.h>

'int board_index;
HANDLE h_board;

board_index = 0; /* select the first (or only) EVM */
/* board */

h_board = evm6x_open(board_index, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* board open failed */
exit(-1);

. évm6x_c|ose(h_board);

TMS320C62x McEVM Host Support Software 1-31

evmex_read

evm6x_read

Syntax

Description

Return Value

1-32

Reads Data from a Board

#include <evm6xdll.h>
BOOL evm6x_read(

HANDLE h_device,
PULONG p_buffer,
PULONG p_length);

The evm6x_read() function transfers data from the DSP to the host using the
PCI bus mastering capability of the board. This transfer can take an indetermi-
nate amount of time, depending on the DSP making data available for the
transfer. To prevent the host from waiting too long for a transfer, a time-out fea-
ture is available. Use the evm6x_set_timeout() function to set the time-out val-
ue (see page 1-41).

Also, a transfer can be terminated at any time using the evm6x_abort_read()
function (see page 1-2). A transfer that has been timed out or terminated still
returns a success indication, but the length value returned is not the same as
the originally requested transfer length.

[The h_device parameter is the handle returned from a successful
evm6x_open() call.

(1 The p_bufferparameter is the address of the buffer to be filled by the read
operation. This address must be 32-bit word aligned.

[The p_length parameter is the address of the read length. The length is
updated with the actual transfer length. The length is the number of bytes
to be transferred, but must be a multiple of 4 because all transfers are
32-bit words.

The function returns TRUE or FALSE to indicate the success of the operation.

Example

evmo6x_read

In the following example, the evm6x_read() function transfers 292 bytes
(73 words, 32 bits each) from the DSP into host memory using the PCI FIFO
interface provided on the MCEVM board. The transfer may succeed, but be in-
complete if the transfer timed out or a transfer abort request was initiated from
a separate thread. For additional information, see the evme6x_set_timeout()
function description on page 1-41 and the evm6x_abort_read() function de-
scription on page 1-2.

#include <windows.h>
#include <evm6xdll.h>

"HANDLE h_board:

ULONG ul_length; [* requested transfer */
/* length in bytes */
ULONG ul_ret_len; [* returned transfer */

/* length in bytes */
ULONG ul_buffer[1024]; /* data buffer, must */
/* be 32bit aligned */

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

[* unable to open board */
exit(-1);

ul_length = 292;
ul_ret_len = ul_length;
if (! evm6x_read(h_board, ul_buffer, &ul_ret_len))

/* evm6x_read failed. */

}

else
if (ul_ret_len !=ul_length)

/* evm6x_read incomplete */
[* this can be the result of a time out or */
/* an abort */
}
}

TMS320C62x McEVM Host Support Software 1-33

evmex_reset board

evmex_reset
board
Syntax

Description

Return Value

Example

1-34

Resets a Board

#include <evm6xdll.h>
BOOL evm6x_reset_board(HANDLE h_device);

The evm6x_reset_board() function causes a hardware reset pulse on the tar-
get board. The target board must be opened exclusively using the
evm6x_open() function (see page 1-31) or this function will fail. The return val-
ue indicates the success of the function call.

[0 The h_device parameter is the handle returned from a successful exclu-
sive evm6x_open() call.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_reset_board() function resets the second
McEVM board in the system. This board was previously opened exclusively.

#include <windows.h>
#include <evmo6xdll.h>

"HANDLE h_board:

/* open the second EVM board exclusively */

h_board = evm6x_open(1, TRUE);

if (h_board == INVALID_HANDLE_VALUE)
/* unable to open board exclusively */
exit(-1);

if (! evm6x_reset_board(h_board))
* reset call failed */

}

else

/* reset call succeeded */

}

evmex_reset dsp

Syntax

Description

Return Value

evmex_reset_dsp

Resets a DSP

#include <evm6xdll.h>

BOOL evm6x_reset_dsp(
HANDLE h_device,
EVM6XDLL_BOOT_MODE mode);

The evm6x_reset_dsp() function sets the boot mode and causes a reset pulse
to only the DSP. If the boot mode is set to HPI boot, the DSP is left in a halted
state. To allow the DSP to begin executing, use the evm6x_unreset_dsp()
function (see page 1-42). The return value indicates the success of the func-
tion call.

(1 The h_device parameter is the handle returned from a successful
evm6x_open() call.

(1 The enumerated mode parameter is the boot mode in which to reset the
DSP.

B HPI_BOOT resets the DSP into HPI boot mode with the MAP 1
memory map.

HP1_BOOT_MAPO resets into HPI boot mode with MAP 0.
NO_BOOT selects no boot mode with MAP 1.
NO_BOOT_MAPO selects no boot mode with MAP 0.

The various ROMX_BOOT boot modes require that an executable
boot image is present on a daughterboard.

The usual procedure for loading and starting a DSP is:
1) Resetthe DSP in HPI boot mode using the evm6x_reset_dsp() function.

2) Configure the DSP memory interface with HPI write calls to access the
EMIF registers. This can be accomplished with the evm6x_init_emif()
function (see page 1-26).

3) Load the DSP program with HPI write calls using the evm6x_coff_load()
function (see page 1-8).

4) Unreset the DSP from its halted state using the evm6x_unreset_dsp()
function (see page 1-42).

The function returns TRUE or FALSE to indicate the success of the operation.

TMS320C62x McEVM Host Support Software 1-35

evmex_retrieve_message

Example

evmex_retrieve_
message

Syntax

Description

1-36

In the following example, the the evm6x_reset_dsp() function places the DSP
into HPI boot mode. While in this state, the DSP accepts HPI accesses. The
evm6x_unreset_dsp() function releases the DSP from this state and begins
execution of DSP code. See the evm6x_unreset_dsp() function example on
page 1-42 for more information.

#include <windows.h>
#include <evm6xdll.h>

HANDLE h_board;

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* unable to open board */
exit(-1);

}

if (! evmb6x_reset_dsp(h_board, HPI_BOOT))
/* DSP reset call failed */

}

else

/* DSP reset call succeeded */

}

Retrieves a Message from a DSP

#include <evm6xdll.h>

BOOL evm6x_retrieve_message(
HANDLE h_device,
PEVM6X_MESSAGE p_message);

The evm6x_retrieve_message() function retrieves a mailbox message from
the target DSP. This function returns FALSE if the mailbox to the host from the
DSP is not full.

This is a completely independent mailbox from that used by the
evm6x_send_message() function. Also, the receipt of a message from the
DSP can be detected by a Win32 event. The interrupt caused by an incoming
message signals an event. The name of the event signaled is the string defined
in EVM6X_GLOBAL_MESSAGE_EVENT_BASE_NAME with the board in-
dex value appended as a decimal number.

[The h_device parameter is the handle returned from a successful
evm6x_open() call.

[0 The p_message parameter is a pointer to the location to place the mes-
sage from the DSP.

Return Value

Example

evmex_retrieve_message

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_retrieve_message() function checks for
and retrieves a 32-bit word sent by the DSP after waiting for the Win32 event
signaling a message arrival. If the evm6x_retrieve_message() function fails,
then a message has not been sent by the DSP. However, this should not hap-
pen in this example because the routine waits for the event signaling a new
message before retrieving the message.

#include <windows.h>
#include <stdio.h>
#include <evm6xdll.h>

HANDLE h_board;

HANDLE h_event;
EVM6XDLL_MESSAGE t message;
int n_board_index;

char s_buffer[80];

n_board_index = 1,
h_board = evm6x_open(n_board_index, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* unable to open board */
exit(-1);

/* create event name and open handle to the event */

sprintf(s_buffer, "%s%d”,
EVM6X_GLOBAL_MESSAGE_EVENT_BASE_NAME,
n_board_index);

h_event = OpenEvent(SYNCHRONIZE, FALSE, s_buffer);

/* wait for event signaling a message from the DSP */
if (WaitForSingleObject(h_event, INFINITE)
1= WAIT_OBJECT_O0)

/* wait for event failed */

}

/* retrieve message sent by DSP */
if (! evmo6x_retrieve_message(h_board, &t_message))

/* evm6x_retrieve_message() failed */
[* this means that no message is available */

}

else

[* the 32bit value sent by the DSP is in t_message */
}

TMS320C62x McEVM Host Support Software 1-37

evmé6x_send message

evm6x_send_ Sends a Message to a DSP
message

Syntax

Description

Return Value

Example

1-38

#include <evm6xdll.h>

BOOL evm6x_send_message(
HANDLE h_device,
PEVM6X_MESSAGE p_message);

The evm6x_send_message() function sends a mailbox message to the target
DSP. This function returns FALSE if the mailbox from the host to the DSP is
not empty.

(1 The h_device parameter is the handle returned from a successful
evm6x_open() call.

(1 The p_message parameter is a pointer to the message to be sent to the
DSP.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_send_message() function sends a 32-bit
value, Oxfeed002f, to a DSP using the mailbox capability of the MCEVM board.

#include <windows.h>
#include <evm6xdll.h>

HANDLE h_board:
EVM6XDLL_MESSAGE t _message;

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* unable to open board */
exit(-1);

/* send message to DSP */
t_message = 0xfeed002f;
if (! evm6x_send_message(h_board, &_message))

/* evm6x_send_message() failed */

}

evmex_set _board_config

evmex_set_ Sets the User Board Options
board_config

Syntax #include <evm6xdll.h>
BOOL evm6x_set_board_config(
HANDLE h_device,
EVM6XDLL_CLOCK_MODE e _clock _mode,
EVM6XDLL_ENDIAN_MODE e _endian_mode,
ULONG user_bits);

Description The evm6x_set _board_config() function sets the software configuration for
the board. This includes the clock mode, the endian mode, and the user bits.
This operation is not required if the hardware DIP switch settings are to be
used. If software settings are to be used, this operation must be done before
the DSP is reset using the evm6x_reset_dsp() function (see page 1-35).

[The h_device parameter is the handle returned from a successful
evm6x_open() call.

(1 The e _clock _mode enumerated parameter is one of these values:

B DSP_CLOCK_SBSRAM configures the DSP to run at the maximum
speed for SBSRAM accesses

B DSP_CLOCK_NORMAL configures the DSP to run at the normal
clock speed.

B DSP_CLOCK_AX1 configures the DSP to run at the oscillator A
multiply-by-1 clock speed.

B DSP_CLOCK_BX1 configures the DSP to run at the oscillator B
multiply-by-1 clock speed.

(1 The e_endian_mode enumerated parameter is one of these values:

B LITTLE_ENDIAN_MODE configures the DSP to run in little-endian
mode.

B BIG_ENDIAN_MODE configures the DSP to run in big-endian mode.
(1 The user_bits parameter is the value to be used for the three user bits. If
the value is greater than 7, the value is not used. In this case, the hardware

DIP switch setting for the user bits is used.

Return Value The function returns TRUE or FALSE to indicate the success of the operation.

TMS320C62x McEVM Host Support Software 1-39

evmex_set board config

Example

1-40

In the following example, the evm6x_set board_config() function sets the
McEVM board configuration, overriding the hardware DIP switch settings. This
must be done before resetting the DSP. In this example, the clock mode is set
to DSP_CLOCK_SBSRAM mode, which configures the DSP clock to the
speed of the SBSRAM. This allows the DSP to access SBSRAM at one clock
per access. The endian mode is setto BIG_ENDIAN_MODE, which allows the
DSP to execute software compiled and linked to run on a big-endian DSP. The
user bits are set to Oxff. The user bits set on the hardware DIP switch are used
because the user bits value is greater than 7.

#include <windows.h>
#include <evm6xdll.h>

" HANDLE h_board:

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

[* unable to open board */
exit(-1);

/* *

set board configuration
reset DSP into HPI boot mode
configure emif registers
load COFF executable
unreset DSP

*. */
if (! evm6x_set_board_config(h_board,

DSP_CLOCK_SBSRAM,
BIG_ENDIAN_MODE, 0xff))

/* evm6x_set_board_config call failed */

}

evmb6x_reset_dsp(h_board, HPI_BOOT);
evm6x_init_emif(h_board, NULL);
evm6x_coff_load(h_board, NULL, "example.out”,
FALSE, FALSE, FALSE);
evm6x_unreset_dsp(h_board);

evmex_set
timeout

Syntax

Description

Return Value

Example

evmex_set_timeout

Sets the Transfer Time-Out

#include <evm6xdll.h>

BOOL evm6x_set_timeout(
HANDLE h_device,
ULONG timeout),

The evm6x_set_timeout() function sets the time-out value for the PCI bus
mastering datatransfers. If atransfer exceeds this time-out period, the transfer
is terminated. The transfer return value indicates how much of the data was
transferred.

(1 The h_device parameter is the handle returned from a successful
evm6x_open() call.

[The timeoutparameter is the number of milliseconds to wait before termi-
nating a pending transfer. A value of 0 disables the time-out feature. The
default value at driver startup is 0.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_set_timeout() function sets the bus mas-
ter transfer time-out value to 5000 ms (or 5 s). This means that any transfer
that takes longer than 5 s will terminate, returning the actual number of bytes
transferred during the transfer. A transfer stalls when data to or from the DSP
is not available.

#include <windows.h>
#include <evm6xdll.h>

"HANDLE h_board:

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

/* unable to open board */
exit(-1);
}

/* set the transfer timeout to 5 seconds */
if (! evmo6x_set_timeout(h_board, 5000))

[* evm6x_set_timeout failed */

}

TMS320C62x McEVM Host Support Software 1-41

evmex_unreset_dsp

evme6x_unreset_
dsp

Syntax

Description

Return Value

Example

1-42

Unresets a DSP After Using HPI Boot Mode

#include <evme6xdll.h>
BOOL evm6x_unreset_dsp(HANDLE h_device);

The evm6x_unreset_dsp() function releases the DSP from the halted state in-
voked by the evm6x_reset_dsp() function with the mode parameter set to HPI
boot (see page 1-35). Use this function in conjunction with an
evm6x_reset_dsp() call only. The return value indicates the success of the
function call.

(1 The h_device parameter is the handle returned from a successful
evm6x_open() call.

The function returns TRUE or FALSE to indicate the success of the operation.

Inthe following example, the evm6x_unreset_dsp() function releases the DSP
from the halted state that results from resetting the DSP into HPI boot mode.

#include <windows.h>
#include <evmo6xdll.h>

" HANDLE h_board:

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)

[* unable to open board */
exit(-1);

/* *
reset DSP into HPI boot mode
configure emif registers
load COFF executable
unreset DSP

*, */

evmb6x_reset_dsp(h_board, HPI_BOOT);

evm6x_init_emif(h_board, NULL);

evm6x_coff_load(h_board, NULL, "example.out”,
FALSE, FALSE, FALSE);

if (! evm6x_unreset_dsp(h_board))

/* DSP unreset call failed */

}

evmex_user_
semaphore_get

Syntax

Description

Return Value

evme6x_user_

semphore
release

Syntax

Description

Return Value

evme6x_user_semaphore_get

Acquires User Semaphore

#include <evm6xdll.h>

BOOL evm6x_user_semaphore_get(
HANDLE h_device,
PULONG semState);

The evm6x_user_semaphore_get function is used to acquire the user sema-
phore.

(0 The semState parameter is a pointer to the semaphore.

(1 The h_device parameter is the handle returned from a successful
evm6x_open call.

The function returns TRUE or FALSE to indicate the success of the operation.

Releases User Semaphore

#include <evm6xdll.h>
BOOL evm6x_user_semaphore_release(
HANDLE h_device));

The evm6x_user_semaphore_release function is used to release the user
semaphore.

(1 The h_device parameter is the handle returned from a successful
evm6x_open call.

The function returns TRUE or FALSE to indicate the success of the operation.

TMS320C62x McEVM Host Support Software 1-43

evmex_user

evme6x_user_

semphore
wait

Syntax

Description

Return Value

Syntax

Description

1-44

Waits Until the Semaphore is Available

#include <evmoxdll.h>
BOOL evm6x_user_semaphore_wait(
HANDLE h_device));

The evm6x_user_semaphore_wait function is used to wait until the sema-
phore is available.

(1 The h_device parameter is the handle returned from a successful
evme6x_open call.

The function returns TRUE or FALSE to indicate the success of the operation.

Writes Data to a Board

#include <evm6xdll.h>

BOOL evm6x_write(
HANDLE h_device,
PULONG p_buffer,
PULONG p_length);

The evm6x_write() function transfers data from host memory to the DSP using
the PCI bus mastering capability of the board. This transfer can take an inde-
terminate amount of time, depending on the DSP accepting data for the trans-
fer. To prevent the host from waiting too long for a transfer, a time-out feature
is available. Use the evm6x_set_timeout() function to set the time-out value
(see page 1-41).

Also, a transfer can be terminated at any time using the evm6x_abort_write()
function (see page 1-3). A transfer that has been timed out or terminated still
returns a success indication, but the length value returned is not the same as
the originally requested transfer length.

[The h_device parameter is the handle returned from a successful
evmo6x_open() call.

[d The p_buffer parameter is the address of the buffer to be transferred by
the write operation. This address must be 32-bit word aligned.

[The p_length parameter is the address of the write length. The length is
updated with the actual transfer length. The length is the number of bytes

Return Value

Example

evmex_write

to be transferred but must be a multiple of 4 because all transfers are 32-bit
words.

The function returns TRUE or FALSE to indicate the success of the operation.

In the following example, the evm6x_write() function sends 292 bytes
(73 words, 32 bits each) from host memory to the DSP using the PCI FIFO in-
terface provided on the McEVM board. The transfer may succeed, but be in-
complete if the transfer timed out or a transfer abort request was initiated from
a separate thread. For additional information, see the evm6x_set_timeout()
function description on page 1-41 and the evm6x_abort_write() function de-
scription on page 1-3.

#include <windows.h>
#include <evmo6xdll.h>

"HANDLE h_board:

ULONG ul_length; [* requested transfer */
/* length in bytes */
ULONG ul_ret_len; [* returned transfer */

/* length in bytes */
ULONG ul_buffer[1024]; /* data buffer, must */
[* be 32bit aligned */

h_board = evm6x_open(0, FALSE);
if (h_board == INVALID_HANDLE_VALUE)
{

/* unable to open board */
exit(-1);

. iJI_Iength =292;
ul_ret_len = ul_length;
if (! evm6x_write(h_board, ul_buffer, &ul_ret_len))

/* evm6x_write failed. */

}

else
if (ul_ret_len !=ul_length)

/* evm6x_write incomplete */
[* this can be the result of a time out or */
/* an abort */
}
}

TMS320C62x McEVM Host Support Software 1-45

McEVM Host Support Software Example

1.16 McEVM Host Support Software Example

The following is a simple program that loads and runs a COFF file in the
McEVM. The programiillustrates the use of a number of the most basic MCEVM
Win32 DLL calls.

Example 1-1. McEVM Win32 DLL Sample Code

I* */
/* FILENAME: HostApp.c — Host Support Software Example */
I* */

#include <windows.h>
#include "evme6xdIl.h”

void WriteWord2Mem(LPVOID, ULONG, ULONG);

I* */
/* main() */

/*

void main(int argcl, char *argv1[])

*/

HANDLE hBd = NULL; /* Board device handle */
short iBd =0; /*Board index */
BOOL bExcl =1; /*Exclusive open = TRUE */
short iMp =0; /* Map selector = MAPO */
EVM6XDLL_BOOT_MODE mode = HPI_BOOT_MAPO;
/* DSP boot mode */
LPVOID hHpi = NULL; /* HPI interface handle */
char coffNam[]= "blink.out”;
/* COFF file name */
BOOL bVerbose =0; /* COFF load verbose mode = FALSE */
BOOL bCIr =0; /*Clear bss mode = FALSE */
BOOL bDump =0; /*Dump mode = FALSE */
[* *|
/* Open a driver connection to a specific [Mc]EVM6x board. */
* */
hBd = evm6x_open(iBd, bExcl);
if (hBd == INVALID_HANDLE_VALUE) exit(1);

I* */
/* Cause a hardware reset on the target board. */

I* *
if (levm6x_reset_board(hBd)) exit(2);

I* */
/* Set the boot mode and cause a DSP reset. */

I* *

mode = iMp ? HPI_BOOT : HPI_BOOT_MAPO;
if (levm6x_reset_dsp(hBd,mode)) exit(3);

I* *
/* Establish a connection to the HPI of a target board. */
I* */

hHpi = evm6x_hpi_open(hBd);
if (hHpi == NULL) exit(4);

1-46

McEVM Host Support Software Example

I* */
[* Initialize EMIF registers */
I* */

if ('levm6x_init_emif(hBd, hHpi)) exit(5);

I* */
[* set Aux DMA priority higher than CPU */
I* */

I* Due to the default priority of the auxiliary DMA channel used for */
/* HPI accesses, the CPU can prevent HPI accesses from completing for */
[* an indeterminate amount of time. This can occur when the CPU is */
[* very active on the external memory interface, such as while executing*/
[* code from external memory. This condition manifests itselfasa */
/* hung PCI bus. To prevent this condition, the value 0x10 can be */
[* written to the DMA Auxiliary Control Register of the 6201 (at */
/* address 0x01840070). This elevates the priority of the auxiliary */
I* DMA channel above all other DMA channels and above the CPU. */
I* */
WriteWord2Mem(hHpi, 0x01840070 /*Addr*/, 0x00000010 /*Data*/);
I* */
/* Read a COFF file and write the data to DSP memory. */
I* */
if (levm6x_coff_load(hBd,hHpi,coffNam,bVerbose,bClr,bDump)) exit(8);
I* */
/* Close the HPI session started with evm6x_hpi_open() */
I* */
if (levm6x_hpi_close(hHpi)) exit(9);
I* */
[* Release the DSP from the halted state */
I* */
if (levm6x_unreset_dsp(hBd)) exit(10);
I* */
[* Close a previously opened driver connection to a board. */
I* */
if (levm6x_close(hBd)) exit(11);
exit(0);
} /* end of main() */
I* */
/* Write one word (32 bits) to DSP memory */
I* */
void WriteWord2Mem(LPVOID hHpi, ULONG ulDataAddr, ULONG ulDataWord)
{
ULONG ulLength;
ULONG ulReturnedLength;
ulLength = 4;
ulReturnedLength = ulLength;
if (levm6x_hpi_write(hHpi, &ulDataWord,
&ulReturnedLength, ulDataAddr)) exit(6);
if (ulLength != ulReturnedLength) exit(7);

TMS320C62x McEVM Host Support Software

1-47

Chapter 2

TMS320C62x McEVM DSP Support Software

This chapter describes the MCEVM DSP support software by providing ap-
plication programming interfaces (APIs) and example code for the multichan-
nel buffered serial port (McBSP) driver, Multi-Vendor Integration Protocol
(MVIP) library, voice-band audio processor (VBAP) library, T1/E1 framer li-
brary, and board support library. All of these modules use the TMS320C6000
peripheral support library to access and control internal peripheral registers.
See the TMS320C6x Peripheral Support Library Programmer’s Reference for
a description of this library.

Topic Page
2.1 DSP Support Software Components ..., 2-2
2.2 Using the DSP Support Software Components ~ 2:4
2.3 MCBSP Driver APl .. 2-6
2.4 FMIC Support Library APl ... 2-24
2.5 Board Support Library APl ... 2-38
2.6 T1/E1 Framer Driver Library ... 2-44
2.7 VBAP Driver Library APl 2-56
2.8 PCI/AMCC Driver Library APl ... 2-58
2.9 Cl/OInterface Library APl ... 2-76

2-1

DSP Support Software Components

2.1 DSP Support Software Components

2-2

The DSP support software consists of these components:

[McBSP driver

[MVIP library

(] Board support library
(1 FMIC library

(1 T1/E1 framer library
(1 VBAP library

(1 PCI/AMCC library

[C /O device library

The example code provided operates the MT90810 flexible MVIP integrated
circuit (FMIC) in serial data mode, and all telephony data is communicated to
and from the 'C62x via the McBSPO. Configuration and control of the MVIP
FMIC are achieved via the parallel data interface. These two modules are to-
tally independent of one another in that the MVIP library makes no calls to the
McBSP driver and vice-versa. Itis your responsibility to configure both periph-
erals for use and to control them independently. The board support library, on
the other hand, is used by both the McBSP driver and the MVIP library.

The McBSP provides two types of routines for sending and receiving data. The
synchronous routines mcbsp_sync_send() and mcbsp_sync_receive() trans-
fer data by polling the data transmitready (DXR) and data receive ready (DRR)
bits, respectively, to determine when the next word can be written or read.
These routines are referred to as blocking because the CPU is blocked waiting
for the transfer to complete before returning control to the caller. The asynchro-
nous routines mcbsp_async_send() and mcbsp_async_receive() use the di-
rect memory access (DMA) engine of the 'C62x to transfer the data in the back-
ground. User-supplied callback functions are invoked upon completion of the
data transfers to signal the caller. These callback functions are invoked from
an interrupt service routine and may set a global flag, for instance, which would
indicate data is ready to be processed.

The MVIP library is a collection of routines that configure and control the opera-
tion of the MT90810 MVIP FMIC. The API functions correspond closely to the
functional organization of the chip. Numerous macros are defined for this li-
brary in the file MT90810.h. These macros can be used as arguments to the
API functions.

The board support library provides routines for configuring and controlling the
McEVM and returning status information to the caller. The module also in-
cludes utility functions such asLED control and delay routines.

The FMIC library is a collection of routines that configure and control the opera-
tion of the MT90810 FMIC device. The API functions provide low level access,
which allows user code to configure the device into any desired configuration.

DSP Support Software Components

The API functions also provide higher level access for use in standard device
operations.

The T1/E1 Framer library is a collection of routines that configure and control
the operation of the Siemens FALC55 (PEB2255) device. The API functions
provide low level access, which allows user code to configure the device into
any desired configuration. The API functions also provide higher level access
for use in standard device operations

The VBAP library is a collection of routines that control the selection between
the p-law (North American & Japanese) and the A-law (European) compand-
ing devices.

The PCI/AMCC library is a collection of routines that provide host communica-
tions via the AMCC S5933 device. This driver provides data streams using
PCI Bus Mastering and message passing using mailboxes.

The C I/O device library is a collection of routines that provide the required in-
terface between the Tl C Compiler’s C I/O support and the PCI/AMCC driver.
Using this C I/O device library functions and the add_device() function from the
T1 C Compiler, DSP code can send and receive data streams with the host us-
ing standard C 1/O functions such as fprintf() and fgets().

TMS320C62x McEVM DSP Support Software 2-3

Using the DSP Support Software Components

2.2 Using the DSP Support Software Components

2-4

The DSP support software, which consists of the McBSP driver, MVIP library,
VBAP library, T1/E1 framer library, and board support library, is installed from
the accompanying CD-ROM to the \evm6x\dsp\lib\drivers directory. These
components are in object format and are supplied in the archived object library
file drvéx.lib. Another file, drvéxe.lib, is the big-endian version of the archived
object library. The source for the DSP support software is contained in the
source library file drv6x.src. To extract the source files, assuming that you have
installed the 'C62x code generation tools, enter:

aréx —x drvéx.src

This command extracts the two makefiles in the drvéx.src file. The files
makefile and makefile.big are the little- and big-endian makefile versions, re-
spectively. The first two lines of these files must be modified to point to your
c6xtools directory and to your 'C6000 peripheral support library files. See the
TMS320C6x Peripheral Support Library Programmer’s Reference for more in-
formation about building this library in the desired mode.

To build the object files from the extracted source (*.c) files, enter one of these
commands:

nmake For little-endian object modules
nmake —fmakefile.big For big-endian object modules

To rebuild the object library, enter one of these commands:

nmake drv6x.lib For little-endian object library
nmake —fmakefile.big drvéxe.lib For big-endian object library

It is possible to build the file drv6xe.lib with little-endian object files and vice-
versa, so use caution when building these libraries. Any attempt to use alibrary
of one endian version with code of another will produce a linker error.

Example code that uses the McBSP driver, MVIP library, VBAP library, T1/E1
framer library, and board support library exists in the .\evm6x\dsp\examples
directory. Again, the files makefile and makefile.big refer to the little- and big-
endian makefiles, respectively. The first two lines of these makefiles must also
be modified to point to your c6xtools and 'C6000 peripheral support library
files. These makefiles also provide an example of how to include the drv6x.lib
file on the linker command line for user-developed code. See the TMS320C6x
Assembly Language Tools User’s Guide for more information about using ob-
ject libraries.

Using the DSP Support Software Components

The provided example code configures and uses the MVIP FMIC, VBAP, and
T1/E1 framer devices and the McBSP in numerous configurations, such as
loopback, block capture and playback, continuous capture and playback using
ping-pong buffering, and continuous tone generation. You can run the exam-
ple code via the 'C62x McEVM debugger, or you can load the code and allow
it to run using the McEVM COFF loader utility (evm6xIdr). The print statements
that are visible in the debugger command window are not visible on the DOS
screen when you use the COFF loader.

TMS320C62x McEVM DSP Support Software 2-5

MCcBSP Driver API

2.3 McBSP Driver API

This section discusses the McBSP driver API. Included in this discussion are
the macros, data types, and defined functions that comprise the McBSP driver
for the 'C62x McEVM board.

2.3.1 McBSP Driver Macros

Table 2-1 lists the macros defined, their values, and a description of each. The
API functions that use each macro are also listed. These macros are defined
within the public header file mcbspdrv.h. The majority of the macros used by
the McBSP driver are defined within the 'C62x device library header file
mcbsp.h. These macros are used as bit and bit field values within registers and
correspondingly within elements of the driver data types. See the TMS320C6x
Peripheral Support Library Programmer’s Reference and the following section
for further information.

Table 2—1. McBSP Driver AP| State Macros

2-6

Macro Value Description

CLOSED 1 Flags McBSP as closed

OPEN 2 Flags McBSP as open and waiting for control
BUSY 3 Flags McBSP as busy

Note: These macros are used by all McBSP driver functions.

McBSP Driver API

2.3.2 McBSP Driver Data Types

This section lists the public data types defined by the McBSP driver that are
required for accessing McBSP driver functions.

Example 2—1. McBSP Driver API Data Types
(a) McBSP device handle

typedef Mchsp_handle * Mcbsp_dev;

An initialized Mcbsp_handle is required for all subsequent McBSP driver calls. The data structure
Mcbsp_dev is used as a private (global static) structure that records state information for each port.

(b) McBSP callback function

typedef void Callback(Mcbsp_dev dev, int status);

Callback functions are used by mchsp_async_send() and mcbsp_async_receive() to indicate
completion of the requested action.

(c) McBSP configuration structure

typedef struct Mcbsp_config_struct

{
int loopback;
Mcbsp_tx_config tx;
Mcbsp_rx_config rx;
Mcbsp_srg_config srg;

Mcbsp_config;

The Mcbsp_config structure is used when calling the mcbsp_config() function. The element loopback
is TRUE or FALSE and is used to control the data loopback mode. The transmitter, receiver, and sam-
ple rate generator configuration values are contained in the three structure elements listed in
Example 2-1(d), Example 2-1(e), and Example 2—1(f), respectively.

TMS320C62x McEVM DSP Support Software 2-7

MCcBSP Driver API

Example 2-1. McBSP Driver API Data Types (Continued)

(d) McBSP transmitter configuration structure

typedef struct Mcbsp_tx_config_struct

{
unsigned char update; /* Update Tx Parameters? T/F */
unsigned char interrupt_mode; [* SPCR(2): XRDY,BIk,Frame,SyncErr */
unsigned char clock_polarity; /* PCR(1): Rise or Fall of CLKX */
unsigned char frame_sync_polarity; /* PCR(1): Active High or Low */
unsigned char clock_mode; [* PCR(1): External or Internal */
unsigned char frame_sync_mode; /* PCR(1): External or Internal */
unsigned char phase_mode; /* XCR(1): Single or Dual */
unsigned char frame_lengthZ; /* XCR(7): 1 to 128 wpf for phase 1 */
unsigned char frame_length2; [*XCR(7): " " phase2 */
unsigned char ~ word_lengthZ, [* XCR(3): hits per phase 1 word */
unsigned char word_length2; [* XCR(3): bits per phase 2 word */
unsigned char companding; /* XCR(2): ALAW ULAW or MSB or LSB */
unsigned char frame_ignore; [* XCR(1): T/IF */
unsigned char data_delay; /* XCR(3): 0-2 Tx data delay */
unsigned char dummy/[2]; /* pad bytes to 32 bit align */

}

Mcbsp_tx_config;

The Mcbsp_tx_config structure is a substructure of Mcbsp_config and is used to assign register val-
ues for the transmitter. The corresponding bits and bit field values are shown to the right of each struc-
ture element. See the TMS320C6201/C6701 Peripherals Reference Guide for a detailed discussion

of each value.

2-8

McBSP Driver API

Example 2—-1. McBSP Driver API Data Types (Continued)

(e) McBSP receiver configuration structure

typedef struct Mcbsp_rx_config_struct

{
unsigned char update; /* Update Rx Parameters? T/F */
unsigned char interrupt_mode; /* SPCR(2): RRDY,BIk,Frame,Syncerr */
unsigned char justification; /* SPCR(2): RJZF, RJSE or LJZF */
unsigned char clock_polarity; /* PCR(1): Rise or Fall of CLKX */
unsigned char frame_sync_polarity; /* PCR(1): Active High or Low */
unsigned char clock_mode; [* PCR(1): External or Internal */
unsigned char ~ frame_sync_mode; [* PCR(1): External or Internal */
unsigned char phase_mode; /* XCR(1): Single or Dual */
unsigned char frame_lengthl; /* XCR(7):1 to 128 wpf for phase 1 */
unsigned char frame_length2; [*XCR(7): " " phase?2 */
unsigned char word_length1; /* XCR(3): bits per phase 1 word */
unsigned char word_length2; /* XCR(3): bits per phase 2 word */
unsigned char ~ companding; [* XCR(2): ALAW ULAW or MSB or LSB */
unsigned char frame_ignore; [* XCR(1): T/IF */
unsigned char data_delay; [* XCR(3): 0-2 Rx data delay */
unsigned char dummy; [* pad bytes */

}

Mcbsp_rx_config;

The Mcbsp_rx_config structure is a substructure of Mcbsp_config and is used to assign register val-
ues forthe receiver. The corresponding bits and bit field values are shown to the right of each structure
element. See the TMS320C6201/C6701 Peripherals Reference Guide for a detailed discussion of
each value.

(f) McBSP sample rate generator configuration structure

typedef struct Mcbsp_srg_config_struct

{
unsigned char update; /* Update SRGR Parameters? T/F */
unsigned char clock_sync; /* SRGR(1):GSYNC_OFF or GSYNC_ON */
unsigned char clks_polarity; /* SRGR(1):rising or falling edge */
unsigned char clks_mode; /* SRGR(1):external or internal */

unsigned char frame_sync_mode;
unsigned short frame_period;
unsigned char frame_width;
unsigned char clock_divider;

/* SRGR(1):FSX due to DXR-XSR, FSG */
/* SRGR(12): Frame period 1-4096 */

/* SRGR(8): 1 to 256 CLKG periods */
/* SRGR(8): SRGR clock dvdr: 1-256 */

}
Mcbsp_srg_config;

The Mcbsp_srg_config structure is a substructure of Mcbsp_config and is used to assign register val-
ues for the receiver. The corresponding bits and bit field values are shown to the right of each structure
element. See the TMS320C6201/C6701 Peripherals Reference Guide for a detailed discussion of
each value.

TMS320C62x McEVM DSP Support Software 2-9

MCcBSP Driver API

2.3.3 McBSP Driver Functions

The following alphabetical listing includes all of the McBSP driver API func-
tions. Use this listing as a table of contents to the McBSP driver API functions.

Function Description Page
mchsp_async_receive Receives a buffer of data on the selected McBSP asynchronously — 2-11
mcbsp_async_send Sends a buffer of data on the selected McBSP asynchronously 2-13
mcbsp_close Closes the selected McBSP/release the device handle 2-14
mcbsp_config Configures the selected McBSP 2-15
mchbsp_cont_async_send Continuously sends a buffer of data on the selected McBSP 2-16
mcbsp_drv_init Initializes the McBSP driver 2-18
mchbsp_open Opens the selected McBSP/obtain a device handle 2-19
mcbsp_reset Resets the selected McBSP 2-20
mcbsp_stop Stops operation of the selected McBSP 2-20
mchsp_sync_receive Receives a buffer of data on the selected McBSP synchronously 2-21
mcbsp_sync_send Sends a buffer of data on the selected McBSP synchronously 2-22

2-10

mcbsp_async_
receive

Syntax

Defined in

Description

mcbsp_async_receive

Receives a Buffer of Data on the Selected McBSP Asynchronously

#include <mcbspdrv.h>
int mcbsp_async_receive(

Mcbsp_dev dey,

unsigned char *n_buffer,

unsigned int num_bytes,
unsigned int frame_sync_enable,
Mcbsp_dev frame_sync_dev,
Callback *p_ract);

mcbspdrv.c as a callable C routine

The mcbsp_async_receive() function receives a buffer of data from the indi-
cated McBSP in an asynchronous (also known as nonblocking) manner. This
routine transfers data in the background using an available direct memory ac-
cess (DMA) engine. An interrupt service routine is set up by this routine; once
the indicated number of bytes have been transferred, the BLOCK COND bit
inthe DMA secondary control register triggers the enabled DMA interrupt. This
interrupt service routine can call a user-supplied callback function, which
could, for example, be used to set a global transfer flag indicating that recep-
tion is finished. You do not have access to the interrupt service routine, only
the callback function to which you provide a pointer.

[Parameter dev refers to the initialized device handle returned by the
mcbsp_open() call.

(1 The p_buffer parameter is a pointer to the buffer used to hold received
data.

(1 The num_bytes parameter refers to the number of bytes to receive. Typi-
cally, the McBSP is configured for 32-bit transfers. In this case, num_bytes
is four times the number of 32-bit elements to receive. You must ensure
that the buffer pointed to by p_bufferis at least as large as num_bytes.

(1 The frame_sync _enable parameter is used to enable the internal frame
sync generator. Valid values are TRUE or FALSE.

(1 The frame_sync_devparameter indicates which port’s frame sync gener-
ator to enable. If frame_sync_enable is FALSE, set frame_sync _dev to
NULL. In most cases, frame_sync _dev is the same as dev.

[The p_ract parameter is a pointer to the user-supplied callback function.
See section 2.3.2, McBSP Driver Data Types, for the typedef Callback,
which defines the structure of the callback function.

TMS320C62x McEVM DSP Support Software 2-11

mcbsp_async_receive

Return Value

Example

2-12

The function returns one of the following values:

OK Transfer setup succeeded
ERROR Transfer setup failed

The following code provides an example invocation assuming that the driver
has been initialized and the device has been opened and configured for an ex-
ternal frame sync and 32-bit transfers.

#define NUM_WORDS 128

Callback callback_function(Mcbsp_dev dev, int status)

printf(“Data transfer for mcbsp_async_receive() completed
with status = %d\n”,status);
return;

}

int status;
unsigned int buffer[NUM_WORDS];

status= mcbsp_async_receive(devO,
buffer,
NUM_WORDS * sizeof(int),
FALSE,
NULL,
callback_function

)
if (status == ERROR)

printf(“Error setting up data transfer with
mcbsp_sync_receive()\n”);

return(ERROR);

}

mchbsp_async_
send

Syntax

Defined in

Description

mcbsp_async_send

Sends a Buffer of Data on the Selected McBSP Asynchronously

#include <mcbspdrv.h>
int mcbsp_async_send(

Mcbsp_dev dey,

unsigned char *n_buffer,

unsigned int num_bytes,
unsigned int frame_sync_enable,
Mcbsp_dev frame_sync devy,
Callback *n_wact);

mcbspdrv.c as a callable C routine

The mcbsp_async_send() function sends a buffer of data from the indicated
McBSP in an asynchronous (also known as nonblocking) manner. This routine
transfers data in the background using an available DMA engine. An interrupt
service routine is set up by this routine; once the indicated number of bytes
have been transferred, the BLOCK COND bit in the DMA secondary control
register triggers the enabled DMA interrupt. This interrupt service routine can
call auser-supplied callback function, which could, for example, be used to set
a global transfer flag indicating that transmission is finished. You do not have
access to the interrupt service routine, only the callback function to which you
provide a pointer.

a

a

The dev parameter refers to the initialized device handle returned by the
mcbsp_open() call.

The p_buffer parameter is a pointer to the buffer used to hold data to be
transmitted.

The num_bytes parameter refers to the number of bytes to send. Typically,
the McBSP is configured for 32-bit transfers. In this case, num_bytes is
four times the number of 32-bit elements to receive.

The frame_sync_enable parameter is used to enable the internal frame
sync generator. Valid values are TRUE or FALSE.

The frame_sync_dev parameter indicates which port’s frame sync gener-
ator to enable. If frame_sync_enable is FALSE, set frame_sync_dev to
NULL. In most cases, frame_sync _dev is the same as dev.

The p_wact parameter is a pointer to the user-supplied callback function.
See section 2.3.2, McBSP Driver Data Types, for the typedef Callback,
which defines the structure of the callback function.

TMS320C62x McEVM DSP Support Software 2-13

mcbsp_close

Return Value

Example

mcbsp_close

Syntax

Defined in

Description

Return Value

Example

2-14

The function returns one of the following values:

OK Transfer setup succeeded
ERROR Transfer setup failed

The following code provides an example invocation assuming that the driver
has been initialized and the device has been opened and configured for an in-
ternal frame sync and 32-bit transfers.

#define NUM_WORDS 128
Callback callback_function(Mcbsp_dev dev, int status)

printf(“Data transfer for mcbsp_async_send() completed
with status = %d\n”,status);
return;

}

int status;
unsigned int buffer[NUM_WORDS];

status= mcbsp_async_send(devO,
buffer,
NUM_WORDS * sizeof(int),
TRUE,
devoO,
callback_function

if (status == ERROR)
printf(“Error setting up data transfer with \
mcbsp_sync_send()\n");

return(ERROR);
}

Closes the Selected McBSP/Release the Device Handle

#include <mchbspdrv.h>
void mcbsp_close(Mcbsp_dev dev);

mchbspdrv.c as a callable C routine

The mcbsp_close() function closes the selected McBSP and releases its as-
sociated device handle structure.

(1 The dev parameter is the device handle that was initialized by the
mcbsp_open() call.

None

The code in this example closes the McBSP associated with dey, allowing
another routine or thread to control its operation.

mcbsp_close(dev);

mchsp_config

Syntax

Defined in

Description

Return Value

Example

mcbsp_config

Configures the Selected McBSP

#include <mcbspdrv.h>
int mcbsp_config(
Mcbsp_dev dey,
Mcbsp_config *n_mcbsp_config);

mcbspdrv.c as a callable C routine

The mcbsp_config() function configures the selected McBSP. Configuration
values are passed to this routine via the Mcbsp_config structure (see section
2.3.2, McBSP Driver Data Types, for the definition of this structure). The macro
defines for the configuration structure elements are defined in the file mcbsp.h,
which is part of the 'C6000 device library.

(1 The dev parameter refers to the initialized device handle returned by the
mcbsp_open() call.

(1 The p_mcbsp_config parameter is a pointer to a user-initialized McBSP
configuration structure.

The function returns one of the following values:

OK Configuration values are within range of their respective min/
max values.
ERROR Configuration values were greater than or less than their re-

spective min/max values.

The code in this example configures the transmitter, receiver, and sample rate
generator for the McBSP associated with the initialized device handle dev for
use in internal loopback mode. Defines shown in this example are part of the
'C6000 peripheral control library.

config.loopback = TRUE;

config.tx.update = TRUE;
config.tx.clock_polarity = CLKX_POL_RISING;
config.tx.frame_sync_polarity= FSYNC_POL_HIGH,;

config.tx.clock_mode = CLK_MODE_INT;
config.tx.frame_sync_mode = FSYNC_MODE_INT;
config.tx.phase_mode = SINGLE_PHASE;
config.tx.frame_lengthl = 0;
config.tx.word_lengthl = WORD_LENGTH_32;
config.tx.frame_ignore = NO_FRAME_IGNORE;
config.tx.data_delay = DATA_DELAY1Z,;
config.rx.update = TRUE;

config.rx.clock_polarity = = CLKR_POL_FALLING;
config.rx.frame_sync_polarity= FSYNC_POL_HIGH,;
config.rx.clock_mode = CLK_MODE_EXT,;
config.rx.frame_sync_mode = FSYNC_MODE_EXT,;

TMS320C62x McEVM DSP Support Software 2-15

mcbsp_cont_async_send

mcbsp_cont_
async_send

Syntax

Defined in

Description

2-16

config.rx.phase_mode = SINGLE_PHASE;
config.rx.frame_lengthl =0;
config.rx.word_lengthl = WORD_LENGTH_32;
config.rx.frame_ignore = NO_FRAME_IGNORE;
config.rx.data_delay = DATA_DELAY1,;
config.srg.update = TRUE;
config.srg.clks_mode = CLK_MODE_INT;
config.srg.frame_sync_mode = FSX_DXR_TO_XSR;
config.srg.frame_width =1;
config.srg.clock_divider = Oxff;

if (mcbsp_config(dev0,&config))

printf("Error returned from mcbsp_config() for devQ”);
mcbsp_close(devO0);
return(ERROR);

}

Continuously Sends a Buffer of Data on the Selected McBSP

#include <mchbspdrv.h>

int mcbsp_cont_async_send(
Mcbsp_dev devy,
unsigned char *n_ping_buff,
unsigned char *n_pong_buff,

unsigned int num_bytes,

unsigned int frame_sync_enable,

int McBSP_dev frame_sync_dey,
Callback *n_wact);

mcbspdrv.c as a callable C routine

The mcbsp_cont_async_send() function repeatedly sends either a single
buffer or a ping-pong type buffer in an asynchronous (also known as nonblock-
ing) manner. This routine transfers data in the background using an available
DMA engine. Aninterrupt service routine is set up by this routine; once the indi-
cated number of bytes have been transferred, the BLOCK COND bhit in the
DMA secondary control register triggers the enabled DMA interrupt. This inter-
rupt service routine can call a user-supplied callback function, which could, for
example, be used to set a global transfer flag indicating another transmission
is finished. You do not have access to the interrupt service routine, only the

callback function to which you provide a pointer.

(1 The devparameter refers to the initialized device handle returned by the

mcbsp_open() call.

[The p_ping_buffer parameter is a pointer to the buffer used to hold data

to be transmitted.

Return Value

Example

mcbsp_cont_async_send

(1 The p_pong_buffer parameter is a pointer to the secondary transmit buff-
er. If this parameter is NULL, the data in p_ping_buffer is continuously
sent. If this parameter is valid, data transmission ping-pongs between
these two buffers.

[The num_bytes parameter refers to the number of bytes to send (same for
each buffer). Typically, the McBSP is configured for 32-bit transfers. In this
case, hum_bytes is four times the number of 32-bit elements to receive.

(1 The frame_sync _enable parameter is used to enable the internal frame
sync generator. Valid values are TRUE or FALSE.

[The frame_sync_dev parameter indicates which port’s frame sync gener-
ator to enable. If frame_sync_enable is FALSE, set frame_sync _dev to
NULL. In most cases, frame_sync dev is the same as dev.

(1 The p_wactparameter is a pointer to the user-supplied callback function.
See section 2.3.2, McBSP Driver Data Types, for the typedef Callback,
which defines the structure of the callback function.

The function returns one of the following values:

OK Transfer setup succeeded
ERROR Transfer setup failed

The following code provides an example invocation assuming that the driver
has been initialized and the device has been opened and configured for an in-
ternal frame sync and 32-bit transfers. This code continuously sends 16 buff-
ers of data, eight from the ping_buff[] and eight from the pong_buff[]. To turn
off continuous operation, the callback function must set dev—>tx_dma.continu-
ous to FALSE one block before transmission should stop.

#define NUM_WORDS 128

#define NUM_BUFFS 16

int num_buffs_sent=0;

Callback callback_function(
Mcbsp_dev dev,
int status)

printf(“Data transfer for mcbsp_async_send() completed
with\ status = %d\n”,status);
num_buffs_sent++;
if (num_buffs_sent == NUM_BUFFS)
mchbsp_stop(dev);

return;
}

int status;
unsigned int ping_buff[NUM_WORDS];
unsigned int pong_buff[NUM_WORDS];

TMS320C62x McEVM DSP Support Software 2-17

mcbsp_drv_init

mcbsp_drv_
init

Syntax

Defined in

Description

Return Value

Example

2-18

for (i=0;i<NUM_WORDS;i++) /* create a ramp */
ping_buff[i] = i;

for (i=0;i<NUM_WORDS;i++) /* create a ramp */
pong_buff[i] = i;

status= mcbsp_cont_async_send(devO,
ping_buff,
pong_buff,
NUM_WORDS * sizeof(int),
TRUE,
devO,
callback_function

if (status == ERROR)

printf(“Error setting up data transfer with \
mcbsp_sync_send()\n");

return(ERROR);

}

Initializes the McBSP Driver

#include <mcbspdrv.h>
int mcbsp_drv_init(void);

mchbspdrv.c as a callable C routine

The mcbsp_drv_init() function initializes the McBSP driver for use and must
be called before any other driver calls. This function allocates memory for the
port 0 and port 1 device handles and initializes structure elements to their de-
fault values.

The function returns one of the following values:

OK Memory allocation succeeded
ERROR Memory allocation failed

Subsequent calls to this function simply return OK.

The code in this example initializes the McBSP driver for use and is called be-
fore any other McBSP routines.

int status;
status = mcbsp_drv_init();
if (status == ERROR)

printf(“Error initializing the McBSP driver\n”);
return(ERROR);

}

Syntax

Defined in

Description

Return Value

Example

mcbsp_open

Opens the Selected McBSP/Obtain a Device Handle

#include <mcbspdrv.h>
Mcbsp_dev mchsp_open(int port);

mcbspdrv.c as a callable C routine

The mcbsp_open() function opens the selected McBSP for use. All subse-
guent driver calls require an initialized Mcbsp_dev argument.

[The port parameter indicates which serial port to open, with valid values
of 0 or 1.

The function returns one of the following values:

Mcbsp_dev A valid device handle value is returned if the indicated port is
not already in use.

NULL The indicated port is already in use.

The code in this example obtains a device handle for the McBSP port 0. This
device handleis required in subsequent McBSP calls, such as mcbsp_config()
and mchsp_async_receive().

Mcbsp_dev devo;

dev0 = mcbsp_open(0);

if (devO == NULL)

printf(“Unable to obtain a device handle for McBSP 0.");
return(ERROR);

TMS320C62x McEVM DSP Support Software 2-19

mchbsp_reset

Syntax

Defined in

Description

Return Value

Example

Syntax

Defined in

Description

Return Value

Example

2-20

Resets the Selected McBSP

#include <mcbspdrv.h>
void mchsp_reset(Mcbsp_dev dev);

mcbspdrv.c as a callable C routine

The mcbsp_reset() function simply resets the selected McBSP associated
with dev to its default state.

[0 The dev parameter refers to the initialized device handle returned by the
mcbsp_open() call.

The function returns one of the following values:

OK The dev parameter was supplied as a valid device handle.
ERROR The dev parameter was not supplied as a valid device handle.

The code in this example resets the associated McBSP to its default state.

if (mcbsp_reset(dev))

printf(“Invalid device handle passed to mcbsp_reset\n”);
return(ERROR);

Stops Operation of the Selected McBSP

#include <mcbspdrv.h>
void mchsp_stop(Mcbsp_dev dev);

mchbspdrv.c as a callable C routine

The mcbsp_stop() function completely disables the selected McBSP. Both the
transmit and receive sections are disabled, as well as the sample rate and
frame sync generators.

(1 The devparameter refers to the initialized device handle returned by the
mcbsp_open() call.

None

The code in this example disables the selected McBSP.

mcbsp_stop(dev);

mcbsp_sync_
receive

Syntax

Defined in

Description

Return Value

mchbsp_sync_receive

Receives a Buffer of Data on the Selected McBSP Synchronously

#include <mcbspdrv.h>
int mcbsp_sync_receive(

Mcbsp_dev dey,

unsigned char *n_buffer,

unsigned int num_bytes,
unsigned int frame_sync_enable,
Mcbsp_dev frame_sync _devy,

int pack_data);

mcbspdrv.c as a callable C routine

The mcbsp_sync_receive() function receives a buffer of data from the indi-
cated McBSP in a synchronous (also known as blocking) manner. During data
reception, the CPU is busy polling the data receive ready (DRR) flag in the seri-
al port control register to determine when the next data word is available. Once
the indicated number of bytes have been transferred to the buffer, this routine
returns to the caller.

(1 The dev parameter refers to the initialized device handle returned by the
mcbsp_open() call.

[The p_buffer parameter is a pointer to the buffer used to hold received
data.

[The num_bytes parameter refers to the number of bytes to receive. Typi-
cally, the McBSP is configured for 32-bit transfers. In this case, num_bytes
is four times the number of 32-bit elements to receive. You must ensure
that the buffer pointed to by p_bufferis at least as large as nhum_bytes.

(1 The frame_sync enable parameter is used to enable the internal frame
sync generator. Valid values are TRUE or FALSE.

[The frame_sync_dev parameter indicates which port’s frame sync gener-
ator to enable. If frame_sync_enable is FALSE, set frame_sync _dev to
NULL. In most cases, frame_sync _dev is the same as dev.

[Parameter pack datacan be usedto pack received elements that are less
than 32 bits into p_buffer. Valid values for pack_data are TRUE or FALSE.
The pack _datafeature can only be used when the serial portis configured
for single-phase transfers.

The function returns one of the following values:

OK Transfer succeeded
ERROR Transfer failed

TMS320C62x McEVM DSP Support Software 2-21

mcbsp_sync_send

Example The following code provides an example invocation assuming that the driver
has been initialized and the device has been opened and configured for an ex-
ternal frame sync and 32-bit transfers.

#define NUM_WORDS 128

int status;
unsigned int bufferfNUM_WORDS];

status= mcbsp_sync_receive(devO,
buffer,
NUM_WORDS * sizeof(int),
FALSE,
NULL,
FALSE);

if (status == ERROR)

printf(“Error receiving data with mcbsp_sync_receive()\n”);

return(ERROR);
}
mcbsp_sync_ Sends a Buffer of Data on the Selected McBSP Synchronously
send
Syntax #include <mcbspdrv.h>
int mcbsp_sync_send(
Mcbsp_dev dey,
unsigned char *p_buffer,
unsigned int num_bytes,
unsigned int frame_sync _enable,
Mcbsp_dev frame_sync _dey,
int packed_data);
Defined in mchbspdrv.c as a callable C routine
Description The mcbsp_sync_send() function sends a buffer of data across the indicated

McBSP in a synchronous (also known as blocking) manner. During data trans-
mission, the CPU is busy polling the data transmit ready (DXR) flag in the serial
port control register to determine when the next element can be written. Once
the indicated number of bytes have been transferred from the buffer, this rou-
tine returns to the caller.

(1 The devparameter refers to the initialized device handle returned by the
mcbsp_open() call.

[The p_buffer parameter is a pointer to the buffer initialized with the data
to send.

2-22

Return Value

Example

mcbsp_sync_send

(1 The num_bytesparameter refers to the number of bytes to send. Typically,
the McBSP is configured for 32-bit transfers. In this case, num_bytes is
four times the number of 32-bit elements to send.

(1 The frame_sync enable parameter is used to enable the internal frame
sync generator. Valid values are TRUE or FALSE.

[The frame_sync_dev parameter indicates which port’s frame sync gener-
ator to enable. If frame_sync _enable is FALSE, set frame_sync _dev to
NULL. In most cases, frame_sync _dev is the same as dev.

[The packed_data parameter, if TRUE, indicates that the data in p_buffer
is packed. For element transfers of less than 32 bits, this routine sends
only the significant bits for each transfer, sign extended and justified as in-
dicated in the mcbsp_config() call (see page 2-15).

The function returns one of the following values:

OK Transfer succeeded
ERROR Transfer failed

The following code provides an example invocation assuming that the driver
has been initialized and the device has been opened and configured for an in-
ternal frame sync (FSG) and 32-bit transfers.

#define NUM_WORDS 128

int status;
unsigned int bufferfNUM_WORDS];

for (i=0;i<NUM_WORDS;i++) /* generate ramp */

buffer[i]=1i;
status= mcbsp_sync_send(dev0,
buffer,
NUM_WORDS * sizeof(int),
TRUE,
devO,
FALSE);

if (status == ERROR)

printf(“Error sending data with mcbsp_sync_send()\n");
return(ERROR);

TMS320C62x McEVM DSP Support Software 2-23

FMIC Support Library API

2.4 FMIC Support Library API

This section discusses the Flexible MVIP Interface Circuit (FMIC) library. In-
cludedinthis discussion are the macros, data types, and defined functions that
comprise the FMIC driver for the 'C62x McEVM board.

2.4.1 FMIC Driver Macros

Table 2-2 lists the macros defined, their values, and a description of each. The
SPI functions that use each macro are also listed. These macros are defined
within the public header file fmic.h.

Table 2-2. FMIC Driver API State Macros

Macro Value Description
FMIC_MVIP_SLAVE 0 FMIC as timing slave
FMIC T1E1 MVIP_MASTER 1 FMIC as timing master
FMIC_8KMASTER_MVIP_SLAVE 2 FMIC as timing slave
FMIC_8KMASTER_MVIP_MASTER 3 FMIC as timing master
FMIC_8KMASTER_MVIP_MASTER 4 FMIC as timing master

Note: These macros are used by Fmic_init and Fmic_timing.

FMIC_DSo_IN 0 DSo selected as input for
specified channel

FMIC_DSi_IN 1 DSi selected as input for
specified channel

Note: These macros are used by Fmic_init and Fmic_direction.

FMIC_MASTER_REG_ID FMIC master control/status
register

FMIC_CNTRL_REG_ID FMIC control register

FMIC_DATA_MEMORY_ID FMIC data memory

FMIC_CONN_MEM_HIGH_ID FMIC connection memory —
high byte

Note: These macros are used by Fmic_configure, fmic_read, and fmic_write.

2-24

FMIC Support Library API

2.4.2 FMIC Driver Data Types

This section lists the public data types defined by the FMIC driver that are re-
quired for accessing FMIC driver functions.

Example 2—2. FMIC Driver API Data Types
(a) FMIC device handle

typedef FMIC_DEV *FMIC_DEV_T;

An initialized FMIC_DEV handle is required for all subsequent FMIC driver calls. The data structure
FMIC_DEV_Tisused as a private (global static) structure that records state information for each devi-
ce.

(b) FMIC configuration structure

typedef struct

fmic_state state;
u32 base_addr;

}
FMIC_DEV;

The FMIC private structure records state information for each device.

2.4.3 FMIC Library API Functions

The following alphabetical listing includes all of the FMIC library API functions.
Use this listing as a table of contents to the FMIC library API functions.

Function Description Page
fmic_clear_connections Clear all connections, disable all MVIP channel outputs. 2-27
fmic_close De-initialize software driver for an FMIC device 2-27
fmic_configure Configure operation of an FMIC device 2-28
fmic_connect Connect an input channel to an output channel 2-29
fmic_direction Select MVIP inbound source, (DSi, DSo) for the specified channel 2-30
fmic_init Establish normal operating register and memory values 2-31
fmic_open Initialize software driver for an FMIC device 2-32
fmic_output_control Enable MVIP output drivers for the specified channel 2-33

TMS320C62x McEVM DSP Support Software 2-25

FMIC Support Library API

Function Description Page
fmic_read Read the value contained in the indicated FMIC register 2-34
fmic_timing Establish requested timing mode 2-35
fmic_write Write a value to the indicated FMIC register 2-36

2-26

fmic_clear_
connections
Syntax

Defined in

Description

Return Value

Example

fmic_close

Syntax
Defined in

Description

Return Value

fmic_close

Clears All Connections, Disable All MVIP Channel Outputs

#include <fmic.h>
int fmic_clear_connections(FMIC_DEV_T fmic_dev);

fmic.c as a callable C routine

This function breaks all input output connections by clearing the connection
memory for all MVIP and local channels for the specified FMIC device.

[The fmic_dev parameter is a pointer to a structure containing addressing
and state information for the FMIC device.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

The following example clears all connections on FMIC device devO.
int status;
status = fmic_clear_connections(dev0);

if (status == ERROR)
return(ERROR);

De-initializes Software Driver

#include <fmic.h>
int fmic_close(FMIC_DEV_T fmic_dev);

fmic.c as a callable C routine

This function removes the handle to the specified FMIC device and resets de-
vice information to a default condition.

(1 Fmic_devis a pointer to a structure containing addressing and state infor-
mation for the FMIC device.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

TMS320C62x McEVM DSP Support Software 2-27

fmic_configure

Example The following example releases the FMIC device devO.

int status;

status = fmic_close(dev0);
if (status == ERROR)
return(ERROR);

Configures an FMIC Device

Syntax #include "fmic.h”
int fmic_configure(

FMIC_DEV._T fmic_dey,

unsigned int fmic_configuration[][3));
Defined in fmic.c as a callable C routine
Description This function configures the specified FMIC device given an input array of reg-

ister, value and mask sets. The function will write each configuration set in the
array to the FMIC device until the mask element becomes zero. This will termi-
nate the configuration.

(1 Fmic_devis a pointer to a structure containing addressing and state infor-
mation for the FMIC device.

[0 Fmic_configuration is an array of three element sets consisting of the fol-
lowing information:

W Fmic_configuration[][0] = register_id
W Fmic_configuration[][1] = value
B Fmic_configuration[][2] = mask
B While mask is non-zero, write the configuration to the FMIC.
B Seethefmic_write description for possible values of register_id, value
and mask.
Return Value The function returns one of the following values:

OK

Operation succeeded

ERROR Operation failed

2-28

Example

fmic_connect

Syntax

Defined in

Description

fmic_connect

The following is a generalized example of the use of the fmic_configure func-
tion. It illustrates making multiple configuration changes with one call. It also
illustrates the use of direct and indirect addressing for register_id (see
fmic_write() for further description). The first configuration command sets the
RESET bit in the master Control/Status register without affecting any other
bits. The second configuration command inverts the 4.096MHz CLK4 clock
output pin by setting bit 3 of the Local Clock Control register (indirect offset 1
in the FMIC control register). The third and fourth configuration commands
make a connection from output 56 to input 34 while enabling output 56.

int status;

unsigned int fmic_configuration[5][3] = {
{FMIC_MASTER_REG_ID, Ox1, Ox1},
{FMIC_CNTRL_REG_ID | 1, Ox4, 0x4},
{FMIC_CONN_MEM_LOW_ID | 56, 34, Oxff},
{FMIC_CONN_MEM_HIGH_ID | 56, 2, Oxff},
{0,0,0}

h

status = fmic_configure(devO, fmic_configuration);

if (status == ERROR)
return(ERROR);

Connects an Input Channel to an Output Channel

#include "fmic.h”

int fmic_connect(
FMIC _DEV_T fmic_dev,
unsigned int out_chan,
unsigned int in_chan);

fmic.c as a callable C routine

This function makes a connection between one of 384 input channels and one
of 384 output channels on the specified FMIC. For a bidirectional connection,
two separate calls should be made reversing the input/output channel com-
bination on the second call.

[0 Fmic_devis a pointer to a structure containing addressing and state infor-
mation for the FMIC device.

TMS320C62x McEVM DSP Support Software 2-29

fmic_direction

Return Value

Example

Syntax

Defined in

Description

2-30

[Out_chanis a zero relative input channel number from 0 to 383.
[d In_chanis a zero relative output channel number from 0 to 383.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

The following example makes a bidirectional connection between channels 56
and 34.

int status=0;

status = fmic_connect(dev0, 56, 34);

status |= fmic_connect(dev0, 34, 56);

if (status == ERROR)
return(ERROR);

Selects MVIP Inbound Source For the Specified Channel

#include "fmic.h”

int fmic_direction(
FMIC_DEV_T fmic_dev,
unsigned int channel,
fmic_mvip_direction direction);

fmic.c as a callable C routine

This function sets the direction of an associated DSi-DSo channel pair. If the
DSior DSo channel is programmed as an input, the corresponding DSo or DSi
channel will automatically be configured as an output.

(1 The fmic_dev parameter is a pointer to a structure containing addressing
and state information for the FMIC device.

[The channel parameter is the channel number from 0 to 255.

[0 The direction parameter selects the inbound source, (DSi, DSo) for the
specified channel. It can be one of the following values.

B FMIC_DSo_IN selects DSo as input for the specified channel.
B FMIC_DSi_IN selects DSi as input for the specified channel.

Return Value

Example

Syntax

Defined in

Description

fmic_init

The function returns one of the following values:

OK

Operation succeeded

ERROR Operation failed

The following example selects DSo as the input for channel 56. Consequently,
DSi will automatically be set as the output for channel 56.

int status;
status = fmic_direction(devO0, 56, FMIC_DSo_IN);
if (status == ERROR)

return(ERROR);

Establishes Normal Operating Register and Memory Values

#include "fmic.h”

int fmic_init(
FMIC_DEV_T fmic_dev,
fmic_timing_mode timing_mode);

fmic.c as a callable C routine

This function initializes the specified FMIC device by: returning all register val-
ues to reset condition, clearing connection and data ram, establishing normal
operating register values and establishing requested timing mode.

[0 Fmic_devis a pointer to a structure containing addressing and state infor-
mation for the FMIC device.

(1 Timing_mode selects which clock source is used to generate MVIP clock
signals. It can be one of the following values.

FMIC_MVIP_SLAVE selects the FMIC as timing slave to the MVIP
bus.

FMIC_T1E1 MVIP_MASTER sele

FMIC_8KMASTER_MVIP_SLAVE selects the FMIC as timing slave
to the MVIP bus, *

FMIC_8KSLAVE_MVIP_MASTER selects the FMIC as timing mas-
ter.

FMIC_T1E1 8K_MVIP_MASTER selects the FMIC as timing master,

TMS320C62x McEVM DSP Support Software 2-31

fmic_open

Return Value

Example

Syntax

Defined in

Description

Return Value

Example

2-32

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

The following example initializes FMIC device dev0 and sets the timing mode
to FMIC_MVIP_SLAVE.

int status;
status = fmic_init(devO, FMIC_MVIP_SLAVE);
if (status == ERROR)

return(ERROR);

Initializes the Software Driver for an FMIC Device

#include "fmic.h”
FMIC_DEV_T fmic_open(unsigned int fmic_base_addr);

fmic.c as a callable C routine

This function creates a handle to the FMIC device located at the specified ad-
dress.

[Fmic_base_addr is the base address for the FMIC device to be opened.
Returns nonzero value as handle.

The following example opens the FMIC device on a McEVM board.
FMIC_DEV_T devo0;
dev0 = fmic_open(FMIC_MOTHER_BASE);
if (devO == NULL)
return(ERROR);

fmic_out-
put_control

Syntax

Defined in

Description

Return Value

Example

fmic_output_control

Enables MVIP Output Driver for the Specified Channel

#include "fmic.h”

int fmic_output_control
(FMIC_DEV_T fmic_dev,
unsigned int channel,
boolean enable);

fmic.c as a callable C routine

This function enables and disables output for the specified MVIP channels on
the specified FMIC device.

[0 Fmic_devis a pointer to a structure containing addressing and state infor-
mation for the FMIC device.

(1 Channel specified the output channel from 0 to 255 on the MVIP bus to
disable or enable

(10 Enable specifies whether the indicated channelis to be enabled. The pos-
sible values are:

B TRUE
B FALSE

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

The following example enables the output for channel 56 on the FMIC device
devoO.

int status;
status = fmic_output_control(devO, 56, TRUE);
if (status == ERROR)

return(ERROR);

TMS320C62x McEVM DSP Support Software 2-33

fmic_read

Syntax

Defined in

Description

Return Value

Example

2-34

Reads the Value at the FMIC Memory/Register Location

#include "fmic.h”
unsigned int fmic_read(

FMIC DEV_T fmic_dev,
unsigned int register_id),

fmic.c as a callable C routine

This function returns the value contained in the indicated FMIC memory/regis-
ter location on the specified FMIC device.

[Fmic_devis a pointer to a structure containing addressing and state infor-
mation for the FMIC device.

(1 Register_id is an identifier for either a direct or indirect register/memory
location on the FMIC device. For an indirect location, the following indirect
IDs should be OR’ed with the desired location in the register/memory
space indicated to obtain the value to pass in as register_id. For example,
to obtain the low byte of the 4th element in the connection memory, regis-
ter_id =FMIC_CONN_MEM_LOW_ID | 3. A direct register does not need
an offset and can be used as is. The possible register/memory IDs are
defined as follows.

FMIC_MASTER_REG_ID selects the master control/status register
(direct).

FMIC_CNTRL_REG_ID selects the FMIC control registers (indirect).
FMIC_DATA_MEMORY_ID selects the data memory (indirect).

FMIC_CONN_MEM_LOW_ID selects the low byte of the connection
memory (indirect).

FMIC_CONN_MEM_HIGH_ID selects the high byte of the connection
memory (indirect).

Returns the value at the given register_id.

The following example reads the value in the master control register. It also
reads and reconstructs the input connected to output 56 from the connection
memory.

unsigned int mcrValue;

unsigned int connValue;
mcrValue = fmic_read(dev0, FMIC_MASTER_REG_ID);
connValue = fmic_read(dev0O, FMIC_CONN_MEM_LOW_ID | 56);

connValue |= (fmic_read(dev0, FMIC_CONN_MEM_HIGH_ID | 56))
<< 8) & 0x100;

Syntax

Defined in

Description

Return Value

Example

fmic_timing

Establish Requested Timing Mode

#include "fmic.h”
int fmic_timing(
FMIC DEV_T fmic_dev,
fmic_timing_mode timing_mode);

fmic.c as a callable C routine

This function establishes clock control functionality for the indicated FMIC de-
vice.

(1 Fmic_devis a pointer to a structure containing addressing and state infor-
mation for the FMIC device.

(1 Timing_mode selects which clock source is used to generate MVIP clock
signals. It can be one of the following values.

B FMIC_MVIP_SLAVE selects the FMIC as timing slave to the MVIP
bus.

B FMIC_T1E1_MVIP_MASTER selects the FMIC as timing master.

B FMIC_8KMASTER_MVIP_SLAVE selects the FMIC as timing slave
to the MVIP bus.

B FMIC_8KSLAVE_MVIP_MASTER selects the FMIC as timing mas-
ter.

B FMIC_T1E1_8K_MVIP_MASTER selects the FMIC as timing master.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

The following example sets the timing mode of the FMIC device devO to
FMIC_MVIP_SLAVE.

int status;

status = fmic_timing(dev0, FMIC_MVIP_SLAVE);
if (status == ERROR)
return(ERROR);

TMS320C62x McEVM DSP Support Software 2-35

fmic_write

Syntax

Defined in

Description

Return Value

2-36

Writes a Value to the Indicated FMIC Register/Memory Location

#include "fmic.h”
int fmic_write(

FMIC DEV_T fmic_dev,

unsigned int register_id,
unsigned int value,
unsigned int mask);

fmic.c as a callable C routine

This function writes a value to the indicated register/memory location on the
specified FMIC device. The write will only affect bit values of the indicated reg-
ister/memory location set in the mask.

(1 Fmic_devis a pointer to a structure containing addressing and state infor-
mation for the FMIC device.

[0 Register_id is an identifier for either a direct or indirect register/memory
location on the FMIC device. For an indirect location, the following indirect
IDs should be OR’ed with the desired location in the register/memory
space indicated to obtain the value to pass in as register_id. For example,
to obtain the low byte of the 4th element in the connection memory, regis-
ter_id = FMIC_CONN_MEM_LOW_ID | 3. A direct register does not need
an offset and can be used as is. The possible register/memory IDs are
defined as follows.

FMIC_MASTER_REG_ID selects the master control/status register
(direct).

FMIC_CNTRL_REG_ID selects the FMIC control registers (indirect).
FMIC_DATA_MEMORY_ID selects the data memory (indirect).

FMIC_CONN_MEM_LOW_ID selects the low byte of the connection
memory (indirect).

FMIC_CONN_MEM_HIGH_ID selects the high byte of the connection
memory (indirect).

Value indicates what should be written to the indicated register.
Mask specifies the bits that the write will affect. Zero valued bits in the

mask will not affect corresponding bits in the register/memory loca-
tion.

The function returns one of the following values:

OK

Operation succeeded

ERROR Operation failed

Example

fmic_write

The following example sets the RESET bit in the master Control/Status regis-
ter of FMIC device dev0 without affecting any other bits.

int status;
status = fmic_write(devO, FMIC_MASTER_REG_ID, 0x1, 0x1);

if (status == ERROR)
return(ERROR);

TMS320C62x McEVM DSP Support Software 2-37

Board Support Library API

2.5 Board Support Library API

This section discusses the McEVM board support library API. Included in this
discussion are the functions defined that comprise the board library for the
'C62x McEVM board. No public macros are defined for this module.

The following alphabetical listing includes all of the board support library API
functions. Use this listing as a table of contents to the board support library API
functions.

Function Description Page
cpu_freq Return current CPU frequency in MHz 2-27
delay_msec Delay CPU for specified number of milliseconds 2-39
delay_usec Delay CPU for specified number of microseconds 2-39
evm_codec_disable Disconnect codec from 'C62x McBSP 2-40
evm_codec_enable Connect codec to 'C62x McBSP 2-40
evm_default_emif_init Initialize EMIF for McEVM board to default parameters 2-40
evm_emif_int Initialize EMIF for McEVM board to clock rate-tailored values 2-41
evm_init Initialize McEVM board 2-41
evm_led_disable Disable selected McEVM LED 2-42
evm_led_enable Enable selected McEVM LED 2-42
evm_nmi_disable Externally disable NMI 2-43
evm_nmi_enable Externally enable NMI 2-43
evm_nmi_sel Select the host or codec as source for NMI 2-43

2-38

Syntax
Defined in

Description

Return Value

delay msec

Syntax

Defined in

Description

Return Value

delay usec

Syntax

Defined in

Description

Return Value

delay usec

Return Current CPU Frequency in MHz

#include <board.h>
int cpu_freq(void);

board.c as a callable C routine

The cpu_freq() function determines the internal CPU clock frequency by read-
ing the CLKMODE and CLKSEL bits in the DSPOPT register of the onboard
complex programmable logic device (CPLD).

CPU frequency in Mhz

Delay CPU for Indicated Number of Milliseconds

#include <board.h>
int delay_msec(unsigned short numMsec);

board.c as a callable C routine

The delay_msec() function uses an available timer to delay the specified num-
ber of milliseconds before returning to the caller.

(1 The numMsec parameter is a value between 0 and 65 535. For delay val-
ues less than 1 ms, use the delay_usec() function.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

Delay CPU for Indicated Number of Microseconds

#include <board.h>
int delay_usec(unsigned short numUsec);

board.c as a callable C routine

The delay_usec() function uses an available timer to delay the specified num-
ber of microseconds before returning to the caller.

[The numUsecparameter is avalue between 0 and 65 535. For delay inter-
vals greater than 65.5 milliseconds, use the delay msec() function.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

TMS320C62x McEVM DSP Support Software 2-39

evm_codec_disable

evm_codec_
disable

Syntax

Defined in

Description

Return Value

evm_codec
enable
Syntax

Defined in

Description

Return Value

evm_default_
emif_init

Syntax

Defined in

Description

Return Value

2-40

Disconnect codec from '‘C62x McBSP

#include (board.h>
int evm_codec_disable(void);

board.c as a callable C routine

The evm_codec_disable(() function disconnects the codec from the 'C62x
McBSPO serial port.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

Connect codec to 'C62x McBSP

#include (board.h>
int evm_codec_enable(void);

board.c as a callable C routine

The evm_codec_enable() function disconnects the codec from the 'C62x
McBSPO serial port.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

Initialize EMIF for McEVM Board to Default Parameters

#include <board.h>
void evm_default_emif _init(void);

board.c as a callable C routine

The evm_default_emif_init() function initializes the EMIF to default values that
will work at any available CPU frequency.

None

evm_emif_init

Syntax

Defined in
Description

Return Value

evm_init

Syntax

Defined in

Description

Return Value

Example

evm_init

Initialize EMIF for McEVVM Board

#include <board.h>
void evm_emif_init(void);

board.c as a callable C routine
The evm_emif_init() function initializes the EMIF to clock rate-tailored values.

None

Initialize McEVM Board

#include <board.h>
int evm_init(void);

board.c as a callable C routine

The evm_init() function initializes the McEVM board for use by configuring
base address variables based upon the 'C62x memory map (MAP 0 or MAP
1) and endian mode selected, initializing the EMIF and enabling the NMI bit
in the interrupt enable register. This function must be called before any other
DSP support software routines.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

This example initializes the McEVM board for use.

int status;

status = evm_init();

if (status == ERROR)
return(ERROR);

TMS320C62x McEVM DSP Support Software 2-41

evm_led disable

evm led disable

Syntax

Defined in

Description

Return Value

evm led enable

Syntax

Defined in

Description

Return Value

2-42

Disable Selected McEVM LED

#include <board.h>
int evm_led_disable(int ledNumber);

board.c as a callable C routine

The evm_led_disable() function extinguishes the selected LED on the
McEVM board.

[Parameter ledNumber selects the LED to extinguish. Valid values are 0
(for LEDOQ) or 1 (for LED1).

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

Enable Selected McEVM LED

#include <board.h>
int evm_led_enable(int ledNumber);

board.c as a callable C routine

The evm_led_enable() function illuminates the selected LED on the MCEVM
board.

[The ledNumber parameter selects the LED to illuminate. Valid values are
0 (for LEDO) or 1 (for LED1).

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

evm_nmi_disable

Syntax

Defined in

Description

Return Value

evm_nmi_enable

Syntax

Defined in

Description

Return Value

evm_nmi_sel

Syntax

Defined in

Description

Return Value

evm_nmi_sel

Externally Disable NMI

#include <board.h>
void evm_nmi_disable(void);

board.c as a callable C routine

The evm_nmi_disable() function externally disables the NMI source to the
'C62x by clearing the NMIEN bit in the CNTL register of the McEVM CPLD.

None

Externally Enable NMI

#include <board.h>
void evm_nmi_enable(void);

board.c as a callable C routine

The evm_nmi_enable() function externally enables the NMI source to the
'C62x by setting the NMIEN bit in the CNTL register of the McEVM CPLD.

None

Select the Source for NMI

#include <board.h>
void evm_nmi_sel(int sel);

board.c as a callable C routine

The evm_nmi_sel() function selects the source for NMI to the 'C62x by setting
or clearing the NMISEL bitin the CNTL register of the McEVM CPLD. Parame-
ter sel selects the host (0) or the codec (1) as the NMI source.

None

TMS320C62x McEVM DSP Support Software 2-43

T1/E1 Framer Driver Library

2.6 T1/E1 Framer Driver Library

The Siemens PEB 2255 T1/E1 Framer and Line Interface supports a single
channel bi-directional T1/E1 connection and a single bi-directional 2Mbit serial
stream. The interface presented is specific to the use of this chip on the McEvm
and potential daughterboard.

2.6.1 T1/E1 API Data Structures and ENUMSs

typedef struct{ FALC_REG_MAP* pxReg;
/* Pointer to FALC registers */

unsigned char* pu8RcData;
/* Current receive data pointer */

unsigned char* pu8TxData;
/* Current transmit data pointer */

unsigned short ul6TxCnt;
/* Transmit byte counter */

falc_pcm_mode pcmMode;
/* 0: PCM 30 mode, 1: PCM 24 mode */

int |1State;
/* Layer 1 state */

unsigned char dummy [4];
/* Forces size of data structure to */

/* 2"n, which guarantees SHLn */
/* operations instead of IMUL for a */
[* access to structure elements */

}
FALC_DEVICE_CTRL;

typedef struct{ tlel state state; unsigned int
base addr; FALC_DEVICE_CTRL falc;}T1E1_DEV;

typedef enum{ PCM_30_MODE = 0x00,
PCM_24 MODE = 0x01}alc_pcm_mode;

typedef enum{ SLAVE_MODE = 0x00,
MASTER_MODE = 0x01

}

falc_mode;

typedef enum

{
LOCAL_LOOP_BACK = 0x01,
PAYLOAD_LOOP_BACK = 0x02,
REMOTE_LOOP_BACK = 0x03,
CHANNEL_LOOP_BACK = 0x04

2-44

T1/E1 Framer Driver Library

}

falc_loopback_mode;
typedef enum

{

FALC_F12 = 0x00,

FALC_F4,

FALC_ESF,

FALC_F72,
FALC_DOUBLEFRAME,
FALC_CRC4_MULTIFRAME,
FALC_MODIFIED_CRC4_MF

}

falc_frame_mode;

typedef enum

{

FALC_T1_LINE_CODE =0,
FALC_T1_AMI
FALC_T1_B8ZS,
FALC_E1_LINE_CODE,
FALC_E1_AMI,
FALC_E1_HDBS3,
FALC_LINE_CODE_END

}

falc_line_code;

typedef enum{ TLE1_E1 = PCM_30_MODE,
T1E1 T1= PCM_24_MODE}

tlel_line_mode;

typedef enum{ T1E1 T1 AMI =
FALC_T1_AMI, T1E1_T1_B8ZS =
FALC_T1_B8ZS, T1E1_E1_AMI = FALC_E1_AMI,
T1E1 E1 HDB3 = FALC_E1 HDB3

}

tlel_line_code;
typedef enum

{

T1E1 T1 D4 = FALC_F12,
T1E1 T1_ESF = FALC_ESF,
T1E1_E1_DOUBLEFRAME = FALC_DOUBLEFRAME,

T1E1_E1 _CRC4_MULTIFRAME = FALC_CRC4_MULTIFRAME
}

tlel_framing_mode;

TMS320C62x McEVM DSP Support Software 2-45

T1/E1 Framer Driver Library

typedef enum

{ /* LIMO.MAS LIM1.DCOC FMICMSTR */
T1E1 SYNC_TIMING=0,/*1 1 1 *
T1E1_LOOP_TIMING, /0 1 x ¥
T1E1 LOCAL TIMING /1 1 0 ¥

}

tlel_sync_mode;

typedef enum

{

T1E1_NO_LOOPBACK =0,
T1E1_LOCAL_LOOPBACK = LOCAL_LOOP_BACK,
T1E1_PAYLOAD LOOPBACK = PAYLOAD_ LOOP_BACK,
T1E1_REMOTE_LOOPBACK = REMOTE_LOOP_BACK,
T1E1_CHANNEL_LOOPBACK = CHANNEL_LOOP_BACK,
T1E1_LOCAL_REMOTE_LOOPBACK

}

tlel_loopback _mode;

2.6.2 Siemens PEB 2255 T1/E1 Framer and Line Interface Registers

Register information is given in Siemens PEB 2255 data sheet
T2255-XV11-P1-7600.

2.6.3 T1/E1 API Functions

This section includes the library T1/E1 Framer Driver API functions for the C6x
McEVM. The following is an alphabetical listing of these API functions which
can be used as a table of contents.

Function Description Page
tlel_channel_loopback Enable or disable channel loopback for a specified channel. 2-48
tlel close De-initialize the software driver for the T1/E1 device. 2-49
tlel_configure Register initialization from a configuration array of registers and 2-49
values.
tlel_ framing Set the Framing Mode register. 2-50
tlel_init Initialize the T1/E1 framer to specified values. 2-50
tlel install Install a callback function to handle interrupts. 2-51

2-46

T1/E1 Framer Driver Library

Function Description Page
tlel_linecode Set the RX and TX Line Code register. 2-52
tlel loopback Enable or disable Payload, Remote, and/or Local Loopbacks. 2-52
tlel_open Initialize the software driver for the T1/E1 device. 2-53
tlel_read Read the specified T1/E1 register. 2-53
tlel reset Reset all register values to power on states. 2-54
tlel sync Set the sync timing mode for the T1/E1 Framer. 2-54
tlel write Write to the specified T1/E1 register. 2-55
TMS320C62x McEVM DSP Support Software 2-47

tlel_channel_loopback

tlel channel_ Enables or Disables Loopback for Specified Channel
loopback

Syntax #include<tlel.h>
inttlel channel_loopback (
T1E1 DEV_T dev,

unsigned int channel,
unsigned int channel_loopback_enable,
unsigned int idle_code)
Defined in tlel.c as a callable C routine
Description The tlel_channel_loopback function either enables or disables loopback for

a specified channel.

(1 Thetlel devparameterrefersto the initialized device handle returned by
tlel open.

[The channel parameter specifies the channel to loopback.

(1 The channel_loopback _enable parameter values arel=enable, 0=dis-
able.

[The idle_code is the value for idle code insertion.
Return Value The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

2-48

tlel close

Syntax

Defined in

Description

Return Value

tlel configure

Syntax

Defined in

Description

Return Value

tlel configure

De-initializes the Software Driver

#include<tlel.h>
inttlel close (
T1E1 DEV T dev)

tlel.c as a callable C routine

The tlel close function invalidates the T1/E1 device handle.

(1 The parameter tlel devrefersto the initialized device handle returned bt
tlel open.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

Allows Register Initialization

#include<tlel.h>
inttlel configure(
T1E1 DEV_ T tleldey,
tlel configuration)

tlel.c as a callable C routine

This function allows register initialization via a configuration array.

(1 Thetlel devparameter refersto the initialized device handle returned by
tlel open.

(1 The tlel configuration parameter is an array of tuples of the form (un-
signed int register_id, unsigned int value, unsigned int mask) and is termi-
nated by an entry with a mask of 0.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

TMS320C62x McEVM DSP Support Software 2-49

tlel framing

tlel framing

Syntax

Defined in

Description

Return Value

tlel init

Syntax

Defined in

Description

2-50

Sets the Framing Mode Register

#include<tlel.h>

inttlel framing(
T1E1_DEV_T tlel dey,
unsigned int frame_mode)

tlel.c as a callable C routine

Sets the framing mode register according to value specified in frame_mode.

(1 Thetlel devparameter refersto the initialized device handle returned by
tlel open.

(1 For adescription of the frame_mode parameter see tlel framing mode
enum list.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

Initializes the T1/E1 Framer to Specified Values

#include<tlel.h>

int tlel init(
T1E1 DEV_T tlel_dey,
unsigned int line_mode
unsigned int line_code _mode,
unsigned int framing_mode,
unsigned int sync_mode,
unsigned int loopback mode)

tlel.c

Establish normal operating register values for the T1/E1 Framer. These in-
clude setting line mode (T1 or E1), line code mode (AMI and B8ZS or AMI and
HDB3), framing mode (D4, ESF | CRC_4_MULTIFRAME,
DOUBLE_FRAME), sync mode (loop , FMIC | loop, FMIC), and loopback
mode(s) (none, local, payload, remote, local and remote).

[0 Thetlel devparameter refersto the initialized device handle returned by
tlel open.

Return Value

tlel install

Syntax

Defined in

Description

Return Value

u

tlel install

For a description of the line_mode parameter see tlel line_mode enum
list.

For a description of the Iline code mode parameter see
tlel line_code_mode enum list.

For a description of the framing mode parameter see tlel fram-
ing_mode enum list.

For a description of the sync _mode parameter see tlel sync_mode
enum list.

For a description of the loopback mode parameter see tlel loop-
back _mode enum list.

The function returns one of the following values:

OK

Operation succeeded

ERROR Operation failed

Installs a Callback Function to Handle Interrupts

#include<tlel.h>
inttlel_install(

T1E1_DEV_T tlel devy,
unsigned int register_id,
unsigned int mask,
T1E1_CALLBACK_T *pf _ract)

tlel.c as a callable C routine

The parameters are as follows:

a

a

a

Thetlel devparameter refers to the initialized device handle returned by
tlel open.

The register_id parameter refers to the interrupt mask register
(0x14-0x19).

The mask parameter refers to the interrupt mask (bit = 1 sets interrupt ac-
tive).

The *pf_ract parameter refers to the function which interrupt service rou-
tines will call.

The function returns one of the following values:

OK

Operation succeeded

ERROR Operation failed

TMS320C62x McEVM DSP Support Software 2-51

tlel linecode

tlel linecode

Syntax

Defined in

Description

Return Value

tlel loopback

Syntax

Defined in

Description

Return Value

2-52

Sets the RX and TX Line Code Registers

#include<tlel.h>

inttlel linecode(
T1E1 DEV_T tlel dey,
unsigned int line_code _mode)

tlel.c as a callable C routine

The tlel_linecode function sets the RX and Tx Line Code Registers.

[Thetlel_devparameter refersto the initialized device handle returned by
tlel_open.

[For a description of the Iline_code mode parameter see
tlel line_code_mode enum list.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

Enables or Disables Payload, Remote, and/or Local Loopback(s)

#include<tlel.h>

inttlel loopback(
T1E1_DEV_T tlel dey,
unsigned int loopback _mode)

tlel.c as a callable C routine
The tlel loopback function enable or disable the specified loopback.

(1 Thetlel devparameter refersto the initialized device handle returned by
tlel_open.

[Foradescription of the loopback_mode, see tlel loopback _mode enum
list. (TLEL_NO_LOOPBACK to disable).

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

tlel open

Syntax

Defined in

Description

Return Value

tlel read

Syntax

Defined in

Description

Return Value

tlel read

Initializes the Software Driver

#include<tlel.h>
T1E1 DEV_Ttlel open(
unsigned int tlel base address)

tlel.c as a callable C routine
Provides a handle to reference a T1/E1 device.

[The parameter tlel base address is the base address of the T1/E1 de-
vice.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

Returns the Value Contained in the Indicated Register

#include<tlel.h>

unsigned int tlel read(
T1E1 DEV_ T tlel dey,
unsigned int register_id)

tlel.c as a callable C routine
The tlel read function reads the specified register.

(0 Thetlel devparameter refersto the initialized device handle returned by
tlel_open.

[The register_id parameter refers to the register number.

Value of specified register.

TMS320C62x McEVM DSP Support Software 2-53

tlel reset

tlel reset

Syntax

Defined in

Description

Return Value

Syntax

Defined in

Description

Return Value

2-54

Resets All Register Values to Power-Up States

#include<tlel.h>
inttlel reset(
T1E1 DEV_ T tlel dev)

tlel.c as a callable C routine

Reset all registers values to power up status.

[0 Theparametertlel devreferstothe initialized device handle returned by
tlel open.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

Sets the Sync Timing Mode for the T1/E1 Framer

#include<tlel.h>

inttlel sync(
T1E1_DEV_T tlel dey,
unsigned int sync_mode)

tlel.c as a callable C routine

Set the sync timing mode for the T1/E1 Framer.

[Thetlel_devparameter refersto the initialized device handle returned by
tlel_open.

[0 For a description of the sync_mode parameter see tlel sync_mode
enum list.

The function returns one of the following values:

OK Operation succeeded
ERROR Operation failed

tlel write

tlel write Writes to the specified T1/E1 Register
Syntax #include<tlel.h>

inttlel write(
T1E1_ DEV_T tlel devy,

unsigned int register_id,
unsigned int value,
unsigned int mask)
Defined in tlel.c as a callable C routine
Description Write a value into aregister, limit the bits written to those which are setin mask.
Return Value The function returns one of the following values:
OK Operation succeeded

ERROR Operation failed

TMS320C62x McEVM DSP Support Software 2-55

VBAP Diriver Library API

2.7 VBAP Driver Library API

The TCM320AC36/7 voice-band audio processor (VBAP) integrated circuits
are designed to perform the transmit and receive encoding and decoding (A/D
and D/A conversions) together with transmit and receive filtering for voice-
band communications systems. The interface presented is specific to the use
of this chip on the McEVM.

2.7.1 VBAP API ENUMs

typedef enum { VBAP_A LAW=0, VBAP_U_LAW}vbap_law;

2.7.2 VBAP Library API Functions

The following alphabetical listing includes all of the VBAP library API functions.
Use this listing as a table of contents to the VBAP library API functions.

Function Description Page
vbap_set Sets the specified companding type for A/D and D/A conversions. 2-57
vbap_get Returns the current companding type for A/D and D/A conversions. 2-57

2-56

Syntax

Defined in

Description

Return Value

Syntax

Defined in
Description

Return Value

vbap_get

Sets the Companding type for A/D and D/A Conversions

#include<vbap.h>
int vbap_set (vbap_law law);

In vbap.c as a callable C routine

Sets the companding type to that specified (A-law or p-law). See vbap_law
enum list for parameter law.

Returns OK

Gets the Current Companding Type for A/D and D/A Conversions

#include<vbap.h>
vbap_law vbap_get (void);

In vbap.c as a callable C routine
Gets the current companding type.

Returns current companding selection.(See vbap_law enum list).OK

TMS320C62x McEVM DSP Support Software 2-57

PCI/AMCC Diriver Library API

2.8 PCI/AMCC Diriver Library API

This section discusses the PCI/AMCC library API. Included in this discussion
are the macros, data types, and defined functions that comprise the PCI/AMC-
C library for the 'C62x McEVM board.

2.8.1 PCI/AMCC Library Data Types and Macros

/* function typedefs for callback functions*
Itypedef void pci_fifo_callback(int status);
typedef void pci_msg_callback(int status);

2.8.2 PCI/AMCC Library API Functions

The following alphabetical listing includes all of the PCI/AMCC library API
functions. Use this listing as a table of contents to the PCI/AMCC library API

functions.
Function Description Page
pci_driver_int(void) Initializes the PCI Driver 2-59
pci_fifo_open Opens the driver for the PCI FIFO device 2-60
pci_fifo_close Closes the driver for the PCI FIFO device 2-61
pci_fifo_async_send Starts an asynchronous PCI FIFO send operation 2-62
pci_fifo_sync_send Starts a synchronous PCI FIFO send operation 2-63
pci_fifo_async_receive Starts an asynchronous PCI FIFO receive operation 2-64
pci_fifo_sync_receive Starts a synchronous PCI FIFO receive operation 2-65
pci_message_send Sends a message immediately 2-66
pci_message_async_send Starts an asynchronous message operation 2-67
pci_message_sync_send Starts a synchronous message operation 2-68
pci_message_retrieve Retrieves a message immediately 2-69
pci_message_async_retrieve Starts an asynchronous retrieve message operation 2-70
pci_message_sync_retrieve Starts a synchronous retrieve message operation 2-71
amcc_nvram_read Reads a byte from NVRAM 2-72
amcc_nvram_write Writes a byte from NVRAM 2-73
amcc_mailbox_read Reads a AMCC mailbox 2-74
amcc_mailbox_write Writes to a AMCC mailbox 2-75

2-58

pci_driver_
init(void)

Syntax

Defined in

Description

Return Value

Example

pci_driver_init(void)

Initializes the PCI Driver

#include <pci.h>
void pci_driver_init (void)

pci.c as a callable C routine

This routine initializes the software driver if it has not been initialized previous-
ly. This includes setting up the messaging and the PCI FIFO transfer portions
of the driver. Note that this function must be called before using any of the driv-
er calls. But, also note that this function is called as part of the pci_fifo_open()
function. So, ifthe pci_fifo_open() call is the first use of this driver, the pci_driv-
er_init() is not required.

Also, the messaging calls in this driver use the mailbox 1 register of the AMCC
PCI controller in both directions. Thus, this mailbox is not available for direct
accesses using the mailbox read and write routines.

None

#include <board.h>

#include <pci.h>

main()

{
evm_init();

pci_driver_init();

TMS320C62x McEVM DSP Support Software 2-59

pci_fifo_open

pci_fifo_open

Syntax

Defined in

Description

Return Value

Example

2-60

Opens the Driver for the PCI FIFO Device

#include <pci.h>
int pci_fifo_open (void)

pci.c as a callable C routine

This routine opens and initializes the PCI FIFO device used to communicate
with the host.

return a channel number to reference the device or an ‘invalid’ channel number
if the device is already open (an invalid channel number is anything less than
0)

#include <board.h>

#include <pci.h>

int pci_chan;

evm_init();

pci_chan = pci_fifo_open();

if (pci_chan<0)

{
[* pci_fifo_open() failed */

pci_fifo_close

Syntax

Defined in

Description

Return Value

Example

pci_fifo_close

Closes the Driver for the PCI FIFO Device

#include <pci.h>
int pci_fifo_close (int chan)

pci.c as a callable C routine
This routine closes the PCI FIFO device.

[The chan parameter is the channel number returned from a successful
open.

Returns OK or ERROR,; possible error conditions include: device not open

#include <board.h>

#include <pci.h>

int pci_chan;

evm_init();

pci_chan = pci_fifo_open();

pci_fifo_close(pci_chan);

TMS320C62x McEVM DSP Support Software 2-61

pci_fifo_async send

pci_fifo_async_
send

Syntax

Defined in

Description

Return Value

Example

2-62

Starts an Asynchronous PCI FIFO Send Operation

#include <pci.h>
int pci_fifo_async_send(

int chan,
unsigned int *n_buffer,
unsigned int num_bytes,

pci_host_callback *p_callback)
pci.c as a callable C routine

This routine starts a data transfer to the host using DMA. It returns immediate-
ly, then the callback function is executed when the operation has completed.
Note that each individual bus transaction is 32bits in size so num_bytes must
be a multiple of four and p_buffer must be 32bit aligned. If a close is called dur-
ing a pending async operation, the operation is aborted and the callback is
called with an error status. Also, only one FIFO send operation is supported
at a time, but it can be concurrent with a FIFO receive operation.

[The chan parameter is the channel number from a successful open.

(O The p_buffer parameter is the location of the data to be written to the FIFO.
This address must be 32-bit aligned.

[The num_bytes parameter is the number of bytes of data to be written to
the FIFO. This number must be a multiple of 4.

(1 The p_callback parameter is the function pointer for the callback routine.

OK or ERROR
Possible error conditions include: another send in progress, chan not open, no
DMA chan available.

#include <board.h>

#include <pci.h>

int pci_chan;
evm_init();

pci_chan = pci_fifo_open();

pci_fifo_sync
_send

Syntax

Defined in

Description

Return Value

Example

pci_fifo_sync_send

Starts a Synchronous PCI FIFO Send Operation

#include <pci.h>
int pci_fifo_sync_send(

int chan,
unsigned int *n_buffer,
unsigned int num_bytes)

pci.c as a callable C routine

This routine sends data to the PCI FIFO. Itwill return when the transfer is com-
plete. This function does not use DMA; it polls the FIFO flags and writes data
to the FIFO directly.

(1 The chan parameter is the channel number from a successful open.

[The p_buffer parameter is the location of the data to be written to the FIFO.
This address must be 32 bit aligned

[The num_bytes parameter is the number of bytes of data to be written to
the FIFO. This number must be a multiple of 4

OK or ERROR
Possible error conditions include: chan not open, another send in progress.

#include <board.h>
#include <pci.h>
unsigned int buffer[0x48];

int pci_chan;

evm_init();

pci_chan = pci_fifo_open();

pci_fifo_sync_send(pci_chan, buffer, 0x48*4);

TMS320C62x McEVM DSP Support Software 2-63

pci_fifo_async_receive

pci_fifo_async_ Starts an Asynchronous PCI FIFO Receive Operation
receive

Syntax

Defined in

Description

Return Value

Example

2-64

#include <pci.h>
int pci_fifo_async_receive(

int chan,
unsigned int *p_buffer,
unsigned int num_bytes,

pci_host_callback *p_callback)
pci.c as a callable C routine

This routine begins an asynchronous FIFO receive operation using DMA. It
returns immediately and the callback function is called when the operation
completes. Note that each individual bus transaction is 32 bits in size so
num_bytes must be a multiple of four and p_buffer must be 32bit aligned. If
a close is called during a pending async operation, the operation is aborted
and the callback is called with an error status. Also, only one FIFO receive op-
eration is supported at a time, but it can be concurrent with a FIFO send opera-
tion.

[The chan parameter is the channel number from a successful open.

[Thep_buffer parameter is the location of the data to be written to the FIFO.
This address must be 32-bit aligned.

[0 The num_bytes parameter is the number of bytes of data to be written to
the FIFO. This number must be a multiple of 4.

[0 The p_callback parameter is the function pointer for the callback routine.

OK or ERROR.
Possible error conditions include: chan not open, another receive in progress,
no DMA chan available.

#include <board.h>
#include <pci.h>

int pci_chan;
evm_init();

pci_chan = pci_fifo_open();

pci_fifo_sync_
receive

Syntax

Defined in

Description

Return Value

Example

pci_fifo_sync_receive

Starts a Synchronous PCI FIFO Receive Operation

#include <pci.h>
int pci_fifo_sync_receive(

int chan,
unsigned int *n_buffer,
unsigned int num_bytes)

defined in pci.c as a callable C routine

This routine receives data from the PCI FIFO. It will return when the transfer
is complete. This function does not use DMA, it polls the FIFO flags and reads
data from the FIFO directly.

a
a

U

The chan parameter is the channel number from a successful open.

The p_buffer parameter is the location of the data to be written to the FIFO.
This address must be 32 bit aligned.

The num_bytes parameter is the number of bytes of data to be written to
the FIFO. This number must be a multiple of 4.

OK or ERROR
Possible error conditions include: chan not open, another receive in progress.

#include <board.h>

#include <pci.h>

unsigned int buffer[72];

int pci_chan;

evm_init();

pci_chan = pci_fifo_open();

pci_fifo_sync_receive(pci_chan, buffer, 72<<2);

TMS320C62x McEVM DSP Support Software 2-65

pci_message_send

pci_message
send

Syntax

Defined in

Description

Return Value

Example

2-66

Sends a Message Immediately

#include <pci.h>
int pci_message_send (unsigned int message)

pci.c as a callable C routine

This routine sends a 32-bit message. If the message cannot be placed into the
mailbox immediately, it returns with an error and the message is not sent. This
routine checks mailbox empty/full flags and the HINT bit. If outgoing mailbox
1is empty and HINT is clear, it places message into mailbox 1. It then sets the
HINT bit to cause an interrupt to the host.

[The message parameter is the 32-bit value to be sent to the host.

OK or ERROR
Possible error conditions include: outgoing message mailbox not empty, HINT
not clear.

#include <board.h>

#include <pci.h>

evm_init();

pci_driver_init();

if (pci_message_send(0x1234fedc) |= OK)
{

/* message send failed */

pci_mesage
async_send

Syntax

Defined in

Description

Return Value

Example

pci_message_async_send

Starts an Asynchronous Message Operation

#include <pci.h>

int pci_message_async_send(
unsigned int message,
bool wait_for_ack,
pci_message_callback *p_callback)

pci.c as a callable C routine

This routine will begin a send message operation. The call will return immedi-
ately. The callback will be called when the operation is complete. This routine
uses interrupts internally; it does not poll. If wait_for_ack is TRUE, then call-
back is not called until the message has been read by the host. If it is FALSE
then callback s called as soon as the message is placed into the outgoing mail-
box.

[The message parameter is the 32-bit value to be sent to the host.

(1 Thewait_for_ack parameter determines when the operation is considered
complete and the callback function is called.

[The p_callback parameter is the funciton pointer for the callback routine.

OK or ERROR
Possible error conditions include: another send in progress.

#include <board.h>

#include <pci.h>

int pci_chan;

evm_init();

pci_chan = pci_fifo_open();

TMS320C62x McEVM DSP Support Software 2-67

pci_message_sync_send

pci_message_ Starts a Synchronous Message Operation
sync_send

Syntax

Syntax
Defined in

Description

Return Value

Example

2-68

#include <pci.h>

int pci_message_sync_send (unsigned int message, bool wait_for_ack)
pci.c as a callable C routine

This routine will send a 32bit message to the host. It will not return until the
operation is complete. If wait_for_ack is TRUE, then this function is not com-
plete until the message has been read by the host. If itis FALSE, then this func-
tion is complete as soon as the message is placed into the outgoing mailbox.
This function is implemented by calling pci_message_async_send() and wait-
ing internally for the operation to complete.

[The message parameter is the 32-bit value to be sent to the host.

[0 Thewait_for_ack parameter determines when the operation is considered
complete.

OK or ERROR
Possible error conditions include: another send in progress.

#include <board.h>

#include <pci.h>

int pci_chan;

evm_init();
pci_driver_init();

/* send message, return when message is read by
host */

pci_message_sync_send(0x00223300, TRUE);

pci_message_
retrieve
Syntax

Defined in

Description

Return Value

Example

pci_message_retrieve_

Retrieves a Message Immediately

#include <pci.h>
int pci_message_retrieve (unsigned int *p_message)

pci.c as a callable C routine

This routine retrieves a message sent by the host. Ifthere is no message avail-
able, it returns ERROR. This function checks mailbox empty/full flags; if mail-
box 1 is full, the message is read from the mailbox 1 register.

[The p_message parameter is the location to store the 32-bit value re-
trieved from to the host.

OK or ERROR
Possible error conditions include: incoming message mailbox not full.

#include <board.h>

#include <pci.h>

unsigned int *p_message;

evm_init();

pci_driver_init();

if (pci_message_retrieve(p_message) = OK)
{

/* no message available */

TMS320C62x McEVM DSP Support Software 2-69

pci_message_async_retrieve

pci_message_ Starts an Asynchronous Retrieve Message Operation
async_retrieve

Syntax

Syntax

Defined in

Description

Return Value

Example

2-70

#include <pci.h>

int pci_message_async_retrieve(
unsigned int *n_message,
pci_message_callback *p_callback)

pci.c as a callable C routine

This routine begins an asynchronous message retrieve operation. It returns
immediately. When the operation is complete, the callback function is called.
This function uses interrupts internally; it does not poll.

[The p_message parameter is the location to store the 32-bit value re-
trieved from to the host.

[0 The p_callback parameter is the function pointer for the callback routine.

OK or ERROR
Possible error conditions include: another retrieve in progress.

#include <board.h>

#include <pci.h>

unsigned int *p_message;

evm_init();

pci_driver_init();

pci_message_
sync_retrieve

Syntax

Syntax
Defined in

Description

Return Value

Example

pci_message_sync_retrieve

Starts a Synchronous Retrieve Message Operation

#include <pci.h>

int pci_message_sync_retrieve (unsigned int *p_message)
pci.c as a callable C routine

This routine will retrieve a 32-bit message sent by the host. It will not return
until the operation is complete. This function is implemented by calling
pci_message_async_retrieve() and waiting internally for the operation to com-
plete.

[The p_message parameter is the location to store the 32-bit value re-
trieved from the host.

returns OK or ERROR, possible error conditions include: another retrieve in
progress.

#include <board.h>

#include <pci.h>
unsigned int *p_message;
evm_init();
pci_driver_init();

pci_message_sync_retrieve(p_message);
[* retrieved message in *p_message */

TMS320C62x McEVM DSP Support Software 2-71

amcc_nvram_read

amcc_nvram_
read

Syntax

Defined in

Description

Return Value

Example

2-72

Reads a Byte from NVRAM

#include <pci.h>

int amcc_nvram_read (
unsigned short offset,
unsigned char *p_data)

pci.c as a callable C routine

This routine returns the byte of data at the indicated offset to the p_data ad-
dress. Note that the NVRAM device on the EVM and McEVM boards is 2K
bytes in size.

[The offset parameter is the address offset into the NVRAM device.

(1 The p_data parameter is the location to store the 8-bit value read from
NVRAM.

OK or ERROR
Possible error conditions include: offset out of range.

Example

#include <board.h>

#include <pci.h>
unsigned char uc_data;
evm_init();

pci_driver_init();

amcc_nvram_read(0x01e8, &uc_data);

amcc_nvram_
write

Syntax

Defined in

Description

Return Value

Example

amcc_nvram_write

Writes a Byte to NVRAM

#include <pci.h>

int amcc_nvram_write(
unsigned short offset,
unsigned char data)

pci.c as a callable C routine

This routine will write the byte of data to NVRAM at the indicated offset. This
routine will not allow the modification of data between offsets of 0x0000 and
0x007f. Offsets 0x0000 through 0x007f are used for PCI configuration and
should not be modified.

[The offset parameter is the address offset into the NVRAM device.
(1 The data parameter is the 8-bit value to write to NVRAM.

OK or ERROR, possible error conditions include: invalid offset, offset out of
range.

#include <board.h>

#include <pci.h>

unsigned char uc_data;

evm_init();

uc_data = Ox4e;

pci_driver_init();
amcc_nvram_write(0x02f0, uc_data);

TMS320C62x McEVM DSP Support Software 2-73

amcc_mailbox_read

Reads a AMCC Mailbox
read

Syntax #include <pci.h>
int amcc_mailbox_read(
int mailbox_number,
unsigned int *p_data)
Defined in pci.c as a callable C routine
Description This routine will read the contents of one of the mailbox registers not used by

the pci_message xxx() calls. If the indicated mailbox is not full this routine will
return ERROR. Note that mailbox register 1 is used for the pci_message_xxx()
calls so it is not available to this routine.

[The mailbox_number parameter is the mailbox register number to be
checked. It must be a value of 2, 3 or 4.

(1 The p_data parameter is the location to store the 32-bit value sent by the
host.

Return Value OK or ERROR
Possible error conditions include: invalid mailbox number (must be 2, 3 or 4),
mailbox not full.

Example Example

#include <board.h>

#include <pci.h>
unsigned int data;
evm_init();

pci_driver_init();

amcc_mailbox_read(2, &data);

2-74

amcc_mailbox_
write

Syntax

Defined in

Description

Return Value

Example

amcc_mailbox_write

Writes to a AMCC Mailbox

#include <pci.h>

int amcc_mailbox_write (
int mailbox_number,
unsigned int data)

pci.c as a callable C routine

This routine will place a 32-bit word into one of the mailbox registers not used
by the pci_mesage_xxx() calls. If the indicated mailbox is not empty, this rou-
tine will return ERROR. Mailbox register 1 is used for the pci_message_xxx()
calls so it is not available to this routine.

Note that byte 3 of outgoing mailbox register 4 is not writeable so writing to this
byte will have no effect. On the host side, byte 3 of incoming mailbox register
4 contains hardware signal information (see the EVM reference guide for de-
tails).

(1 The mailbox_number parameter is the mailbox register number to be
checked. It must be a value of 2, 3 or 4.

(1 The data parameter is the 32bit value to be sent to the host.

OK or ERROR, possible error conditions include: invalid mailbox number
(must be 2, 3 or 4), mailbox not empty

Example

#include <board.h>

#include <pci.h>
evm_init();

pci_driver_init();

amcc_nvram_write(3, 0x9876abcd);

TMS320C62x McEVM DSP Support Software 2-75

C I/O Interface Library API

2.9 C /O Interface Library API

This section discusses the C 1/O Interface library API. Included in this discus-
sion are the macros, data types, and defined functions that comprise the C I/O

Interface library for the 'C62x McEVM board.

The following alphabetical listing includes all of the C I/O Interface library API
functions. Use this listing as a table of contents to the C I/O Interface library

API functions.

Function Description Page
cio_pci_fifo_open Opens the C I/O interface to the AMCC/PCI driver 2-77
cio_pci_fifo_read Reads from the host using the AMCC/PCI driver 2-78
cio_pci_fifo_write Writes to the host using the AMCC/PCI driver 2-79
cio_pci_fifo_Iseek Sets the file position indicator [not supported] 2-79
cio_pci_fifo_close Closes the C I/O interface to the AMCC/PCI driver 2-80
cio_pci_fifo_unlink Deletes the file [not supported] 2-80
cio_pci_fifo_rename Renames the file [not supported] 2-80

2-76

cio_pci_fifo_
open

Syntax

Defined in

Description

Return Value

Example

cio_pci_fifo_open

Opens the C I/O Interface to the AMCC/PCI Driver

#include <cio_fifo.h>
int cio_pci_fifo_open(

const char *path,
unsigned flags,
int mode)

cio_fifo.c as a callable C routine

This routine opens the FIFO channel to the host. Note that only one stream
is supported and that this function utilizes the pci_fifo_open() routine.

[The path parameter is ignored.
(1J The mode parameter is ignored.
[The flags parameter specify how the device is manipulated.

A stream number on success or <0 on failure

#include <board.h>#include <stdio.h>#include <cio_fifo.h>

unsigned int buffer[0x80];
main()
{

FILE *fid;

evm_init();

add_device(“pci_fifo”, _SSA,

cio_pci_fifo_open,
cio_pci_fifo_close, cio_pci_fifo_read,

cio_pci_fifo_write,
cio_pci_fifo_lIseek,
cio_pci_fifo_unlink,

cio_pci_fifo_rename);

fid = fopen(“pci_fifo:”, “rw”);

TMS320C62x McEVM DSP Support Software 2-77

cio_pci_fifo_read

cio_pci_fifo_
read

Syntax

Syntax

Defined in

Description

Return Value

Example

2-78

/* read from host using pci_fifo device */
fread(buffer, 4, 0x80, fid);

[* write to host using pci_fifo device */
fwrite(buffer, 4, 0x80, fid);

fclose(fid);

Reads the C I/O Interface to the AMCC/PCI Driver

#include <cio_fifo.h>

int cio_pci_fifo_read(

int fildes,
char *bufptr,
unsigned cnt)

cio_fifo.c as a callable C routine

This function reads the number of characters indicated by ‘cnt’ fromthe pci_fifo

device.

[The fildes parameter is the stream number returned from a successful

open call.

[The bufptr parameter is the location of the buffer where read data is

placed.

[The cntparameter is the number of characters to be read from the device.

Returns the number of characters read or -1 on failure

See the example for pci_fifo_open().

cio_pci_fifo_
write

Syntax

Defined in

Description

Return Value

Example

cio_pci_fifo_
Iseek

Syntax

Defined in
Description

Return Value

cio_pci_fifo_write

Writes to the Host Using the AMCC/PCI Driver

#include <cio_fifo.h>
int cio_pci_fifo_write(

int fildes,
const char *bufptr,
unsigned cnt)

cio_fifo.c as a callable C routine

This function writes the number of charcters indicated by cntto the pci_fifo de-

vice.

[The fildes parameter is the stream number returned from a successful

open call.

(1 The bufptr parameter is the location of the buffer of data to be sent to the

device.

[d The cnt parameter is the number of characters to be sent to the device.

Returns the number of characters written or -1 on failure.

See the example for pci_fifo_open().

Sets the File Position Indicator

#include <cio_fifo.h>
int cio_pci_fifo_Iseek (

int fildes
long offset
int origin)

cio_fifo.c as a callable C routine
This function is not supported by the pci_fifo device.

Always returns EOF (Iseek is not supported).

TMS320C62x McEVM DSP Support Software

2-79

cio_pci_fifo_close

Closes the C I/O Interface to the AMCC/PCI Driver
close

Syntax #include <cio_fifo.h>
int cio_pci_fifo_close (int fildes)

Defined in cio_fifo.c as a callable C routine
Description This function closes the pci_fifo device.

[The fildes parameter is the stream number returned from a successful

open call.
Return Value Returns 0 on success or -1 on failure.
Example See the example for pci_fifo_open().
cio_pci_fifo_ Deletes the File
unlink
Syntax #include <cio_fifo.h>

int cio_pci_fifo_unlink (const char *path)

Defined in cio_fifo.c as a callable C routine
Description This function is not supported by the pci_fifo device.
Return Value Always returns -1 (unlink is not supported).
cio_pci_fifo_ Renames the File
rename
Syntax #include <cio_fifo.h>
int cio_pci_fifo_rename(

const char *old_name,

const char *new_name)
Defined in cio_fifo.c as a callable C routine
Description This function is not supported by the pci_fifo device.
Return Value Always returns -1 (rename is not supported).

2-80

Appendix A

TMS320C62x McEVM Connector Pinouts

This appendix contains the pinout information for each connector on the
TMS320C62x McEVM.

Topic Page
A.l TMS320C62x MCEVM Connector Summary —..............covun... A-2
A.2 Microphone Input Jack (Mono) ... i A-2
A.3 Handset EArOUt MONO ... oottt A-3
A4 RJ-48C T1/E1 Interface CONNECIOr ...t A-3
A5 MVIP-90 Interfacet A-4
A.6 MVIP/C2 Termination JUMPErttt A-6
A.7 MVIP C/4 Termination JUMPErttt A-6
A.8 CPLD ISP Headeriiiiiiiii s A-7
A.9 Expansion Memory Interface Connector — A=
A.10 Expansion Peripheral Interface Connector — A-9
A.11 TMS320C62x JTAG Emulation Header —........................ A-10
A.12 External Power CONNECIOrttt A-11
A.13 DSP Fan Power CONNECIOrcoiiirtiiiiiiieiianannns A-11
A.14 PCIl Local BUS CONNECIOr . ..ottt et e e A-12

A-1

TMS320C62x McEVM Connector Summary / Microphone Input Jack (Mono)

A.1l TMS320C62x McEVM Connector Summary

There are ten connectors on the 'C62x McEVM, as shown in Table A-1. The
J7 CPLD ISP connector is for factory use and is not installed.

Table A—1. TMS320C62x McEVM Connectors Summary

No. of See
Connector Pins Description Type Page
J1 3 Handset microphone in (mono) 3.5-mm audio jack A-2
J2 3 Handset ear out (mono) 3.5-mm audio jack A-3
J3 8 T1/E1 interface RJ-48C modular jack, twisted- A-3
pair
J4 40 MVIP-90 interface 40-pin, right-angle, ribbon A-4
cable
J5 3 MVIP /C2 termination jumper 1 x 3 pin, 0.1 in. A-6
J6 3 MVIP /C4 termination jumper 1 x 3 pin, 0.1 in. A-6
J7 10 CPLD ISP header 2x5pin, 0.1in. A-7
J8 80 Expansion memory interface 2 x 40 pos., 0.050-in. SMT A-8
J9 80 Expansion peripheral interface 2 x 40 pos., 0.050-in. SMT A-9
J10 14 'C62x JTAG emulation header 2x 7 pin, 0.1 in. A-10
Ji1 4 External power Molex disk driver, right-angle A-11
J12 2 DSP fan power (not used) Molex 1.25-mm, right-angle A-11
P1 124 PCl local bus Edge connector A-12

A.2 Microphone Input Jack (Mono)

Connector J1 supports a stereo microphone input. Sjince it is a mono micro-
phone, only the input left (tiup) channel is used.

Table A—2. Stereo Microphone Input Connector J1 Pinout

J1 Pin No. Signal Name Description Type
1 Tip Mic In |
2 Ring NC -
3 Sleeve AGND -

A-2

Handset EarOut Mono / RJ-48C T1/E1 Interface Connector

A.3 Handset EarOut Mono

Connector J2 supports a mono earphone output. The line output audio con-
nector is the bottom 3.5-mm jack on the EVM’s mounting bracket.

Table A-3. Handset Output Connector J2 Pinout

J2 Pin No. Signal Name Description Type
1 Tip Ear out (0]
2 Ring NC -
3 Sleeve AGND -

A.4 RJ-48C T1/E1l Interface Connector

T1/E1 interface J3 connector provides a multichannel, digital telephone inter-
face for the 'C6201 DSP that allows it to process multiple channels. The T1/E1
output is presented as an RJ-48C twisted-pair modular jack on the board'’s
mounting bracket.

Table A—4. T1/E1 Interface Connector J3 Pinouts

J3 Pin No. Signal Name Description Type
1 RxRing Receive Ring I
2 RxTip Receive Tip I
3 NC - -
4 TxRing Transmit ring 0
5 TXTip Transmit tip 0
6 NC - -
7 NC - -
8 NC - -

TMS320C62x McEVM Connector Pinouts A-3

MVIP-90 Interface

A.5 MVIP-90 Interface

Connector J4 provides interfaction with a wide rage of third-party telephony
boards. The MVIP-90 interface consists of a 40-pin connector located at the
top of the McEVM board.

Table A-5. MVIP-90 Interface J4 Connector Pinout

J4 Pin No. Signal Name Description Type
1 Reserved - -
2 Reserved - -
3 Reserved - -
4 Reserved - -
5 Reserved - -
6 Reserved - -
7 DSoO Data Stream Out 0 (0]
8 DSiO Data Stream In O I
9 Dsol Data Stream Out 1 (0]
10 Dsil Data Stream In 1 I
11 Dso2 Data Stream Out 2 (0]
12 Dsi2 Data Stream In 2 I
13 Dso3 Data Stream Out 3 (0]
14 Dsi3 Data Stream In 3 I
15 Dso4 Data Stream Out 4 (0]
16 Dsi4 Data Stream In 4 I
17 Dso5 Data Stream Out 5 (0]
18 Dsi5 Data Stream In 5 I
19 Dso6 Data Stream Out 6 (0]

20 Dsi6 Data Stream In 6 I
21 Dso7 Data Stream Out 7 (0]
22 Dsi7 Data Stream In 7 I
23 Reserved - -

A-4

MVIP-90 Interface

J4 Pin No. Signal Name Description Type
24 Reserved - -
25 Reserved - -
26 Reserved — =
27 Reserved - -
28 Reserved — =
29 Reserved - -
30 Ground Ground -
31 /C4 4.096 MHz clock 110
32 Ground Ground -
33 /FO 8 kHz framing signal 1/0
34 Ground Ground -
35 c2 2.048 MHz clock 1/0
36 Ground Ground -
37 SEC8K Secondary 8 kHz timing 1/0
38 Ground Ground -
39 Reserved - -
40 Reserved - -

TMS320C62x McEVM Connector Pinouts A-5

MVIP/C2 Termination Jumper / MVIP/C4 Termination Jumper

A.6 MVIP/C2 Termination Jumper

Connector J5 provides optional termination for the MVIP C2 clock signal.

Table A—6. MVIP/C2 Termination Jumper J5 Connector Pinout

J5 Pin No. Signal Name Description Type
1 MVIP_C20 MVIP C2 clock O
2 TERM_C20 Termination (1000pf/ 1K) -
3 NC - -

A.7 MVIP/C4 Termination Jumper

Connector J6 provides optional termination for the MVIP C4 clock signal.

Table A—7. MVIP/C4 Termination Jumper J6 Connector Pinout

J6 Pin No. Signal Name Description Type
1 MVIP_C40 MVIP /C4 clock (@)
2 TERM_C4B Termination (1000pf/ 1K) -
3 NC - -

CPLD ISP Header

A.8 CPLD ISP Header

Connector J7 provides the CPLD’s JTAG in-system programming port that al-
lows the MCcEVM’s onboard logic to be reprogrammed. This connector is a
10-pin header (two rows of five pins) with connections shown in Table A-8 to
communicate with the Altera ByteBlaster[] parallel port cable. The 10-pin fe-
male connector on the cable is connected to the male header on the McEVM.
The pins have 0.025-inch square posts with 0.100-inch spacing.

The J7 CPLD ISP connector is for factory use and is not installed.

Table A-8. CPLD ISP J7 Pinout

J7 Pin

No. Signal Name Description Type
1 TCK Test clock |
2 GND Ground -
3 TDO Test data output (0]
4 VCC 5V (0]
5 T™S Test mode select |
6 NC - -
7 NC - -
8 NC - -
9 TDI Test data input |
10 GND - -

TMS320C62x McEVM Connector Pinouts A-7

Expansion Memory Interface Connector

A.9 Expansion Memory Interface Connector

Connector J8 provides the 'C6201 asynchronous expansion memory interface
signals to a daughterboard that can provide additional memory and memory-
mapped devices.

Table A—9. Expansion Memory Interface J8 Connector Pinout

J8 Pin J6 Pin
No. Signal Name Type No. Signal Name Type
1 5V O 2 5V O
3 XA21 O 4 XA20 o]
5 XA19 O 6 XA18 O
7 XAL17 O 8 XA16 ¢}
9 XA15 O 10 XA14 O
11 GND - 12 GND -
13 XA13 O 14 XA12 ¢}
15 XAl11 O 16 XA10 O
17 XA9 o 18 XA8 O
19 XA7 O 20 XA6 O
21 5V O 22 5V O
23 XAS5 (@) 24 XA4 O
25 XA3 O 26 XA2 ¢}
27 XBE3 O 28 XBE2 O
29 XBE1 O 30 XBEO (@)
31 GND - 32 GND -
33 XD31 1/0/1Z 34 XD30 1/0/1Z
35 XD29 1/10/1Z 36 XD28 1/0/1Z
37 XD27 1/10/Z 38 XD26 1/10/1Z
39 XD25 1/10/1Z 40 XD24 1/10/1Z
41 3.3V - 42 3.3V -
43 XD23 1/10/Z 44 XD22 1/10/Z
45 XD21 1/10/Z 46 XD20 1/10/Z
47 XD19 1/10/1Z 48 XD18 1/10/1Z
49 XD17 1/10/Z 50 XD16 1/10/1Z
51 GND - 52 GND -
53 XD15 1/10/1Z 54 XD14 1/0/1Z
55 XD13 1/10/1Z 56 XD12 1/10/1Z
57 XD11 1/10/Z 58 XD10 1/10/1Z
59 XD9 1/10/1Z 60 XD8 1/0/1Z
61 GND - 62 GND -
63 XD7 1/10/1Z 64 XD6 1/10/Z
65 XD5 1/0/1Z 66 XD4 1/0/1Z
67 XD3 1/10/1Z 68 XD2 1/0/1Z
69 XD1 1/10/Z 70 XDO 1/10/1Z
71 GND - 72 GND -
73 XRE O 74 XWE O
75 XOE (@) 76 XRDY I
77 SPARE (N/C) - 78 XCE1 O
79 GND - 80 GND -

A-8

Expansion Peripheral Interface Connector

A.10 Expansion Peripheral Interface Connector

Connector J9 provides 'C6201 expansion peripheral interface signals to a
daughterboard.

Table A—10. Expansion Peripheral Interface J9 Connector Pinout

J9 Pin J7 Pin
No. Signal Name Type No. Signal Name Type
1 12V O 2 -12V o
3 GND - 4 GND -
5 5V O 6 5V o
7 GND - 8 GND -
9 5V O 10 5V o
11 SPARE (N/C) - 12 SPARE (N/C) -
13 RSVD (N/C) - 14 RSVD (N/C) -
15 RSVD (N/C) - 16 RSVD (N/C) -
17 SPARE (N/C) - 18 SPARE (N/C) -
19 3.3V O 20 3.3V O
21 XCLKXO0 I/0/1Z 22 XCLKSO0 I
23 XFSX0 I/10/Z 24 XDXO0 0]
25 GND - 26 GND -
27 XCLKRO I/0/1Z 28 SPARE (N/C) -
29 XFSRO I/10/Z 30 XDRO I
31 GND - 32 GND -
33 XCLKX1 I/10/1Z 34 XCLKS1 I
35 XFSX1 I/10/Z 36 XDX1 (0]
37 GND - 38 GND -
39 XCLKR1 I/10/1Z 40 SPARE (N/C) -
41 XFSR1 I/10/1Z 42 XDR1 I
43 GND - 44 GND -
45 TOUTO O 46 TINPO O
47 SPARE (N/C) - 48 SPARE (N/C) -
49 TOUT1 | 50 TINP1 I
51 GND - 52 GND -
53 XEXT_INT7 | 54 IACK o
55 INUM3 o 56 INUM2 o
57 INUM1 (0] 58 INUMO o
59 XRESET O 60 DSP_PD o
61 GND 62 GND -
63 XCNTL1 (0] 64 XCNTLO (0]
65 XSTAT1 | 66 XSTATO I
67 SPARE (N/C) - 68 SPARE (N/C) -
69 XCE2 o 70 XCE3 o
71 DMAC3 O 72 DMAC2 o
73 DMAC1 o 74 DMACO o
75 GND - 76 GND -
77 GND - 78 XCLKOUT2 o
79 GND - 80 GND -

TMS320C62x McEVM Connector Pinouts A-9

TMS320C62x JTAG Emulation Header

A.11 TMS320C62x JTAG Emulation Header

Connector J10 provides the 'C6201’'s emulation port based on the IEEE
1149.1 standard. This connector is a 14-pin header (two rows of seven pins)
with connections shown in Table A—11 to communicate with an XDS510 emu-
lator. Pin 6 is used for keying to ensure a proper connection.

Table A-11. TMS320C62x JTAG Emulation Header J10 Pinout

J10 Pin
No. Signal Name Description Type

1 TMS Test mode select I

2 TRST Test reset I

3 TDI Test data input I

4 GND Ground -

5 PD (Vco) Presence detect. Indicates that the O
emulation cable is connected and the tar-
get is powered up. PD is tied to 3.3 V on
the MCEVM.

6 KEY Not used. This pin is cut off on the J5 -
header. This pinisfilled in on the XDS510
connector.

7 TDO Test data out (@)

8 GND Ground -

9 TCK_RET Test clock return. Test clock input to the (0]
emulator.

10 GND Ground -

11 TCK Test clock. TCK is a 10.368-MHz clock
source from the emulation cable pod.

12 GND Ground -

13 EMUO Emulation pin 0 I/O

14 EMU1 Emulation pin 1 I/0

A-10

External Power Connector / DSP Fan Power Connector

A.12 External Power Connector

Connector J11 enables the 'C62x McEVM to be connected to an external pow-
er supply during stand-alone operation.

Table A-12. External Power J11 Connector Pinout

J11 Pin
No. Signal Name Description Type
1 12 12 Vpc at 500 mA |
2 -12 —12 Vpc at 100 mA |
3 GND Ground -
4 5 5Vpc at4 A |

A.13 DSP Fan Power Connector

Connector J12 provides power to the DSP cooling fan (not used). This 2-pin
connector provides 5 V at 100 mA to the fan.

Table A-13. DSP Fan Power J12 Connector Pinout

J12 Pin
No. Signal Name Description Type
1 GND Ground -
2 PWR 5 Vpc at 100 mA o

TMS320C62x McEVM Connector Pinouts A-11

PCI Local Bus Connector

A.14 PCI Local Bus Connector

Connector P1 provides the PCI local bus to the 'C62x McEVM.

Table A—-14. PCI Local Bus P1 Connector Pinout

P1Pin P1 Pin
No. Side B Side A No. Side B Side A
1 —12V TRST# 32 AD17 AD16
2 TCK 12V 33 C/BE2# 3.3V
3 GND T™S 34 GND FRAME#
4 TDO DI 35 IRDY# GND
5 5V 5V 36 3.3V TRDY#
6 5V RSVD 37 DEVSEL# GND
7 INTB# INTC# 38 GND STOP#
8 INTD# INTA# 39 LOCK# 3.3V
9 PRSNT1# RSVD 40 PERR# SDONE
10 RSVD 5V 41 3.3V SBO#
11 PRSNT2# RSVD 42 SERR# GND
12 GND GND 43 33V PAR
13 GND GND 44 C/IBE1# AD15
14 RSVD RSVD 45 AD14 3.3V
15 GND RST# 46 GND AD13
16 CLK 5V 47 AD12 AD11
17 GND GNT# 48 AD10 GND
18 REQ# GND 49 GND AD9
19 5V RSVD 50 Key Key
20 AD31 AD30 51 Key Key
21 AD29 33V 52 AD8 C/IBEO#
22 GND AD28 53 AD7 3.3V
23 AD27 AD26 54 3.3V AD6
24 AD25 GND 55 AD5 AD4
25 3.3V AD24 56 AD3 GND
26 C/BE3# TDSEL 57 GND AD2
27 AD23 3.3V 58 AD1 ADO
28 GND AD20 59 5V 5V
29 AD21 GND 60 ACK64# REQ64#
30 AD19 AD18 61 5V 5V
31 3.3V AD16 62 5V 5V

A-12

Appendix B

TMS320C6x McEVM Schematics

This appendix contains the schematics for the TMS320C6x McEVM.

B-1

TMS320C6x McEVM Schematics

E] + W
[o] 133ys] 8661 12 130000 hepsaupa, e
IETD - HOLLW2ITddY £ £l 5 i s Z T BS
. n_ 2980084 ¥ =uwa E5T
aa 13 WNp U8 Wnoog azg| woeyoEL * a0 aZsa IESW LuEK “ - - - - - - =
Ewa
WATOW X8202ESWL T T CEETTE-S B B B B D 3 B (3]
2L LY
OTOETH * : : : : : » » AT
sExal 'N0lsnoH "dnoln olanpuodluag ‘s wasAg Wawdojaaag @ eamgog ferhi)
J3.L¥HO4HOONI SLNFWNHLSN] S¥X3L T i i
Ewa
EUTY&EQ " o o o o - u u LT
Eiwa
sediad EE iz EH [iH £ Iz B
=
- - - - - - - BEE
ce | s6 | g6 | 26 | 16 | 0s | sz EEl
W W W W W W W BEE
Ir i [E] [[H [ER B
TOELHGY TWIOTS - ATdY “§2T
4 ‘I2g ‘SIMIOd ISEL CBE I2d - aTdr "§57 - - - - - - » ATE
o¥ 'k ’x@ 'SLHI04 ISIL C£h SHOII0 WESO - T4 "Z%
2SIN ‘SILHI04 ISEL "I HOLITRNGY TYEIH TS0 12 $F 3] BE
o024 - S4do-umd 1§ GOLOENNOD AWOREHR-9A 02
£204 7 g006 — S4ED-EMd 0P SELLINT SSEEAAV-9a 61 “ “ HEE
T0292-Ead "6E 31 0L 509 WLWa THE0TE "8l
OSIR-@4d '8§ 20T 0¥ oL S0d WLWA THIOTE L] SIENES 40 SOLYLS MOISLadd
IESEE SEOIVIOEEA-Ead (L SHLLANT S0 YLV TeHOTo-AIHE 9]
SEENLIME 3 SATT-ISIH "9E WLLINT SSTEAIY TREOTH-JIHE "Gl dz79C KT Jixd - Jixd - -— 14Sa FE0D AGTE HOM
HOR MEIVER-ESELL QS (mxwds gmp)] [MNWD IWWAS-IIHE 1 qLgr - - " — I NI tdsa @We2 Agt[W0d
ITTOGLAOS —E&L 0 "BE (Eowds zED) 0 ANWS RWEQS-IOIRE g1 265 cofd 9PAE MPSE 2LHd GESE Z0GA IWWED SHOLLA0 ATHNESSY il
SELLINT T0Z92-TdB "£E ZEXA3Z] AVESES-IIRE "1
ToI8 2E SHOISTSE SEEEAY-TWEsas 11 0050 W04 AZATAOWA SdW £2-LOS 7 £40SS ZA 3 T4 Wod amw ol
EOVEEINT IIT- T/ 1L CTE SHOLSISTE 509 WLwd-4IRE “01 $E2 00 [E7 904 AIATHO0HI T4¥ SINIEEL004 TTOE 0dBL ANY LEOOH E2¥440S L
IELAMINT a0 OT¥d ‘0§ 10Z90-IIHT *¢
SEXOR I90d TEINES-OINd ‘62 IESTI 7 TI4 1029220 3 €20 Y£Ecd YZEcd YT 1T :TIWLSHI ‘OTHd ASTE W04
EWAT AWEELS TYIEES-OINd '&7 SEOLYTIIIS0-HI0TY *f L5GE *9EGE 'PESE 'FT T ITTELEMT ‘0 pa) OTW 4G W04 8
EELAMINT a0 OTHd *L3 TOUINGD d0¥-I04 9
SEXOR 10230~ ISEDR C9E EOVSIELNT S0d TOMLNOZ-I2d g 33 SHOLWTIIZSO T STRISIMY *d
WOLOTRHOD ERLL-AT4D "GE EOLOEHADZ-I24 % T SITEEEI ¥ SEOIO0ANT “r
4/T &em - 15 - TeTIee - weibeTa yoorm g s050 £fn 2,01 '
eng EiRQ 7 eesappy — weabera yoora vz S SEBSLINS B
(Fewd SIBL) LEIBS WEA0D 1 TOSHE / GOE B4/ GNE /2P SDV4/SHEONLEN/ SH0ISISTE CH
1= EELTTA IHF *d
ZI0/1d SHEAVER 7 SYOLDEHNOD T
£05a 01d SAIT ¥ S3A0IA "a
1593 952 5490 JINEHED 'O
10542 rzaa S4¥ HOTWLAWL "2
P 2492 OIL ATOHLITTE "%
.G0T*0 = WOLLOD LOOITN LEEHO4HOD NONIXWH 321 (mats w) seog (mars gl 4oz =
WOTED SEILBENYA EHTANTINT 04570 = 404 LESTEE LEIHOAHOD MONTXWH 11 005 53 ITH L¥ LEVLS SINENG 402 IS HOLLod
10ESn WOLYNSTSE] EONTEELISY ISEESTE g
*HOTIWEEIe TATION 904 ISMT00Ed LON S¥0ISISEd
CERd 90 40 EFELTOA LO4LOO £204 ISACAY OO TYHOLLH0 TA¥ L5599 ¥ GRSE (0T OTITd ENTW4 TBL KT . 0N, BITH QESLWDTANT S99 OITTHLSHT LOK SI4Wd "%
"gC0E9Ld ¥ BLIM QELOLIISHOS 39 AWH 051 6 401 HONINIH 6% SE0LID¥4¥r HOTWLNWE ONY DILATOGIOETE g
"SOVERIOMDTH NI MY SE0TYA TaNLIIONAE 2

ATAD TILE

LW

HOTLJATH2STa

Fce:d

SROISIATYE

"SHEO MI T9% SENTWA

IR LSTSTL

1

QETATEAS ESIMEIBLY SSTIHL *SELOK

B-2

TMS320C6x McEVM Schematics

T
) 0 Z EEELE | 2881 mw_mﬁsm:;m Appsanl 318 -
«n_ 2980090 " WYEDO¥Id ¥o0Td Snd YI¥d % SSHuYddvy
Lkl Jaqunp U2 wndog wNE
AW ATON XB202ESWL
AL
Q3L¥HOdH0ONI SLNIWNHLSNI S¥X3L HOL93NNOD 194
o relay1od
0668 41 1Dd Doy
ovlr |
I
27w h T
_J
tn
|0 12100 ./
J AN
a7d9 B 121400yD / /
ILE| AN
_J
Lin
&N
SEZHIATY raeeqlgn
T EakAn] [ogHaH
SEEHOATY _
58N #2nN dylZ2 1aH
\ b ielgn oielg [| I
" 4 4
— SFEHOATY -
1 |2 1Z2|Haa%D i |_
o Lo ielax
g PEEHOATY 1029 0ZESI L
s ¥ - d | HZ'EE
2 . B |_ dsa
3 1T N\ IZ7121Ha0vD Z1Zlvas .
S [z 123
z FFZHOATY |_
(@]
=l AT
O R gosmeen Hige
SUNYE-Z ZeLlddy een
IWvHas IWvHSas
gengiIn
POSAEO0SA 28N+ aen

¥

B-3

TMS320C6x McEVM Schematics

1 El 1] 1 i

TMS320C6x McEVM Schematics

3 | a
Xl I L [EELE | 966100 1800130 Epsan] E1eq
2080080 " WIOYId A207Td DNIND0TD 3 WVAUYLS TV¥IYHS
Jagunp Jua wnaog azig]
WATIW XOD02ESHL
L]
J3LYHO4HOQINI SLNIFWNHLSNI S¥X3L
IHNFBE @ ZHWESETH dvgh / gd gz | a1
90/ 074 | anr anir anz |z a1
;ul 90 / dvaa | gne awz | a1
191 ZHIPEZ 91 JTwd £ =) e HNE HAF AWz |0 a1
s FIATD D% | W9 1H1D WETHLX ZHIIGSE 51
d¥AS J INHOMN ¥ 2 Z I
- o5 INAS ONAS O1vd FAOW MDD DIWA
n - FEREITTE]
N = 85 01v4 (ERALE] Tm
& us) 13X 01w
/
dAas! [JWvdd D1vd
wios [ex10 omad
D84 o 1vd |o8dd
il
H%3 TMod dwar [fTavme
NID dvasn
dvaa | dgan
DA tn'cn FEAEIEIE
n AN
) = TIan
ZHAFBE S =
e [izdvms
oso TenoiLdg EA -)
)
AN = T4
i mn N R
[| REREICERE] CEEE] TELED
£a1 \|\
2a1
7 a1 [735 Gdsaow
B 137 0al T52EL a0
= X 90 %d
= _ 15d 92 Tl
WS awo] -
&N PHD N = EELCEERELE] 3|0 Hod
EEREH 230 NV AENEEEEE R R ETTE R I [O
920 ElUR] Y = gzd12 old Jizn'2in HAD
FIH] & EEEREIEIGE]]
q0d AHpLxd ,&_m.;m INTIn TOOELD 450
2]
0id ONAST ad =E]
TOLH ERERED] 2|2 a
I ENTEERGIE] g | H1H0d
307, Zle FEH]
EEEREREE] = i =) EEH]
< | - SHD
(3wwdd 2ol old 210 8d_| | adwod d3LHonva 02N Zen
S ONAES ad
aMm¥In
E] | a | E] I E] | W

B-4

TMS320C6x McEVM Schematics

hil 0

E]
) 1aalg] 9661 13 1900100 AEpSAUpaD

I

2980080

1agunp uawnaog

azig|

WA XOD02ESWL

211

Q31¥dOddQINI SLNFWNHLSNI S¥X3L

UTWITEER

¥GZ EEREOTPUL 4

! AN 0

2r58H SZLNEHd

HOLDINNGD gng1Dd

HOLDINNGD gng1Dd

HOLDINNGD gng1Dd

JOLDHINNOD IDd

HOLDINNGD gng1Dd

, . — — — —
e m e FaN FaN FaN FaN
—— @98 Led —— ¢y 21av 10d 0 ey
198 510¥ 104 ¥p1EE Jetdl = beE ly el b oo
a3 120% 10d 3 s naw 020710 d 9y 527
“ 53 i > S 220Y 12d3p 827
LERLEY 838 £2dw 104 00%_10d gay T e
_ b—| L33 #r3g/05H 20% 10d 2 13y 13sql N,_Nq Tzl A
S,ﬁ_on_wm 954 NG - B M b—] oo ¥E2AY 10d 0 G2y
507 1043 558 5207 10d Py %194 557 -
q - - : - N By
_ & $5 120% 12d > 90% 104 2 ¥5Y 920%_12d te
1Y g Yy—4ad 81ed] £33 ~ - £5v 2av 10459 zav
Ay 19455 238 520971949 TTEERY,) CEGMEIEET] z5¢ T —_— 12y
bom ML 120w 10d ¥ e 1w 02ay 10d ¥y i
3 vug —— _ 3 vay =iy
S ELER) S 507 10d M) ITH b o
0L _[0d %y HPE _ — _ =k ELND M Liw
21510 d ire A0 10d P 11w]10d g Ly o« —— 4iv
W b—| @13 — 1oy 1945 apy D) 517
#1a% 104 T pr ~ - by s 7 iv
FRETRY o v43 — 5109104 NE& 2ledl vy -] 217
- : : , £
i Tvd fledl o e] Hd by £130719d 5 ¥
IEEER) e FIINEEd Tl @[[5ed ity b I
o
™ g eledl ® = " . .
fuuldee e FIINEdd Tzl & fam .
27 s B & [
b s 3 #do1g s 0iedl i]
#13sn30 %y iea —] 3¢ FYLNI Y :
f00 YA BT © aue #4041 v
yp—2C8 B0 5g & e
z I e TAL 1dL 80241 | fau v by PITTET]
528 3 £oy
F13810 28 i b b - Tew J0idl o cie
HUERLE) 223 2 910% 194 % b
A1
\, \, \, FhY
v aid #1008 § 31d v g 1o ¢
S00M S00M S00M S00M
£00A
] F £l

B-5

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

W

=)
laayg B661 1g 1200030 AEpsaUpa

il o] |
. Zog00aqg "
na 1ag unpy ua wnaoeg 2zig|
WA XOD02ESINL
L

J31¥HCO4HOONI SLNIWNHLSNI S¥X3L

DELESS

HIOVAIALNT Snd

jHIREEEE!

FETIOHLNOD-I04d

07 od

av_od

7 od

¥ 12d

] =

av¥_od -

7 od 5

¥ od

T LN

mﬁ mn) #un3s

[af] OM B #dd3d

n“ Wn - ———————————Mting
FeT——— 403y

av¥_od

g7 - #135830

ATREE R e JE L]

5 eE—— LN

AL %> #dols

AT on B ——> LTV CT

T om ¢ #aaul

e F————————————— > £ awvus

T &
2% W10 104

GEAGEREEELE e Hwd

v 1o B9 GTan [

g 0d o weay o3

z 2 1 £20% e ——— o ET

e 120Y 0 o ————— S5 z3a/)

o om im e #3940 [e———————p #1380

lo 1elaw iod 3 wan
a Ed ¥

B-6

TMS320C6x McEVM Schematics

F] Y £l
bt 0] [EELE | gafil L@ 10RO MERSIUPSM, E1E)
. 2980090 . / IOYIIHLNT NO-JdV dITTOYLNOO-IDd
LE] lagqunpy w3 wnaog azg)| _
WATIW XOJ02ESWL
an| oecess o anans it4}
= EEEEE o
J3L¥HCO4HOOINI SLNIFWNHLSNI S¥X3lL 0zl
pEm WRND LY I
M0l QISSNG 542 810 o1 10d 7a% Tredl o]
%1049 T o
a4 ¥ ’
i = TR 18H8AS 10d LI T E2zdl O did AN I 0ezdlL
mﬁ Hinld «
TN Ayadld AL PON HOL 2SO0A N
N ammi
TN ¢ddld ‘2 & 024
T #23ald #3914
0T |
] TN owNMLd BANNd 1 l
IWNNLd WAL S
#18dndLd #l8dngid
[#llvid e
W01 Q3SSNG 54 nlvld ¢ 1gedl B A0 d
Gzzdl W W0l > H
oo
TTTN e G- BT AANETEE
ADKAY fges Z2d] M é_u”u_u H
a0TN o] £id ADT d
EER e FEE] = T I Ty T
el ey HLN DEL
a0y 7
5o ELNIH
07N g T3 v
T 07N 154 SDOA
E] a0 7Y ana
603
G1od £9avld #0avwld
M i L
A01d3g8Na okl €10 1hod FAcELS lm._|_|ww #a0d1d
104
] CIGGER ¢lod
07N e o :
N 2104 T2t 3A0N |yt
Sing sk r— #ad19d
0%
N Eg i 19d
e\ #8507 104d
7 Bwos N #0340v
— GO TN #1380%
T #z3gov
#e3gov
W01 Q3SSNE 942 &8I0
[P07
G007 M
I [FAIER
L 07N
L] 0N
. : [
T oo 2 = TN N)
— WCD i g N #omg .
#252 fet
v [M HIHNT [
5004
faa:! R Il
ALldi3ad #odld 0 % #0430y
TN |3 > ¥ O I
. " - - -
lo1elao asn CEEERER

B-7

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

E] W
it o 2 [EEDE G661 L2 120030 AEPSIUPS a1E(

. ﬁ_ 2980090 v SYOLYTIINGE0 HDO0TD

i Jaq U U wnaong azig]

AWATOW X9002ESNL

A

J31¥HOdHOINI SLNIWNHLSNI S¥X3L

¥N3_8°080
. ¥NI W 080

ZHUY D00 06" LS HE 060 nwxmom_ Wl
aue 9294
I ane
o g 30 @ 080
Mdlng
— i
STILATHING 0zt ine g vso . 52dl
i
qng £ead i
5
1ot Iwnl GO0 d 400710
AN
i
b
¥10d1d 7 T Sbidl A ¥ [
F—] AL o A
: ¥
k]
MERED) =
MEIG
Ban NG ¥ 080 * k
HEN .
2eLTY A
Th
soda ¥ OAD0TO
PIIPING
ans
: TTal
TTal
—— g 0] Tod ZHWaT
_ 2
W10 0gL V|<N.nn ~MZIH 14l O T W70 DAl T MV:\. i {
- T THTO ZHWaT
oon WL WOl
1294 2 raed
Tl o TIA0 W10
5004

B-8

TMS320C6x McEVM Schematics

] Y W
b I B [EEDS BEEL 17 199010 REpsaupay aled
2980097 w LAdSHY 3% TId T0Z90-H201D
lagunp s wnaog azig]
WATON XOD0ZECINL
|
inw3
s N{3
T #15HL
35 WL
= 1aL
3] shL
AN 0zL g ozt N ozt g0zt Ex E
crad ¢ 2o9d 51 zid = &
1029002881 L
(T Sl
d m =
d
idl ™ E4 _m. m.
= B A=l
- N Wiz oz W0z H0E el "
001 P—r] ©3+ thod 2 049d 2 2red ooy
=
ol
] 200 BELTY 2004
q0WHTD
B
LEEEERNEN =on CETFRRE]
20244114
10343714 [rg AN
0pLdl Utd 10344774
- o
2LN 010 e post Em BRNTE T -Bd
N coav th a1a EEE ERNE]
BCldL o kd A17d U SI)ON S99
] e m——ie
_ V LAsd L3 ey s)
ad d8a V|nd| [eF] 1454 -
NI T [rr—LASE Ny vignat _ e :
SHNNI LLAE 1T 3% IN|_071%d 20 # 424 '
ZANNI NIZHA 1D d f 1
LANNI LN LI _ - d & . eohp
DANNI LRNNI H_Hr_on_ TR 1 5 T ,
HD | Y] D% #1383 480 = 5)
L B8 2ealshdDY 2cay
) B
) B
TOUN

B-9

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

]
13ayg] 9561 13 1900100 AEpSaupan

bt o [2160
. ZE80087 " T0Z90-ATHA
LEl Jagunpy U3 wnaog azZ|g]
15|
WATIW XBI0ZESHL
af
= = | = 109002 E8HIL
= =)= =
41088 -
£0DA w N IEE T 71088 qa1 @ 1w [
Ammas FEE 1008 5941 #1ads
2 B B = 591 o
N O R S F9d10H
— 1 TN LT 90Jd] O F1 JmSe
- [594 Teidl @ 8L a0ss
oL¥ Hrtns g ¥94L & ¢I1 vas
famas H £9d ¥L 3mas
wmmmmm H T3dl §71 Gwoas
5 194l SRl SwHas
130w ¥
ﬁﬁm w T AAGEEE] T0idl & FL _amy g7 GE]
35 52 094l & #L 307 IV 3
Y [AE]
#e3o FAgAAGETE 107 T30 T7 3
#230 S A = 2
e H 0.4 FER] e a3
#1320 VAR E] a7 3
#0135 g AAIETE 669 139 E
3 AT 3694 130 EEL GE]
X TI7 GE]
“%uwwm £5d W [MET SO 03
a._.l_mmA 84d 1 ¢Jg TI7 [RE
$17039 % i5dl & %) 139 EEK] a3
’ 55d] & 7l 034 T GE]
EEkd [aE]
107 RE]
TN TR S o7 RE]
¥a§ 7oc 599 oW l 7 RE]
EEA AN FE =R AL s T 3
AT TEERIY 7 TTaY E
TN T [ek E
T e T = =
¥as [y Ay ST Y] - 3 TToW a3
FNE [NIPEE! e 137 E]
O TNy TR IY] / 3 TTIv E
AT A ITEERETE TTI7 3
SIS SUI 90 308UUSS Ss3UL wag gtk ccl9d ol l” FII7 [aE]
cootTTormnmr T AN TEE I E
! ! AR T 0L e il 0l 4 HEL E
? 1 FE L wEEE ¥ L TTI7 GE
f CICEAT gy TN T l/ TT0W a3
se3g = . L AN El
H £3d Was gtk e I TTI7 BE]
1 4230 L2 ., =AY =
H 23d was g ot [I EREL [RE]
2 %139 = =, e AN El
H 139 WaS gtk q 5y ” TII7 K
, #03g = = AN 3
H [EE] , WAS 2 e e Lo 4 o7 (o]
1 f w8 g eeYa LW , 3
tm e . m s vas B H EE) rd KE] b AL 2594
T wY TaI0H spdl O aihdh | 3 LaHY
T,
[z 1elvas oy
Lz 12]73 B + QEEn
[0 1z]aa) £Q0A
] +

B-10

TMS320C6x McEVM Schematics

E Y N
[T T [EENE | BEEL 12 120000 REOSAUpEN, _AlE]
2980090 ¥ SYOLSISHY S0d Yi¥d 4ATHA
laqunp Wawnaog azig|
WATOW XOO02ESHL
a1
031¥dQddQIN|I SLNIJWNHLEN] 8¥X3l
44
s [N o A AV I EHE] N
R
L [FIRE]
L7 (L] VAT [FE] N
9dd
b4
AT
s 610 El ¥ 6103 N
“] w % EIE] ﬂ
110 FINGE]
\ E] AT 9103 N
2z 5dd
ATATAY
Vs T k] 7 [E] N
i AN GEm—
il GE]
4 a AT a3 N
22 #dd
AN
o 1 E] ¥ 1133 N
“ Tl w % 3 0iad N
il E]
% AT QE] N
it b4 £dd
A AAAY
| Iz] 7 [ETERRY I L] 7 GE] ™
“ [iTa L] % m 0eal N “ [L])\é m a3 N
BT iyl FATER il -]
b [VYV EEERAY L [cn AU o a3 ™
- Bdy 27 zdd
L~ [o AAAS ER s o1 I AA/AS [E] Iy
— oW E— 1 = M
[a3 1] [IE]
L~ [WA GER |~ [AT 133 ™
(071610) e— Ldd Ldd _sﬁ_\ iela3

nay

B-11

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

+
[T 10 1l 1331g] 9EEL 12 wn_og hepsadpap, aleq| <
. n_ 2980090 ¥ SYOLSISHY S8Hddd¥ WYdsds
X lagunp awnaog azig)

WAJIW XBD0ZE8WL

AL

J3L¥HOJHOONT SLNIWNHLEN] 8¥X3L

isaBeyoed goon 88 asay] BN

1z 12]w3

- 122 4 a B2d
i adL 9 1HaY [A%Z] ™
4] 524
4 EETED TT9a7 M ACER
- 4] 91
“ 59LdL 7 91507 VN OXEER
- LEE o , LEH
- ¥9.dL & 519av BXER
R4S il
< £94dL ¥ 10av VIV IXEER
- 122 a4, ted
l 2944l . £150¥ TIvd N
- LEE i, 2EH
“ 192dL & Z1=9av BXERR
LE? i
4 094dL o 1 14av VWV ISEH
- ISP
4 B5dL o 010dv IXERR
> 128 a 24
Y 954dL [=6K] il [EE] N
L2 a Bt
\ Laidl T [EGE] [XZ] ™~
. 4] pigy
P 52aL Toa7 VAV T3 N
- [PP EEL
\ 95idl [EGE] 973 N
W4 [EEE
L [ETET THaY VAV EER
. A AP
4 £54dL [ECK] EENR
- A RPPTLL
l 254dL tHaY EEER
-~ W4 3494
4 TSZaL ToaY VAV EFERY
12778 HHO Y (Y —
E] E W

B-12

*
T R A CELE | MG e T G =
n_ 2080097 ¥ CEXHBZT WYISHS-—dIHA
Jag Wny U8 Wnaog ONE

WATOW XOD0SESWL
3l

J31¥YHO4HOONI SLNIWNHLSNI S¥X3L

TMS320C6x McEVM Schematics

LhhEERERREFER Pal
asn EEREEFREREERE
0zl
D02
Sy Led a=4
RENTTCRTY
. #3088
i #5avss
d
m b #a0ss
m TRINYE T EMUCERE
m oﬁF #0302 ;T
3 e woss : . b
&
o P @77 g A\ IR vmw-mwm
v LI o TR ET RN\ TR e
q 920821 1LLAD SIEETIETS- TR T e 194 .1~ 34
d Pre— 5 ia1 O Fv 130 EA T T
10 ,)
5 EIEE] N v ammaa
[a] H'w N WL Koo SU} T SSoTo
4 = ﬁ ” Z6ad pojesoT oq st
] Haw) SIC}STSeI SsSaUL
- Hd¥ N
T ~
a HO ¥ iy el
(8] EOK N
K N
a HO ¥ iy
d Hd ¥)
] HO¥ N
d Haw ™
d Ha ¥ N
] HO¥ N
a Haw Y
EhEREREREREREF
[0 1ela b
@ —— (75 |]40 ¢

B-13

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

Ll

=}
it 0 £l 1aayg] Q66| '1g 1990100 AEPSIUPAM aleq]
. 296800907 " dIO¥dS 240 - 0 HNVY WYdds-JIHA
na 130 WRN U2 Wna0g azg]
WATOW XOD0SESINL
sy
¥y (201 lvas
T 01y Wvdas
2en pen
i SO i] B i
i o L o
c_u__.” LE] u_n___.” L]
wpp [P X
PA | UPA [
i 7T i T
51T v v
rommn - A £00 0 [£0DA
9 lcing /] J oeq /]
[LER e FICAE Wy e Py L Slvds | A
[LLE e Flvas [0 4917 = Flvds
4 liiog /1 n e /]
ad ELI e] /] a el En| A
N LE El g [LN vag
d L Rt ¥ /] d piw L2 i ‘A
LNy ¥ /] Py L T /]
d___Jdsca ¥ /] a L T
9~ lice A /] 3 o 0T vas /]
@ eha N [ov 2 27
J [[67 /] d I any o ¥ /]
[a I et (¥ e T A i 0vd
4 L pr LT s 4 Hoaza iy 1708/
[« 4 X2 e 4 5T o1
nEs DEs
i A LTI T Neon L $avsas
1 B Tewoas AN Y ! #57H0g
— Diss e - D84 T | #13a
o TEDA L ————————————S%#eag — DDA WO ey 230
7 7 g
e e G T ohon 57 [Feao
= 0RO TR ITeES = oron PRRY K14 TTEaE Y 10as
v EECREE v EYS G ETED]
EDDA £DDA
5> JUEla R
¥ [0 12l

B-14

TMS320C6x McEVM Schematics

g Ll
[E) 10 7l [EEIE | GEGL 1g 18001 g AERSaUpa Talkd
. ZE8009Q . d0¥ds €30 - T dANVd WYddS-4IWA
na JaqUnp & Wnaog azig]
WATOW X8O0CESINL
|
(2o lwas
ol wedas
£osn 2080
o 85 Tl 85
] on ey] on ey
oon [oon [
aps [aps [
RA |y RA |y
o DL noM> Vs T 8%;
T t10a T
1na /] tog /]
LT [P U Slvds | A b 5 1oy |8 slvds | A
LI L IS ¥ FETAI B FIS
7] [y \ 7 A T Yy
1194 hls
e e A e
7§00 v FE—5 [¥ A FeE—5
pa e 7T v “ o T po s 2 “
TT [w0 TT &] ¥
5og 50y
- +ca ™ T “ “ — a0y ™ T “
0%d 0%d
L (e 4 T vl /] o Ll PO it 117d /]
L 2 LS/ — L) by [Lvs s/
ACE [ACE
k] NES
cn Fo) 2 cn F) 3
L 1T FS00S i esn ! fevnds
i A T >
— o5 w0A [£ed08 wamm L s #7239
) el)
o e oo : =
2l opon T [30 2l opon 2
] ores PRER B= e] oPes T > 110408
v EISETETET 3 EIS T ETED
200 0
5> JIETERE]
S [0 12la
a v

B-15

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

] 'y 3
[T [[EEDE | 8661 g 19quiaQ REpsaupain - aleq|
. 2080080 ¥ JdLIANd SSHYAAY TVHOTD ATWH
na Jagqunp uawnaiog mNE
WATIW XOJ02E8W L D
|
J3L¥HCO4HOONI SLNIWNHLSNI S¥X3L i
- P 0zl
ann e b
30t v
262 P
362 by
Ey -
7 . Tl q6idL
FIFE| ' T8 N\
[/ veial o o was N
e Iwh
(T v T8 W
V' Geldl o o 705 _ N
P Leidl o R FIER
T swe TaE W
e
¥ [&
0% TR+ SHEH
- FL0LAL
#3295 e & 3o
#0339 Py wwrumm
£139°9 o STMEL
#2329 SSTEEE!
%2399 0 \CETNLED]
0zl
1594
AT Tl
e 0w EY0S W
V"Ll T 01dadv9 TI7aS N
P coldl HOO¥9 MEETHER
b Leddl o 21H00%9 Y oivas N
l/—®iidl 2 1Hadwy 1vas N
Y LIIdL Y ¢ daaws NI
-
b Sidl o piHagyn FIIAL oo FIWOS
b/ ciidl o 5 1HAdw 91idl o SI70S N
b 2iddl o 9150059 8Jidl o 61vas N
b 1Al 100D 081d] o J170S N
LAY E -V GEE] HTETRACIE
/—Seldl o o ioa0vn YeIdl o BIvas
[/ 6aldl o 0z900y9 Taldl o TEwds
b/ oaZdl o (gHadv9 BELdL O lewas N
[Ll H 0 7 —
\
£ Kz 12]vas

B-16

TMS320C6x McEVM Schematics

E] 'y W
[T} 0 [133 4g) 0661 1z 1300100 ABPSaUpann T alk(
ZEB009A . N\ 5934409 S09 ¥LVd TvdOTID OL ATHA
1BqunN e WNa0g azig| 329 IHDA TV BLNG N\
o} GNY ane
WAZOW XOBD0ZESW L " Mv ahn A h,
: 37— ono aNg [
Q3L HOdHOINI SLNFANHLENI S¥YX3L cra ALK e =
Ta] o
mﬂmw 5 CH1a7 130
Iy -5
g TN a8 T T [\
e TEadL o i) T T)
o n28dl o alds] [910 N
I [T AE] T 7T T)
e Griddl = a8 [Il [u])
- 228dL [T a7 q N
I 9zodl [IGE] St 71 210 N
i, cidl o FL09 L so 1 e B0 M
4 2adl o ¥ T i) MY
o Nmm bl m% o hm” TT a]
[Cidl ey 0D L sal | Usd__ N
— ; S5)
1~ Tt I 7T Mm_ T il)
. dl o £zas LA a1 = Zod)
4 Lgdl ™ EEEE] v w 220 N
130
3 h 3
T N
SEN
—SPE9 IHOATYHING
any ang
L 2
T QNS |y
™ WS |
[Tt
A T
¢ pr
s {avzasa
“ T g0 ol 5 ﬂ
al .~ AC] § g
4 e—t e \
“ dl e SE08 b9z mﬁ [0 ﬂ
’ fre— 4 5 TN
- 78z
A dl g 9209 Y B 0N
— oo 1 e
g A08dl o 108 mmn T)
. EIEETI AT el |2 TN
e FITF] FANE] gl N
V. EIEET-f $109 eql | ad N
rd S08d1 e 5199 a5 4
\ TR 0509 a1 = d N
i 1ngd 1£as 20 N
[0 1] — ”__“_.__,., T AL
BEN _
¥
200

B-17

TMS320C6x McEVM Schematics

[T 40 Ll 1aays] 2661 12 _mmn_Sn_o hEpsaUpa i, 8B + =
«ﬁ_ 2980090 v 509 ¥IL¥d HO—Jd¥ O4L SN9 ¥ILV¥d Tvd01IdD
na 1agunp a8 wnaog azg)|

WATOW XBD0ZESWL

e
Al
il Ww“ooqwn_wo

Q31¥HOdHOINI SLNFWNHLENI S¥X3l

o1 elaoed

5929 IHOATYPING SPE9 IHOATWHING
| GHY g o AN9
—r—] cnY aNe oy] N9
o ERE aNE | 7 ano
— G N | — ana
I\ DT A\
[\ 91007 1an =g E N N N
N a0y gaz [N I d N
0w can IS d N]
W Q0% P L d Iy N\] Iy
a0V can |2 I\ I
I\ 0w zar 2 ad N N\ 1 Iy
N, a0y . KL 22 d N N [N
N oy il i N N N
N a0 o T 320 N N d N
N 00 sq1 520 ! N d N
o a0 cq1 |5 920 N W d iy
a0y FE 1d I\, [
A aoy can |2 920 N N ad N
K] sl = [I\ [
. a0V 131 0E N N\ L N
acy [1£d ™ [[8] N
a5 amn aan 234,
xn_ aan E=T _w xn_ aan BT fw
Gan van
v v ki v
EODA £00A EODA £00A
(v ielan
E] $ &

TMS320C6x McEVM Schematics

B-18

TMS320C6x McEVM Schematics

E] - o
[T 40 3l 1aayg 2661 g 1900100 ABPSaupan alB(
2080097 " Jav¥od dILHONVd OL S0d WVLVd TVdE0TID
13g Wnp uawnaog azig|
WATIW XODJ02ESW L
ap|
J3L¥HOdHOONI SLNIWNHLSNI S¥X3L www_%.w_n_uww
[0 12l
FaN AN VAN AN
S¥29IHOATWHING 529 IHDATVHING
ang ang ang
.|M.m| GNe ang Mv G u__
] GNe mwm 7T MO
T ¥ ~ T A 2
p————— Po—————
I\ ” N -
N o [N N N L1 g N
N\ M @ N M e [N
N 7 4 N W L]] N
I\ d N I e d N
N X [N N X 3 a N
I X [N o X 43 d N
N X a N N ax ER 0 N
W 3 a N N ax E] a ™~
. X q N N ax T 3 N\
N X 1 N N ax n N
N a N M d 5] d N
N [q N N d 5] [N
I\ [N . d T d N
N a N N [0 i [N
Y 3 [N “ 1 ar 1 ™
X [N Tax 7 [N
25 EREY ELFY 2ap
gt auy a0 m_w g1 an, EERTS n_w
TZn T2n
Vv v v v
LODA 20DA LO0A 20DA
o elas

B-19

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

g

)

[T 0 183 Ug| Sl 13 1990100 MEPSIUPSNL _alEd
. Z980090 ¥ SYd4ANd SSHYAIY JU¥OdddLHDNYd
na Jaq U U wnaong azig]
WATOW XBD02ESIWL 22N "y3N 30v1d Lo m T
3L INIHHLO0d J1NEILTY -
031¥H0dHQONI SLNIWNHLSNI S¥X3L S felps) SA0sS
aNe ! il
)
f
s —o<} - v]+ o} v
D08 ON —x - D] I_+x
TFONHSZ0L 00501 i NN FPONASIOL 0050%
SO0 soda_ oo _ !
' PN PaETIFT 2 JaN
P
Lz 1Eldaaws
$H2O IHOATEHING YHEALHOATYEING
| a5 aug | s ans
] e ane T aHE ane
T e ~m
TT mz.n\,_ oT
LS s T
ey — ans T
5107130 PA
#230% b (#2307 = = Enr
$230% #2309 11 E
#130% :13070 z T 3097
> ELNQATOX ZLNONTD = T TN
¥e3x ¥e30 B T T
#730% TT SEELIE! mx T Hm m
#13gx ™ #1379 ™ o
#0139 203379 % T o
3 T S IF TT i i HO¥
#30% T #30v = T 27 |y ST
I o o
ENPLd ikl <& i T 1 4337
[5] EHGE iy 17 4 e 22 Haa ¥
v 7T HAO¥ N Fi) A EIIK
v 7 HAQV N) T PR L EIK
G n_ﬁ HAa¥ N & _ aan |28 Haav
a0 T T aah,
TN E]
[z 1zl x e
=
v v
£O0A £O0A
a £+ W

B-20

TMS320C6x McEVM Schematics

[T 40 [H [EELE | 2561 18 _mz_oso AEpsaUpaN, 81k =
. n_ 2980090 v AOVIAILNT AdOWAW NOISNVAXA-9d
na Jagqunp uawniog mNE

WATOW XOD02ESWL
oy

d31¥HO4HOONI SLNIANHLEN] S¥X3l

01-0-8-31-0 I-WS 210830k IS
. a2
#130X 2
>omeA 9z #3029
#amx % v LD
it
y 0:
X 4 g a4
\ X 33 rd [
/ 2 2 s 50X
4 X 28 l 10%
it
s T b s X
o5 L
\ [TEA a3 V. L 5z
. 210 v o [ATad P
d FITX 75 4 FIOX e
M—1Tr i a—er b
L, E10 ar s G102 5
. e b o [ELAE s
b zea X s l £2idx I
— —= .
; 1E0X P
Bz v o f2ay i
l (KA P 4 TEdX ie
LIEERS az #1380 4
xumxwm az #e3ax 9 iz
a 5
T vw B _w
R i N I
k4
/ooy b p—LEX i
LT at JEETT 51
/01w L /Ll ol
T 7t P T 1
v 3 Y/ 5T :
/917X 4 PN M
l—rex ' 5T :
'ER z P e |
v . Y .
el Y qer £O0A Y war
5004 ELLTN
[0 1l
[T
g v

B-21

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

4] n [t 138 4s 8661 L@ _mmn_n_ﬁ_D AEpsaupag -A1eQ| =
. n_ 2080007 v HOVAYELNT T¥YdHIHATEEd NOISNYVdXH-dd
Ad 130 WNK 108 WN20Q s |

WATOW XOD03ESWL
apy

Q3L¥dOddOINI SLNFWNHLENI S¥X3l

271°0-8-21-0% LS
I
ZLNOA T En
L
007N P I
20YIWNA O L
reann B
Eﬁwxmw 49
DILND X 2 &l
29
ad dsd]
DANNIS 25
N 95
FREdl ¥
Ny
LA IL P
DdNIL DY
N,
1Hax
~ —
e
N r
13X g
«“ -
ESRITSS L
8
(Elshs > g
e
9%
060X e
Dwx._oxmm [
it4
_ —] 2l
_ oox-mDNN a3
HIT19 aNAS T3 B bi
vV
200n FEr
LTI
[HAtLEY

Al
0oy

PaN

DTS 0 REE

quoNM

£25Wa

#230% 5%

E&wxWN
b

LILNDX

#1383dx

SWANI
INI 84

:___._DZ,NW
%

LinaL

oLnoL

oy
xS

XS P
11X S

_E?QNN

[EREED S

oxw“_xNN

0XAT0X 3D

10490 ¥
W19 moww

A Y
i
TIDOM

B-22

TMS320C6x McEVM Schematics

E] >
ET I 133 Ug] 2861 TIE 12001 0 TEpSUpaA _ (SlE]
. 298009Q ¥ SNOIL4O ¥dsn aido
A3 1aqunp U2 wnaog azig)
WATOW X8D02ESWL
2|
WoZd 1LY
E o i
B e L,
anodL T [EE]
802004952 24id3
LTS
¥ o ¥u10a1d
e 07194 9) 7
ALSH 281 02 T
ELEH NV TT & T -
¥13836 w T) IULLE 15 S iLgashe 10
#1383d dsd T i nmwﬂwmmw
- VAT i
#0031.43sn QT ad dsa
#1d31743sn _
138 048 90N m T w 0438N78
143808
#N3"a 080 L R
#M3 ¥ 080 TASNTD_S B
1380 : TEERY Ll ™ RELLLIT
NIONIT NYION 2 NN S | NRIONIT 8
IT0WATD 300 _3ACHAISTE [y ELTVRIE
0300W1004 LENDL R TTT 03q0HLO0Y_S
1300k100d T 1300K1008 8
2300W1009 Z T 2300ML008°S
£300W1004 £3q0 R £300NLO 0TS
¥300W1009 PAAGRICCE YAACWI008TS pm v300NL008 S

atin

£ 5854
GOOA

B-23

TMS320C6x McEVM Schematics

E] Y o
[T 0 [T 1aalg] B661 17 120000 MEpSAUpA 31E]]
. 2880097 v I>d - d14o
L 130 WNpy U3 wnaog azig|

WATIW XOD02ESWL
£

J3L¥HOdHOINI SLNFWNHLENI S¥X3L

202005952 04
Ydm 04l FHM o3 R R _ _
Fo- - - - - - #adodl L1094 78 T INT01wd78d - - - - - - - =
30— LN 2
E] 1 - - =) 454 UVAN IDWI4d 7
dng _no._wﬂ 0 g FOHI d
QT 49N IDY¥TE - f] LY
; , dvms 0za1 Tl aoanr oAl . T D #rdEH
- iggldl
iE - E
Tnoh-pyoal AT AN T A TV TTT e WL Sy g oar 05] PP HLNIH
T LA AEiT OI1INOHL o SO IdL VT i T : : P
TMHH 2909l - LIl NS ELIN DAL
Fs 3 otk TLnHH E.f: T R [
t3aH_Lvodl Iy I EEIET! [T L -
#03aH 024l AN Al il o 0 N3_ M In
HEH AN CEFTIET AT o A N3 TMETY SUTED IR
or GG HHL [INENY 77
#LEOH s %o 5T - [ZEER AT
#80H AN —— L
: . - ——————— 9 #umad
i |
#041404 o ALdRIY
#04145M 131354 [y TINdum
#0d_10d
Hm10d PEAESS M 5650
#114710d 136194
#30710d v Moy 5000 £0OA
1oy
[z alwow)] zaov
T} £Q0Y
e $a0w
e —TTT 5007
9qov
COTERAL)
TroY YT Lo
#03g0v I 1E Hiild
#1330v #0331d
#z300% #1381d
s
#4071 d g #2307 1d WML d
840814 ———————— 1§08 id HANNL
#1sHngld
a2 #HLYLd
TN
a Ed v

TMS320C6x McEVM Schematics

B-24

TMS320C6x McEVM Schematics

E] o N
¥ 0 he 133 Ug] GEEL 17 120010 REpSUpEm, _alEQ
. 20980000 ¥ TOELNOD T¥dOTID - dIdo
A Jaquinp 1ua wniog mNE
WATIW XOJ02ESWL
alll,
G3LVHOJH00N SLNEANELEN SVXEL | R
ONAS D794 THAE D7 HH3 ol
GLo_ 7w GLOW By AQd OIS
LT £15H DlWg
#gn nlwd L - ENI WS D
#3axa_01vd Adxid DIvd #8074
IR Gy 27w THID DI
0TLND X QL FLSY BB 1L WL S X
LTIND Y, VLS 3D 11 WISX
_Lnn 124
LM aswWIad
L1 Ha 12 d
TN T) $031_ONAS
NI 04 T —erto 3¢ 103174007
e $031_WvA
dL e %% #0317 W1V
TE0Id
N3TE £3n HEG R EEEL]
N3d8 230 FEREREEN #2309
#3079
#3¢ 5 #0309
2138 %133 9
4238 [r——iz3a
Y138 rr—————//%3a 9
AQEX |y — 5 A0 X
#aovEdsa ¥OOWEAS] - ——> Iy
409248 0 e §092480 ¥y
#xEd 80 Wil
FELTE
FHYH
AQH Y Y £HAQYD
$HO0YD
550078
d = 3Haq 7o EO0A
5 T 914009
3 T L1Haawe
5 T 5140079
3 =T £ 1HOO w8
3 T 0ZHaawY
- T 1z400ve

[o-dlaw

B-25

TMS320C6x McEVM Schematics

Ll

[T [53 1aayg] mmm__;_muﬁg_%_uﬁc_:? 31E]
ZEB008Q v NIVHD DVLL dNV L¥0d DVLL dTdD
Jaqunpy U wnaog azig)

MATOW X8D02ESNL
3y

Q31L¥HOdHOONI SLNIAWNHLEN| S¥X3l

lapeay 9y 1r d1do
a9 L0-80 1 MEL
il
L i
i
LT
ar
DAL a8 Thal >
v
5004
YT]
I P =TT

Fridl T dND HDL 481

Jmﬁ%ﬁ {

Qoo ial

0
]
[+
[+
G
[}

===

=

F.
w Wl Wl HoL
p 9284 £254 ELEE]

5004 £200

TMS320C6x McEVM Schematics

B-26

TMS320C6x McEVM Schematics

T I T LT FEM A M e E s * -
. 2680090 ¥ XMW % T0Z923-d5dOKH
A Jaquinp 1ua wniog QNE
WATOW ¥28D02ESWL
2yl
J3L¥HOdHQINI SLNIWNHLEN] S¥X3L 5ZILATHING ﬁV 20en
ans .
: 0adl

g1
[
153E1F0PING aiad 2d3d ziio-ess | 3> #a3 wed
GnT SMH aia D #N3 TWHA oI
ELS -
e T #30 X0 HISYY 135 pasaon o, Y, v B
9301 'vH4 D 1 £ _ . Az e
oxmu_xwm 6101dl = T ; CTy - FREETS 9241001 W 189 209 6981 " v N)
| B #10°ad At ¥l Hﬂl EX1070 IR
nHgdx B e 100dd re 5094
0xa 82 M 19841 254
00X 2 L s % FiIn
05 90 3> coin
Hax 9 iy =
gidL AIVIZ AETE <+ AS
T $00001808/NE 0zl
TS ziay
2_0dNIL 597 | DdNIL
ARGELT 27 1dNIL = 1dNIL
i
01 LOZAD0EEEH L 29841 b v ¥
Y IIT
Lad [ww ENPS
red 1K8d s i
SOOA 1SZEIEOPING (R e
(EEERRES ; A 79041
] [Eal
L AT : | .
N H B ToedL ® o] tEY el e e g v commn 1 [baax
azH1 o_zu_w = 1 e — o1 140%
m ah S)yte] £ = &4
eATox T e T T s TSl Do Y a2l (A%
10X P ¥ | $|mmn: Q_uﬂ.%_w o 18410 4y Mw o __mnuw = 14l e HIDx
284710010 ™ _ =
; - an
D T $o—EiE ¥z T 2
. [Eg
o =
e !Eiumlmm-az; 5004
Ln
ADT EXE] g 1dniL
A/
2008
RGBT
&0
500A
] [d W

B-27

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

=)
iz [ELDE | gefil L@ 18q0R0 MEpSaUpa taled

[T
. 2980080 " I/T Tossenoxdn DHIWI
na Jagunpy luawnaog azig|
WATIW XOD02EGN L
|
J3LYHOdHOINI SLNIWNHLENI S¥X3L T T T
1 TPSTTEISUT 30U 5T OTwd IT TeuaTid ,
: TPETTERSIT ATTEUISU 3ou ST 1E
! E}
.
'
1 n - N
.
f
! E}
e e e e e e o oo oo oo 5
oIng 1 D ! 1
sqy o4 eeoTo daea pedEseT A ! T 3
B 1T AIITTOATO ETTHL SE90K) ! 1
. | ' f
.
1
' P 3T
1 = AN o
4nge anio, ol il ol I
= e] ide3y -l o
3 - G G U O CEb s L #15d DInd
" . glow 8250 T A BT ETEN
- e
a5 § == T T R ET T o R
525 — -
- 017174 T
et 55H glold KiAT3HK < a10 01w
VA RER P
.3 TR N D T)= M T = T e
i "
M by
Vil
V300A LEETD
EEEREATVEL L EEE J
N ETET T 0120610 . | Bupers
a0y
[0 o s 1 & ¥5d T9IUT .
3 | 7% [
3 o #0% 19 v wwnmooqo
3 T HI¥ [[<€ 2daavy
 sav 17 [
5
[i mmm L8 i
= ¢ Lt Hindd
lo2lan ¢d u ww%om-mn_
TeRdL o gy QSR — T Tl > d W#S0 Dld
INERIELCE 3888 eeedl
[FLl
A EEE L Sl IR
0554 , WD & B
. 265H UTWTL , JS5H 10 p55YH
\ BTo 0PI 3 TBLIO YLD [|E1SU
5004
SO0
V4
EITY
a o

B-28

TMS320C6x McEVM Schematics

WAIOW XOD03ESWL

T R TR (LT | F A T S G * =
«n_ 2080080 v HOLIMS ¥I¥d dIAW OL WLV¥d T¥D0T OIMWA
A Jagquinp U2 Wwnaog wNE

af 1e6dl 9e8dL
R Al Al
s B [WEs ad
, MOULHO DNMI0OTD Odyd HaH2NYa
N\ 1
¢ A0 292> M T s 4 iEsal se5d1 9 4
E 4dpoo L 4dyoo |
B T Y ™MD T oNAsd 9a ' LESD = 15D
. T _
- o £ofid) 1£6d1
nwdd dvandd =T oo il o
1 2 !
;
NN o 198y ! , AN
- . B
e 01 Ky e (EERECER . T :] =
_ ;]
T ! b26dL @70 dPW ‘) LEaks
7954 Toz6dl T 02D dIA) 7T Mm“
1 B
. £-2 81 1adun| |2 uuop 310N i E— [
;
oo_n_._\o__,_._u_w — fillay] T wo_n_._\o_s_u_
lo. o e Al e — UL
I cod1 D Lifidl g P L ET- Y
Legdl = - % TR
W10 D14 A
$910 "3 1Hd f16dL
3310 214 g
v DINA W”MH g
8L 084 91%d
- Bl Sledl o <
e 1 & WHELEE r
™ T TR T e {51019 2NAgd 8a
=5 1} 0190611
m_mwﬁ 1= 0z dll L] MHM
TN LN s
7 a0 diai 55— it
2 TIEdL > AAAY BT AT LTI 1]
ey : Dlidl oo U9 B} Oiidl o L B06dL o
LLLC A I TN i TT Gl o NI 0
z £ AN TN
i El p0Edl o 19 EE 05dl o 5 20edl o BT
= ¥ L0Gd] oo UZ 12 Oiidl e [T
B 5 . - o T
L % T rdl oL arzx T Jgiar & T ogedl -0
T AN SeRdl o ¥1 o e 51 peedl o Bodl o BT
T c6edl = i T68dL o T 065dL o 21
TOGNH HVEM
— 7 13
sagdl oo ¥ L
Beodl o
d90d) o 9 998dL]
S28dl o ¥ ¥
Poodl > T [EEERECEEE] T
gaidl o Ut 1}
gaadl 1 E] @ T
FDDA

B-29

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

Ll

=}
1aayg] 9561 13 120000 ARPSIUP

aLeq]|

2880080

Jaqunpy 13 wnaog

¥
azg]

WAIOW Xe8D02ESIWL

SlLL

Q31L¥HOdHOONI SLNIAWNHLEN| S¥X3l

SHXNW Ld0d TVIYES OIHA

£
0z
15261801INE ELEE]
que
36 oy . _
s+ TR o dvms™ 1201
104 904 T T [y Kroa1omd
0ax g TR E 1077 DIAA
NIa " dvandé T T 7 €100 01
1nod dvasdy VT 7l | S 13T DId
[r
an 9ladl
1922180 YINS
v N
500 s
P L - 7l
2as = TR dvme 0301
- Ny i rd .
10X 07943 T TR wa 7 | €Cz0071 DI04
- - LI = -
95w
PLERREED . TR _h i [> TAARREIUE]
- o i . r’d -
[EELel:EY (¢ T T xMN_ WE | Looatr oind
- [* . -
0% 799) £ N 7l
» T 7 19 T 0107700
T o
mn
\'{
5200

B-30

TMS320C6x McEVM Schematics

El FY o
b 10 [133 4g) 066 | 1z 1300100 "ABpsaupaj, 81Ee(]
. 29800807 W I/T TIosssdoIgn DTV
na Jaqunp e wnaog azig]
WAZIW XOT02EGINL
BRIL
0zl
5522834 LT
[*1a g
.y T
. /4
180 0154
- - Y
ITEAEED > T i o] dini BPEdL
HED |y L, ~
il =™ G oLow vy
o]
o N -
MM i 318 P g § #3xa 0 7vd
3 - $0 poom & £80 01w
E] T mo_m B & Mw:s ad
i 3 e o > 2400 gd
(B T = 13
o] T
p] 4 a
an e ,mw aF HO Q%
AE] 2 v H007
ag 3 o LoF q007
dg L1 mu Eid Hd%
a9 L] e [J007
g k] oY i HO Q7
0ae 4] B 43
LY
o & 1eluaavy
rr -
W TR VAL
LbsH
SO0M 5
50
W

B-31

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

f44

*

W

ik o e 138 ug| 866

M <8800

]
| 1200130 AEPSIUPE i, aieq|

Jagunp ua wnaog

WAJOW XBD02ESNL

2] , Ane mla_..\
Q3LYHOJdOINI SLNIWNHLENI S¥X3L : %5

1 P9gdL

27T¥4 Jeau peae|d aq o] s]UsUod WO 53] alop
et i o e g = TP

u_=m ml.._\ uSS

3
! E.Uu 2032 _ E.Uu [SE] _ !

Haads 07wd £96dL Xaadn 2794

P I I R T AN
f T
) s
i ; N NIl
Jdonss nesd L
ajgissod se guid 01 Jidn —= ®IHLE f = 442283d
as0|o se pace|d ag jsnw asay| lgsd @ o
3 s
P AR Y1:11-8
18641
074 01 1¥eU pade(d ag 0} §I S| BION
91315 701w vy o
ned o._EMM £e0idl ot T EELEN
EEEN paidl
28y

Ju._._IMza “8ISSYHD
[

156d1

u«%J

ganiL

£86dL

G6dl

L] LbEdl L

ShEdL

L3THE Ea

NG SISEYHD

[eso hl 1 £0an o1ed
ETEENAY AT R E]

) [ICEEEREE]

£00M S20M

SJUALOC WD £00 A, 10 SO0 BYlE

DTVA - HOVIYELNI INIT Td/TL

palesul aq

olauo Aug sadAlByd welayp

essida) UMOYS S[EIN QM| 80N
f

ONAS DTS
29713 DIWE
amamomom Eomoay
o *
3 LATHEALO0 L SLYEHANLTE 1
PR MR | L1
3 PTFLX LR
1 1 N_
.
s 1= =
=
8
5 i

[ET

e
—]

[

L56

o9y

956

& anwd4 01w

<l
Haar o1 T w_m%_; M
XQOA 01wl 97T H
e mmmaaa s
;
; TELX
P L EIETC R AL LSRR R
! i LAX 1
) 1] L 1
: s — 1] I TT7IX ,
) NN"ZHATSE9 | .
TaqA 519 + o gdp | | ES_
;
; ! 1059) :,. 6050
B 1 I !
: sadA} Byd wamsp .
' ZHIPEE"9 1
! Jueseldal WAoYS S|BIK DM] 1
|[B18U] 210N ! 3 LATHALO0 SLHNETITY :
;
%™ mn m a2 nm mom a2 on oA moamomomoaomomon a4

B-32

TMS320C6x McEVM Schematics

E] - il
[T 10 3 13a1g] 9661 17 1800100 REPSIUDAL _8lEd
. 2980090 - MYIY ® MYUIO — SY0SSHD0dd 0IdNV JN¥d doI0A
na Jaqunp Wawnaog azig
WATOW XOD025ESIWL
2y
J3LYHOdHOINI SLNIWNHLSNI S¥X3L
o 896dL
- . o
NI T e y T 2 EELE]
pegdl L s9H%3
T FERE:|
SR 0 & LosH
o = W1 -
g E [N
s F 6dL
L26dl [&n -
¥y MY'IY B T u_" 950512718
MALED FOZEWDL 4ny ddosy
- " f—]
2471070 Nol_l B050] Q0 E] 4ny wmmlL A V4
; - e VAN
0l B O\\O] 1Mazedy T
- 920 1dL
ELLEENETEES)2 casevil .F 005D T
ain 7 INO dvd r
N3 TN DD sefal ™ COERTEIN
NI dwda iy
1egdl 9
wl AN
85°021E°18
1noa dvandd FOCIN T M V™ ._;s_ 3 folile o
o a T
< NG : ¥
E f T
Al Al 4 1 bl TT O\\O T 7 L A\
il
5z5H 8154 2754 MY'IN £8EXT 896dl —
WIIEDFOZEMDL EL 4d0l4 w1in NIl i
12 2050 WIDA
wODA
FOOA 596d1)
a 5 o

B-33

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

] 'y 3
[T [EEE| BB | lg 190000 MEpsaupa _8le
2980090 ¥ S¥d44dnd % 10Z290-I4dH
Jagqunp W& wnaog azigl
WATIW XOJ02E8W L
AL
10Z900ZE8IL
o H Id
m.lﬂ m‘ T REIEIE ITLNOH_#¥0 8L
ST —1an T ITLNDH Wl
m o aH T fHaH TIMHH %0 8L
= A cacom ML #138H_1woal
Glad #03gH T 0w0aL
d aH 7T ;
& = T fOH fidH
d a *lean
aL o 0H 133 I
4 & ad T Py o & frean { Fson
aL & OH 133 nuadm|A
dL o aH [AY (LTI TR - BT
VR ST R L1 2 |z
a1 = H (Y] R ey
aL o aH [A5¢]
E M TaH oo S
d 0aH Ted =
£A0HH
ALMIH
EE]
eo0A
0”5 1]aH N
P2E2ALADHING - POEEALADING -
: 1194 Py 6195
208 Per—735 wang 9 | 208 Prr—735 7 ang 9]
S 53 3% S 547 572
73 PE s [\ vdE %E e
aH [T i [0T N N H LI s e L aoy N
aH L s [T a0y N N H LI [I 0w N
T 1aH LI T [T [T N H ELE ey A a0y N
T IaH 5T T raoy N H EL vl aoy W
ELE
39l © e LTI
; ‘i
EEIEIN - - v HN i Sl &
aoy N PO L v I FO0T
a0e N W h____SaH I e Hve I GO0T N V::A
qow N\ 9dH LN e 00y N
a0y W Si9d ZaH Tl y oy N lzad
T a1,
Ten
9004 5000
590A 5004
o [0 5 g oy
a Ed v

B-34

TMS320C6x McEVM Schematics

E] o 3
it 40 2% 12ayg g6l 12 19000 MEPSIUPA, _ alEd
. 2980080 ¥ FHTTOELNOO-DOYLL
A Jaqunp 10awnaog azig|
WA KOD0aESWL
AL

Q31L¥YHOJHOINI SLNIWNHLEN] 8¥X3L

DEERLOVILING

0dL" 2 8L]
#2L D 8L

HINI_D9L
#A04 7091

LILNDH #9043l
UTLNDIH £92d1

TUHH 27 0dl
¥
] 1YLV %mwwnummwﬂ
/" a0 1YL¥a
I a0y LI i -
ey £1RLYa F——————) i o4l
’ Tlwlya > #au oaL
mmm VIRl -
LIvLYd =N ¥lsd odL
“ mmm gL AL W10 oaL
/ ey ERTRTS
JLw EEH
7 q07 P e Tl o TIol A0l 759 +
“ mmm S 5000
007 ,
/ g0y i al
. d0 %
l/ (o
./ 1007 T
QL oL P ey #iedi oAl
T IH|M“. nW3_odl
H—————————>»onaaoal
2 g
FEg
g
nin
5008
> (09 1laow
] [d £

B-35

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

]

b 10 S8

[EEE SEEL L 1300 ARPSAURA 1 410

2980080

v
1aqunpy uawnaog azig|

AWATOW X900ZESWL

S|

d31L¥HOdHOINI SLNIWNHLSNI S¥X3L

X0W ¥ YII¥IH-DELLD

w #18417081

WL gL
0L D8l
LTI LT
INwWa_odL
onwa_oal
0L oEl
L5201 A0bINE
2
% 7 30 8vir
b 3
zay
—T7]
T .W_Nm w J W 8Gldl &
FIedl ool T :
TEaL & FTETEE TT N_Mm LN B #1841
MITERGEN L] | A
AR TaTTERA em A N 1nwa
MTaTTENGY:T —ar v SSYUGE!
Serdl Wy TRITERS 21 [Py ¥ »
T DA XA BT EL
zin
FTAR Sl 10T
Ml 15221 QDBING
ane
3
00 g 3 13s TouLr
AN 900-0-9-F 14011 A2l S4L £l
TEaL S TR ¥ bl 2 Dol
1aL_Dal [} . LS
Tl & DAl T i »oaL
0L DaL T - X,
_ [EF.J TaLX 5 “IT Da
Sl gl v :
I FEldl W _ LIRS T K el
| DDA MW DYLR It
o zin
v 0T Tog
200 A Ey AT §
E Al T T
Ok | RaaN
2a v
200
ELLEY
] ¥

B-36

TMS320C6x McEVM Schematics

o

*
F I I TR LT | G T e =
«n_ 2980090 ¥ L¥0d ¥IWIL ‘SHHILIMS HAOWLOOE ‘SAdT - DJSIH
na Jaqunp ua wnaog azg| SZLLATHING D
WATOW XBD0CE S L - ane | N3 W ol
03LYHOdHCONI SLNFWNHLSNI SYXIL | wiaie onass s b———gp Mppg—aiiisl) gy | TTPPRILE
Ll W geepda? Yaen
83U e DI € T il v &󻹧sn
AV ozdl 224l —r ~ bl + <{Canvdd DI
Ll Q AA e wm ﬂ T
&g 7L g 0431 53en © T8y ¥ Vs T “
Hd34d a3d At 7

1SWZLHE L 810

28
FEEEREEEEREER
EEFFREEEERER
043sn_g
143sn_s
2438n°8 2:4d
1389VLr_S
zq_ozﬂuf A
138 H10_8
I00WH1D_S
03T0WL00S_S ¥ad
130001008 S
ZIT0MLO0S S HNED
£300H1008_§3
$ITOWL 00 S
wia
gD
Pk WL o

A0l Q38LeNT 5k SLD

eisszl
[$ N+ [+ &)
88 8¢
= el
pE] T T
¥01 0388NT 552 LD
500 A

ain

NG

o, |
&
< dIT_WITA

23410 7014 & - T #1371 4007
1ed [J & #0317 DNAS
L L0-E6G £hidl : p -
1 ° T ol e oma
T7LE ANTT EM TR TE6 v |2
[AARETS NEEdL & O ¥l =
G36dl [
Nms.nm\w\- Zhidl -
L
r ! TYLE AN T 1IN
EEED
TN
ihiness
E-1
! CYLS AN . FegY v oS
EEED] Lbsdl
y L0290 0ZESIL
I —
pagH y
QSEMMJﬂ BLNGL LETTI S €¢ @ 0anL
1101 1 HINCL iatiil oy ¢ LNIL
1) 4 4] (37 mm 22001, 00
1D %Ia DRl 7 N_wnm mm
2O 3 T £300W100
£ R
d $IA0WLO0

[0 tl3domLood

B-37

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

)

% L yiez 01869

abueys ag | 104

3
[T 10 it [EELE | g6l L7 1990100 AEPSIUPIN, _ 3IE]
Z980000 " LASHY % SHOLYINDII-JIMOd
139G WNKY JWaWnaog azig|
WATOW XO20ZESWL
a1 "apad TTE2EUT eandamo sag' 1 104
sgpod TTE2EUT eandano ag'z 104
A31YHOdHOONI SINFANHLSNI S¥X3L GPE PUE 3534 Jo ewo ATuo TTEAEuT
I wzdl @ rav 008
e > T0TdL
;
, e 2
R 20491 d
4zl R
. Mww fm...“ L N AN00 1 Seder
NN noo 4no L T ana [EL I
PELE e N et
*|__._| A
: : ,] oA
ren e conns v
! ren 500
hw' 0zesdnw = : 51
1
. E0sa 1z : 6054
: sentds 9 1 Bd wo eeyou seg | NV N3FHD pzdl
P S ke
.\K; gERREIETY
pacednyl N N Tradl W Taw TO0R
08 LeHgN Hsa ’
shad 2 2vad
£05a
bedL TOOROLEOOR AV 250491 d
86241 aw
Lol oy el
N LT QN0 1 T 7T 4nonL NN Snot
0050 £30% ¥ EELIE 20 ey [EL 13ox T
262dl *|3|_ LI ROPYS ﬂ*
QR
.« > : + v UL + T «
£ODA pyes 5
pea Burpaebes [Bg wo emon ess
AL
l2d .
S00L%7W [TRY]
- B9
uoqmmoo_.,NN - ame
18H 0499y e EELED 18
#lsd a4 S ;3830 B
CLEEn S [EF £2dl St1eH N
£008 .
8694

2000

B-38

TMS320C6x McEVM Schematics

[T I T T FEM R M EE * =
. 2880080 ¥ DSIH - ¥amMod
Xl Jagquinp U2 Wnaog QNE
AWATOW X8002ESW L
any
J3L¥HOdHOINI SLNIWNHLENI S¥X3L
RW. 0120-24085 X8l 0y
R ERN R I 35241
-1

Bulpunolb popuels pleoglaybineq

Hd 521 Hd 521 Hd 5@l Hd 521
S0 Al el oW

Nwd
dnol

PE2dL +_ ELLD
[~] HnoL

EN/2N) dvaa d¥3N LNNOW LSNW s2da

a L h0b-bE-9 1 X810
£52dL
1
—
— ano

e m+

25%dL 152dL 52dl ¥
Z100A T
#Z100A
SO0A

|mmmamin;ma;mmn e e e -
B N\ 1
B)
.)
4 1
110218HaW 4n== b Jngg !
B 9a 5150 + 510 :
.)
! 30z | !
: $ y [} 15d !
B)
. WIDA)
f .

9021
dad w3 gt) L]
51 _

D00

B-39

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

+ W
[T [[T 123 4 g] T Bao«oo TREpSaUpa gy, 1 31E(]
. ZHB00S0 v T0Z2925-94M0d
na Jaq U U wnaong azig]
WATIN XSD0ZESWL
Bl
Q31¥H0d400NI SINFWNHLSNI S¥X3L PRI
AZOA e
heaan B
AT T
AZOOM
3a9A)
AJAN gy
LOZ9DNELSIN L 15
BE)
195d1 i
99zd1 TN
59zd1 20 A
pazdl gy eadn
L R
I B i)
T 42004 22094 [
T Asdan A2004 g
ALdan AZT00
T | o T3
T ARdaA AZDDA |
AEQdA
P |E]
LA
TFT
d
HT
#2004 =
72294 e
wnmm GHS unwm A20a0 AZaAR mwwq
JHE 22000 AZAAR
[E L Todw 6 [d7
T GHD] 5T £2000 e
GHE Azaan AzAARM
T2V Xdal TT7
= any Fr] +£9aA AZQ9A |y
[hd :
R m_.u__.u, Ted Fem
P8uua] ON ¥ ASH Lt e TeN TZH
L EEA L)
102900228 IL L Ll Age]
TIV TZH edan [T
E EEL WEAAA EL
a7 1143 S 5T
=k tord nsaan mzogn e
TI7 R A=A N |
e T 42094 AZIT% g
: AZAQ4 22000
o aagH - £azdl KL el 2034 | 202dL
ol Then V_BAsd Dlgdl ek 19gdL STV aaan :,_,fE_,” EX nazdL
g JAcH Eazdl W T §5ZdL weaan oaan 26zdL
% 25zdL LA o T 95zdL
Hzen
£O0A
LODA ZO0A
a £+ W

B-40

TMS320C6x McEVM Schematics

- i

[T 0 0t [EELE | 9EE1 12 _mﬁ_uso "hepsaupajy,_ eleq]
. 2980080 W
aa 1aq WNpK W8 Wnaog azig)
WAIOW XOD0ZESWL
3|
3LV HOdHOINI SLNIWNHLENI S¥X3L

€200 8 ZODA Gd¥D-dEAMOd

“10297 ayl lapun m:w_n_ MSTZ AUl L0 J31a E:mn_
ayl punote paoepd aq | gnpy sdeo asayl a0y
| [Feo - 51D ELNTH | FAE)
3 ELNA | iR] ELRUN | K]
AN H_S_A,, FLLD
anT | FEso + %] ELNUN | 2]
H_S_A,, EJ¥Es]
FIOY | 5] + BILD LT |)
anT | F5s0 u__s_A,, Z1D
ELN |)] ELNTH | KX
EIIN | EE ELITIV) AN
I | BE5o h] anio | 5e0
El | u_:wmA,, 10510
E | T3] ELNTH | A
FIN | B FLEEY | GRS
ELNN | 3] ELNTH | B¥]
anT | [350
ELY | T LN |] an | [eED ECNTH | KX
anT | F550
EOY |) anT | 550 a1 | 550 ELNTH | E3)
FION | T
LN | T ELN |) L | K ELNTH | 5]
anT | E190
LN | FE) I | 550 a1 | F0 ELNTH | EEE]
EION | IER]
ELNN | NEESS) ELNN | ES) a1 | 0 ELNTH | TEE]
ELIN | T
EN | T EON | Y] an | izen FONTH | 3EE)
anT | E350
EOY | T | [TeD ELN | ELNITH | 45]
AN ELso
ELN | T3] ELNN | Nyt LN | Kt 0 1E550
v
£00A LY | T | 550 ELIUN | §Es) ELNUH | EEE]
LN | TES] ELN | 35 ELNUN | 55 ELNTH | EEE]
|
EOYH | TES] anio] fheso anio | Ean FONCH | XEE)
EOY Wmo ELN |) ELNUN | jE3s) LN | 3]
| [Feo EOY | £ ELON | 35 ELNTN | TS ELNTH | 4]
| [FeD EYN | 73] ELONN |) ELN | 33 ELNUN |]
ant | [Teo EY | D) ELN | 33 ELNUN |) ELNUN | 5]
N X EOIYR | T an | 650 FLITH | 55 FONTH | AEE]
v v v v v v
SODA Z0DA ZD0A EDOA 200 A 200A
E] E £

B-41

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

g 'y 3
by o 53 [EELE | Q661 g 1900100 AEPSAUPE -81Bq
. 2980094 g WOOA T SIDA SA¥D-9EAMOd
A3 lagunp ua wnaog azig|

WATOW XOD02ESW L

Ay
J3LYHOdHOOINI SLNIWNHLENI S¥YX3L
PaN
u__::/ TT0
N_S_M,, TI0
LY G)
“__s_m,,]
v
SO0
VAN
“ N | 1ES
“ N | T
“ anio | Biss
' EE | T

3

kil
dwgA HYIN INNOW LS

VAN
Jnb | posd dnjo | poso
dni 150 ELIT | F35]
S0 pesd ELNTN | EXE]
SN EESD ELINITA | 3 5]
ELIN) 373 ELNTN 50
ELIN | ELNTN [35]
dni D ELRTTS 90
Jnl [dnjot|paso
Jnl 153 dnn | Eess
ELIN) 5 ELNITM | EER]
ELIN) T3] ELRUN | -FEE]
EL N | 4] dnorReso
ELIN) TR ELNTN | 355
dnl LD ELNTN L0
ELIN) T ELNTN | Y5
Jnl &) ELNUN | 35
ELIN)) ELNTN | 5]
ELITN § 350 ELNTN | (S EH]
ELTN) TS ELNTN | PN K]
Jn | ELSD ELNTN | T3]
Jnb | plsd dnjo | psso
ELI § :3:13) ELIIT | 3 2 5]
v v
5000 Iele iy

B-42

TMS320C6x McEVM Schematics

] 'y W
[T 0 2] 1aaysg] 2661 L@ 1800l 0 ABPSBUPSL_ 1B
F
. 2980080 v JSIH “SLNIOd LSHL
Al Jaqunp 0 Wnaog azg| $2bdl d¥d_
e Ao 1o
WATOW X9202ESW L 084dl J1ed
apl Blbdl Awvad
e iral . <o
Q3LVHOdHOONI SLNIWNHLEN|I 8¥X31 arbdl jagal Gbdl ey $epdl 97 0dNIL
£lbdl Zibdl -
m #a001 02bdL f033x B9bdL inag
soral JEER] Jaal #2339 sl 6—MNaas 230
gandl #738830 T #30X
o3 ¥adx
£abdl Zatdl
19tdl f1No 09tdL #1390 -
fEH #5434 Addx O—)iisd T Nww
BGbdl 86bdl L6bdl 9591
g6l £ 1SaH - #Ghdl #d3s £obdl #aL -
ol $80H LapaL S—IP#80710d s YINI sppal T2 18 aug
Eapal o——¥ A ldui3ay I o—pdtudncy dpea] @3 i3 frrdl o— k0w
L o——op 1INt cvdl o— 9% #1330v i o——genka il o— Sy
Depdl G——PPH1048 A e’ SEELL I areal O 138 0wIr e 92 3mas
acvdl © A3g0v sgpal & A2l pordl 2 fewods
Sl g $%tad 104 T e——podl nepay o HHaYId rerdl o— Sy rowuas
irvdl o—rum 1o ol o—%% taauLa e ey i0as
oral —% #od1da _ oyl o—d%n3as 3 oyl O——% 43y
Eerdl o——3% rodidum g 1hgL S0 9 HaNIL el o——99 138 ndsacw ol o—toag
B Eirdl #23gl Bhal o——Nwisul oal sl o $54174 104 Il o—5h1aa
ppral TP PATO DA e #2390 Blrgl 92 ML 08l oyl S/ LNI od sopal O——2423a
#1338/ o—8%eeaa
20%dL 3ar - . 09l f
B 038 p0vdl P sl oal cobdl 2 FLNH z05d1 2 £30
LopgL T HMLd e ELNOA 10K sopal O #2130
LhogL O——op#A¥EZO0A _ haral 10%Na
siidl g—39#13d 10d O e S ool 20V o—#1an
o—38 #3314 o——S54ad pal #230% vazdl n %0 aq%z4eq
[EENT S e 062dL tlel oal 682dL 8a8dL
26EdL 98¢l 4
sgeqL F—op OWNNLd el o—0 #2381d T W1 8l 2a6dl 07LNDX
Paeal O——o% WnN1Ld pitdl o— % #easia ol IILNOH_#¥0aL e dd dsa
sooq) G—opilsdnild ool DILNDH £¥0aL Ziel DWANI
el o——$)ENlvld Sl VMHH_Z¥D 8L e ZWNNI —_— Twwwaoqwn_mn_
#13aH"1voal ¥l o—5% rauv
- yardl - N 298dL
LapaL 2P tou 1 10d _ JSetn #03aH 0voal soal LdNIL o
ganal G #ATHH sapdy O—P00L708L _ aodl OdNIL pagg) O—24N3TaT050
2641 S0P INW3 "0AL Vol 1Hax Eatdl o—inaTwos0
eroay O——IN DEL ~ b O——oidl 0l s ax pavdl o—95 #0031 43sn
Epodl o9y 1400 081 e ? CREC L e TN LT Svel 18410 ey O—p #1a317d3sn
o hoal o——nivisx ol o—go1uIsn s el 0HaX
e O—S%2d3en ¢ ool 06X pppg) O——JY #1SHSAS 12d
_ Loy o2 13%H10° g f7el 1S A1 srogl TP fisdl
- CGLEL aneq] O——po 13818 sl 1WA
oAl o——e¥13a 0 R a— G ERE potal £ aleal O L
S o——HaaT TR > £ R e #730x frog] 0228l
sloal o—DHHreaa o gl O——0p0300k 1003 8 bl LIFLSX Sheq] O NYIgNT
spenl 0——98 13000100378 ol 1TINDX e g—yuia 130
e O——2ptadonLood s P 1H 10X e #1383 SOl o995 NI B i
sty O—o@ea00K 0088 serl 1K e TN o—
e 9013001008 & Jorel R hogal AN
gazdl S——Qghames 282dL fd8dx 597dL O -
raay o #savss Zorl IHATX L0274l 1Nl nheg] 20 #1383 dsa
o o——9%#30s8 ym X84 ¥ 0inel ool o9 3A0WATO
o o—%t30 T oD YT 184X e o—Shumo
ESTI g SRELE

B-43

TMS320C6x McEVM Schematics

TMS320C6x McEVM Schematics

a - W
[T 0] 7] 183 Ug] GGl LG 190010 MEPSIUPAL _alEd
i F F
2880090 ¥ 0¥ ‘X "XH ‘SLNIOd LSHL
13qunpy Jua wnaog azg]
WATIW XOD02ESINL o o
£ 799dl T 19941 El
19941 2 7 T 3
Q31VHOJHOINI SLNIFWNHLSNI S¥X3L anagl & i 15941 © LE]
as3d1 & v 55941 & 3
O I =
£59dl o 7 25941 & 3
bsadl o T 1594l o CE]
2994l 2 7 thadl & 3
494l & 7 LT 3
ghedl o i H9dl o CEl
£08dL 7 Begdl & 3
323dl T s£9dl El
£adl 7 2e8dl o CE]
negdl o Bl
. 5294l El
D 2 1zlvas o794l M CE
p29dl o El
ezddl & El
nz9dl £19d1 & w3
L1gdl 3l9dl o El
#19dL £1adl 3
1 1gdl .
e % 2121w
D [z alvow
- & =
e 202tk SIS 1004 8 M
o o o—= o =
103dL & dow 00941 & §65dl g ZINOMLOD 86541 & 3
d65dL o qov 885dL o 56541 o TIAONI00 pESdl o Bl
£63dL o Tov 269l o 165d1 TIACHL 00 DEsdl & El
6851 a0% Baadl o taadl & 3
935dL 0w 585d1 - gsdl 3
£29dl M 00w Nmm&M D rvlaaonioog fo05 M El
085l o d0% 6L5dl Busdl & 3
L0640 o 0% asdl & a9dl g 3
[TEET 07 £45d1 o [YEETR El
D28dL d0w TEET lagdl & 3
999dL o G 59541 & 29541 & 3
295dl o q0% lasdl & Baadl o 3
CEEETINY qov 45541 & 5554l & Bl
[EEETIR Tov £55dL asgdl & El
155dL o aov 05541 o E¥5dl o 3
gh3dl o G ib5dl o sbgdl o El
badl & 07 £p5dl [LEETR El
04541 o Gl 62541 & Lesdl g 3
ELEETI Tov s£5dl o eesdl o El
2e5dl o q0% lesdl 62adl 2 3
825dL & aaw L3541 & 53541 & e
[EEET o0 £25d1 o gz5dl o N
1z5dl AT nzsdl o Bladl 2 3
{13dl & Al Blsdl B Plgdl & El
£16dL o 0 Z15dL & [015dl o 3
£05dL Jow 20541 LH 1054l o IHIE
EIEET Tov vosdl 2 EH z0sdl & EHAE
L05dL o ek a05d1 2 I 86tdl o [E
d6bdl o Tov gepdl @ [H pevdl o [
£6bdL o Tov z6bdl 2 [T &bl TE03
B2bdL & a0% sopdl [
labdl JOv gapdl @ T S o 15la3
S Lo 1elaow
2 01 glax
El E v

B-44

TMS320C6x McEVM Schematics

E] »
I T [EEE BEGL 'Ig BQUIQ MEpEaURa AIE]
F Fi
. 2980087 v d "I>d “SLHNIOd LSAL
g Jaqunp wawndog mNE
WATON X9002ESWL
ajul
A3LVdOddOONI SLNIWNHLSNI S¥X3 L
o——
9844l I ;m&m a7 1o
YT e— 263dL g (G
PETPTIS- e— 268dL 3 A
EYPTIL e—r teadl & (A
220l & JH 069d1 & a7 1o
(TSI G— 583d1 o (CAE]
0gLdl oo|,n aesdl & (A
634dl g [89d1 & a7 1o
azldl [929d1 g (A
Lzid 8 [58341 3 [CAE]
azudl & [bsadl 3 a7 1D
sgLdl O T 2e8dl g [CAE]
redl 3 7 zasdl g 710
gzldl & a lagdl (CAE]
23ddl & [083d1 & qv 1D
tgdl o 7 5u8dL g 710
0zldl & [220d1 & (A
6lddl & [L9dl qv 1o
Blidl o siadl g A
Lidl 8 q sudl g (A
9lddl & [besdl o a7 1o
sLidl & q £udl g (CAE]
ridl & T 2u8dl 3 [CAE]
gid & [tadL & 710
Zlidl [0i9dl & av 1D
bhdl 3 T 5a3dl o [CAE]
nid & q gagdl & 710
g02dL o [s89d1 & av 1D
z0.dl S [388dL g (G
L0idL & 58841 EAE)
304dL 1a b93d1 o av 1D
s0edl a £99d1 v 10

%0 igla

o ielay 1od

B-45

TMS320C6x McEVM Schematics

Appendix C

TMS320C62x McEVM CPLD Equations

This appendix provides the complex programmable logic device (CPLD)
equations. The CPLD, which is the only programmable logic device on the
'C62x McEVM, is designated as U12 on the board.

Topic Page
C.1 Overview of the MCEVM CPLD ...t c-2
C.2 MCEVM CPLD EQUALIONSottt e e C-15

C-1

Overview of the McEVM CPLD

C.1 Overview of the McEVM CPLD

The CPLD is an Altera EPM7256SQC208-10 device that has a 208-pin PQFP
package. A summary of the pin allocation is shown in Table C-1.

Table C-1. TMS320C62x McEVM CPLD Pin Summary

C-2

Pin Type Number of Pins
Inputs 64
Bidirectional 16
Outputs 60
Unused 20
JTAG 4
5V 4
3.3V 10
GND 14
No connects 16
Total pins 208

The EPM7256SQC208-10 CPLD provides 5000 usable gates, of which
approximately 75% are used in this design. The device contains 256 macro-
cells arranged in 16 logic array blocks. The maximum pin-to-pin delay is
10.5 ns. The CPLD uses 5V for internal operation and 3.3 V for its I/0 buffers.
It can interface to both 3.3- and 5-V devices.

The CPLD was designed using Synario™ ABEL™ version 6.5 and Altera
MAX+ PLUS™ Il version 8.1. Synario was used to enter the design in the
ABEL hardware design language, and MAX+ PLUS Il was used for design
compilation, simulation, and programming file generation.

The CPLD’s VHD source files are modular with a top-level module and six low-
level modules as shown in Figure C—1. These seven source files are provided
in section C.2, McEVM CPLD Equations.

Figure C-1. TMS320C62x McEVM CPLD Source Files

McEVM
top-level mo

(mcevm_ctrl

.vhd)

dule

Overview of the McCEVM CPLD

McEVM
registers

(registers.vhd)

McEVM
peripheral control

(pb_ctrl.vhd)

McEVM
clock selection

(misc_glue.vhd)

McEVM
memory decode

(decode.vhd)

McEVM
interrupt control

(irg_ctrl.vhd)

McEVM
PCl interface

(pci_cntlr.vhd)

Table C-2 provides the CPLD pin definitions in numerical pin order. Table C-3
provides the CPLD pin definitions in sequential alphabetical order.

TMS320C62x McEVM CPLD Equations C-3

Overview of the McEVM CPLD

Table C-2. TMS320C62x CPLD I/O Pins Sorted by Signal Name

Name Type Number
alaw_en (@) 44
ao_adr2 (@) 109
ao_adr3 (@) 112
ao_adr4 (@) 111
ao_adrb (@) 113
ao_adr6 (@) 108
ao_be0_| (@) 169
ao_bel | (@) 168
ao_be2_| (@) 100
ao_be3 | (@) 97
ao_rd_| (@) 198
ao_sel_| (@) 202
ao_wr_| (0] 199
ardy (@) 64
are_| | 40
awe_| | 184
be0_| I 128
bel | I 138
be2_| | 76
be3_| [204
bootmode0 O 29
bootmodel o 22
bootmode2 @) 37
bootmode3 O 39
bootmode4 o 9
bpclk | 181
brd rst | | 182
cel | [162
ce2 | | 45
ce2_sden (@) 70
ce3 | | 84
ce3_sden (@) 121

C-4

Overview of the McCEVM CPLD

clk_a I 166
clkmode o 20
db_falc_int (0] 130
db_int [150
dqo 110 25
dgl 110 21
dg2 I/0 38
dg3 110 48
dg4 110 7
dg5 110 15
dg6 110 19
dq7 110 47
dsp_hint_|I | 137
dsp_hrdy_| | 129
dsp_pd | 118
dsp_rst_| (0] 27
dsp2aod_| (0] 61
dsp2gd_| (0] 60
dsp2xd_| (0] 62
eal6 | 65
eal7 | 161
eal8 | 167
eal9 | 123
ea2 | 90
ea20 | 149
ea2l | 49
ea3 | 177
ead | 13
eab | 24
eab | 91
ed0 1/0 79
edl 1/0 197
ed2 1/O 119

TMS320C62x McEVM CPLD Equations

C-5

Overview of the McEVM CPLD

C-6

ed3 110 124
ed4 1/0 120
ed5 1/0 12
ed6 110 192
ed7 110 188
ext_rst_| (@) 71
falc_a0 o 173
falc_bxe_| o 178
falc_cs_| (@) 171
falc_int | 205
falc_moto (@) 16
falc_rst (@) 86
falc_sync o 145
float_| I 183
fmic_2m_clk | 55
fmic_cs_| (@) 170
fmic_err | 17
fmic_frm_en_| (@) 146
fmic_rdy | 67
fmic_rst_| (@) 66
hcs_| (@) 144
hds1_| O 159
hrw O 98
jtagsel (@) 42
Id20_swap (@) 88
Id31_swap (@) 122
led0_| O 87
led1_| o) 77
lendian O 11
loop_led_| (@) 187
man_rst_| (0] 114
nmi o 6
osc_a_en_| (@) 133

Overview of the McCEVM CPLD

osc_b _en_| (0] 132
pb_rd_| (0] 93
pb_wr_| (0] 96
pc_int (0] 172
pci_det_| | 18
pci_flt_| (0] 33
pci_int O 69
pci_irg_| | 135
pci_rst_| | 102
pcimrd_int (0] 59
pcimwr_int (0] 117
pt_adr_| (0] 4
pt_rdy | (0] 95
ptatn_| | 43
ptbe0_|I | 929
ptbel | | 81
ptbe2_| | 57
ptbe3_| I 163
ptburst_| | 31
ptnumO | 193
ptnum1 | 175
ptwr | 28
ralm_led_| (0] 78
rdempty I 68
rdfifo_| (@] 3
s_bootmode0 | 115
s_bootmodel | 56
s_bootmode2 | 147
s_bootmode3 | 34
s_bootmode4 | 139
s_clkmode | 136
s_clksel | 195
s_endian | 10

TMS320C62x McEVM CPLD Equations C-7

Overview of the McEVM CPLD

C-8

s_jtagsel | 206
s_user0 | 73
s_userl | 36
s_user2 | 151
spOsel (@) 80
sw_rst_| | 140
sync_led_| (@) 194
tbc_int_| | 153
tbc_rd_| (6] 201
tbc_rdy_| | 101
tbc_rst_| (@) 26
tbc_wr_| O 92
tbcaO_hbeO_| (@) 160
tbcal_hbel_| o 154
tbca2_hhwil o 141
tbca3_hcntl0 (@) 142
tbcad_hcntll (@) 110
ulaw_en (@) 46
vce2bad | | 164
wrfifo_| (@) 203
wrfull | 131
xcntlo O 190
xentll O 196
xrdy | 8
xstatO | 35
xstatl | 58
yalm_led_| (0] 89

Overview of the McCEVM CPLD

Table C-3. TMS320C62x CPLD I/O Pins Sorted by Pin Number

Name Type Number
rdfifo_| O 3
pt_adr_| O 4
nmi (0] 6
dg4 110 7
xrdy | 8
bootmode4 O 9
s_endian | 10
lendian (0] 11
ed5 1/0 12
easd | 13
dg5 110 15
falc_moto (0] 16
fmic_err | 17
pci_det_| | 18
dg6 I/0 19
clkmode o 20
dgl 110 21
bootmodel o] 22
eab | 24
dqo 110 25
tbc_rst | O 26
dsp_rst_| (0] 27
ptwr | 28
bootmode0 O 29
ptburst_| | 31
pci_flt_| (0] 33

TMS320C62x McEVM CPLD Equations C-9

Overview of the McEVM CPLD

C-10

s_bootmode3
xstat0
s_userl
bootmode2
dg2
bootmode3
are_|

jtagsel
ptatn_|
alaw_en
ce2 |
ulaw_en

dq7

dg3

ea2l
fmic_2m_clk
s_bootmodel
ptbe2_|
xstatl
pcimrd_int
dsp2gd_|
dsp2aod_|
dsp2xd_|
ardy

eal6
fmic_rst_|
fmic_rdy

rdempty

1/0
I/0

O O O O O

34

35

36

37

38

39

40

42

43

44

45

46

a7

48

49

55

56

57

58

59

60

61

62

64

65

66

67

68

Overview of the McCEVM CPLD

pci_int (0] 69
ce2_sden (0] 70
ext_rst_| (0] 71
s_user0 | 73
be2_| | 76
led1_| o} 77
ralm_led_| O 78
ed0 1/0 79
spOsel (0] 80
ptbel_| | 81
ced | | 84
falc_rst (0] 86
led0_| ¢} 87
1d20_swap (0] 88
yalm_led_| (0] 89
ea2 | 90
eab | 91
tbc_wr_| (0] 92
pb_rd_| (0] 93
pt_rdy | (@] 95
pb_wr_| (@) 96
ao_be3 | (0] 97
hrw (0] 98
ptbe0_|I | 99
ao_be2 | (0] 100
tbc_rdy_| | 101
pci_rst_| | 102
ao_adr6 (0] 108

TMS320C62x McEVM CPLD Equations c-11

Overview of the McEVM CPLD

C-12

ao_adr2
tbcad_hcntll
ao_adr4
ao_adr3
ao_adrb
man_rst_|
s_bootmode0
pcimwr_int
dsp_pd

ed2

ed4
ce3_sden
Id31_swap
eal9

ed3

beO_|
dsp_hrdy_|
db_falc_int
wrfull

osc_b _en_|
osc_a _en_|
pci_irg_|
s_clkmode
dsp_hint_|
bel |
s_bootmode4
sw_rst |

tbca2_hhwil

O O O O O O

110

1/0

o O

109

110

111

112

113

114

115

117

118

119

120

121

122

123

124

128

129

130

131

132

133

135

136

137

138

139

140

141

Overview of the McCEVM CPLD

tbca3_hcntl0 (0] 142
hes_| o} 144
falc_sync (0] 145
fmic_frm_en_| (0] 146
s_bootmode2 | 147
ea20 | 149
db_int [150
s_user2 | 151
tbe_int_| | 153
tbcal hbel | O 154
hds1_| O 159
tbcaO_hbeO_| (0] 160
eal7 | 161
cel | | 162
ptbe3_| | 163
vce2bad | | 164
clk_a | 166
eal8 | 167
ao_bel | (0] 168
ao_be0_| (0] 169
fmic_cs_| (0] 170
falc_cs_| (0] 171
pc_int (0] 172
falc_a0 (@] 173
ptnum1 [175
ea3 | 177
falc_bxe_| O 178
bpclk | 181

TMS320C62x McEVM CPLD Equations C-13

Overview of the McEVM CPLD

brd_rst_|
float_|
awe_|
loop_led_|
ed7

xcntlo

ed6
ptnumO
sync_led_|
s_clksel
xcntll

edl
ao_rd_|
ao_wr_|
tbc_rd_|
ao_sel_|
wrfifo_|
be3 |
falc_int

s_jtagsel

C-14

110

1/0

1/0

O O O O O

182
183
184
187
188
190
192
193
194
195
196
197
198
199
201
202
203
204
205

206

McEVM CPLD Equations

C.2 McEVM CPLD Equations

The following listing provides a table of contents for the CPLD source files in-
cluded in this section.

CPLD source file Page
registers.vhd C-55
pb_ctrl.vhd C-89
misc_glue.vhd C-102
decode.vhd C-110
irq_ctrl.vhd C-121
pci_cntlr.vhd C-132

TMS320C62x McEVM CPLD Equations C-15

9T-0

Design For:
Texas Instruments Incorporated

Design By:
DNA Enterprises Inc
269 West Renner Parkway
Richardson, TX 75080

File name : mcevm_ctrl.vhd
Title . Top Level McEVM Control CPLD design
Module

Description : This is the top—level module for the TMS320C6x
McEVM'’s CPLD. This top level only contains
instantiations of the lower level components
and the concurrent statements to tri-state

outputs when required.

Modification History :

Revision: 0
Date: 03/30/98
Author: Don Curry (DNA)

Description: Initial conversion from ABEL version of EVM CPLD.

Revision: 1
Date: 05/05/98
Author: Don Curry (DNA)

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

LT-D

— Description: Added McEVM specific signals/components

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL,
ENTITY mcevm_ctrl IS

PORT(

— active low signals are indicated with a trailing underscore.

— INPUTS

— CPLD control

float_| :IN STD_LOGIC ; — floats all outputs

— Resets

brd_rst_| : IN STD_LOGIC ; — reset from voltage super.
sw_rst | :IN STD_LOGIC ; — reset from pushbutton switch
vcezbad_| : IN STD_LOGIC ; — VCC bad from voltage super.
pci_rst_| : IN STD_LOGIC ; — PCl reset from PCI cntrlr

— Clocks

clk_a 1IN STD_LOGIC ; — DSP clk source (OSC A)

— EMIF Control

cel | 1IN STD_LOGIC ; — EMIF CE1 memory space enable
ce2 | 1IN STD_LOGIC ; — EMIF CE2 memory space enable
ced | 1IN STD_LOGIC ; — EMIF CE3 memory space enable
are_| :IN STD_LOGIC ; — EMIF async read strobe

awe_| :IN STD_LOGIC ; — EMIF async write strobe

beO_| :IN STD_LOGIC ; — EMIF byte 0 enable

suonenb3 aidd WAFOW

8T-0

bel_| :IN STD_LOGIC ; — EMIF byte 1 enable

be2_| :IN STD_LOGIC ; — EMIF byte 2 enable

be3_| :IN STD_LOGIC ; — EMIF byte 3 enable

— EMIF Address

ea2l :IN STD_LOGIC ;

ea20 :IN STD_LOGIC ;

eal9 :INSTD_LOGIC ;

eal8 :IN STD_LOGIC ;

eal7 :INSTD_LOGIC ;

eal6 :IN STD_LOGIC ;

eab :INSTD_LOGIC,;

eab5 1IN STD_LOGIC;

ead 1IN STD_LOGIC;

ea3 :IN STD_LOGIC,;

ea2 :INSTD_LOGIC,;

— DSP Host port control

dsp_hrdy_| :IN STD_LOGIC ; — DSP HPI ready

dsp_hint_| :IN STD_LOGIC ; — DSP HPI host interrupt

dsp_pd 1IN STD_LOGIC ; — DSP power down indicator

— From S5933 PCI Controller

bpclk 1IN STD_LOGIC ; — Buffered PCI clock

ptatn_| :IN STD_LOGIC ; — Pass—thru attention

ptburst_| : IN STD_LOGIC ; — Pass—thru burst

ptnuml1 :IN STD_LOGIC ; — Pass—thru region #

ptnumO 1IN STD_LOGIC ; — Pass—thru region #

ptwr :IN STD_LOGIC ; — Pass—thru access type
— (R=0, W=1)

ptbe3_| :IN STD_LOGIC ; — Pass—thru byte enable 3

ptbe2_| :IN STD_LOGIC ; — Pass-thru byte enable 2

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

6T-O

ptbel_| :IN STD_LOGIC ; — Pass—thru byte enable 1
ptbe0_|I :IN STD_LOGIC ; — Pass—thru byte enable 0
pci_irg_| : IN STD_LOGIC ; — Interrupt to add—on device
pci_det_ | :IN STD_LOGIC ; — PCI Bus detection
— (0=PCl, 1=standalone)
rdempty :IN STD_LOGIC ; — Read FIFO empty flag
wrfull :IN STD_LOGIC ; — Write FIFO full flag
— From JTAG TBC
tbc_rdy_| : IN STD_LOGIC ; — TBC ready
tbc_int_| : IN STD_LOGIC ; — TBC interrupt
— From DIP switch
s_bootmode4 :IN STD_LOGIC ; — Bootmode 4 (SW2-1)
s_bootmode3 :IN STD_LOGIC ; — Bootmode 3 (SW2-2)
s_bootmode2 :IN STD_LOGIC ; — Bootmode 2 (SW2-3)
s_bootmodel :IN STD_LOGIC ; — Bootmode 1 (SW2-4)
s_bootmode0 :IN STD_LOGIC ; — Bootmode 0 (SW2-5)
s_clkmode :IN STD_LOGIC ; — Clock mode (SW2-6)
— x1 (no PLL) or x4 (PLL)
s_clksel :IN STD_LOGIC ; — Clock select (SW2-7)
— Osc AorOsc B
s_endian :IN STD_LOGIC ; — Memory access select (SW2-8)
— little or big endian
s_jtagsel :IN STD_LOGIC ; — JTAG select (SW2-9)

— Internal or external emul.

s_user2 :IN STD_LOGIC ; — User—defined switch (SW2-10)
s_userl 1IN STD_LOGIC ; — User—defined switch (SW2-11)
s_user0 :IN STD_LOGIC ; — User—defined switch (SW2-12)

— From T1/E1 transceiver
falc_int :IN STD_LOGIC ; — T1/E1 level interrupt (active high)

suonenb3 aidd WAFOW

02-0

— From FMIC

fmic_rdy :IN STD_LOGIC ; — FMIC ready signal
fmic_err :IN STD_LOGIC ; — FMIC error signal
fmic_2m_clk :IN STD_LOGIC ; — FMIC 2 MHz clock

— From daughterboard expansion

xstatl 1IN STD_LOGIC ; — External status 1

xstatO 1IN STD_LOGIC ; — External status 0

db_int 1IN STD_LOGIC ; — Daughterboard IRQ (EXT_INT7)
xrdy :IN STD_LOGIC ; — External async mem. acc. rdy.

— BI-DIRECTIONALS

— EMIF data bus (From DSP)

ed7 1 INOUT STD_LOGIC;
ed6 1 INOUT STD_LOGIC ;
ed5 1 INOUT STD_LOGIC ;
ed4 1 INOUT STD_LOGIC ;
ed3 1 INOUT STD_LOGIC ;
ed2 1 INOUT STD_LOGIC ;
edl 1 INOUT STD_LOGIC;
ed0 1 INOUT STD_LOGIC ;
— Add-on data bus (From PCI controller)
dq7 1 INOUT STD_LOGIC ;
dg6 : INOUT STD_LOGIC ;
dg5 1 INOUT STD_LOGIC ;
dg4 1 INOUT STD_LOGIC ;

dg3 :INOUT STD_LOGIC ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

TZ-0

dg2 :INOUT STD_LOGIC ;

dgl :INOUT STD_LOGIC;
dg0 :INOUT STD_LOGIC;
— OUTPUTS

— McEVM specific control outputs

Id31_swap : OUT STD_LOGIC; — FMIC stream 3/1 mux ctrl
Id20_swap : OUT STD_LOGIC;; — FMIC stream 2/0 mux ctrl
loop_led_| :OUT STD_LOGIC; — drive loop led

sync_led_| :OUT STD_LOGIC; — drive sync led

ralm_led_| :OUT STD_LOGIC; — drive red alarm led

yalm_led_| :OUT STD_LOGIC ; — drive yellow alarm led
alaw_en :OUT STD_LOGIC; — A-law select

ulaw_en :OUT STD_LOGIC; — u-law select

— To Data buffers/transceivers

dsp2aod_| : OUT STD_LOGIC ; — Connects DSP to Add-on bus
dsp2gd_| :OUT STD_LOGIC; — Connects DSP to global bus
dsp2xd_|I :OUT STD_LOGIC; — Connects DSP to external bus

— To JTAG TBC and DSP HPI

tbca0_hbeO_| : OUT STD_LOGIC; — TBC addr 0/HPI byte 0 enable
tbcal_hbel | : OUT STD_LOGIC; — TBC addr 1/HPI byte 1 enable
tbca2_hhwil :OUT STD_LOGIC; — TBC addr 2/HPI half-word sel.
tbca3_hcntl0 : OUT STD_LOGIC; — TBC addr 3/HPI control O
tbcad_hcntll : OUT STD_LOGIC; — TBC addr 4/HPI control 1

— To JTAG TBC

tbc_wr_| :OUT STD_LOGIC;; — TBC write strobe

tbc_rd_| :OUT STD_LOGIC; — TBC read strobe

tbc_rst | : OUT STD_LOGIC;; — TBC hardware reset

suonenb3 aidd WAFOW

220

— To HPI

hcs_| :OUT STD_LOGIC; — HPI chip select

hdsl_| : OUT STD_LOGIC; — HPI data strobe 1

hrw :OUT STD_LOGIC ; — HPI read (1)/write (0)

— To S5933 PCI controller

pci_flt | : OUT STD_LOGIC; — Float PCI controller outputs
pt_adr_ | :OUTSTD_LOGIC; — Pass—thru address request
pt_rdy I :OUTSTD_LOGIC; — Pass—thruready indication
ao_sel | :OUT STD_LOGIC;; — Add-on sel. for reg. access
ao_wr_| :OUT STD_LOGIC; — Add—on write strobe
ao_rd_| : OUT STD_LOGIC; — Add-on read strobe
ao_adr6 :OUT STD_LOGIC; — Add-on Address bus
ao_adrb5 :OUT STD_LOGIC; — Add-on Address bus
ao_adr4d :OUT STD_LOGIC; — Add-on Address bus
ao_adr3 :OUT STD_LOGIC ; — Add-on Address bus
ao_adr2 :OUT STD_LOGIC; — Add-on Address bus
ao be3 | :0OUTSTD_LOGIC; — Add-on byte enable 3
ao_be2 | :OUTSTD_LOGIC; — Add-on byte enable 2

ao bel | :0OUTSTD_LOGIC; — Add-on byte enable 1
ao_be0 | :OUTSTD_LOGIC; — Add-on byte enable 0
rdfifo | : OUT STD_LOGIC ; — Read FIFO strobe

wrfifo_| : OUT STD_LOGIC; — Write FIFO strobe

pc_int :OUT STD_LOGIC; — Add-on to PCl interrupt
— To DSP

— Bootmode for No—boot, HPI boot or ROM boot
bootmode4 : OUT STD_LOGIC ;
bootmode3 : OUT STD_LOGIC ;
bootmode2 : OUT STD_LOGIC ;
bootmodel : OUT STD_LOGIC ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

€2¢-0

bootmodeO : OUT STD_LOGIC ;

clkmode :OUT STD_LOGIC; — Clock mode

lendian : OUT STD_LOGIC;; — Little endian selection

nmi :OUT STD_LOGIC; — NMI interrupt from host

db_falc_int :OUT STD_LOGIC; — FALC/DB (EXT_INT7)

pci_int :OUT STD_LOGIC; — Interrupt from PCI cntrlr
— (EXT_INT4)

pcimrd_int :OUT STD_LOGIC; — PCI master read interrupt
— (EXT_INTS5)

pcimwr_int :OUT STD_LOGIC; — PCI master write interrupt
— (EXT_INT6)

dsp_rst_| : OUT STD_LOGIC;; — DSP reset

ardy :OUT STD_LOGIC ; — EMIF async memory access ready

— To multiplexers

osc_a_en_| :OUT STD_LOGIC; — DSP oscillator A enable

osc_ b en_| :OUT STD_LOGIC; — DSP oscillator B enable

jtagsel :OUT STD_LOGIC; — JTAG selection (int/ext)

spOsel : OUT STD_LOGIC; — McBSPO selection

— To FMIC/FALC timing

fmic_frm_en_|: OUT STD_LOGIC ; — Enable FMIC frame to D.B.

falc_sync : OUT STD_LOGIC ; — FALC sync mux output

— To LED’s

ledl_| :OUT STD_LOGIC; — User LED 1 control

ledO_| :OUT STD_LOGIC; — User LED 0 control

— To Peripherial bus components (T1/E1 xcvr & FMIC)

fmic_rst_| :OUT STD_LOGIC; — FMIC reset

falc_rst :OUT STD_LOGIC; — FALC reset

fmic_cs_| : OUT STD_LOGIC; — Chip select

falc_cs | : OUT STD_LOGIC; — Chip select

suonenb3 aidd WAFOW

¥2-0

falc_ bxe | :OUTSTD _LOGIC; — FALC BHE/BLE
falc_a0 :OUT STD_LOGIC; — FALC address 0
falc_moto : OUT STD_LOGIC;; — FALC interface mode
pb_wr_| :OUT STD_LOGIC; — Write strobe
pb_rd_| :OUT STD_LOGIC; — Read strobe

— To daughterboard

xcntll :OUT STD_LOGIC ; — External control 1
xcntlo :OUT STD_LOGIC ; — External control 0
ext_rst_| : OUT STD_LOGIC; — External reset

— To SDRAMSs

ce3_sden :OUT STD_LOGIC; — Bank 1 enable (CKE)
ce2_sden :OUTSTD_LOGIC; — BankO0 enable (CKE)

— To voltage supervisor
man_rst_| : OUT STD_LOGIC — Pushbutton or PCI reset
)i
END mcevm_ctrl ;
ARCHITECTURE struct OF mcevm_ctrl IS
— Define types used
— Define constants for readability
CONSTANT true_h :STD_LOGIC :='1",;
CONSTANT false_h :STD_LOGIC ='0";
CONSTANT true_| :STD_LOGIC :='0";
CONSTANT false_| :STD_LOGIC :='1";
— Internal signal declarations
SIGNAL ce2sden : STD_LOGIC ;
SIGNAL ce3sden : STD_LOGIC ;
SIGNAL ea_hi :STD_LOGIC_VECTOR(5 DOWNTO 0) ;
SIGNAL ea_lo :STD_LOGIC_VECTOR(4 DOWNTO 0) ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

G2-O

SIGNAL ao_bsy :STD_LOGIC;
SIGNAL emif_ack :STD_LOGIC;
SIGNAL are_pci_| :STD_LOGIC;
SIGNAL awe_pci_| :STD_LOGIC;
SIGNAL are_osca_| : STD_LOGIC ;
SIGNAL awe_osca_| : STD_LOGIC;
SIGNAL emif_req :STD_LOGIC;
SIGNAL cpld_cs : STD_LOGIC ;

SIGNAL pciclk :STD_LOGIC;
SIGNAL hinten :STD_LOGIC;
SIGNAL tbcinten :STD_LOGIC;
SIGNAL dspnmi :STD_LOGIC;
SIGNAL nmisel :STD_LOGIC;
SIGNAL nmien : STD_LOGIC;

SIGNAL pcimren : STD_LOGIC;;

SIGNAL pcimwen : STD_LOGIC ;

SIGNAL read_fifo_| :STD_LOGIC ;

SIGNAL write_fifo | :STD_LOGIC;

SIGNAL pci_mrd_int :STD_LOGIC ;

SIGNAL pci_mwr_int :STD_LOGIC;

SIGNAL switch :STD_LOGIC_VECTOR(12 DOWNTO 1) ;
SIGNAL dip_switch : STD_LOGIC_VECTOR(12 DOWNTO 1) ;
SIGNAL soft_switch ~ : STD_LOGIC_VECTOR(12 DOWNTO 1) ;

SIGNAL swsel_dip_|I :STD_LOGIC;

SIGNAL ptadr_| : STD_LOGIC ;

SIGNAL ptnum : STD_LOGIC_VECTOR(1 DOWNTO 0) ;
SIGNAL ptbe_| : STD_LOGIC_VECTOR(3 DOWNTO 0) ;

SIGNAL pt_be_| : STD_LOGIC_VECTOR(3 DOWNTO 0) ;
SIGNALbe | :STD_LOGIC_VECTOR(3 DOWNTO 0);

suonenb3 aidd WAFOW

9¢-0

SIGNAL ao_be_| : STD_LOGIC_VECTOR(3 DOWNTO 0) ;
SIGNAL ao_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) ;
SIGNAL pt_addr : STD_LOGIC_VECTOR(4 DOWNTO 0) ;
SIGNAL thca_hpic : STD_LOGIC_VECTOR(4 DOWNTO 0) ;

SIGNAL xstat : STD_LOGIC_VECTOR(1 DOWNTO 0) ;
SIGNAL xcntl : STD_LOGIC_VECTOR(1 DOWNTO 0) ;
SIGNAL led : STD_LOGIC_VECTOR(1 DOWNTO 0) ;

SIGNAL pcireg_ce :STD_LOGIC;
SIGNAL pcireg_oe :STD_LOGIC;

SIGNAL ed_oe : STD_LOGIC;

SIGNAL ed :STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL ed_out : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL dq : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL dg_out : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL xreset :STD_LOGIC;

SIGNAL dsprst :STD_LOGIC;

SIGNAL tberst :STD_LOGIC;

SIGNAL aod_| : STD_LOGIC ;

SIGNAL gd_| :STD_LOGIC;

SIGNAL xbd_| :STD_LOGIC ;

SIGNAL thewr | : STD_LOGIC ;
SIGNAL tberd | : STD_LOGIC ;
SIGNAL therst | : STD_LOGIC ;
SIGNAL hpics_| : STD_LOGIC ;
SIGNAL hpids_| : STD_LOGIC ;
SIGNAL hpirw :STD_LOGIC ;
SIGNAL pcifit | : STD_LOGIC ;
SIGNAL ptrdy | : STD_LOGIC ;
SIGNAL aosel_| : STD_LOGIC ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

YXAO)

SIGNAL aowr_| :STD_LOGIC;

SIGNAL aord_| : STD_LOGIC ;
SIGNAL ptrd_| : STD_LOGIC ;
SIGNAL pcint : STD_LOGIC ;
SIGNAL nmint :STD_LOGIC;
SIGNAL pciint : STD_LOGIC ;
SIGNAL dsprst_| :STD_LOGIC;

SIGNAL async_rdy :STD_LOGIC;
SIGNAL osca_en_| :STD_LOGIC;
SIGNAL oscb_en | :STD _LOGIC;
SIGNAL sp0O_sel : STD_LOGIC;

SIGNAL xrst_| : STD_LOGIC;
SIGNAL manrst_| :STD_LOGIC ;
SIGNAL fmiccs | : STD_LOGIC ;
SIGNAL falces_| :STD_LOGIC ;
SIGNAL pbwr_| :STD_LOGIC;
SIGNAL pbrd_| :STD_LOGIC ;

SIGNAL falc_req :STD_LOGIC;
SIGNAL falcbxe_| :STD_LOGIC;

SIGNAL falca0 : STD_LOGIC;;
SIGNAL fmic_req :STD_LOGIC ;
SIGNAL pb_ack : STD_LOGIC;;

SIGNAL mstr_sel : STD_LOGIC_VECTOR(3 DOWNTO 0) ;
SIGNAL Id31swap :STD_LOGIC;

SIGNAL Id20swap : STD_LOGIC ;

SIGNAL fmicrst_| : STD_LOGIC ;

SIGNAL falcrst : STD_LOGIC ;

SIGNAL fmicrst_ b : STD_LOGIC;

SIGNAL falcrst_ b : STD_LOGIC;

suonenb3 aidd WAFOW

8¢-0

SIGNAL ltchd_db_int

:STD_LOGIC;
SIGNAL ltchd_falc_int: STD_LOGIC ;

SIGNAL cIr_dbint : STD_LOGIC ;
SIGNAL clr_falcint :STD_LOGIC ;
SIGNAL loopled_| :STD_LOGIC;
SIGNAL syncled_| :STD_LOGIC;
SIGNAL ralmled_| :STD_LOGIC;;
SIGNAL yalmled_| :STD_LOGIC;
SIGNAL a_law_en :STD_LOGIC;
SIGNAL u_law_en :STD_LOGIC ;
SIGNAL fmic_frmen_| :STD_LOGIC ;
SIGNAL falcsync :STD_LOGIC ;
SIGNAL dbfalc_int : STD_LOGIC;

— Component declarations

COMPONENT decode

PORT(

— active low signals are indicated with ’_I" appended to signal name.

— INPUTS

brd_rst_| :INSTD_LOGIC;; — Reset from volt. super.
pci_det_| :IN STD_LOGIC ; — PCI detection indicator
pciclk :IN STD_LOGIC ; — Buffered PCI clk (33MHz max)

clk_a 1IN STD_LOGIC ; — Osc. A (33.25MHz)

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

6Z-0

cel | 1IN STD_LOGIC ; — EMIF CE1 memory space enable
ce2 | :INSTD_LOGIC; — EMIF CE2 memory space enable
ce3_| :IN STD_LOGIC ; — EMIF CE3 memory space enable
are_| :IN STD_LOGIC;; — EMIF async memory read strobe
awe_| 1IN STD_LOGIC; — EMIF async memory write strobe
ea_hi :IN STD_LOGIC_VECTOR(5 DOWNTO 0) ;

— EMIF Address bits 21:16
ao_bsy 1IN STD_LOGIC ; — Add-On S.M. busy
emif_ack 1IN STD_LOGIC;; — Add-On S.M. EMIF access ack.
pb_ack :IN STD_LOGIC;; — Peripherial bus access ack.
xrdy :INSTD_LOGIC ; — EMIF async acc. ready from DB
ce2sden :INSTD_LOGIC; — CE2 SDRAM enable from registers
ce3sden 1IN STD_LOGIC; — CE3 SDRAM enable from registers
— OUTPUTS
dsp2aod_| : OUT STD_LOGIC ; — Enables ED(31:0) to AOD(31:0)
dsp2gd_| :OUT STD_LOGIC ; — Enables ED(7:0) to GD(31:0)
dsp2xd_| :OUT STD_LOGIC; — Enables ED(31:0) to XD(31:0)
awe_pci_| : OUT STD_LOGIC; — awe_| synced to pci clock
are_pci_| : OUT STD_LOGIC; — are_| synced to pci clock
awe_osca_| :OUT STD_LOGIC; — awe_| synced to clk_a clock
are_osca_| :OUT STD_LOGIC; —are_lsynced to clk_a clock
emif_req :OUT STD_LOGIC; — EMIF access request
falc_req : OUT STD_LOGIC; — FALC (T1/E1) access request
fmic_req :OUT STD_LOGIC ; — FMIC access request
cpld_cs : OUT STD_LOGIC;; — CPLD DSP register chip select

suonenb3 aidd WAFOW

0€-0

ardy - OUT STD_LOGIC — EMIF async access ready

);
END COMPONENT ;

COMPONENT pb_ctrl
PORT(
— active low signals are indicated with ’_I" appended to signal name.

— INPUTS

brd_rst_| : IN STD_LOGIC ; — Reset from volt. super.
clk_a :IN STD_LOGIC ; — Osc A (33.25MHz)
fmic_req :IN STD_LOGIC ; — FMIC decode
fmic_rdy_in :IN STD_LOGIC ; — FMIC ready signal
falc_req :INSTD_LOGIC; — FALC decode

lendian :IN STD_LOGIC ; — Little endian mode

be_| :IN STD_LOGIC_VECTOR(3 DOWNTO 0) ; — EMIF byte enables
are_osca_| :IN STD_LOGIC ; — are_l synced to clk_a

awe_osca_| 1IN STD_LOGIC ; — awe_l synced to clk_a

— OUTPUTS

fmic_cs_| : OUT STD_LOGIC ; — FMIC chip select output

falc_cs | : OUT STD_LOGIC; — FALC chip select output

falc_bxe | :OUTSTD _LOGIC; — FALC BHE/BLE

falc_a0 :OUT STD_LOGIC; — FALC address 0

pb_wr_| :OUT STD_LOGIC; — Peripherial bus write strobe

pb_rd_| :OUT STD_LOGIC; — Peripherial bus read strobe

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

T€-D

pb_ack
)i

:OUT STD_LOGIC — state machine done

END COMPONENT ;
COMPONENT irq_ctrl

PORT(

— active low signals are indicated with '_I" appended to signal name.

— INPUTS

brd_rst_| :IN STD_LOGIC ; — Reset from volt. super.
dsp_hint_| :INSTD_LOGIC; — DSP HPI interrupt

tbc_int_| :INSTD_LOGIC;; — TBC host interrupt

pciclk :IN STD_LOGIC ; — Buffered PCI clk (33MHz max)
pci_det_| :IN STD_LOGIC; — PCI detection indicator
pci_irg_| 1IN STD_LOGIC ; — Interrupt from add—on device
rdempty 1IN STD_LOGIC ; — PCl read FIFO empty flag
wrfull :IN STD_LOGIC ; — PCI write FIFO full flag

hinten :IN STD_LOGIC; — HPI host interrupt enable
tbcinten :IN STD_LOGIC ; — TBC host interrupt enable
dspnmi :IN STD_LOGIC;; — DSP NMl interrupt from host
nmisel 1IN STD_LOGIC ; — NMI source (host/xcvr)
nmien :IN STD_LOGIC;; — NMI enable

pcimren 1IN STD_LOGIC ; — PCI master read IRQ enable
pcimwen :INSTD_LOGIC; — PCI master write IRQ enable
rdfifo_| :IN STD_LOGIC ; — PCI FIFO read strobe

wrfifo_| :INSTD_LOGIC; — PCI FIFO write strobe

suonenb3 aidd WAFOW

¢€-0

clk_a 1IN STD_LOGIC ; — Free-run 33.25 MHZ
clr_falcint :IN STD_LOGIC ; — clear T1/E1 xcvr interrupt
clr_dbint : IN STD_LOGIC ; — clear Daughterboard interrupt
falc_int :IN STD_LOGIC ; — T1/E1 xcvr interrupt

suonenb3 aidd WAFON

db_int 1IN STD_LOGIC ; — Daughterboard interrupt

— OUTPUTS

db_falc_int :OUT STD_LOGIC ; — DB/FALC interrupt (EXT_INT7)
ltchd_falc_int : OUT STD_LOGIC; — Latched FALC interrupt

ltchd_db_int : OUT STD_LOGIC ; — Latched DB interrupt

pc_int :OUT STD_LOGIC ; — Add-on interrupt to PCI cntlr

pci_int :OUT STD_LOGIC; — PCI to DSP interrupt (EXT_INT4)

nmi :OUT STD_LOGIC ; — NMI to DSP

pcimrd_int : OUT STD_LOGIC ; — PCI mstr read IRQ to DSP (EXT_INT5)
pcimwr_int : OUT STD_LOGIC — PCI mstr write IRQ to DSP (EXT_INT6)
)i

END COMPONENT ;
COMPONENT misc_glue
PORT(

— active low signals are indicated with '_I" appended to signal name.

— INPUTS

suonenb3 @idd WAFIW XZ9D0ZESN.L

€€-0

— EVMCKSEL

clk_a 1IN STD_LOGIC; — Free—run 33.25 MHZ

— EVMRESET

brd_rst_| :IN STD_LOGIC;; — Reset from volt. super.
sw_rst_| :IN STD_LOGIC ; — Reset from pushbutton
vcezbad_| :INSTD_LOGIC ; — VCC low

pci_rst_| :IN STD_LOGIC ; — Reset from PCI controller
pci_det_| :IN STD_LOGIC;; — PCI detection (active low)
xreset 1IN STD_LOGIC ; — Ext. reset from DSP register
falcrst :IN STD_LOGIC ; — FALC. reset from DSP register
fmicrst :IN STD_LOGIC ; — FMIC. reset from DSP register
dsprst :INSTD_LOGIC;; — DSP reset from PCI register
tberst :INSTD_LOGIC;; — TBC reset from PCI register
— EVMSWMUX

swsel_dip_| :INSTD_LOGIC; — Switch select

dip_switch : IN STD_LOGIC_VECTOR(12 DOWNTO 1) ;
soft_switch : IN STD_LOGIC_VECTOR(12 DOWNTO 1) ;

mstr_sel :IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
— timing mode selection
fmic_2m_clk :IN STD_LOGIC ; — FMIC 2 MHz clock

— OUTPUTS

— EVMCKSEL

suonenb3 aidd WAFOW

¥€-0

osc_a en | :OUTSTD_LOGIC; — Osc. A enable

osc_b en_| :OUTSTD_LOGIC; — Osc. B enable

— EVMRESET

man_rst_| :OUT STD_LOGIC; — Manual reset to volt. super.
dsp_rst_| :OUT STD_LOGIC; — DSP reset

tbc_rst_| :OUT STD_LOGIC; — TBC reset

ext_rst_| : OUT STD_LOGIC ; — Daughterboard reset
falc_rst :OUT STD_LOGIC ; — FALC reset

fmic_rst_| :OUT STD_LOGIC ; — FMIC reset

— To FMIC/FALC timing

fmic_frm_en_I: OUT STD_LOGIC; — Enable FMIC frame to D.B.
falc_sync : OUT STD_LOGIC ; — FALC sync mux select

— EVMSWMUX

switch : OUT STD_LOGIC_VECTOR(12 DOWNTO 1)

);

END COMPONENT ;

—COMPONENT pci_ctrl

COMPONENT pci_control
PORT(

— active low signals are indicated with '_I" appended to signal name.

— INPUTS

brd_rst_| :IN STD_LOGIC;; — Reset from volt. super.

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

G€-0

pciclk :IN STD_LOGIC ; — Buffered PCI clk (33MHz max)
clk_mode :IN STD_LOGIC;; — DSP clock mode
pci_det_| :IN STD_LOGIC ; — PCI detection indicator
ptatn_| :IN STD_LOGIC;; — Pass-thru attention signal
ptburst_| :IN STD_LOGIC ; — Pass—thru burst signal
ptnum :IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
— Pass-thru region number
ptwr 1IN STD_LOGIC; — Pass—thru access type (R=0/W=1)
pt_be_| IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
— Latched pass—thru byte enables
pt_addr :IN STD_LOGIC_VECTOR(4 DOWNTO 0) ;
— Latched pass—thru address
are_pci_| :IN STD_LOGIC ; — sync’d DSP read strobe
awe_pci_| :INSTD_LOGIC; — sync’d DSP write strobe
be | IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
— EMIF byte enables
eal6 1IN STD_LOGIC; — EMIF address bit 16
ea_lo :IN STD_LOGIC_VECTOR(4 DOWNTO 0) ;
— EMIF address bits 6:2
tbc_rdy_| :IN STD_LOGIC;; — JTAG TBC Ready
dsp_hrdy | :INSTD_LOGIC; — DSP HPI Ready
emif_req :IN STD_LOGIC ; — Synchronized EMIF access request
— OUTPUTS
pci_flt_| : OUT STD_LOGIC ; — Tri—state PCI controller outputs
pt_adr_| : OUT STD_LOGIC; — Pass—thru address request

suonenb3 aidd WAFOW

9€-0

pt_rdy_|
ao_sel_|
ao_wr_|
ao_rd_|

ao_adr

ao_be_|

rdfifo_|
wrfifo_|
pcireg_oe
pcireg_ce
tbc_wr_|
tbc_rd_|
hcs_|
hds1_|
hrw

thbca_hpic

ao_bsy

emif_ack

);

: OUT STD_LOGIC;; — Pass—thru ready signal
: OUT STD_LOGIC ; — Add-on register access
:OUT STD_LOGIC; — Add-on write strobe
:OUT STD_LOGIC ; — Add-on read strobe

: OUT STD_LOGIC_VECTOR(4 DOWNTO 0) ;
— Add-on address bits 6:2

: OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
— Add-on byte enables

:OUT STD_LOGIC ; — Read FIFO strobe
: OUT STD_LOGIC;; — Write FIFO strobe
: OUT STD_LOGIC; — PCl register output enable
:OUT STD_LOGIC ; — PCl register clock enable
:OUT STD_LOGIC; — TBC write strobe
: OUT STD_LOGIC;; — TBC read strobe
:OUT STD_LOGIC ; — DSP HPI chip select
: OUT STD_LOGIC;; — DSP HPI data strobe
: OUT STD_LOGIC; — DSP HPI read/write control

: OUT STD_LOGIC_VECTOR(4 DOWNTO 0) ;

— TBC address bits 4:0/HPI control
:OUT STD_LOGIC; — Add-on S.M. busy signal
:OUT STD_LOGIC — EMIF access acknowledge

END COMPONENT ;
COMPONENT registers

PORT(

— active low signals are indicated with *_I" appended to signal name.

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

LE-D

— INPUTS

dsp_pd 1IN STD_LOGIC ; — DSP power down
vce2bad._| :IN STD_LOGIC;; — Volt. super. status

wrfull :IN STD_LOGIC ; — PCI FIFO flag

rdempty 1IN STD_LOGIC; — PCI FIFO flag

pcimrd_int :IN STD_LOGIC ; — PCI master read interrupt
pcimwr_int :IN STD_LOGIC ; — PCI master write interrupt
tbc_rdy_| :IN STD_LOGIC; — TBC ready indicator
tbc_int_| :INSTD_LOGIC; — TBC interrupt

dsp_hint_| :INSTD_LOGIC; — DSP host interrupt
db_int :IN STD_LOGIC; — Daughterboard interrupt
falc_int 1IN STD_LOGIC; — FALC interrupt

ltchd_falc_int :IN STD_LOGIC ; — Latched FALC interrupt
Itchd_db_int :IN STD_LOGIC ; — Latched DB interrupt

pci_irg_| :IN STD_LOGIC ; — PCl interrupt
pci_det_| :IN STD_LOGIC ; — PCl detection flag
cpld_cs :INSTD_LOGIC ; — EMIF acc. 0x0138/0x0178xxxx
xstat :IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;

— Daughterboard status signals
ea_lo :IN STD_LOGIC_VECTOR(6 DOWNTO 2) ;

— lower EMIF adr
ed :IN STD_LOGIC_VECTOR(7 DOWNTO 0) ;

— EMIF data
pcireg_ce :INSTD_LOGIC; — PCl register clk enable
brd_rst_| :IN STD_LOGIC;; — reset from volt. super.

pciclk :INSTD_LOGIC; — buffered PCI clockl

suonenb3 aidd WAFOW

8€-0

dq :IN STD_LOGIC_VECTOR(7 DOWNTO 0) ;
— PCI cntlr data
pt_adr_| :INSTD_LOGIC; — pass thru adr clk enable
ptbe._| :IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
— latched byte enables
are_| :IN STD_LOGIC ; — async read enable
awe_| :INSTD_LOGIC;; — async write enable

dip_switch :IN STD_LOGIC_VECTOR(12 DOWNTO 1) ;
— DIP switch settings

switch :IN STD_LOGIC_VECTOR(12 DOWNTO 1) ;
— selected switch settings

fmic_err :IN STD_LOGIC ; — FMIC error signal

suonenb3 aidd WAFON

— OUTPUTS

mstr_sel : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;

— timing mode selection

Id31_swap : OUT STD_LOGIC;; — FMIC stream 3/1 mux ctrl
Id20_swap : OUT STD_LOGIC; — FMIC stream 2/0 mux ctrl
fmic_rst :OUT STD_LOGIC; — FMIC reset register bit
falc_rst :OUT STD_LOGIC; — FALC reset register bit
clr_dbint : OUT STD_LOGIC ; — clear daughterboard irq
clr_falcint : OUT STD_LOGIC ; — clear FALC irq
loop_led_| :OUT STD_LOGIC; — drive loop led
sync_led_| :OUT STD_LOGIC; — drive sync led
ralm_led_| :OUT STD_LOGIC ; — drive red alarm led

yalm_led_| :OUT STD_LOGIC ; — drive yellow alarm led

suonenb3 @idd WAFIW XZ9D0ZESN.L

6€-0

a law_en :OUT STD_LOGIC; — A-law select

u_law_en :OUTSTD_LOGIC; — u-law select
ed_oe :OUT STD_LOGIC;
ed_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) ;

— EMIF data out
dg_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) ;

— PCl data out
— DSP mapped register bits
xreset :OUT STD_LOGIC; — Daughterboard reset reg. bit
nmisel :OUT STD_LOGIC ; — NMI selection (xcvr/host)
nmien :OUT STD_LOGIC ; — NMI enable (maskable NMI?)
pcimwen : OUT STD_LOGIC; — PCI master write enable
pcimren :OUT STD_LOGIC; — PCI master read enable
ce2_sden :OUT STD_LOGIC; — CE2 SDRAM enable
ce3 sden :OUT STD_LOGIC ; — CE3 SDRAM enable

— DSP mapped register bits

dspnmi :OUT STD_LOGIC; — Host NMI to DSP

tbcinten :OUT STD_LOGIC; — Host TBC interrupt enable
hinten :OUT STD_LOGIC ; — Host DP host interrupt en.
tberst :OUT STD_LOGIC; — Host TBC reset reg. bit

dsprst :OUT STD_LOGIC; — Host DSP reset reg. hit
swsel_dip_| :OUT STD_LOGIC; — DIP or S/W switch selection

soft_switch : OUT STD_LOGIC_VECTOR(12 DOWNTO 1) ;
— Software switches

pt_addr : OUT STD_LOGIC_VECTOR(4 DOWNTO 0) ;
— registered pass—thru address

pt_be_| : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;

suonenb3 aidd WAFOW

ov-0

— registered pass—thru byte en.

xentl :OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;
— Daughterboard control signals
led : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;
— LED control signals
spOsel :OUT STD_LOGIC — DSP serial port select
)i
END COMPONENT ;
BEGIN

— Component instantiations

dec_if: decode

PORT MAP (
— INPUTS
brd_rst_| =>brd_rst_I,
pci_det | =>pci_det_|,
pciclk => bpclk ,
clk_a =>clk_a,
cel | =>cel |,
ce2_| =>ce2 |,
ce3 | =>ce3 |,
are_| =>are_|,
awe_| =>awe |,

ea_hi =>ea_hi,

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

-0

ao_bsy =>ao_bsy,

emif_ack =>emif_ack,
pb_ack =>pb_ack,
xrdy => xrdy ,
ce2sden => ce2sden,
ce3sden => ce3sden,
— OUTPUTS
dsp2aod_| =>aod |,
dsp2gd_| =>gd_I,
dsp2xd_| =>xbd_|I,
are_pci_| =>are_pci_l,
awe_pci_| =>awe_pci_|,
are_osca_| =>are_osca_l,
awe _osca | =>awe_osca |,
emif_req =>emif_req,
falc_req =>falc_req,
fmic_req => fmic_req ,
cpld_cs =>cpld_cs,
ardy => async_rdy
)i

pb_if:pb_ctrl

PORT MAP(

— active low signals are indicated with ’_I" appended to signal name.

suonenb3 aidd WAFOW

Zr-0

— INPUTS

brd_rst_| =>brd_rst_I,

clk_a =>clk_a,

fmic_req =>fmic_req,

fmic_rdy_in

=> fmic_rdy ,

falc_req =>falc_req,

lendian => switch(8) ,

be | =>be |,
are_osca_| =>are_osca_l,
awe_osca_| =>awe_osca_l,
— OUTPUTS

fmic_cs_| =>fmiccs_|,

falc_cs_| =>falccs |,

falc_bxe_|
falc_a0
pb_wr_|
pb_rd_|
pb_ack
)i

irg_if: irg_ctrl

PORT MAP (

=> falcbxe_ |,
=> falcaO ,
=>pbwr_|,
=>pbrd_1I,
=>pb_ack

— INPUTS

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

€V-0

brd_rst | =>brd_rst |,

dsp_hint_| =>dsp_hint_I,
tbc_int_| =>tbc_int_I,
pciclk => bpclk ,
pci_det | =>pci_det_|,
pci_irg_| =>pci_irq_|I,
rdempty =>rdempty ,
wrfull => wrfull ,

hinten => hinten ,
tbcinten => tbcinten ,
dspnmi =>dspnmi ,
nmisel => nmisel ,
nmien =>nmien ,
pcimren => pcimren ,
pcimwen => pcimwen ,
rdfifo_| =>read_fifo I,
wrfifo_| => write_fifo_1I,
clk_a =>clk_a,

clr_falcint => clr_falcint ,
clr_dbint =>clr_dbint,

falc_int => falc_int,
db_int =>db_int,
— OUTPUTS

db_falc_int =>dbfalc_int,
ltchd_falc_int => Itchd_falc_int,

suonenb3 aidd WAFOW

vv-0

ltchd_db_int =>Itchd_db_int ,

pc_int => pcint,
pci_int => pciint,
nmi =>nmint ,

pcimrd_int =>pci_mrd_int,

suonenb3 aidd WAFON

pcimwr_int =>pci_mwr_int
)i

misc_if: misc_glue

PORT MAP (

— INPUTS
clk_a =>clk_a,
brd_rst_| =>brd_rst_|I,
sw_rst | =>sw_rst |,
vce2bad_| =>vcc2bad_|,
pci_rst_| =>npci_rst_|,
pci_det | =>npci_det |,
xreset => xreset ,
falcrst =>falcrst_b,
fmicrst => fmicrst_b ,
dsprst => dsprst,
tberst => thcrst

swsel_dip_| =>swsel_dip_I,

suonenb3 @idd WAFIW XZ9D0ZESN.L

G¥-0

dip_switch ~ => dip_switch ,
soft_switch => soft_switch ,

mstr_sel =>mstr_sel,

fmic_2m_clk =>fmic_2m_clk,

— OUTPUTS

osc_a en_ | =>osca_en |,
osc_b en | =>o0sch_en_|I,
man_rst_| =>manrst_|,
dsp_rst_| =>dsprst_I,
tbc_rst_| =>therst_|,
ext_rst | =>xrst_|,

falc_rst =>falcrst,

fmic_rst_| => fmicrst_|,

— To FMIC/FALC timing
fmic_frm_en_|=> fmic_frmen_| ,
falc_sync => falcsync,
switch => switch
)i

—pci_if: pci_ctrl

pci_if: pci_control

PORT MAP (

suonenb3 aidd WAFOW

9v-O

— INPUTS

brd_rst_| =>brd_rst_|I,
pciclk => bpclk ,
clk_mode => switch(6) ,
pci_det | =>npci_det_|,
ptatn_| => ptatn_|,
ptburst_| => ptburst_|,
ptnum => ptnum,
ptwr => ptwr ,
pt_be_| =>pt_be_I,
pt_addr => pt_addr,
are_pci_| =>are_pci_l,
awe_pci_| =>awe_pci_|,
be_| =>be |,

eal6 =>ealb,
ea_lo =>ea_lo,
tbc_rdy_| =>tbc_rdy |,
dsp_hrdy | =>dsp_hrdy_I,
emif_req =>emif_req,
— OUTPUTS

pci_flt_I => pciflt_I,
pt_adr_| => ptadr_|,

pt_rdy_| => ptrdy_|,

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

Lv-D

ao_sel | =>aosel_I,

ao_wr_| =>aowr_|,
ao_rd_| =>aord_|,
ao_adr =>ao_adr,
ao_be | =>ao0 _be |,
rdfifo_| =>read_fifo_|I,
wrfifo_| => write_fifo_|,
pcireg_oe => pcireg_oe
pcireg_ce => pcireg_ce ,
tbc_wr_| => thcwr_|,
tbc_rd_| =>tberd_|,
hcs_| => hpics_|,
hds1_| => hpids_1,
hrw => hpirw ,

tbca_hpic =>thca_hpic,

ao_bsy =>ao_bsy,
emif_ack => emif_ack
)i

reg_if: registers

PORT MAP (

— INPUTS
dsp_pd =>dsp_pd,
vce2bad_| =>vcc2bad_|,
wrfull => wrfull ,

suonenb3 aidd WAFOW

8¥-0

rdempty => rdempty ,
pcimrd_int =>pci_mrd_int,

pcimwr_int =>pci_mwr_int,

tbc_rdy_| =>tbc_rdy |,
tbc_int_| =>thc_int I,
dsp_hint_| =>dsp_hint_I,
db_int =>db_int,
falc_int => falc_int,

ltchd_falc_int => Itchd_falc_int,
Itchd_db_int =>Itchd_db_int,

pci_irg_| =>pci_irq_|I,
pci_det_| => pci_det_|,
cpld_cs =>cpld_cs,
xstat => xstat ,

ea lo =>ea lo,

ed =>ed,
pcireg_ce => pcireg_ce,
brd_rst_| =>brd_rst_I,
pciclk => bpclk ,

dq =>dq,
pt_adr_| => ptadr_|,
ptbe_| => pthe_|,
are_| =>are_|,
awe_| =>awe_|,

dip_switch ~ => dip_switch ,
switch => switch ,

fmic_err =>fmic_err,

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

67-0

— OUTPUTS

mstr_sel =>mstr_sel,
Id31_swap =>Id31swap,
1d20_swap =>I1d20swap ,

fmic_rst => fmicrst_b,

falc_rst =>falcrst_b,
clr_dbint => clr_dbint,

clr_falcint =>clr_falcint
loop_led_| => |loopled_I,
sync_led_| =>syncled_1I,
ralm_led_| =>ralmled_I,
yalm_led_| =>yalmled_I,
a_law_en =>a_law_en,
u_law_en =>u_law_en,
ed_oe =>ed_oe,
ed_out =>ed out,
dg_out =>dg_out,
xreset => xreset ,
nmisel => nmisel ,
nmien => nmien ,
pcimwen => pcimwen ,
pcimren => pcimren ,
ce2_sden => ce2sden,
ce3_sden => ce3sden,
dspnmi => dspnmi ,
tbcinten => thcinten ,
hinten => hinten ,

suonenb3 aidd WAFOW

0S-0

tberst =>therst ,
dsprst => dsprst,
swsel_dip_| =>swsel_dip_I,

soft_switch => soft_switch ,

pt_addr =>pt_addr,
pt_be_| =>pt_be |,
xentl =>xcntl ,

led =>led,
spOsel =>sp0_sel
)i

— Concurrent statements
— combine individual signals into vectors
ea_hi(5 DOWNTO 0) <= ea2l & ea20 & eal9 & eal8 & eal7 & eal6 ;
ea_lo(4 DOWNTO 0) <=eab & eab & ead & ea3 & ea?2 ;
dip_switch(12) <= s_user0 ;
dip_switch(11) <=s_userl ;
dip_switch(10) <= s_user2 ;
dip_switch(9) <= s_jtagsel ;
dip_switch(8) <= s_endian ;
dip_switch(7) <= s_clksel ;
dip_switch(6) <=s_clkmode ;
dip_switch(5) <= s_bootmode0 ;
dip_switch(4) <= s_bootmodel ;
dip_switch(3) <= s_bootmode2 ;
dip_switch(2) <= 's_bootmode3 ;
dip_switch(1) <= s_bootmode4 ;
pthum(1 DOWNTO 0) <= ptnum1 & ptnumoO ;
ptbe_|I(3 DOWNTO 0) <= pthe3_| & pthe2_| & ptbel | & ptbeO_I;
be_I(3 DOWNTO 0) <=be3 | &be2 | &bel |&bel |;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

16D

xstat(1 DOWNTO 0) <= xstatl & xstat0 ;

ed(7 DOWNTO 0) <= ed7 & ed6 & ed5 & ed4 & ed3 & ed2 & ed1 & edO ;

dq(7 DOWNTO 0) <=dq7 & dg6 & dg5 & dg4 & dg3 & dg2 & dgl & dqO ;

— tri—state outputs when float_| is low

— invert led signals to drive proper levels

ledl | <='Z" WHEN (float_| = true_l) ELSE NOT led(1) ;

led0_| <='Z" WHEN (float_| = true_l) ELSE NOT led(0) ;

— control bi—directional signals

ed7 <="Z"WHEN ((ed_oe = false_h) OR (float_| = true_l)) ELSE ed_out(7) ;
ed6 <='Z"WHEN ((ed_oe = false_h) OR (float_| = true_l)) ELSE ed_out(6) ;
ed5 <="Z"WHEN ((ed_oe = false_h) OR (float_| = true_l)) ELSE ed_out(5) ;
ed4 <='Z"WHEN ((ed_oe = false_h) OR (float_| = true_l)) ELSE ed_out(4) ;
ed3 <='Z"WHEN ((ed_oe = false_h) OR (float_| = true_l)) ELSE ed_out(3) ;
ed2 <='Z"WHEN ((ed_oe = false_h) OR (float_| = true_l)) ELSE ed_out(2) ;
edl <="Z"WHEN ((ed_oe = false_h) OR (float_| = true_l)) ELSE ed_out(1) ;
ed0 <='"Z" WHEN ((ed_oe = false_h) OR (float_| = true_I)) ELSE ed_out(0) ;
dq7 <="Z' WHEN ((pcireg_oe = false_h) OR (float_| = true_I)) ELSE dq_out(7) ;
dg6 <="Z"' WHEN ((pcireg_oe = false_h) OR (float_| = true_I)) ELSE dqg_out(6) ;
dg5 <='Z" WHEN ((pcireg_oe = false_h) OR (float_| = true_l)) ELSE dq_out(5) ;
dg4 <="Z" WHEN ((pcireg_oe = false_h) OR (float_| = true_I)) ELSE dqg_out(4) ;
dg3 <="Z" WHEN ((pcireg_oe = false_h) OR (float_| = true_I)) ELSE dq_out(3) ;
dg2 <="Z" WHEN ((pcireg_oe = false_h) OR (float_| = true_I)) ELSE dqg_out(2) ;
dgl <="Z' WHEN ((pcireg_oe = false_h) OR (float_| = true_I)) ELSE dq_out(1) ;
dqo <="Z" WHEN ((pcireg_oe = false_h) OR (float_| = true_I)) ELSE dqg_out(0) ;
pt_adr | <='Z"WHEN (float_| = true_I|) ELSE ptadr_| ;

ce2_sden <='Z'WHEN (float_| =true_l) ELSE ce2sden ;

ce3_sden <='Z'WHEN (float_| = true_l) ELSE ce3sden ;

rdfifo_| <="Z" WHEN (float_I| = true_I) ELSE read_fifo_| ;

wrfifo_| <='Z"WHEN (float_| = true_I) ELSE write_fifo_I ;

suonenb3 aidd WAFOW

¢S50

pcimrd_int <='Z" WHEN (float_| = true_I) ELSE pci_mrd_int ;
pcimwr_int <='Z" WHEN (float_| = true_l) ELSE pci_mwr_int ;
jtagsel <="Z" WHEN (float_| = true_I) ELSE switch(9) ;
lendian <='"Z"' WHEN (float_I = true_I) ELSE switch(8) ;
clkmode <="Z' WHEN (float_| = true_I) ELSE switch(6) ;
bootmode0 <='Z" WHEN (float_| = true_l) ELSE switch(5) ;
bootmodel <='Z'WHEN (float_| = true_l) ELSE switch(4) ;
bootmode2 <='Z' WHEN (float_| = true_l) ELSE switch(3) ;
bootmode3 <='Z" WHEN (float_| = true_l) ELSE switch(2) ;
bootmode4 <='Z" WHEN (float_| = true_I) ELSE switch(1) ;
ao_be3 | <='Z"WHEN (float_| = true_l) ELSE ao_be_I(3) ;
ao_be2 | <='Z"WHEN (float_| = true_I|) ELSE ao_be_I(2) ;
ao_bel | <='Z"WHEN (float_| = true_I|) ELSE ao_be_I(1) ;
ao_be0 | <='Z"WHEN (float_| = true_l) ELSE ao_be_I(0) ;
ao_adr6 <="Z" WHEN (float_| = true_I|) ELSE ao_adr(4) ;
ao_adrb <="Z" WHEN (float_| = true_I|) ELSE ao_adr(3) ;
ao_adr4 <="Z' WHEN (float_| = true_I|) ELSE ao_adr(2) ;
ao_adr3 <='Z" WHEN (float_| = true_I|) ELSE ao_adr(1) ;
ao_adr2 <="Z' WHEN (float_| = true_I|) ELSE ao_adr(0) ;
tbcad_hcentll <='Z' WHEN (float_| = true_l) ELSE tbca_hpic(4) ;
tbca3_hentl0 <='Z" WHEN (float_| = true_I) ELSE tbca_hpic(3) ;
tbca2_hhwil <="Z' WHEN (float_I = true_I) ELSE thca_hpic(2) ;
tbcal _hbel | <='Z"WHEN (float_| = true_l) ELSE tbca_hpic(1) ;
tbca0_hbeO_| <='Z" WHEN (float_| = true_l) ELSE tbca_hpic(0) ;
xcntll <='Z" WHEN (float_| = true_l) ELSE xcntl(1) ;

xcntl0 <='Z" WHEN (float_| = true_l) ELSE xcntl(0) ;

dsp2aod_| <='Z"WHEN (float_| = true_l) ELSE aod_I;

dsp2gd_| <='Z" WHEN (float_| = true_I|) ELSE gd_I ;

dsp2xd_| <='Z"WHEN (float_| = true_I) ELSE xbd_l;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

€9-0

tbc_wr_| <='Z"WHEN (float_| = true_l) ELSE tbcwr_| ;
tbc_rd | <="Z"WHEN (float_I = true_I) ELSE thcrd_| ;
tbc_rst | <='Z" WHEN (float_I = true_I) ELSE thcrst_I ;
hcs | <='Z"WHEN (float_| = true_l) ELSE hpics_|I;
hdsl | <='Z" WHEN (float_| = true_l) ELSE hpids_I ;
hrw <="Z" WHEN (float_I| = true_I) ELSE hpirw ;
pci_flt | <='Z" WHEN (float_| = true_l) ELSE pciflt_|I ;
pt_rdy | <='Z"WHEN (float_| = true_l) ELSE ptrdy_| ;
ao_sel_| <='Z"WHEN (float_| = true_I) ELSE aosel_l ;
ao_wr_| <='Z" WHEN (float_| = true_I|) ELSE aowr_|I;
ao_rd_| <="Z' WHEN (float_I = true_I) ELSE aord_];
pc_int <='Z"WHEN (float_| = true_l) ELSE pcint ;
pci_int <='Z" WHEN (float_| = true_I) ELSE pciint ;

nmi <='"Z" WHEN (float_| = true_I|) ELSE nmint ;
dsp_rst_| <='Z"WHEN (float_| = true_l) ELSE dsprst_| ;
ardy <="Z" WHEN (float_| = true_I) ELSE async_rdy ;

osc_a_en_| <="Z" WHEN (float_| = true_I|) ELSE osca_en_I;
osc_b_en_| <="Z" WHEN (float_| = true_l) ELSE oscb_en_I;
spOsel <='Z' WHEN (float_| = true_l) ELSE sp0_sel ;
ext_rst_ | <='Z"WHEN (float_| = true_l) ELSE xrst_I ;
man_rst_| <='Z" WHEN (float_| = true_l) ELSE manrst_I ;
falc_cs | <='Z"WHEN (float_| = true_I) ELSE falccs_|;
fmic_cs_| <='Z" WHEN (float_| = true_I) ELSE fmiccs_I;
falc_moto <='2Z" WHEN (float_| = true_l) ELSE NOT switch(8) ;
falc_bxe_| <='Z" WHEN (float_| = true_l) ELSE falcbxe_I ;
falc_a0 <="Z' WHEN (float_I = true_I) ELSE falcaO ;
pb_wr_| <='Z' WHEN (float_| = true_I) ELSE pbwr_I;
pb_rd_| <='Z"WHEN (float_| = true_I) ELSE pbrd_I ;
Id31_swap <='Z' WHEN (float_| = true_l) ELSE Id31swap ;

suonenb3 aidd WAFOW

¥S9-0

I[d20_swap <='Z' WHEN (float_| = true_l) ELSE Id20swap ;
fmic_rst_| <="2" WHEN (float_| = true_I) ELSE fmicrst_| ;
falc_rst <='Z" WHEN (float_I| = true_l) ELSE falcrst ;
loop_led_| <='Z" WHEN (float_| = true_l) ELSE loopled_1 ;
sync_led_| <="Z" WHEN (float_| = true_l) ELSE syncled_] ;
ralm_led_| <="Z2" WHEN (float_I| = true_I) ELSE ralmled_I ;
yalm_led_| <="Z" WHEN (float_| = true_I|) ELSE yalmled_I ;
alaw_en <="Z" WHEN (float_| = true_I|) ELSE a_law_en ;
ulaw_en <='Z" WHEN (float_| = true_I|) ELSE u_law_en ;
fmic_frm_en_| <="Z' WHEN (float_| = true_I) ELSE fmic_frmen_I;
falc_sync <='Z"WHEN (float_| = true_l) ELSE falcsync ;
db_falc_int <='Z' WHEN (float_| = true_I) ELSE dbfalc_int ;
END struct ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

GS-O

Design For:

Texas Instruments Incorporated

Design By:
DNA Enterprises Inc
269 West Renner Parkway
Richardson, TX 75080

File name : registers.vhd

Title . Registers
Module : Top-Level McEVM Control
Description

This module contains all CPLD registers that are written from the
DSP or the PCI controller. These registers were located at the
top level of the EVM CPLD Abel source code.

DSP mapped registers are at base address CE1:0x0138xxxx/0x0178xxxx
(MAPO/MAP1).

DSP Control Register
(Address Offset = 0x0, DSP Offset = 0x00)
bit 7. RW:xcntll
bit 6: RW: xcntlO
bit5: RW: xreset
bit 4: RW:nmien
bit3: R:0
bit2: RW: spOsel
bit1: RW:ledl

suonenb3 aidd WAFOW

99-0

bit O:

bit 7:
bit 6:
bit 5:
bit 4:
bit 3:
bit 2:
bit 1:
bit O:

RW: led0
DSP Status Register
(Address Offset = 0x1, DSP Offset = 0x04)

A X0 0V UV XUV XV X

R:

: xstatl

: xstatO
:db_int
:dspnmi
:0

:0
pcei_irg_|
pci_det

DSP DIP Switch Options Register
(Address Offset = 0x2, DSP Offset = 0x08)

bit 7:
bit 6:
bit 5:
bit 4:
bit 3:
bit 2:
bit 1:
bit O:

A 0 UV XUV OV XV XD

R

:0
:s_clkmode
:s_clksel
:s_endian
:s_jtagsel

1S _user2
:s_userl

:s_user0

— DSP DIP Switch Boot Option Register
— (Address Offset = 0x3, DSP Offset = 0x0C)

bit 7:
bit 6:
bit 5:
bit 4:
bit 3:
bit 2:

R
R
R
R
R
R

10
:0
10
:s_bootmode4
:s_bootmode3

:s_bootmode2

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

JASRO)

— bitl: R:s_bootmodel

— bit0: R :s_bootmode0

— DSP Options Register

— (Address Offset = 0x4, DSP Offset = 0x10)

— bit7: R:0

— bit6: R:clkmode
— bit5: R :clksel
— bit4: R:endian
— bit3: R:jtagsel
— bit2: R:user2
— bitl: R:userl

— bit0: R :user0
— DSP Boot Option Register
— (Address Offset = 0x5, DSP Offset = 0x14)

— bit7: R :swsel_dip_|
— bité: R:0

— bits: R:0

— bit4: R :bootmode4
— bit3: R :bootmode3
— bit2: R :bootmode2
— bitl: R:bootmodel

— bit0: R :bootmode0
— DSP FIFO Status Register
— (Address Offset = 0x6, DSP Offset = 0x18)

— bit7: R:O

— bité: R:0

— bit5: R :pcimrd_int
— bit4: R :pcimwr_int
— bit3: R:rdempty

suonenb3 aidd WAFOW

89-0

bit 2:
bit 1:
bit O:

bit 7:
bit 6:
bit 5:
bit 4:
bit 3:
bit 2:
bit 1:
bit 0:

R :wrfull

RW: pcimren

RW: pcimwen
DSP SDRAM Control Register
(Address Offset = 0x7, DSP Offset = 0x1C)

O X0V XUV OV O
O O O o o

10

RW: ce3sden
RW: ce2sden

DSP Oscillator B Frequency
(Address Offset = 0x8, DSP Offset = 0x20)

bit 7:
bit 6:
bit 5:

bit 4:
bit 3:
bit 2:
bit 1:
bit O:

R

o 0 XV UV UV UV X
o O O o o o

:0

10

(all zeroes indicates Osc B = 50 MHz)

— DSP Semaphore 0
— (Address Offset = 0x9, DSP Offset = 0x24)

bit 7:
bit 6:
bit 5:
bit 4:

R
R
R
R

10
:0
:0
:0

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

65-0

— bit3: R:0

— bit2: R:O

— bitl: R:0

— bit0: RW:dsp_semO

— DSP Semaphore 1

— (Address Offset = OxA, DSP Offset = 0x28)
— bit7: 10

— bit6:
— bit5:
— bit4:
— bit3:
— hit2:
— bit1:
— bit0: RW:dsp_seml

A XU UV U XUV XV X
o O O o o o

— DSP falc Control

— (Address Offset = 0xB, DSP Offset = 0x2C)
— bit7: RW:mstr_sel3

— bit6: RW:mstr_sel2

— bit5: RW:mstr_sell

— bit4: RW:mstr_sel0

— bit3: RW:Id31_swap

— bit2: RW:Id20_swap

— bitl: RW:fmic_rst

— bit0: RW:falc_rst

— DSP Interrupt Control

— (Address Offset = 0xC, DSP Offset = 0x30)
— bhit7: R:ltchd_db_int

suonenb3 aidd WAFOW

09-0

— bit6: R :ltchd_falc_int
— bit5: R:db_int

— bit4: R :falc_int

— bit3: R:0

— bit2: R:O

— bitl: RW:clr_dbint
— bit0: RW:clr_falcint

— DSP Miscellaneous Status

— (Address Offset = 0xD, DSP Offset = 0x34)
— bit7: RW:loop_led

— bit6: RW:sync_led

— bit5: RW:red_alm_led

— bit4: RW:yel_alm_led

— bit3: RW:u_a law

— bit2: RW:vbap_en

— bitl: R:fmic_err

— bit0: R:O

— PCIl mapped registers are at base address BAR2. Actual address is
— base + (offset * 4)

— PCI Control Register

— (Offset = 0x0, PCI Offset = 0x00)

— bit7: RW:dspnmi

— bit6: RW:tbcinten

— bit5: RW: hinten

— bit4: R :tbc_rdy

— bit3: R:tbc_int

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

T9-D

— bit2: R :dsp_hint

— bitl: RW:tbcrst

— bit0: RW:dsprst

— PCI Status Register

— (Offset = 0x1, PCI Offset = 0x04)

— bit7: R:O

— bit6: R:vcc2bad
— bits: R:0

— bit4: R :dsp_pd
— hit3: R:xentll
— bit2: R :xcntl0
— bitl: R:ledl

— bit0: R:ledO

— PCI Software Switch Option Register
— (Offset = 0x2, PCI Offset = 0x08)

— bit7: R:0

— bit6: RW:h_clkmode

— bit5: RW:h_clksel

— bit4: RW:h_endian

— bit3: RW:h_jtagsel

— bit2: RW:h_user2

— bitl: RW:h_userl

— bit0: RW:h_user0

— PCI Software Switch Boot Option Register
— (Offset = 0x3, PCI Offset = 0x0C)

— bit7: RW:swsel_dip_|

— bité: R:O0

— bit5: R:0

— bit4: RW:h_bootmode4

suonenb3 aidd WAFOW

29-0

— bit3: RW:h_bootmode3

— bit2: RW: h_bootmode2

— bitl: RW:h_bootmodel

— bit0: RW: h_bootmode0

— PCI DIP Switch Option Register
— (Offset = 0x4, PCI Offset = 0x10)

— bit7: R:O

— bit6: R:s_clkmode
— bit5: R:s clksel
— bit4: R:s_endian
— bit3: R :s_jtagsel
— bit2: R:s_user2
— bitl: R:s_userl

— bit0: R :s_user0
— PCI DIP Switch Boot Option Register
— (Offset = 0x5, PCI Offset = 0x14)

— bit7: R:0
— bité: R:O0
— bits: R:0
— bit4: R :s_bootmode4
— bit3: R:s_bootmode3
— bit2: R :s_bootmode2
— bitl: R:s_bootmodel

— bit0: R :s_bootmode0

— PCI Option Register

— (Offset = 0x6, PCI Offset = 0x18)
— bit7: R:0

— bit6: R :clkmode

— bit5: R:clksel

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

€9-0

bit 4:
bit 3:
bit 2:
bit 1:
bit O:

A XUV UV XUV D

rendian
: jtagsel
1user2
ruserl

s user0

PCI Boot Option Register
(Offset = 0x7, PCI Offset = 0x1C)

bit 7:
bit 6:
bit 5:
bit 4:
bit 3:
bit 2:
bit 1:
bit O:

R:
:0
R:
: bootmode4

R

O X0 03X

R

0

0

: bootmode3
: bootmode2
: bootmodel
: bootmode0

— PCI CPLD Revision Register
— (Offset = 0x8, PCI Offset = 0x20)

bit 7:
bit 6:
bit 5:
bit 4:
bit 3:
bit 2:
bit 1:
bit 0:

R:
: CPLD revision bit 6
: CPLD revision bit 5
: CPLD revision bit 4
: CPLD revision bit 3
: CPLD revision bit 2
: CPLD revision bit 1
: CPLD revision bit 0

A XU 0V XUV XUV X

R

CPLD revision bit 7

— PCI Semaphore 0
— (Address Offset = 0x9, PCI Offset = 0x24)

bit 7:
bit 6:

R
R

:0
:0

suonenb3 aidd WAFOW

¥9-0

bit5: R:0
bit4: R:0
bit3: R:0
bit2: R:0
bitl: R:0

bit 0: RW: pci_sem0

PCI Semaphore 1

(Address Offset = OxA, PCI Offset = 0x25)
bit 7: 10
bit 6:
bit 5:
bit 4:
bit 3:
bit 2:
bit 1:
bit 0: RW: pci_seml

O XU UV XUV DV UV X
o O O O o o

Modification History :

Revision: 0
Date: 03/31/98
Author: Don Curry (DNA)

Description: Initial conversion from ABEL version of EVM CPLD.

Revision: 1
Date: 05/01/98
Author: Don Curry (DNA)

Description: Added PCl and DSP semaphore register bits as well
as the OSC_B_FREQ register.

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

G9-O0

— Revision: 2

— Date: 05/03/98

— Author: Don Curry (DNA)

— Description: Changed NMISEL to always select host (0) since
— codec is no longer valid. Added McEVM specific

— registers.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL,
ENTITY registers IS

PORT(

— active low signals are indicated with '_I" appended to signal name.

— INPUTS

dsp_pd 1IN STD_LOGIC ; — DSP power down
vcezbad_| : IN STD_LOGIC ; — Volt. super. status

wrfull :IN STD_LOGIC ; — PCI FIFO flag

rdempty :IN STD_LOGIC ; — PCI FIFO flag
pcimrd_int 1IN STD_LOGIC ; — PCI master read interrupt
pcimwr_int 1IN STD_LOGIC ; — PCI master write interrupt

tbc_rdy | : IN STD_LOGIC ; — TBC ready indicator
tbc_int_| : IN STD_LOGIC ; — TBC interrupt

dsp_hint_| :IN STD_LOGIC ; — DSP host interrupt
db_int :IN STD_LOGIC ; — Daughterboard interrupt

suonenb3 aidd WAFOW

99-0

falc_int :IN STD_LOGIC ; — FALC interrupt

Itchd_falc_int :IN STD_LOGIC ; — Latched FALC interrupt
ltchd_db_int :IN STD_LOGIC ; — Latched DB interrupt
pci_irg_| : IN STD_LOGIC ; — PCl interrupt

pci_det | : IN STD_LOGIC ; — PCI detection flag

cpld_cs :IN STD_LOGIC ; — EMIF acc. 0x0138/0x0178xxxx
xstat :IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
— Daughterboard status signals
ea_lo :IN STD_LOGIC_VECTOR(6 DOWNTO 2) ;
— lower EMIF adr
ed :IN STD_LOGIC_VECTOR(7 DOWNTO 0) ;
— EMIF data

pcireg_ce :IN STD_LOGIC ; — PCl register clk enable
brd_rst_| : IN STD_LOGIC ; — reset from volt. super.

pciclk 1IN STD_LOGIC ; — buffered PCI clockl
dq :IN STD_LOGIC_VECTOR(7 DOWNTO 0) ;
— PCI cntlr data
pt_adr_| :INSTD_LOGIC ; — pass thru adr clk enable
ptbe_| 1IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
— latched byte enables
are_| 1IN STD_LOGIC ; — async read enable
awe_| :IN STD_LOGIC ; — async write enable
dip_switch :IN STD_LOGIC_VECTOR(12 DOWNTO 1) ;
— DIP switch settings
switch :IN STD_LOGIC_VECTOR(12 DOWNTO 1) ;

— selected switch settings
fmic_err :IN STD_LOGIC ; — FMIC error signal

— OUTPUTS

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

19-D

ed_oe :OUT STD_LOGIC;

ed_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) ;

— EMIF data out
dg_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) ;

— PCl data out
— DSP mapped register bits
xreset :OUT STD_LOGIC; — Daughterboard reset reg. bit
nmisel :OUT STD_LOGIC; — NMI selection (host)
nmien :OUT STD_LOGIC; — NMI enable (maskable NMI?)
pcimwen :OUT STD_LOGIC; — PCI master write enable
pcimren :OUT STD_LOGIC; — PCI master read enable
ce2_sden :OUT STD_LOGIC; — CE2 SDRAM enable
ce3 sden :OUT STD_LOGIC; — CE3 SDRAM enable

— MCcEVM specific control bits
mstr_sel :OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
— timing mode selection

Id31_swap : OUT STD_LOGIC; — FMIC stream 3/1 mux ctrl
Id20_swap : OUT STD_LOGIC;; — FMIC stream 2/0 mux ctrl
fmic_rst : OUT STD_LOGIC ; — FMIC reset register bit
falc_rst :OUT STD_LOGIC; — FALC reset register bit
clr_dbint : OUT STD_LOGIC ; — clear daughterboard irq
clr_falcint : OUT STD_LOGIC ; — clear FALC irq
loop_led_| :OUT STD_LOGIC ; — drive loop led
sync_led_| :OUT STD_LOGIC; — drive sync led
ralm_led_| :OUT STD_LOGIC ; — drive red alarm led
yalm_led_| :OUT STD_LOGIC; — drive yellow alarm led
a law_en :OUT STD_LOGIC; — A-law select

u_law_en :OUTSTD_LOGIC; — u-law select

suonenb3 aidd WAFOW

89-0

— PCI mapped register bits

dspnmi :OUT STD_LOGIC ; — Host NMI to DSP

tbcinten :OUT STD_LOGIC; — Host TBC interrupt enable
hinten :OUT STD_LOGIC; — Host DP host interrupt en.
tberst :OUT STD_LOGIC; — Host TBC reset reg. bit

dsprst :OUT STD_LOGIC; — Host DSP reset reg. bit
swsel_dip_ | :OUTSTD_LOGIC; — DIP or S/W switch selection

soft_switch : OUT STD_LOGIC_VECTOR(12 DOWNTO 1) ;

— Software switches

pt_addr : OUT STD_LOGIC_VECTOR(4 DOWNTO 0) ;
— registered pass—thru address

pt_be | : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
— registered pass—thru byte en.

xentl : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;

— Daughterboard control signals
led :OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;
— LED control signals
spOsel :OUT STD_LOGIC — DSP serial port select
)i
END registers ;
ARCHITECTURE rtl OF registers IS
— Define types used
— Define constants for readability
CONSTANT true_h :STD_LOGIC :='1";
CONSTANT false_h :STD_LOGIC:="0;
CONSTANT true | :STD_LOGIC :='0";
CONSTANT false_| :STD_LOGIC :="1";

— Revision control

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

69-0

CONSTANT cpld_rev : STD_LOGIC_VECTOR(7 DOWNTO 0) := "00000000" ;
CONSTANT osc_b_freq :STD_LOGIC_VECTOR(7 DOWNTO 0) := "00101000" ;

— reserved register values

CONSTANT pci_rsvd : STD_LOGIC_VECTOR(7 DOWNTO 0) := 10111100 ;
CONSTANT dsp_rsvd : STD_LOGIC_VECTOR(7 DOWNTO 0) :="00000000" ;

— DSP Address definitions

CONSTANT dsp_cntl_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) := "00000” ; — 0x0
CONSTANT dsp_stat_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) :="00001" ; — Ox1
CONSTANT dsp_dipopt_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) := "00010" ; — 0x2
CONSTANT dsp_dipboot_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) :="00011" ; — 0x3
CONSTANT dsp_dspopt_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) :="00100" ; — 0x4
CONSTANT dsp_dspboot_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) := "00101" ; — Ox5
CONSTANT dsp_fifostat_adr: STD_LOGIC_VECTOR(4 DOWNTO 0) := "00110” ; — Ox6
CONSTANT dsp_sdcntl_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) :="00111" ; — 0x7
CONSTANT dsp_oscb_fq_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) := "01000” ; — 0x8
CONSTANT dsp_semO_adr :STD_LOGIC_VECTOR(4 DOWNTO 0) :="01001" ; — 0x9
CONSTANT dsp_sem1_adr :STD_LOGIC_VECTOR(4 DOWNTO 0) := "01010" ; — OxA
CONSTANT dsp_falcctrl_adr: STD_LOGIC_VECTOR(4 DOWNTO 0) :="01011" ; — 0xB
CONSTANT dsp_intctrl_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) := "01100" ; — 0XC
CONSTANT dsp_miscctrl_adr: STD_LOGIC_VECTOR(4 DOWNTO 0) :="01101" ; — 0xD
— PCI Address definitions

CONSTANT pci_cntl_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) := "00000” ; — 0x0
CONSTANT pci_stat_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) := "00001” ; — Ox1
CONSTANT pci_swopt_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) := "00010" ; — 0x2
CONSTANT pci_swboot_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) := "00011” ; — 0x3
CONSTANT pci_dipopt_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) := "00100” ; — 0x4
CONSTANT pci_dipboot_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) := "00101" ; — 0x5
CONSTANT pci_dspopt_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) := "00110" ; — 0x6
CONSTANT pci_dspboot_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) :="00111" ; — 0x7

suonenb3 aidd WAFOW

0.-0

CONSTANT pci_cpldrev_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) :="01000" ; — 0x8

CONSTANT pci_sem0_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) := "01001" ; — 0x9

CONSTANT pci_seml_adr :STD_LOGIC_VECTOR(4 DOWNTO 0) := "01010" ; — OXA
— Internal signal declarations

— software switches

SIGNAL h_clkmode :STD_LOGIC ; — Clock mode S/W switch

SIGNAL h_clksel : STD_LOGIC ; — Clock selection S/W switch

SIGNAL h_endian : STD_LOGIC ; — Endiam mode S/W switch

SIGNAL h_jtagsel :STD_LOGIC ;— JTAG selection S/W switch

SIGNAL h_user2 : STD_LOGIC ; — User defined S/W switch

SIGNAL h_userl : STD_LOGIC ; — User defined S/W switch

SIGNAL h_user0 : STD_LOGIC ; — User defined S/W switch

SIGNAL h_bootmode4 : STD_LOGIC ; — Bootmode bit S/W switch

SIGNAL h_bootmode3 : STD_LOGIC ; — Bootmode bit S/W switch

SIGNAL h_bootmode2 : STD_LOGIC ; — Bootmode bit S/W switch

SIGNAL h_bootmodel : STD_LOGIC ; — Bootmode bit S/W switch

SIGNAL h_bootmode0 : STD_LOGIC ; — Bootmode bit S/W switch

— DSP register vectors

SIGNAL dsp_cntl : STD_LOGIC_VECTOR(7 DOWNTO 0) ;

SIGNAL dsp_stat : STD_LOGIC_VECTOR(7 DOWNTO 0) ;

SIGNAL dsp_dipopt ~ : STD_LOGIC_VECTOR(7 DOWNTO 0) ;

SIGNAL dsp_dipboot : STD_LOGIC_VECTOR(7 DOWNTO 0) ;

SIGNAL dsp_dspopt : STD_LOGIC_VECTOR(7 DOWNTO 0) ;

SIGNAL dsp_dspboot : STD_LOGIC_VECTOR(7 DOWNTO 0) ;

SIGNAL dsp_fifostat : STD_LOGIC_VECTOR(7 DOWNTO 0) ;

SIGNAL dsp_sdcntl : STD_LOGIC_VECTOR(7 DOWNTO 0) ;

SIGNAL dsp_osch_fq : STD_LOGIC_VECTOR(7 DOWNTO 0) ;

SIGNAL dsp_sem_0 :STD_LOGIC_VECTOR(7 DOWNTO 0) ;

SIGNAL dsp_sem_1 :STD_LOGIC_VECTOR(7 DOWNTO 0) ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

T.-D

SIGNAL dsp_falcctrl : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL dsp_intctrl : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL dsp_miscctrl : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL mstr_sel3 :STD_LOGIC;

SIGNAL mstr_sel2 :STD_LOGIC;

SIGNAL mstr_sell :STD_LOGIC;

SIGNAL mstr_sel0 :STD_LOGIC;

SIGNAL st31_swap :STD_LOGIC;

SIGNAL st20_swap :STD_LOGIC;

SIGNAL fmicrst : STD_LOGIC ;

SIGNAL falcrst : STD_LOGIC ;

SIGNAL clrdbint :STD_LOGIC;

SIGNAL clrfalcint : STD_LOGIC ;

SIGNAL loop_led :STD_LOGIC;

SIGNAL sync_led :STD_LOGIC;

SIGNAL ralm_led :STD_LOGIC;

SIGNAL yalm_led :STD_LOGIC ;

SIGNAL alaw_sel :STD_LOGIC;

SIGNAL vbap_en : STD_LOGIC;

— PCl register vectors

SIGNAL pci_cntl : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL pci_stat : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL pci_swopt : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL pci_swboot : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL pci_dipopt : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL pci_dipboot : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL pci_dspopt : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL pci_dspboot : STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL pci_sem_0 :STD_LOGIC_VECTOR(7 DOWNTO 0) ;

suonenb3 aidd WAFOW

¢L-0

SIGNAL pci_sem_1 :STD_LOGIC_VECTOR(7 DOWNTO 0) ;
— SDRAM enables
SIGNAL ce2sden : STD_LOGIC ;
SIGNAL ce3sden : STD_LOGIC ;
— internal signals for passing to ports
SIGNAL xrst :STD_LOGIC;
— SIGNAL nmi_sel :STD_LOGIC; —R2
SIGNAL nmi_en :STD_LOGIC ;
SIGNAL pci_mwen :STD_LOGIC;
SIGNAL pci_mren :STD_LOGIC ;
SIGNAL dsp_nmi : STD_LOGIC ;
SIGNAL thc_inten : STD_LOGIC ;
SIGNAL hpi_inten :STD_LOGIC;
SIGNAL thc_rst : STD_LOGIC ;
SIGNAL dsp_rst : STD_LOGIC ;
SIGNAL sw_sel_dip_| :STD_LOGIC;
SIGNAL sw_switch : STD_LOGIC_VECTOR(12 DOWNTO 1) ;
SIGNAL pt_adr : STD_LOGIC_VECTOR(4 DOWNTO 0) ;
SIGNAL xctrl :STD_LOGIC_VECTOR(1 DOWNTO 0) ;
SIGNAL led_ctrl : STD_LOGIC_VECTOR(1 DOWNTO 0) ;
SIGNAL sp0O_sel : STD_LOGIC;
SIGNAL dsp_semOQ_ar_| : STD_LOGIC;
SIGNAL pci_semO_ar | : STD_LOGIC;
SIGNAL dsp_semaphore0: STD_LOGIC ;
SIGNAL pci_semaphore0: STD_LOGIC ;
SIGNAL dsp_seml1_ar_| : STD_LOGIC;
SIGNAL pci_seml_ar | : STD_LOGIC;
SIGNAL dsp_semaphorel: STD_LOGIC ;
SIGNAL pci_semaphorel: STD_LOGIC;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

€.-0

BEGIN

— Pass internal siganls to port outputs
Xreset <= xrst ;
nmisel <=false_h ; —R2
nmien <= nmi_en ;
pcimwen <= pci_mwen ;
pcimren <= pci_mren ;
dspnmi <= dsp_nmi ;
tbcinten <=tbc_inten ;
hinten <= hpi_inten ;
tberst <=thc_rst ;
dsprst <= dsp_rst ;
swsel_dip_| <= sw_sel_dip_I;
soft_switch <= sw_switch ;
pt_addr <= pt_adr;
xcntl <= xctrl ;
led <= led_ctrl ;
spOsel <= sp0_sel ;
mstr_sel(3) <= mstr_sel3 ;
mstr_sel(2) <= mstr_sel2 ;
mstr_sel(1) <= mstr_sell ;
mstr_sel(0) <= mstr_sel0 ;
Id31_swap <=st31_swap ;
Id20_swap <= st20_swap ;
fmic_rst <= fmicrst ;
falc_rst <= falcrst ;
clr_dbint <= clrdbint ;
clr_falcint <= clrfalcint ;
loop_led_| <= NOT loop_led ;

suonenb3 aidd WAFOW

v.-O

sync_led_| <= NOT sync_led ;
ralm_led_| <= NOT ralm_led ;
yalm_led_| <= NOT yalm_led ;
— map S/W switches to vector in same order as DIP switch bits
sw_switch(12) <= h_user0 ;
sw_switch(11) <= h_userl;
sw_switch(10) <= h_user2 ;
sw_switch(9) <= h_jtagsel ;
sw_switch(8) <= h_endian ;
sw_switch(7) <= h_clksel ;
sw_switch(6) <= h_clkmode ;
sw_switch(5) <= h_bootmodeO ;
sw_switch(4) <= h_bootmodel ;
sw_switch(3) <= h_bootmode2 ;
sw_switch(2) <= h_bootmode3 ;
sw_switch(1) <= h_bootmode4 ;
— Concurrent statements
— map VBAP en/a—law to external signals
a_law_en <=true_h WHEN ((vbap_en = true_h) AND
(alaw_sel = true_h)) ELSE

false_h;

u_law_en <=true_h WHEN ((vbap_en = true_h) AND
(alaw_sel = false_h)) ELSE

false_h;

— qualify ce2_sden with reset
ce2_sden <= true_h WHEN ((ce2sden = true_h) AND
(brd_rst_| = false_l)) ELSE

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

G/.-0

false_h;

— qualify ce3_sden with reset
ce3_sden <= true_h WHEN ((ce3sden = true_h) AND

(brd_rst_| = false_I)) ELSE

false_h;

— DSP reads
ed_oe <=true_h WHEN ((cpld_cs = true_h) AND

(are_l =true_l)) ELSE
false_h ;

—ed_out <= dsp_cntl AND (ea_lo ="00001")

OR dsp_stat AND (ea_lo ="00001")

OR dsp_dipopt AND (ea_lo ="00010")
OR dsp_dipboot AND (ea_lo = "00011")
OR dsp_dspopt AND (ea_lo ="00100")
OR dsp_dspboot AND (ea_lo ="00101")
OR dsp_fifostat AND (ea_lo ="00110")
OR dsp_sdcntl AND (ea_lo ="00111")
OR osc_b_freq AND (ea_lo ="01000")
OR dsp_sem_0 AND (ea_lo ="01001")
OR dsp_sem_1 AND (ea_lo ="01010")
OR dsp_falcctrl AND (ea_lo ="01011")
OR dsp_intctrl AND (ea_lo ="01100")
OR dsp_miscctrl AND (ea_lo ="01101")
OR dsp_rsvd,

WITH ea_lo SELECT — ea_lo is 5-hit input
ed_out <=dsp_cntl WHEN dsp_cntl_adr, — dsp_cntl_addr = "00000”

dsp_stat WHEN dsp_stat_adr, — dsp_stat_adr = "00001”
dsp_dipopt WHEN dsp_dipopt_adr, — dsp_dipopt_adr ="00010"

dsp_dipboot WHEN dsp_dipboot_adr, — dsp_dipboot_adr ="00011"

suonenb3 aidd WAFOW

9.-0

dsp_dspopt WHEN dsp_dspopt_adr, — dsp_dspopt_adr = "00100”
dsp_dspboot WHEN dsp_dspboot_adr, — dsp_dspboot_adr ="00101"
dsp_fifostat WHEN dsp_fifostat_adr, — dsp_fifostat_adr = "00110”
dsp_sdcntl WHEN dsp_sdcntl_adr, — dsp_sdcntl_adr ="00111"
osc_b_freq WHEN dsp_oscb_fq_adr, — dsp_oscb_fg_adr ="01000"
dsp_sem_0 WHEN dsp_sem0_adr, — dsp_semO_adr = "01001”
dsp_sem_1 WHEN dsp_seml1_adr, — dsp_seml1_adr ="01010"
dsp_falcctrl WHEN dsp_falcctrl_adr, — dsp_falcctrl_adr ="01011"
dsp_intctrl WHEN dsp_intctrl_adr, — dsp_intctrl_adr = "01100”
dsp_miscctrl WHEN dsp_miscctrl_adr, — dsp_miscctrl_adr = "01101"
dsp_rsvd WHEN OTHERS ; — dsp_rsvd ="00000000"

— PCl reads

WITH pt_adr SELECT

dg_out <= pci_cntl WHEN pci_cntl_adr, — pci_cntl_adr = "00000”

pci_stat WHEN pci_stat_adr, — pci_stat_adr = "00001”
pci_swopt WHEN pci_swopt_adr, — pci_swopt_adr = "00010”
pci_swboot WHEN pci_swboot_adr, — pci_swboot_adr = "00011”
pci_dipopt WHEN pci_dipopt_adr, — pci_dipopt_adr = "00100"
pci_dipboot WHEN pci_dipboot_adr, — pci_dipboot_adr = "00101”
pci_dspopt WHEN pci_dspopt_adr, — pci_dspopt_adr ="00110"
pci_dspboot WHEN pci_dspboot_adr, — pci_dspboot_adr = "00111"
cpld_rev WHEN pci_cpldrev_adr, — pci_cpldrev_adr = "01000”
pci_sem_0 WHEN pci_sem0_adr, — pci_sem0_adr ="01001"
pci_sem_1 WHEN pci_seml_adr, — pci_seml1_adr ="01010"
pci_rsvd WHEN OTHERS ; — pci_rsvd ="10111100"

— collect DSP read back bits by concatenating signals into vectors

dsp_cntl(7 DOWNTO 6) <= xctrl(1 DOWNTO 0) ;

dsp_cntl(5) <= xrst ;

dsp_cntl(4) <= nmi_en;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

LD

— dsp_cntl(3) <= nmi_sel ; —R2
dsp_cntl(3) <="0";
dsp_cntl(2) <= sp0_sel ;
dsp_cntl(1 DOWNTO 0) <= led_ctrl(1 DOWNTO 0) ;
dsp_stat(7 DOWNTO 6) <= xstat(1 DOWNTO 0) ;
dsp_stat(5) <= db_int;
dsp_stat(4) <= dsp_nmi;
dsp_stat(3 DOWNTO 2) <="00";
dsp_stat(1) <= NOT pci_irg_| ;
dsp_stat(0) <= NOT pci_det_I;
dsp_dipopt(7) <="0";
dsp_dipopt(6) <= dip_switch(6) ;
dsp_dipopt(5) <= dip_switch(7) ;
dsp_dipopt(4) <= dip_switch(8) ;
dsp_dipopt(3) <= dip_switch(9) ;
dsp_dipopt(2) <= dip_switch(10) ;
dsp_dipopt(1) <= dip_switch(11) ;
dsp_dipopt(0) <= dip_switch(12) ;
dsp_dipboot(7 DOWNTO 5) <= "000" ;
dsp_dipboot(4) <= dip_switch(1) ;
dsp_dipboot(3) <= dip_switch(2) ;
dsp_dipboot(2) <= dip_switch(3) ;
dsp_dipboot(1) <= dip_switch(4) ;
dsp_dipboot(0) <= dip_switch(5) ;
dsp_dspopt(7) <="0";
dsp_dspopt(6) <= switch(6) ;
dsp_dspopt(5) <= switch(7) ;
dsp_dspopt(4) <= switch(8) ;
dsp_dspopt(3) <= switch(9) ;

suonenb3 aidd WAFOW

8.-0

dsp_dspopt(2) <= switch(10) ;
dsp_dspopt(1) <= switch(11) ;
dsp_dspopt(0) <= switch(12) ;
dsp_dspboot(7) <= sw_sel_dip_I;
dsp_dspboot(6 DOWNTO 5) <="00";
dsp_dspboot(4) <= switch(1) ;
dsp_dspboot(3) <= switch(2) ;
dsp_dspboot(2) <= switch(3) ;
dsp_dspboot(1) <= switch(4) ;
dsp_dspboot(0) <= switch(5) ;
dsp_fifostat(7 DOWNTO 6) <= "00";
dsp_fifostat(5) <= pcimrd_int ;
dsp_fifostat(4) <= pcimwr_int ;
dsp_fifostat(3) <= rdempty ;
dsp_fifostat(2) <= wrfull ;

dsp_fifostat(1) <= pci_mren ;
dsp_fifostat(0) <= pci_mwen ;
dsp_sdcntl(7 DOWNTO 2) <= "000000" ;
dsp_sdcntl(1) <= ce3sden ;
dsp_sdcntl(0) <= ce2sden ;
dsp_sem_0(7 DOWNTO 1) <= "0000000" ;
dsp_sem_0(0) <= dsp_semaphore0 ;
dsp_sem_1(7 DOWNTO 1) <= "0000000" ;
dsp_sem_1(0) <= dsp_semaphorel ;
dsp_falcctrl(7) <= mstr_sel3;
dsp_falcctrl(6) <= mstr_sel2 ;
dsp_falcctrl(5) <= mstr_sell ;
dsp_falcctrl(4) <= mstr_selO ;

dsp_falcctrl(3) <= st31_swap ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

61-0

dsp_falcctrl(2) <= st20_swap ;
dsp_falcctrl(1) <= fmicrst ;
dsp_falcctrl(0) <= falcrst ;
dsp_intctrl(7) <= ltchd_db_int ;
dsp_intctrl(6) <= Itchd_falc_int ;
dsp_intctrl(5) <= db_int;
dsp_intctrl(4) <=falc_int ;
dsp_intctrl(3) <="0";
dsp_intctrl(2) <="0";
dsp_intctrl(1) <= clrdbint ;
dsp_intctrl(0) <= clrfalcint ;
dsp_miscctrl(7) <= loop_led ;
dsp_miscctrl(6) <= sync_led ;
dsp_miscctrl(5) <=ralm_led ;
dsp_miscctrl(4) <=yalm_led ;
dsp_miscctrl(3) <= alaw_sel ;
dsp_miscctrl(2) <= vbap_en;
dsp_miscctrl(1) <= fmic_err ;

dsp_miscctrl(0) <="0";

— collect PCI read back bits by concatenating signals into vectors

pci_cntl(7) <= dsp_nmi ;
pci_cntl(6) <= tbc_inten ;
pci_cntl(5) <= hpi_inten ;
pci_cntl(4) <= NOT thc_rdy_|;
pci_cntl(3) <= NOT tbc_int_|;
pci_cntl(2) <= NOT dsp_hint_I ;
pci_cntl(1) <=tbc_rst;
pci_cntl(0) <= dsp_rst ;

suonenb3 aidd WAFOW

08-0

pci_stat(7) <='0";

pci_stat(6) <= NOT vce2bad_| ;
pci_stat(5) <='0";

pci_stat(4) <= dsp_pd ;

pci_stat(3 DOWNTO 2) <= xctrl(1 DOWNTO 0) ;
pci_stat(1 DOWNTO 0) <= led_ctrl(1 DOWNTO 0) ;
pci_swopt(7) <='0";

pci_swopt(6) <= sw_switch(6) ;
pci_swopt(5) <= sw_switch(7) ;
pci_swopt(4) <= sw_switch(8) ;
pci_swopt(3) <= sw_switch(9) ;
pci_swopt(2) <= sw_switch(10) ;
pci_swopt(1) <= sw_switch(11) ;
pci_swopt(0) <= sw_switch(12) ;
pci_swboot(7) <= sw_sel_dip_I;
pci_swboot(6 DOWNTO 5) <="00";
pci_swboot(4) <= sw_switch(1) ;
pci_swboot(3) <= sw_switch(2) ;
pci_swboot(2) <= sw_switch(3) ;
pci_swboot(1) <= sw_switch(4) ;
pci_swboot(0) <= sw_switch(5) ;
pci_dipopt(7) <="0";

pci_dipopt(6) <= dip_switch(6) ;
pci_dipopt(5) <= dip_switch(7) ;
pci_dipopt(4) <= dip_switch(8) ;
pci_dipopt(3) <= dip_switch(9) ;
pci_dipopt(2) <= dip_switch(10) ;
pci_dipopt(1) <= dip_switch(11) ;
pci_dipopt(0) <= dip_switch(12) ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

18-0

pci_dipboot(7 DOWNTO 5) <="000";

pci_dipboot(4) <= dip_switch(1) ;

pci_dipboot(3) <= dip_switch(2) ;

pci_dipboot(2) <= dip_switch(3) ;

pci_dipboot(1) <= dip_switch(4) ;

pci_dipboot(0) <= dip_switch(5) ;

pci_dspopt(7) <='0";

pci_dspopt(6) <= switch(6) ;

pci_dspopt(5) <= switch(7) ;

pci_dspopt(4) <= switch(8) ;

pci_dspopt(3) <= switch(9) ;

pci_dspopt(2) <= switch(10) ;

pci_dspopt(1) <= switch(11) ;

pci_dspopt(0) <= switch(12) ;

pci_dspboot(7 DOWNTO 5) <="000";

pci_dspboot(4) <= switch(1) ;

pci_dspboot(3) <= switch(2) ;

pci_dspboot(2) <= switch(3) ;

pci_dspboot(1) <= switch(4) ;

pci_dspboot(0) <= switch(5) ;

pci_sem_0(7 DOWNTO 1) <="0000000" ;

pci_sem_0(0) <= pci_semaphore0 ;

pci_sem_1(7 DOWNTO 1) <= "0000000" ;

pci_sem_1(0) <= pci_semaphorel ;

— Semaphore async reset signal generation

dsp_semO_ar_| <=true_| WHEN ((brd_rst_I =true_I) OR

(pci_semaphore0 = true_h)) ELSE

false_|;

dsp_seml_ar | <=true_| WHEN ((brd_rst_| = true_I) OR

suonenb3 aidd WAFOW

¢8-0

(pci_semaphorel = true_h)) ELSE
false_|;
pci_semO_ar_| <=true_| WHEN ((brd_rst_| =true_I) OR
(dsp_semaphore0 = true_h)) ELSE
false_|;
pci_seml_ar | <=true_| WHEN ((brd_rst_| =true_I) OR
(dsp_semaphorel = true_h)) ELSE
false_|;
— Sequential statements
— Semaphore implementation
— Note when one side obtains the semphore, the other side is prevented
— from getting it by holding the semaphore FF in reset. This forces
— the losing side to re—write the semaphore to try to get it as opposed
— to just polling it. Done this way to maintain S/W compatibility with
— EVM.
dspsem0:PROCESS(awe_|, dsp_sem0_ar_l)
BEGIN
IF (dsp_semO_ar_| =true_l) THEN
dsp_semaphore0 <= false_h ;
ELSIF ((awe_I'EVENT) AND (awe_| = false_l)) THEN

IF (cpld_cs = true_h) THEN
IF (ea_lo = dsp_sem0O_adr) THEN
dsp_semaphore0 <= ed(0) ;
END IF ;
END IF ;
END IF; — clocked IF
END PROCESS dspsemO ;
dspsem1:PROCESS(awe_|, dsp_seml_ar_l)

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

€8-0

BEGIN
IF (dsp_sem1_ar_| =true_l) THEN
dsp_semaphorel <=false_h;
ELSIF ((awe_I'EVENT) AND (awe_|I = false_I)) THEN

IF (cpld_cs = true_h) THEN
IF (ea_lo = dsp_seml_adr) THEN
dsp_semaphorel <= ed(0) ;
END IF ;
END IF ;
END IF ; — clocked IF
END PROCESS dspsem1 ;
pcisem0:PROCESS(pciclk, pci_sem0_ar_]I)
BEGIN
IF (pci_semO_ar_| =true_l) THEN
pci_semaphore0 <= false_h ;
ELSIF ((pciclkEVENT) AND (pciclk = false_I)) THEN

IF (pcireg_ce = true_h) THEN
IF (pt_adr = pci_semO_adr) THEN
pci_semaphore0 <= dq(0) ;
END IF ;
END IF ;
END IF; — clocked IF
END PROCESS pcisem0 ;
pcisem1:PROCESS(pciclk, pci_sem1_ar_l)
BEGIN
IF (pci_seml1_ar_| =true_l) THEN
pci_semaphorel <=false_h ;

suonenb3 aidd WAFOW

¥8-0

ELSIF ((pciclkEVENT) AND (pciclk = false_I)) THEN

IF (pcireg_ce = true_h) THEN
IF (pt_adr = pci_sem1_adr) THEN
pci_semaphorel <= dq(0) ;
END IF ;
END IF ;
END IF ; — clocked IF
END PROCESS pcisem1 ;
— DSP writes are done by awe_| when cpld_cs is active.
dspwrt:PROCESS(awe_|, brd_rst_1)

BEGIN
IF (brd_rst_| = true_l) THEN

xctrl <="00"; — External control set to 0's
led_ctrl <="00"; — led’s off
xrst <= false_h; — Ext reset de—asserted
nmi_en <=false_h; — NMI disabled

— nmi_sel <= false_h ; — NMI from host —R2
sp0_sel <=false_h; — McBSPO to daughterboard
pci_mren <= false_h; — PCI bus master read disabled
pci_mwen <= false_h; — PCI bus master write disabled
ce3sden <=true_h; — CE3 SDRAM enabled
ce2sden <=true_h; — CE2 SDRAM enabled
mstr_sel3 <= false_h ; — Master select = 0000

mstr_sel2 <= false_h ;
mstr_sell <=false_h;
mstr_sel0 <= false_h ;
st31_swap <=false_h ; — No swap FMIC ST busses 3 and 1
st20_swap <=false_h ; — No swap FMIC ST busses 2 and 0

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

fmicrst <=false_h; — No FMIC reset

falcrst <=false_h; — No FALC reset

clrdbint <= false_h; — No clear DB interrupt (int. enabled)
clrfalcint <=false_h; = — No clear FALC interrupt (int. enabled)
loop_led <=false_h; — LED off

sync_led <=false_h; — LED off

ralm_led <=false_h; — LED off

yalm_led <=false_h; — LED off

alaw_sel <=false_h; — u—law default

vbap_en<=false_h; — VBAP’s disabled

ELSIF ((awe_I'EVENT) AND (awe_| = false_l)) THEN

IF (cpld_cs = true_h) THEN
CASE ea lo IS
WHEN dsp_cntl_adr =>
xctrl <= ed(7 DOWNTO 6) ;

xrst <=ed(5);
nmi_en <=ed(4);
— nmi_sel <=ed(3); —R2

sp0_sel <=ed(2);
led_ctrl <=ed(1 DOWNTODO0);
WHEN dsp_fifostat_adr =>
pci_mren <=ed(1);
pci_mwen <=ed(0);
WHEN dsp_sdcntl_adr =>
ce3sden <=ed(1);
ce2sden <=ed(0) ;
WHEN dsp_falcctrl_adr =>
mstr_sel3 <= ed(7) ;

suonenb3 aidd WAFOW

98-0

mstr_sel2 <=ed(6) ;
mstr_sell <=ed(5) ;
mstr_sel0 <= ed(4) ;
st31_swap <= ed(3) ;
st20_swap <= ed(2) ;
fmicrst <=ed(1) ;
falcrst <=ed(0) ;

WHEN dsp_intctrl_adr =>
clrdbint <= ed(1) ;
clrfalcint <= ed(0) ;

WHEN dsp_miscctrl_adr =>
loop_led <=ed(7) ;
sync_led <= ed(6) ;
ralm_led <= ed(5) ;
yalm_led <=ed(4) ;
alaw_sel <= ed(3) ;
vbap_en <=ed(2);

WHEN OTHERS => NULL ;

END CASE ;
END IF; —cpld_cs
END IF; — clocked IF

END PROCESS dspwirt ;
pci_pt:PROCESS(pciclk, brd_rst_1)
— register pass through address and byte enables during strobe
BEGIN
IF (brd_rst_| = true_l) THEN
pt_adr <="11111";
pt_be_|<="1111";
ELSIF ((pciclkEVENT) AND (pciclk = true_h)) THEN

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

18D

IF (pt_adr_| = true_l) THEN
pt_adr <= dq(6 DOWNTO 2) ;

pt_be_| <= ptbe_I;
END IF;
END IF; — clocked IF

END PROCESS pci_pt;
pciwrt:PROCESS(pciclk, brd_rst_I)
— PCl writes

BEGIN

IF (brd_rst_| = true_l) THEN
dsp_nmi<=false_h; — No NMI
tbc_inten <= false_h ; — TBC interrupt disabled
hpi_inten <= false_h ; — DSP host interrupt disabled

tbc_rst<=false_h; — TBC reset de—asserted
dsp_rst<=false_h; — DSP reset de—asserted
h_clkmode <= false_h ; — x4 PLL mode

h_clksel <=false_h; — Oscillator A (33.25 MHz)
h_endian <= false_h; — Little endian

h_jtagsel <= false_h ; — External JTAG

h user2 <=false_h; — Userswitch2 =0
h_userl <=false_h; — Userswitchl =0
h_user0 <=false_h; — User switchO =0
sw_sel_dip_I <=true_|I; — DIP switch selected

— bootmode defaulted to NO-BOOT, Internal, MAP1 (mode 5)
h_bootmode4 <= false_h;
h_bootmode3 <= false_h ;
h_bootmode2 <=true_h;
h_bootmodel <= false_h ;
h_bootmode0 <=true_h;

suonenb3 aidd WAFOW

88-0

ELSIF ((pciclk EVENT) AND (pciclk = true_h)) THEN
IF (pcireg_ce = true_h) THEN

CASE pt_adr IS

WHEN pci_cntl_adr =>
dsp_nmi <=dq(7);
tbc_inten <=dq(6) ;
hpi_inten <=dq(5) ;
the_rst <=dq(1);
dsp_rst <=dq(0) ;

WHEN pci_swopt_adr =>
h_clkmode <=dq(6);
h_clksel <=dq(5);
h_endian <=dq(4);
h_jtagsel <=dq(3);
h_user2 <=dq(2);
h_userl <=dq(1);
h_user0 <=dq(0) ;

WHEN pci_swboot_adr =>
sw_sel_dip_| <=dq(7);
h_bootmode4 <=dq(4);
h_bootmode3 <=dq(3);
h_bootmode2 <=dq(2);
h_bootmodel <=dq(1);
h_bootmode0 <=dq(0) ;

WHEN OTHERS => NULL ;

END CASE ;
END IF; — pcireg_ce IF
ENDIF; —clocked IF

END PROCESS pciwrt ;
END rtl ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

68-0

— Design For:

— Texas Instruments Incorporated

— Design By:

— DNA Enterprises Inc

— 269 West Renner Parkway
— Richardson, TX 75080

— Filename : pb_ctrl.vhd

— Title : McEVM Peripherial Controller
— Module . Top-Level McEVM Control
— Description

— This module provides a state machine to control DSP accesses to
— the FALC and the FMIC devices. The state machine assures that

— proper timing is generated on the control signals to those parts.

— Modification History :

— Revision: 0
— Date: 05/04/98
— Author: Don Curry (DNA)

— Description: Initial code.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

suonenb3 aidd WAFOW

06-0

USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL,
ENTITY pb_ctrl IS
PORT(
— active low signals are indicated with '_I" appended to signal name.

— INPUTS

brd_rst_| : IN STD_LOGIC ; — Reset from volt. super.

clk_a 1IN STD_LOGIC ; — Osc A (33.25MHz)

lendian . IN STD_LOGIC ; — little endian mode

be_| 1IN STD_LOGIC_VECTOR(3 DOWNTO 0); — DSP byte en
are_osca_| :IN STD_LOGIC ; — are_| synced to clk_a

awe_osca_| 1IN STD_LOGIC ; — awe_l synced to clk_a

falc_req :INSTD_LOGIC; — FALC decode
fmic_req :IN STD_LOGIC ; — FMIC decode
fmic_rdy_in :IN STD_LOGIC ; — FMIC ready signal

— OUTPUTS

fmic_cs | : OUT STD_LOGIC; — FMIC chip select output
falc_cs | : OUT STD_LOGIC; — FALC chip select output
falc_bxe_| :OUT STD_LOGIC; — FALC BHE/BLE

falc_a0 :OUT STD_LOGIC; — FALC address 0

pb_wr_| :OUT STD_LOGIC; — Peripherial bus write strobe
pb_rd_| :OUT STD_LOGIC; — Peripherial bus read strobe
pb_ack :OUT STD_LOGIC — state machine done

)i
END pb_ctrl ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

16-O

ARCHITECTURE rtl OF pb_ctrl IS
— Define types used
TYPE pb_state_type IS (idle,
fmic_s1, fmic_s2, fmic_s3, fmic_rd,
fmic_sla, fmic_s2a, fmic_s3a, fmic_rda,
falc_s1, falc_sla,
falc_le_s2, falc_le_s3,
falc_le_s2a, falc_le s3a,
falc_be_s2, falc_be_s3,
falc_be_s2a, falc_be_s3a,
ack) ;
— Define constants for readability
CONSTANT true_h :STD_LOGIC :='1",;
CONSTANT false_h :STD_LOGIC ='0";
CONSTANT true_ | : STD_LOGIC :='0';
CONSTANT false_| :STD_LOGIC :="1";
— Internal signal declarations
SIGNAL pb_state . pb_state_type ;
SIGNAL pb_next_state :pb_state_type ;

SIGNAL pbrd_| :STD_LOGIC;
SIGNAL pback :STD_LOGIC ;
SIGNAL falccs_| :STD_LOGIC;
SIGNAL fmiccs_| :STD_LOGIC;

SIGNAL fmic_rdy : STD_LOGIC_VECTOR(1 DOWNTO 0) ;

BEGIN
— Pass internal siganls to port outputs
— Concurrent statements
falc_bxe_| <= be_I(1) WHEN (lendian = true_h) ELSE

suonenb3 aidd WAFOW

26-0

be_I(0) ;
falc_a0 <= be_l(0) WHEN (lendian = true_h) ELSE
be_I(1);
falc_cs_| <=falccs_I;

fmic_cs_| <= fmiccs_I ;

— shut down read signal ASAP when sync read goes away to keep from being
— on bus when DSP starts next access.
pb_rd_I| <=true_| WHEN ((pbrd_1| = true_I) AND

((are_osca_I=true)OR —im=0

(awe_osca_l =true_l))) ELSE —im=1

false_l;

pb_ack <= pback ;

— Sequential statements
pb_sm:PROCESS(pb_state, fmic_req, falc_req, lendian,
awe_osca_|, are_osca_l, fmic_rdy(1))
BEGIN
CASE pb_state IS

WHEN idle => — wait for sync’d read or write strobe active

IF ((are_osca_| =true_l) OR
(awe_osca_| =true_l)) THEN
IF (fmic_req = true_h) THEN
pb_next_state <= fmic_s1;
ELSIF (falc_req = true_h) THEN
pb_next_state <=falc_s1;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

€6-0

ELSE
pb_next_state <= pb_state ;
END IF;
ELSE
pb_next_state <= pb_state ;
END IF ;

WHEN fmic_s1 =>

pb_next_state <= fmic_sla;

WHEN fmic_sla =>

pb_next_state <= fmic_s2 ;

WHEN fmic_s2 =>

pb_next_state <= fmic_s2a;

WHEN fmic_s2a =>

pb_next_state <= fmic_s3 ;

WHEN fmic_s3 =>

pb_next_state <= fmic_s3a;

WHEN fmic_s3a =>

suonenb3 aidd WAFOW

¥6-0

IF (fmic_rdy(1) = true_h) THEN
IF (awe_osca_| = true_I) THEN
pb_next_state <= ack ;
ELSE
pb_next_state <= fmic_rd ;
END IF;
ELSE
pb_next_state <= pb_state ;
END IF ;

WHEN fmic_rd =>

pb_next_state <= fmic_rda ;

WHEN fmic_rda =>

pb_next_state <= ack ;
— FALC part

WHEN falc_s1 =>

pb_next_state <= falc_sla;

WHEN falc_sla =>

IF (lendian = true_h) THEN
pb_next_state <=falc_le_s2;
ELSE
pb_next_state <= falc_be_s2 ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

G6-0

END IF ;

WHEN falc_le_s2 =>

pb_next_state <=falc_le_s2a;

WHEN falc_le_s2a =>

pb_next_state <=falc_le_s3;

WHEN falc_le_s3 =>

pb_next_state <=falc_le_s3a;

WHEN falc_le_s3a =>

pb_next_state <= ack ;

WHEN falc_be_s2 =>

pb_next_state <= falc_be_s2a ;

WHEN falc_be_s2a =>

pb_next_state <= falc_be_s3;

WHEN falc_be_s3 =>

pb_next_state <= falc_be_s3a;

suonenb3 aidd WAFOW

96-0

WHEN falc_be_s3a =>

pb_next_state <= ack ;

WHEN ack =>

IF ((awe_osca_| = false_l) AND
(are_osca_| =false_l)) THEN
pb_next_state <=idle ;
ELSE
pb_next_state <= pb_state ;
END IF ;

WHEN OTHERS =>

pb_next_state <=idle ;
END CASE ;
END PROCESS pb_sm ;
seq:PROCESS(clk_a, brd_rst_I)
BEGIN
IF (brd_rst_I =true_I) THEN
pb_state <=idle ;
pbrd_I| <=false_|I;
pb_wr | <=false_|;
fmiccs_| <=false_I;
fmic_rdy <="00";
falccs_| <=false | ;

pback <=false_h;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

167D

ELSIF ((clk_a’EVENT) AND
(clk_a = true_h)) THEN

pb_state <= pb_next_state ;
— de—metastablize FMIC ready signal
fmic_rdy(0) <= fmic_rdy_in ;

fmic_rdy(1) <= fmic_rdy(0) ;

CASE pb_state IS

WHEN idle =>

IF (fmic_req = true_h) THEN

fmiccs_| <=true_|I ;

ELSIF (falc_req = true_h) THEN

falccs_| <=true_I;

END IF;

IF ((falc_req = true_h) AND
(lendian = false_h) AND
(awe_osca_| = true_l)) THEN

pb_wr_| <=true_I;

END IF;

WHEN fmic_s1 =>

NULL ;

WHEN fmic_sla =>

suonenb3 aidd WAFOW

86-0

IF (awe_osca_| = true_I) THEN
pb_wr_| <=true_|;

ELSIF (are_osca_| = true_l) THEN
pbrd_| <=true_l;

END IF;

WHEN fmic_s2 =>

NULL ;

WHEN fmic_s2a =>

NULL ;

WHEN fmic_s3 =>

NULL ;

WHEN fmic_s3a =>

IF ((fmic_rdy(1) = true_h) AND
(awe_osca_| = true_l)) THEN
pb_wr_| <=false_|;
pback <= true_h ;
END IF;

WHEN fmic_rd =>

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

66-0

NULL ;

WHEN fmic_rda =>

pback <= true_h;
— FALC part

WHEN falc_s1 =>

NULL ;

WHEN falc_sla =>

IF (lendian = true_h) THEN
IF (awe_osca_| =true_|) THEN
pb_wr_| <=true_I;
ELSIF (are_osca_| =true_|) THEN

pbrd_| <=true_|;
END IF ;
ELSE
pbrd_| <=true_l;
END IF;

WHEN falc_le_s2 =>

NULL ;

WHEN falc_le_s2a =>

suonenb3 aidd WAFOW

00T-O

NULL ;

WHEN falc_le_s3 =>

NULL ;

WHEN falc_le_s3a =>

IF (awe_osca_| = true_I) THEN
pb_wr_| <=false_|;

END IF;

pback <= true_h ;

WHEN falc_be_s2 =>

NULL ;

WHEN falc_be_s2a =>

NULL ;

WHEN falc_be_s3 =>

NULL ;

WHEN falc_be_s3a =>

IF (awe_osca_| = true_I) THEN
pbrd_| <= false_I ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

T0T-O

END IF;

pback <= true_h;

WHEN ack =>

IF ((awe_osca_| = false_|) AND
(are_osca_| = false_l)) THEN
pback <=false_h ;
pb_wr_ | <=false_l|;
pbrd_| <= false_I;
fmiccs_| <=false_| ;
falccs_| <= false_|;
END IF;

WHEN OTHERS =>

pback <=false_h;
pbrd_| <=false_I;
pb_wr_| <=false_|;
fmiccs_| <= false_|I ;
falccs_| <=false_|;
END CASE ;
END IF ; — clocked IF
END PROCESS seq ;

END rtl ;

suonenb3 aidd WAFOW

¢0T-0

Design For:

Texas Instruments Incorporated

Design By:
DNA Enterprises Inc
269 West Renner Parkway
Richardson, TX 75080

File name : misc_glue.vhd

Title . Miscellaneous Glue

Module : Top-Level McEVM Control
Description

This module combines the EVMCKSEL, EVMRESET and EVMSWMUX functions

from the EVM CPLD Abel files.

The EVMCKSEL implements DSP source clock selection. The DSP source
clock (CLKIN) can either be 33.25MHz or 50MHz. The two oscillator
outputs are buffered using buffers with independent output enables.

The outputs of these buffers are connected together. This module

makes sure that there is never any contention on this signal by

turning off both buffers for one clock period prior to turning on

one. The clock used for this function is the free—running clock from

Osc. A (33.25 MH?2).

The EVMRESET controls the various types of reset signals that are
used on the McEVM board. Signals are generated that reset the board,
DSP, JTAG TBC and external daughterboard independently. All resets are

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

€0T-0

— asserted on power—up, when the manual reset pushbutton is pressed and
— when the board is in a software board reset under control of the host.
— The host can reset the board, DSP and TBC. The DSP can reset the

— external daughterboard.

— The EVMSWMUX provides a multiplexer to switch between hardware DIP
— switches and host software controllable registers for various modes.

— The CPLD defaults to the DIP switches at power—up or board reset. The
— multiplexer is controlled by the host software using the PCI mapped

— CPLD SWBOOT registers SWSEL bit. A 0 (default) selects the DIP switch
— and a 1 selects the software register bits.

— Modification History :

— Revision: 0
— Date: 03/30/98
— Author: Don Curry (DNA)

— Description: Initial conversion from ABEL version of EVM CPLD.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY misc_glue IS
PORT(
— active low signals are indicated with ’_I" appended to signal name.

suonenb3 aidd WAFOW

¥0T-O

— INPUTS

— EVMCKSEL

clk_a 1IN STD_LOGIC ; — Free—run 33.25 MHz
— EVMRESET

brd_rst_| : IN STD_LOGIC ; — Reset from volt. super.
sw_rst | :IN STD_LOGIC ; — Reset from pushbutton

vce2bad_| i IN STD_LOGIC ; — VCC low
pci_rst_| : IN STD_LOGIC ; — Reset from PCI controller
pci_det_| : IN STD_LOGIC ; — PCI detection (active low)

xreset 1IN STD_LOGIC ; — Ext. reset from DSP register
falcrst 1IN STD_LOGIC ; — FALC reset from DSP register
fmicrst :IN STD_LOGIC ; — FMIC reset from DSP register
dsprst 1IN STD_LOGIC ; — DSP reset from PCI register
therst :IN STD_LOGIC ; — TBC reset from PCI register

— EVMSWMUX

swsel_dip_| :IN STD_LOGIC ; — Switch select

dip_switch :INSTD_LOGIC_VECTOR(12 DOWNTO 1) ;

soft_switch :IN STD_LOGIC_VECTOR(12 DOWNTO 1) ;
mstr_sel :IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

— timing mode selection

fmic_2m_clk :IN STD_LOGIC; — FMIC 2 MHz clock
— OUTPUTS

— EVMCKSEL

osc_a_en_| :OUT STD_LOGIC; — Osc. A enable
osc_ b en_| :OUT STD_LOGIC; — Osc. B enable

— EVMRESET

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

S0T-O

man_rst | : OUT STD_LOGIC ; — Manual reset to volt. super.

dsp_rst_| : OUT STD_LOGIC; — DSP reset

tbc_rst | : OUT STD_LOGIC; — TBC reset

ext_rst | : OUT STD_LOGIC; — Daughterboard reset

falc_rst :OUT STD_LOGIC; — FALC reset

fmic_rst_| :OUT STD_LOGIC; — FMIC reset

— To FMIC/FALC timing

fmic_frm_en_|: OUT STD_LOGIC ; — Enable FMIC frame to D.B.

falc_sync : OUT STD_LOGIC ; — FALC sync mux output

— EVMSWMUX

switch :OUT STD_LOGIC_VECTOR(12 DOWNTO 1)
— Selected switch setting

)i

END misc_glue ;

ARCHITECTURE rtl OF misc_glue IS
— Define types used
— Define constants for readability
CONSTANT true_h :STD_LOGIC :='1",;
CONSTANT false_h :STD_LOGIC:="0’;
CONSTANT true_| :STD_LOGIC :='0";
CONSTANT false_| :STD_LOGIC :="1";
— Internal signal declarations
SIGNAL sel_switch : STD_LOGIC_VECTOR(12 DOWNTO 1) ;
SIGNAL clksel_dbl : STD_LOGIC ; — clock select delayed by 1 clock
SIGNAL clksel_db2 : STD_LOGIC ; — clock select delayed by 2 clock
BEGIN
— Pass internal siganls to port outputs
switch <= sel_switch ;

— Concurrent statements

suonenb3 aidd WAFOW

90T-O

— EVMCKSEL

— Osc A (33.25 MHz) selected when clksel is low for two consecutive clocks
osc_a_en_| <=true_| WHEN ((clksel_db1 = false_h) AND
(clksel_db2 = false_h)) ELSE
false_|;
— Osc B (50 MHz) selected when clksel is high for two consecutive clocks
osc_b_en_| <=true_| WHEN ((clksel_db1 = true_h) AND
(clksel_db2 = true_h)) ELSE

false_I;

— EVMRESET

— Manual reset to voltage supervisor asserted when PCI reset or pushbutton
— is activated. Note that pushbutton will bounce, however the voltage
— supervisor will assert reset on first occurance and hold reset active
— until approximately 140 ns after last detected low on input thus providing
— a de—bounce function.
man_rst_| <= true_| WHEN (((pci_rst_I| = true_I) AND (pci_det_| = true_I)) OR
(sw_rst_| =true_l)) ELSE
false_|;
— DSP reset asserted when DSP software reset is asserted, DSP core voltage
—is bad or a board reset. Allows the host to control DSP reset for HPI
— booting.
dsp_rst_| <=true_| WHEN ((dsprst = true_h) OR
(vee2bad_| =true_I) OR
(brd_rst_I = true_l)) ELSE

false_|;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

L0T-D

— TBC reset asserted upon host assertion or board reset.
tbc_rst_| <=true_| WHEN ((tbcrst = true_h) OR
(brd_rst_I =true_l)) ELSE
false_|;
— External reset asserted upon DSP assertion or board reset.
ext_rst_| <=true_| WHEN ((xreset = true_h) OR
(brd_rst_I =true_l)) ELSE
false I;
— FALC reset asserted upon DSP assertion or board reset.
falc_rst <= true_h WHEN ((falcrst = true_h) OR
(brd_rst_I = true_l)) ELSE
false_h;
— FMIC reset asserted upon DSP assertion or board reset.
fmic_rst_I <= true_| WHEN ((fmicrst = true_h) OR
(brd_rst_I| = true_l)) ELSE

false I ;

— EVMSWMUX

— switch bit mapping is as follows

— BITSIGNAL

— 1:5bootmode4:bootmode0 DSP bootmode

— 6 clkmode DSP clock mode x1/x4

— 7 clksel DSP osc. select 33.25/50 MHz

— 8 endian Little/Big endian mode

— 9 jtagsel Internal/External JTAG emulation
— 10:12 user2:user0 User defined switches

sel_switch <= soft_switch(12 DOWNTO 9) &
— invert to drive correct polarity to DSP

suonenb3 aidd WAFOW

80T-O

NOT soft_switch(8) &
soft_switch(7) &
— invert to drive correct polarity to DSP
NOT soft_switch(6) &
soft_switch(5 DOWNTO 1) WHEN (swsel_dip_| = true_h) ELSE
dip_switch(12 DOWNTO 9) &
— invert to drive correct polarity to DSP
NOT dip_switch(8) &
dip_switch(7) &
— invert to drive correct polarity to DSP
NOT dip_switch(6) &
dip_switch(5 DOWNTO 1) ;

WITH mstr_sel SELECT
falc_sync <= fmic_2m_clk WHEN "0001” | "0011",

false_ h WHEN OTHERS ;

WITH mstr_sel SELECT
fmic_frm_en_| <= true_| WHEN ”0010” | "0011",

false_| WHEN OTHERS ;

— Sequential statements
evmcksel:PROCESS(clk_a)

— Note: The selected clock must be enabled during reset so that the DSP

— PLL locks before reset is released. This means the FF’s should not

— be held in reset.
— Switch mux clksel output is fed into two cascaded FF's to generate a

— break—before—make clock switch.

BEGIN

IF ((clk_a’EVENT) AND
(clk_a =true_h)) THEN

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

60T-O

clksel_db1l <= sel_switch(7) ; — Clock select bit
clksel_db2 <= clksel_db1 ;
END IF ; — clocked IF
END PROCESS evmcksel ;

END rtl ;

suonenb3 aidd WAFOW

0TT-O

Design For:

Texas Instruments Incorporated

Design By:
DNA Enterprises Inc
269 West Renner Parkway
Richardson, TX 75080

File name : decode.vhd

Title : McEVM Async Memory Space Decode
Module : Top-Level McEVM Control
Description

This module contains the EVMDECODE functions from the EVM CPLD Abel files.

This module provides the DSP EMIF memory decode to control async
memory accesses to the CE1 memory space. The devices in the CE1
memory space include the CPLD registers, the PCI Controller,

the FMIC MVIP Controller, the T1/E1 Transceiver and the expansion
memory (daughterboard). Decode logic controls the data bus

transceivers that connect the DSP’s EMIF data bus to the periphial,

PCI Add-On and external daughterboard data busses. The asynchronous
memory control strobes from the DSP are synchronized for use by the

PCI controller state machine. Async memory access ready (RDY) generation

is implemented for each type device access in the CE1 memory space.

Modification History :

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

T11-0

— Revision: 0
— Date: 04/02/98
— Author: Don Curry (DNA)

— Description: Initial conversion from ABEL version of EVM CPLD.

— Reuvision: 1

— Date: 05/04/98

— Author: Don Curry (DNA)
— Description:

— Added McEVM specific signals and changed emif_req to be sync'd
— to PCl clock. This prevents the possibility that an address

— transition during a rising edge of PCI clock will cause a

— erroneous emif request to the PCI state machine.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL,
ENTITY decode IS

PORT(

— active low signals are indicated with '_I" appended to signal name.

— INPUTS

brd_rst_| : IN STD_LOGIC ; — Reset from volt. super.
pci_det_| : IN STD_LOGIC ; — PCI detection indicator

suonenb3 aidd WAFOW

¢TT-0

pciclk :IN STD_LOGIC ; — Buffered PCI clk (33MHz max)
clk_a 1IN STD_LOGIC ; — Osc. A (33.25MHz)
cel | 1IN STD_LOGIC ; — EMIF CE1 memory space enable
ce2 | 1IN STD_LOGIC ; — EMIF CE2 memory space enable
ced | 1IN STD_LOGIC ; — EMIF CE3 memory space enable
are_| 1IN STD_LOGIC ; — EMIF async memory read strobe
awe_| :IN STD_LOGIC ; — EMIF async memory write strobe
ea_hi :IN STD_LOGIC_VECTOR(5 DOWNTO 0) ;

— EMIF Address bits 21:16
ao_bsy 1IN STD_LOGIC ; — Add-On S.M. busy
emif_ack :INSTD_LOGIC ; — Add-On S.M. EMIF access ack.
pb_ack 1IN STD_LOGIC ; — Peripherial bus access ack.
xrdy :IN STD_LOGIC ; — EMIF async acc. ready from DB
ce2sden 1IN STD_LOGIC ; — CE2 SDRAM enable from registers
ce3sden 1IN STD_LOGIC ; — CE3 SDRAM enable from registers
— OUTPUTS
dsp2aod_| : OUT STD_LOGIC; — Enables GD(31:0) to AOD(31:0)
dsp2gd_| :OUT STD_LOGIC; — Enables ED(31:0) to GD(31:0)
dsp2xd_| :OUT STD_LOGIC; — Enables GD(31:0) to XD(31:0)
awe_pci_| : OUT STD_LOGIC; — awe_I synced to pci clock
are_pci_| : OUT STD_LOGIC ; — are_| synced to pci clock
awe_osca_| :OUT STD_LOGIC; — awe_| synced to clka clock
are_osca_| :OUT STD_LOGIC; — are_l synced to clka clock
fmic_req :OUT STD_LOGIC;; — Synchronized FMIC decode
falc_req :OUT STD_LOGIC; — Synchronized FALC decode
emif_req :OUT STD_LOGIC; — Synchronized EMIF decode

cpld_cs :OUT STD_LOGIC; — CPLD DSP register chip select

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

€TT-0

ardy :OUT STD_LOGIC — EMIF async access ready
)i
END decode ;
ARCHITECTURE rtl OF decode IS
— Define types used
— Define constants for readability
CONSTANT true_h :STD_LOGIC :='1",;
CONSTANT false_h :STD_LOGIC :="0;
CONSTANT true_| :STD_LOGIC :='0";
CONSTANT false_| :STD_LOGIC :="1";
— EMIF CE1 space address definitions
CONSTANT pci_reg_addr: STD_LOGIC_VECTOR(5 DOWNTO 0) :="110000" ; — 0x0130/0x0170
CONSTANT pci_fifo_addr: STD_LOGIC_VECTOR(5 DOWNTO 0) :="110001" ; — 0x0131/0x0171
CONSTANT fmic_addr : STD_LOGIC_VECTOR(5 DOWNTO 0) :="110100" ; — 0x0134/0x0174
CONSTANT falc_addr : STD_LOGIC_VECTOR(5 DOWNTO 0) :="110101" ; — 0x0135/0x0175
CONSTANT dsp_reg_addr: STD_LOGIC_VECTOR(5 DOWNTO 0) :="111000" ; — 0x0138/0x0178
— Internal signal declarations
SIGNAL pcicntlr_rdy : STD_LOGIC ; — PCI controller EMIF access ready
SIGNAL dspreg_rdy : STD_LOGIC ; — DSP register EMIF access ready
SIGNAL pb_rdy : STD_LOGIC ; — Peripherial bus (FALC/FMIC) access ready
SIGNAL default_rdy : STD_LOGIC ; — default async ready
SIGNAL ext_dta_| :STD_LOGIC ; — external data bus enable
SIGNAL emif_rq : STD_LOGIC_VECTOR(1 DOWNTO 0) ;
SIGNAL fmic_rq : STD_LOGIC_VECTOR(1 DOWNTO 0) ;
SIGNAL falc_rq : STD_LOGIC_VECTOR(1 DOWNTO 0) ;
SIGNAL emif_request :STD_LOGIC;
SIGNAL fmic_request : STD_LOGIC;
SIGNAL falc_request : STD_LOGIC ;
SIGNAL rd_or_wr_| : STD_LOGIC;

suonenb3 aidd WAFOW

¥11-0

SIGNAL pci_rdy : STD_LOGIC ;
SIGNAL rdy_clr_| : STD_LOGIC ;

BEGIN

— Pass internal siganls to port outputs
dsp2xd_| <=ext_dta_|;
emif_req <= emif_request ;
fmic_req <= fmic_request ;

falc_req <= falc_request ;

— Concurrent statements
— make sure request are valid for at least one clock prior to sending
— request to state machine
emif_request <= true_h WHEN (emif_rq = "11") ELSE
false_h;
fmic_request <= true_h WHEN (fmic_rq = "11") ELSE
false_h;
falc_request <= true_h WHEN (falc_rq = "11") ELSE

false_h;

rd_or_wr_| <=true_| WHEN ((are_I| = true_I) OR
(awe_l = true_l)) ELSE
false_|;

— data bus transceiver control
— CEL1 and read or write and specific address and S.M. not busy
dsp2aod_| <=true_| WHEN ((cel_I| = true_l) AND

(rd_or_wr_I| =true_l) AND

(ao_bsy = false_h) AND

((ea_hi = pci_reg_addr) OR

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

STT-O

(ea_hi = pci_fifo_addr))) ELSE
false_|;
— CE1 or CE2/CE3 and cd2sden/cd3sden disabled
dsp2gd_| <= true_| WHEN (((cel_l = true_l) AND
(rd_or_wr_| = true_l))
OR
((ce2_I =true_l) AND
(ce2sden = false_h))
OR
((ce3d_I =true_l) AND
(ce3sden = false_h))) ELSE
false_|;
— CE1 address OxXX0OXXXXX — OxXX2XXXXX, CE2/CE3 and cd2sden/cd3sden disabled
ext_dta_| <=true_| WHEN (((cel_I = true_I) AND
(rd_or_wr_| = true_l) AND
(ea_hi(5 DOWNTO 4) < "11")
OR
((ce2_I =true_l) AND
(rd_or_wr_| =true_l) AND
(ce2sden = false_h))
OR
((ce3_I =true_Il) AND
(rd_or_wr_| =true_l) AND
(ce3sden = false_h))) ELSE
false_|;
— DSP register access
cpld_cs <= true_h WHEN ((cel_| = true_l) AND
(ea_hi = dsp_reg_addr)) ELSE

false_h;

suonenb3 aidd WAFOW

9TT-O

— PCI controller EMIF access ready generation
pcicntlr_rdy <= true_h WHEN ((pci_det_| = false_I) OR
(pci_rdy = true_h)) ELSE
false_h;
— DSP register EMIF access ready generation
dspreg_rdy <= true_h WHEN (rd_or_wr_| = true_l) ELSE
false_h;
— default async ready generation
default_rdy <= true_h WHEN ((cel_I| = true_l) OR
((cel_l =false_l) AND
(rd_or_wr_| =true_l))) ELSE
false_h;
— Async READY mux
ardy <= pcicntlr_rdy WHEN ((cel_| = true_l) AND
((ea_hi = pci_reg_addr) OR
(ea_hi = pci_fifo_addr))) ELSE
dspreg_rdy WHEN ((cel_| =true_l) AND
(ea_hi = dsp_reg_addr)) ELSE
pb_rdy WHEN ((cel_| = true_I) AND
((ea_hi = falc_addr) OR
(ea_hi = fmic_addr))) ELSE
xrdy WHEN (((cel_l = true_l) AND
(ea_hi(5 DOWNTO 4) < "11")
OR
((ce2_I =true_Il) AND
(ce2sden = false_h))
OR
((ce3_I =true_I) AND
(ce3sden = false_h))) ELSE

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

LTT-O

default_rdy ;
— clear for ready signals
rdy_clr_| <=true_| WHEN ((brd_rst_| = true_l) OR
(rd_or_wr_| = false_l)) ELSE

false_I;

— Sequential statements
— generate emif ready by using emif_ack as clock and async reset with
— both are and awe high.
e_rdy:PROCESS(emif_ack, rdy_clr_1)
BEGIN
IF (rdy_clr_| = true_I) THEN
pci_rdy <= false_h;
ELSIF ((emif_ackEVENT) AND
(emif_ack = true_h)) THEN
pci_rdy <= true_h ;
END IF ; — clocked IF
END PROCESS e_rdy ;
— generate emif ready by using emif_ack as clock and async reset with
— both are and awe high.
p_rdy:PROCESS(pb_ack, rdy_clr_I)
BEGIN
IF (rdy_clIr_| =true_l) THEN
pb_rdy <= false_h ;
ELSIF ((pb_ack’'EVENT) AND
(pb_ack =true_h)) THEN
pb_rdy <=true_h;
END IF ; — clocked IF
END PROCESS p_rdy ;

suonenb3 aidd WAFOW

8TT-O

— synchronize decodes to approriate clock.
— Since cel and address signals are async to clocks, must ensure that
— clock did not capture transition of address and give a false request.
— To do this address must be valid for two clocks prior to request
— being issued.
pci_sync:PROCESS(pciclk, brd_rst_I)
BEGIN
IF (brd_rst_I =true_l) THEN
emif_rq <="00";
are_pci_| <=false_|;
awe_pci_| <=false_|;
ELSIF ((pciclk EVENT) AND
(pciclk = true_h)) THEN
— requires that DSP’s hold + setup > 1 PCI clock
are_pci_l <=are_|;
awe_pci_| <=awe _|;
IF (emif_ack = false_h) THEN
emif_rq(1) <= emif_rq(0) ;
IF ((cel_l =true_l) AND
((ea_hi = pci_reg_addr) OR
(ea_hi = pci_fifo_addr))) THEN
emif_rq(0) <=true_h;
ELSE
emif_rq(0) <= false_h;
END IF ;
ELSE
emif_rq <="00";
END IF ;
END IF ; — clocked IF

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

6TT-O

END PROCESS pci_sync;

osca_sync:PROCESS(clk_a, brd_rst_l)
BEGIN
IF (brd_rst_| =true_l) THEN
falc_rgq <="00";
fmic_rg <="00";
are_osca_| <=false_|;
awe_osca_| <=false_| ;
ELSIF ((clk_a’EVENT) AND
(clk_a = true_h)) THEN

are_osca_l <=are_|;
awe_osca_|l <=awe_|;
IF (pb_ack = false_h) THEN
fmic_rq(1) <= fmic_rq(0) ;
ELSE
fmic_rq(1) <= false_h ;
END IF ;

IF ((pb_ack = false_h) AND
(cel | =true_l) AND
(ea_hi = fmic_addr)) THEN

fmic_rq(0) <=true_h ;

ELSE

fmic_rq(0) <= false_h ;

END IF ;

IF (pb_ack = false_h) THEN

falc_rq(1) <= falc_rq(0) ;

suonenb3 aidd WAFOW

0¢T-0

ELSE
falc_rq(1) <=false_h;
END IF ;

IF ((pb_ack = false_h) AND
(cel_ | =true_l) AND
(ea_hi = falc_addr)) THEN

falc_rq(0) <=true_h;

ELSE

falc_rq(0) <=false_h;

END IF ;

END IF ; — clocked IF
END PROCESS osca_sync ;

END rtl ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

1¢T-0

Design For:

Texas Instruments Incorporated

Design By:
DNA Enterprises Inc
269 West Renner Parkway
Richardson, TX 75080

File name : irq_ctrl.vhd

Title : McEVM Interrupt Controller
Module . Top-Level McEVM Control
Description

This module contains the EVMINT functions from the EVM CPLD Abel files.

This module controls the interrupts to the host (via the PCI
Controller) and the 'C6201 DSP. The DSP host interrupt and the
JTAG TBC can be used to interrupt the host. This modules implements
falling edge detectors to determine when these source interrupts
occur to force a PCI mailbox interrupt in the S5933 PCI Controller
which causes and INTA# host interrupt. Logic is included to
implement a DSP NMI interrupt source. The PCI controller add—on
IRQ# is passed to the DSP via its EXT_INT4 input. Additionally,

PCI bus master read (EXT_INT5) and write (EXT_INT6) interrupts
are generated by state machines in this module that monitor the PCI
controllers FIFO FULL and EMPTY flags to determine when data can
be transferred between the PCI Controller and DSP memory space.
These interrupts can be used by the DSP to trigger ISR’s or more

suonenb3 aidd WAFOW

2¢t-0

— typically used to trigger background DMA transfers. Optionally,
— the DSP could even poll these interrupts or the FIFO flags themselves

— to control data transfers.

— The DSP can also be interrupted via the T1/E1 transceiver or the
— daughterboard. This module takes in the two interrupt sources
— (both active high, level interrupts) and generate a rising edge

— interrupt to the DSP (EXT_INT7). To clear the interrupts the DSP
— must write to the Interrupt control register with the appropriate

— bits set. If another interrupt is pending, another edge will be

— generated so that the interrupt can be serviced. The clear bits
— can also be used to mask interrupts from a particular source. |If
— the clear bit is set no interrupts from that source are latched

— and thus cannot cause and interrupt to the DSP.

suonenb3 aidd WAFON

— Modification History :

— Revision: 0
— Date: 04/02/98
— Author: Don Curry (DNA)

— Description: Initial conversion from ABEL version of EVM CPLD.

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL,
ENTITY irg_ctrl IS

suonenb3 @idd WAFIW XZ9D0ZESN.L

€¢T-0

PORT(
— active low signals are indicated with '_I" appended to signal name.

— INPUTS

brd_rst_| : IN STD_LOGIC ; — Reset from volt. super.

dsp_hint_| 1IN STD_LOGIC ; — DSP HPI interrupt
tbc_int_| : IN STD_LOGIC ; — TBC host interrupt
pciclk 1IN STD_LOGIC ; — Buffered PCI clk (33MHz max)

pci_det_| : IN STD_LOGIC ; — PCI detection indicator
pci_irg_l : IN STD_LOGIC ; — Interrupt from add—on device

rdempty :IN STD_LOGIC ; — PCl read FIFO empty flag
wrfull 1IN STD_LOGIC ; — PCI write FIFO full flag

hinten :IN STD_LOGIC ; — HPI host interrupt enable
tbcinten :IN STD_LOGIC ; — TBC host interrupt enable

dspnmi 1IN STD_LOGIC ; — DSP NMI interrupt from host
nmisel :IN STD_LOGIC ; — NMI source (host/xcvr)

nmien :IN STD_LOGIC ; — NMI enable

pcimren 1IN STD_LOGIC ; — PCI master read IRQ enable
pcimwen . IN STD_LOGIC ; — PCI master write IRQ enable
rdfifo_l :IN STD_LOGIC ; — PCI FIFO read strobe

wrfifo_| :IN STD_LOGIC ; — PCI FIFO write strobe

clk_a :INSTD_LOGIC; — Osc A

clr_falcint :IN STD_LOGIC ; — T1/E1 xcvr interrupt
clr_dbint : IN STD_LOGIC ; — Daughterboard interrupt
falc_int :IN STD_LOGIC ; — T1/E1 xcvr interrupt
db_int 1IN STD_LOGIC ; — Daughterboard interrupt

— OUTPUTS

suonenb3 aidd WAFOW

¥ZT-0

db_falc_int :OUTSTD_LOGIC; — DB/FALC interrupt (EXT_INT7)
ltchd_falc_int :OUT STD_LOGIC; — Latched FALC interrupt

ltchd_db_int : OUT STD_LOGIC ; — Latched DB interrupt

pc_int :OUT STD_LOGIC; — Add-on interrupt to PCI cntlr

pci_int :OUT STD_LOGIC; — PClto DSP interrupt (EXT_INT4)

nmi :OUT STD_LOGIC ; — NMI to DSP

pcimrd_int :OUT STD_LOGIC ; — PCI mstr read IRQ to DSP (EXT_INT5)

pcimwr_int :OUT STD_LOGIC — PCI mstr write IRQ to DSP (EXT_INT6)
)i

END irqg_ctrl ;

ARCHITECTURE rtl OF irg_ctrl IS

— Define types used

— Define constants for readability
CONSTANT true_h :STD_LOGIC :='1",;
CONSTANT false_h :STD_LOGIC :='0";
CONSTANT true_| :STD_LOGIC :='0";
CONSTANT false_| :STD_LOGIC :='1";
— PCI Master Read State Assignments
CONSTANT mrd_idle : STD_LOGIC_VECTOR(1 DOWNTO 0) := "00" ;
CONSTANT mrd_int : STD_LOGIC_VECTOR(1 DOWNTO 0) :="01";
CONSTANT mrd_wait : STD_LOGIC_VECTOR(1 DOWNTO 0) :="10";
CONSTANT mrd_done : STD_LOGIC_VECTOR(1 DOWNTO 0) :="11";
— PCI Master Write State Assignments
CONSTANT mwr_idle : STD_LOGIC_VECTOR(1 DOWNTO 0) :="00";
CONSTANT mwr_int : STD_LOGIC_VECTOR(1 DOWNTO 0) :="01" ;
CONSTANT mwr_wait : STD_LOGIC_VECTOR(1 DOWNTO 0) :="10";
CONSTANT mwr_done : STD_LOGIC_VECTOR(1 DOWNTO 0) :="11";

— Internal signal declarations

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

GZT-0

— falling edge detector signals
SIGNAL hint_db1_| : STD_LOGIC ;
SIGNAL hint_db2_| : STD_LOGIC ;
SIGNAL thecint_dbl | :STD_LOGIC ;
SIGNAL thcint_db2_ | :STD_LOGIC ;
— Master read/write state signals
SIGNAL mrd : STD_LOGIC_VECTOR(1 DOWNTO 0) ;
SIGNAL mwr : STD_LOGIC_VECTOR(1 DOWNTO 0) ;
— Master read/write next state signals
SIGNAL mrd_next_state : STD_LOGIC_VECTOR(1 DOWNTO 0) ;
SIGNAL mwr_next_state: STD_LOGIC_VECTOR(1 DOWNTO 0) ;
— clear interrupt edge detect
SIGNAL ltchd_dbint : STD_LOGIC;
SIGNAL ltchd_falcint : STD_LOGIC ;
BEGIN
— Pass internal siganls to port outputs
ltchd_db_int <= Itchd_dbint ;
Itchd_falc_int <= ltchd_falcint ;

— Concurrent statements

— Select NMI source and pass through if enabled

— McEVM nmisel tied low

nmi <= dspnmi WHEN ((nmien = true_h) AND (nmisel = false_h)) ELSE

false_h;

— PCl interrupt only active if PCI detected and not in reset

pci_int <=true_h WHEN ((pci_det_| = true_I) AND
(brd_rst_| =false_I) AND
(pci_irg_l = true_l)) ELSE

false_h;

suonenb3 aidd WAFOW

9¢T-0

— DSP interrupt is sourced from FALC and/or the daughterboard
— Both interrupts are assumed to be active high level interrupts.
db_falc_int <= true_h WHEN (((Itchd_dbint = true_h) OR

(Itchd_falcint = true_h))

AND

((clr_dbint = false_h) AND

(clIr_falcint = false_h))) ELSE

false_h ;

— Sequential statements

— PCI Master Read State Machine Next State decode
mrd_sm:PROCESS(mrd, pcimren, rdempty, rdfifo_lI)
BEGIN

CASE mrd IS
WHEN mrd_idle =>
— Wait for master read to be enabled and FIFO not empty
IF ((pcimren = true_h) AND (rdempty = false_h)) THEN
mrd_next_state <= mrd_int ;
ELSE
mrd_next_state <= mrd_idle ;
END IF ;
WHEN mrd_int =>
— Master read is enabled and FIFO is not empty
— Always go next state
mrd_next_state <= mrd_wait ;
WHEN mrd_wait =>
— Wait for DSP to read FIFO or DSP to disable master read
IF ((pcimren = false_h) OR
(rdfifo_I = true_I)) THEN

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

LZT-D

mrd_next_state <= mrd_done ;
ELSE
mrd_next_state <= mrd_wait ;
END IF ;
WHEN mrd_done =>
— Wait for DSP to complete FIFO read or DSP to disable master read
IF ((pcimren = false_h) OR
(rdfifo_| = false_l)) THEN
mrd_next_state <= mrd_idle ;
ELSE
mrd_next_state <= mrd_done ;
END IF ;
WHEN OTHERS => mrd_next_state <= mrd_idle ;
END CASE ;
END PROCESS mrd_sm ;
— PCI Master Write State Machine Next State decode
mwr_sm:PROCESS(mwr, pcimwen, wrfull, wrfifo_I)
BEGIN
CASE mwr IS
WHEN mwr_idle =>
— Wait for master write to be enabled and FIFO not full
IF ((pcimwen = true_h) AND (wrfull = false_h)) THEN
mwr_next_state <= mwr_int ;
ELSE
mwr_next_state <= mwr_idle ;
END IF ;
WHEN mwr_int =>
— Master write is enabled and FIFO is not full
— Always go next state

suonenb3 aidd WAFOW

8¢T-0

mwr_next_state <= mwr_wait ;
WHEN mwr_wait =>
— Wait for DSP to read FIFO or DSP to disable master write
IF ((pcimwen = false_h) OR
(wrfifo_| = true_l)) THEN
mwr_next_state <= mwr_done ;
ELSE
mwr_next_state <= mwr_wait ;
END IF ;
WHEN mwr_done =>
— Wait for DSP to complete FIFO read or DSP to disable master write
IF ((pcimwen = false_h) OR
(wrfifo_| = false_l)) THEN

mwr_next_state <= mwr_idle ;

ELSE
mwr_next_state <= mwr_done ;
END IF ;
WHEN OTHERS => mwr_next_state <= mwr_idle ;
END CASE ;

END PROCESS mwr_sm ;
pci_seq:PROCESS(pciclk, brd_rst_1)
— synchronize read, write and emif request to pciclk
BEGIN
IF (brd_rst_I = true_I) THEN

hint_db1_| <= false_|I;

hint_db2_| <= false_| ;

tbcint_dbl_| <=false_I;

tbcint_db2_| <=false |;

pc_int <=false_h;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

6¢T-0

pcimrd_int <= false_h ;
pcimwr_int <= false_h ;
mrd <= mrd_idle ;
mwr <= mwr_idle ;

ELSIF ((pciclk EVENT) AND
(pciclk = true_h)) THEN

— PC interrupt rising edge whenever DSP host interrupt or TBC interrupt

— have a falling edge
IF (((hinten = true_h) AND
(hint_db1_| = true_l) AND (hint_db2_| = false_I)) OR
((tbcinten = true_h) AND
(tbcint_db1_| = true_I) AND (tbcint_db2_| = false_l))) THEN
pc_int <=true_h;
ELSE
pc_int <= false_h;
END IF ;
— take external interrupts into falling edge detector shift registers
hint_dbl_| <=dsp_hint_I;
hint_db2_| <= hint_db1_|;
tbeint_dbl_| <=tbc_int_I;
tbcint_db2_| <= tbcint_dbl _I;
IF (pci_det_| =true_|) THEN
— clock next state values into state machine only if PCl is detected
mrd <= mrd_next_state ;
mwr <= mwr_next_state ;
— Assert DSP EXT_INT5 when going into mrd_int state
— De-assert DSP EXT_INT5 when going into mrd_idle state
IF (mrd_next_state /= mrd_idle) THEN

suonenb3 aidd WAFOW

0€T-O

pcimrd_int <= true_h;
ELSE
pcimrd_int <=false_h ;
END IF ;
— Assert DSP EXT_INT6 when going into mwr_int state
— De—-assert DSP EXT_INT6 when going into mwr_idle state
IF (mwr_next_state /= mwr_idle) THEN
pcimwr_int <=true_h ;
ELSE
pcimwr_int <= false_h;
END IF ;
END IF ; — pci_det_I IF
END IF ; — clocked IF
END PROCESS pci_seq ;

dsp_seq:PROCESS(clk_a, brd_rst_I)
— generate interrupt clears ind sync’d interrupts
BEGIN
IF (brd_rst_| = true_l) THEN
Itchd_dbint <= false_h ;
ltchd_falcint <= false_h ;
ELSIF ((clk_a’EVENT) AND
(clk_a = true_h)) THEN
IF (cIr_dbint = false_h) THEN
IF (Itchd_dbint = false_h) THEN
Itchd_dbint <= db_int ;
END IF;
ELSE
ltchd_dbint <= false_h ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

TET-O

END IF;

IF (clr_falcint = false_h) THEN
IF (Itchd_falcint = false_h) THEN
Itchd_falcint <= falc_int ;
END IF ;
ELSE
Itchd_falcint <= false_h ;
END IF ;

END IF ; — clocked IF
END PROCESS dsp_seq ;

END rtl ;

suonenb3 aidd WAFOW

CET-O

Design For:

Texas Instruments Incorporated

Design By:
DNA Enterprises Inc
269 West Renner Parkway
Richardson, TX 75080

File name : pci_cntlr.vhd

Title : McEVM PCI Interface Controller
Module : Top-Level McEVM Control
Description

This module contains the EVMPCI functions from the EVM CPLD Abel files.

This module controls the slave (target) interface between the PCI
Controller and the JTAG TBC, DSP HPI and CPLD PCI registers. It
also controls the interface for DSP EMIF accesses to the PCI
controller which include PCI Bus Master read/write transfers.

This module provides the state machine(s) necessary to control
the signals that are required to transfer data between the PCI
controller and the DSP. The CPLD only interfaces to the PCI
controllers add—on bus interface and not the actual PCI bus.

Modification History :

Revision: 0

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

€€T-0

Date: 04/29/98
Author: Don Curry (DNA)

Description: Initial conversion from ABEL version of EVM CPLD.

Revision: 1
Date: 05/01/98
Author: Don Curry (DNA)

Description: Re—wrote entire state machine due to ensure what

I did would work as | thought without any surprises.

Revision: 2
Date: 05/05/98
Author: Don Curry (DNA)

Description: Added state to HPI accesses during x1 mode to

assure HDS1 pulse width requirements.

Revision: 3
Date: 08/07/98
Author: Don Curry (DNA)

Description: Changed add—on address from pci_aptd_adr to ea_lo
Added multiplex feature for PTADR
Found tbca_hpi problem — bit vector control shifted right by one. Fixed WFD
Revision: 4
Date: 08/10/98
Author: Bill Dempsey (DNA)

Description: Changed C6x write access to AMCC from 2 clk wide pulse to 1 clk wide pulse

Revision: 5
Date: 08/14/98

suonenb3 aidd WAFOW

YET-O

— Author: Bill Dempsey (DNA)
— Description: Found that back—to—back PTNUM=2 accesses without deassertion of PTATN caused state

— machine to restart without asserting AMCC chip select 'ao_sel_I’

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL,
ENTITY pci_control IS
PORT(
— active low signals are indicated with '_I" appended to signal name.

— INPUTS

brd_rst_| : IN STD_LOGIC ; — Reset from volt. super.

pciclk :IN STD_LOGIC ; — Buffered PCI clk (33MHz max)
clk_mode :INSTD_LOGIC ; — DSP clock mode

pci_det_| : IN STD_LOGIC ; — PCI detection indicator

ptatn_| 1IN STD_LOGIC ; — Pass—thru attention signal
ptburst_| : IN STD_LOGIC ; — Pass—thru burst signal
ptnum :IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;

— Pass—thru region number
ptwr :IN STD_LOGIC ; — Pass—thru access type (R=0/W=1)
pt_be | IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

— Latched pass—-thru byte enables
pt_addr :IN STD_LOGIC_VECTOR(4 DOWNTO 0) ;

— Latched pass—thru address
are_pci_| :IN STD_LOGIC ; — are_| synced to pciclk
awe_pci_| : IN STD_LOGIC ; — awe_| synced to pciclk

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

GET-O

be_| 1IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
— EMIF byte enables
eal6 :IN STD_LOGIC ; — EMIF address bit 16
ea_lo IN STD_LOGIC_VECTOR(4 DOWNTO 0) ;
— EMIF address bits 6:2
tbc_rdy | : IN STD_LOGIC ; — JTAG TBC Ready
dsp_hrdy_| :IN STD_LOGIC ; — DSP HPI Ready
emif_req :IN STD_LOGIC ; — Synchronized EMIF access request

— OUTPUTS
pci_flt_| : OUT STD_LOGIC; — Tri-state PCI controller outputs
pt_adr_ | :OUT STD_LOGIC; — Pass-thru address request
pt rdy | :OUTSTD_LOGIC; — Pass—thru ready signal
ao_sel | :OUTSTD_LOGIC; — Add-on register access
ao_wr_| :OUT STD_LOGIC; — Add-on write strobe
ao_rd_| :OUT STD_LOGIC; — Add-on read strobe
ao_adr :OUT STD_LOGIC_VECTOR(4 DOWNTO 0) ;
— Add-on address bits 6:2
ao_be | : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
— Add-on byte enables
rdfifo_| :OUT STD_LOGIC; — Read FIFO strobe
wrfifo_| : OUT STD_LOGIC; — Write FIFO strobe
pcireg_oe : OUT STD_LOGIC; — PCl register output enable
pcireg_ce : OUT STD_LOGIC; — PCl register clock enable
tbc_wr_| :OUT STD_LOGIC; — TBC write strobe
tbc_rd_ | :OUT STD_LOGIC; — TBC read strobe
hcs_| :OUT STD_LOGIC; — DSP HPI chip select
hdsl | :OUT STD_LOGIC; — DSP HPI data strobe

suonenb3 aidd WAFOW

9€T-0

hrw :OUT STD_LOGIC; — DSP HPI read/write control
tbca_hpic : OUT STD_LOGIC_VECTOR(4 DOWNTO 0) ;
— TBC address bits 4:0/HPI control
ao_bsy :OUT STD_LOGIC ; — Add-on S.M. busy signal
emif_ack :OUT STD_LOGIC — EMIF access acknowledge
)i
END pci_control ;
ARCHITECTURE rtl OF pci_control IS
— Define types used
TYPE ao_state_type IS (idle, ao_idle, pt_idle,
ao_sl, ao_s2, ao_s3,
pt_s1, pt_s2, pt_s3,
pt_hpi_s1, pt_hpi_s2, pt_hpi_s3, pt_hpi_s3a,
pt_hpi_s4, pt_hpi_s5, pt_hpi_s5a, pt_hpi_s6,
pt_hpi_s7,
done) ;
— Define constants for readability
CONSTANT true_h :STD_LOGIC :='1";
CONSTANT false_h :STD_LOGIC :="0;
CONSTANT true_| :STD_LOGIC :='0";
CONSTANT false_| :STD_LOGIC :="1";
CONSTANT thc_acc : STD_LOGIC_VECTOR(1 DOWNTO 0) :="00" ;
CONSTANT reg_acc : STD_LOGIC_VECTOR(1 DOWNTO 0) :="01";
CONSTANT hpi_acc : STD_LOGIC_VECTOR(1 DOWNTO 0) :="10";
CONSTANT hpib_acc : STD_LOGIC_VECTOR(1 DOWNTO 0) :="11";

CONSTANT pci_aptd_adr: STD_LOGIC_VECTOR(4 DOWNTO 0) := "01011” ;

— Internal signal declarations
SIGNAL ao_state :ao_state_type ;
SIGNAL ao_next_state :ao_state type;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

LET-D

SIGNAL tbcrdy : STD_LOGIC ; — Synchronized & inverted TBC ready
SIGNAL hrdy : STD_LOGIC ;— Synchronized & inverted HPI ready
SIGNAL hcntll : STD_LOGIC ; — Host control bit 1
SIGNAL hentlO : STD_LOGIC ; — Host control bit 0
SIGNAL thc_hpi_ctrl : STD_LOGIC_VECTOR(8 DOWNTO 0) ;
— TBC and HPI Control vector
SIGNAL ao_ctrl : STD_LOGIC_VECTOR(11 DOWNTO 0) ;
— Add-on bus Control vector
SIGNAL pt_ctrl : STD_LOGIC_VECTOR(5 DOWNTO 0) ;
— Pass—thru Control vector

—rev3

SIGNAL adr_mux_sel: STD_LOGIC ; — mux select between ao_adr and ea_lo

SIGNAL ea_lo_clkd : STD_LOGIC_VECTOR(4 DOWNTO 0) ;
BEGIN
— Pass internal siganls to port outputs
— Concurrent statements

— tri—state PCI controllers output when not in slot

pci_flt_| <= NOT pci_det_|I;

ao_adr <= ea_lo_clkd WHEN (adr_mux_sel = true_h) ELSE

pci_aptd_adr ;

— Sequential statements
ADR_REG: PROCESS(adr_mux_sel)
BEGIN
IF (adr_mux_sellEVENT) AND
(adr_mux_sel = true_h) THEN
ea_lo_clkd <=ea_lo;
END IF;
END PROCESS ADR_REG;

suonenb3 aidd WAFOW

8€T-0

— PCI Master Read State Machine Next State decode
ao_sm:PROCESS(ao_state, emif_req, awe_pci_|, are_pci_|,
ptnum, ptatn_|, hrdy, ptburst_l, clk_mode)

BEGIN
CASE ao_state IS

WHEN idle =>

IF (emif_req = true_h) THEN
ao_next_state <= ao_idle ;
ELSIF (ptatn_| = true_I) THEN
ao_next_state <= pt_idle ;
ELSE
ao_next_state <= ao_state ;
END IF ;

WHEN ao_idle => — wait for sync’d read or write strobe

IF ((awe_pci_| =true_I) OR
(are_pci_| = true_l)) THEN
ao_next_state <= ao_sl;
ELSE
ao_next_state <= ao_state ;
END IF ;

WHEN pt_idle =>

CASE ptnum IS
WHEN tbc_acc => ao_next_state <=pt_s1;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

6€T-O

WHEN reg_acc => ao_next_state <=pt_s1;

WHEN hpi_acc => ao_next_state <= pt_hpi_s1;

WHEN hpib_acc => ao_next_state <= pt_hpi_s1;

WHEN OTHERS => ao_next_state <= ao_state ;
END CASE ;

WHEN ao_s1 =>

ao_next_state <= ao_s2;

WHEN ao_s2 =>

ao_next_state <= ao_s3;

WHEN ao_s3 =>

IF ((awe_pci_| = false_l) AND
(are_pci_| = false_l)) THEN
ao_next_state <= done ;
ELSE
ao_next_state <= ao_state ;
END IF ;

WHEN pt_s1 =>

ao_next_state <=pt_s2;

WHEN pt_s2 =>

suonenb3 aidd WAFOW

ovT-O

ao_next_state <=pt_s3;

WHEN pt_s3 =>

ao_next_state <= done ;

WHEN pt_hpi_s1 =>

ao_next_state <= pt_hpi_s2 ;

WHEN pt_hpi_s2 =>

— Removed by WFD on 08/08/98. Found that state machine wasn't checking HRDY correctly

— IF (clk_mode = true_h) THEN
— ao_next_state <= pt_hpi_s3;
— ELSE

— ao_next_state <= pt_hpi_s3a ;
— ENDIF;

ao_next_state <= pt_hpi_s3a ;

WHEN pt_hpi_s3a =>

ao_next_state <= pt_hpi_s3;

WHEN pt_hpi_s3 =>

IF (hrdy = true_h) THEN

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

vT-0

ao_next_state <= pt_hpi_s4 ;
ELSE

ao_next_state <= ao_state ;
END IF ;

WHEN pt_hpi_s4 =>

— Removed by WFD on 08/08/98. Found that state machine wasn't checking HRDY correctly

— IF (clk_mode = true_h) THEN
— ao_next_state <= pt_hpi_s5;
— ELSE

— ao_next_state <= pt_hpi_sb5a ;
— ENDIF;

ao_next_state <= pt_hpi_sba ;

WHEN pt_hpi_sb5a =>

ao_next_state <= pt_hpi_s5;

WHEN pt_hpi_s5 =>

IF (hrdy = true_h) THEN
ao_next_state <= pt_hpi_s6 ;
ELSE
ao_next_state <= ao_state ;
END IF ;

suonenb3 aidd WAFOW

ZvT-0

WHEN pt_hpi_s6 =>

ao_next_state <= pt_hpi_s7 ;

WHEN pt_hpi_s7 =>

— IF (ptnum = hpi_acc) THEN
— ao_next_state <= done ;
— Rev 5 commented out these next three lines
— IF ((ptatn_I = false_I) AND
— (ptburst_| = false_l)) THEN
— ao_next_state <= done ;
— ELSIF ((ptnum = hpib_acc) AND —rev 5
— ELSEIF (ptatn_| = false_|) AND —rev 5
— (ptburst_| = false_l)) THEN
— ao_next_state <= done ;
— ELSIF (ptatn_| = true_Il) THEN
—(ptnum = hpib_acc)
— ao_next_state <= pt_idle ; — rev 5 (was pt_num_1)
— ELSE
— ao_next_state <= ao_state ;
— ENDIF;
IF ((pthum = hpi_acc) OR ((ptatn_I = false_I) AND (ptburst_| = false_I))) THEN
ao_next_state <= done;
ELSIF (ptatn_| = true_I) THEN
ao_next_state <= pt_idle;
ELSE
ao_next_state <= ao_state;
END IF;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

EVT-O

WHEN done =>

ao_next_state <=idle ;

WHEN OTHERS => ao_next_state <=idle ;

END CASE ;
END PROCESS ao_sm;
seq:PROCESS(pciclk, brd_rst_I)

BEGIN
IF (brd_rst_| = true_l) THEN
ao_state <= idle ; — Beginning of state machine
hrdy <= false_h ; — Not ready
tberdy <= false_h; — Not ready
pt_adr_| <=false_| ; — No direct PCI address register read

pt_rdy | <=false_I;
ao_sel_| <=false_|;

— ao_adr <="00000"; —rev 3
adr_mux_sel <=false_h; —rev 3
ao_be |<="1111";
ao_wr_| <=false_|;
ao_rd_| <=false_|;
emif_ack <=false_h; — No EMIF acknowledge
rdfifo_| <=false_| ;
wrfifo_| <= false_I;
tbc_wr_| <=false_I;
tbc_rd_| <=false_|;
pcireg_oe <=false_h;

suonenb3 aidd WAFOW

YvT-O

pcireg_ce <=false_h;
hcs_| <= false_|;
hdsl | <=false_|;

hrw <= false_h ; — Host R/W strobe
tbca_hpic <="00011";
ao_bsy <=false_h; — State machine not busy

ELSIF ((pciclk EVENT) AND
(pciclk = true_h)) THEN

— clock next state values into state machine only if PCl is detected
IF (pci_det_| =true_|) THEN
ao_state <= ao_next_state ;
END IF ;
— synchronize various signals to pciclk
hrdy <= NOT dsp_hrdy_I;
tberdy <= NOT the_rdy | ;

— Host read/write is inverted pass—thru r/w strobe
hrw <= NOT ptwr ;

— Define all control signals relative to current state
— set default

adr_mux_sel <=false_h; —rev 3

CASE ao_state IS

WHEN idle =>

IF ((emif_req = false_h) AND
(ptatn_| = true_l)) THEN
pt_adr_| <=true_l;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

SYT-O

ao_bsy <=true_h;
END IF;

WHEN ao_idle =>

ao_adr <= pci_aptd_adr ; — rev 3 change
adr_mux_sel <=true_h; —rev3
IF (eal6 = false_h) THEN
ao_sel_I <=true_|;
ao_be | <=be_|;
IF (are_pci_| =true_l) THEN
ao_rd_| <=true_I;
END IF ;
Removed by WFD 08/10/98 to remove double clock wide ao_wr_|
IF (awe_pci_| = true_l) THEN
ao_wr_|<=true |;
END IF;
ELSE
ao_be | <="0000";
IF (are_pci_| = true_I) THEN
rdfifo_| <=true_l ;
END IF ;
IF (awe_pci_| = true_I) THEN
wrfifo_| <= true_I ;
END IF ;
END IF;

WHEN pt_idle =>

suonenb3 aidd WAFOW

IvT-O

pt_adr_| <=false_|;
ao_adr <= pci_aptd_adr ; —rev 3
ao_sel_|<=true_|;
CASE ptnum IS
WHEN hpi_acc =>ao0_be_| <=x"C";
WHEN hpib_acc =>ao0_be_| <=x"C";
WHEN OTHERS => ao_bhe_| <="0000";
END CASE ;
IF (ptwr = false_h) THEN
CASE ptnum IS
WHEN tbc_acc =>tbc_rd_| <=true_|;
WHEN reg_acc => pcireg_oe <=true_h;
WHEN OTHERS => NULL ;
END CASE ;
ELSE
ao_rd_I <=true_|I;
END IF;

WHEN ao_sl1 =>

adr_mux_sel <=true_h; —rev 3
IF (eal6 = false_h) THEN
IF (awe_pci_| = true_l) THEN
ao_wr_| <=true_|;
END IF ;
ELSE
IF (awe_pci_| = true_l) THEN
wrfifo_| <=true_|;
END IF ;

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

LYT-D

END IF;

WHEN ao_s2 =>

adr_mux_sel <=true_h; —rev3
ao_wr_| <=false_|;
wrfifo_| <= false_|;

emif_ack <=true_h;

WHEN ao_s3 =>

adr_mux_sel <=true_h; —rev 3
IF ((awe_pci_| = false_I) AND
(are_pci_| =false_l)) THEN
emif_ack <=false_h ;
END IF;

WHEN pt_s1 =>

tbca_hpic <= pt_addr;
IF (ptwr = false_h) THEN
ao_wr_| <=true_|;
ELSE
CASE ptnum IS
WHEN tbc_acc =>tbc_wr_| <=true_|;
WHEN reg_acc => pcireg_ce <= true_h ;
WHEN OTHERS => NULL ;
END CASE ;
END IF;

suonenb3 aidd WAFOW

8¥T-O

WHEN pt_s2 =>

— ao_wr_| <=false_I;

tbc_wr_| <=false_I;

pcireg_ce <= false_h ;

WHEN pt_s3 =>

ao_wr_|<=false_I;

pt_rdy | <=true_l;

WHEN pt_hpi_s1 =>

hcs_| <=true_|;
thca_hpic(2) <= false_h ; — (hhwil) first access
IF (ptnum = hpi_acc) THEN
IF (pt_addr(1 DOWNTO 0) ="10") THEN — block access to auto incr if we're in non—auto space
— tbca_hpic(3 DOWNTO 2) <="10" ; — hcntl(1:0)

tbca_hpic(4 DOWNTO 3)<="11"; — hentl(1:0) Fix: WFD
ELSE
— tbca_hpic(3 DOWNTO 3) <= pt_addr(1 DOWNTO 0); — hentl(2:0) Fix: WFD
tbca_hpic(4 DOWNTO 3) <= pt_addr(1 DOWNTO 0) ; — hcntl(1:0)
END IF ;
ELSIF (ptnum = hpib_acc) THEN — only access auto incr data
— tbca_hpic(3 DOWNTO 2) <="10"; — hentl(1:0) Fix: WFD
tbca_hpic(4 DOWNTO 3) <="10"; — hcntl(1:0)
END IF;

IF (ptwr = true_h) THEN

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

6%T-O

tbca_hpic(1 DOWNTO 0) <= pt_be_I(1 DOWNTO 0) ; — hbe_I(1:0)
END IF;

WHEN pt_hpi_s2 =>

IF (ptwr = false_h) THEN
ao_wr_| <=true_|I;

END IF;

hdsl_| <=true_I;

WHEN pt_hpi_s3a =>

NULL ;

WHEN pt_hpi_s3 =>

IF (hrdy = true_h) THEN
ao_wr | <=false |;
ao_be | <=x"3";

hdsl | <=false |;

tbca_hpic(2) <=true_h; — (hhwil) second access
IF (ptwr = true_h) THEN
tbca_hpic(1 DOWNTO 0) <= pt_be_ I(3 DOWNTO 2); — hbe_I(1:0)
END IF ;
END IF;

WHEN pt_hpi_s4 =>

IF (ptwr = false_h) THEN

suonenb3 aidd WAFOW

0ST-O

ao_wr_| <=true_|;
END IF ;
hdsl | <=true_l;

WHEN pt_hpi_s5a =>

NULL ;

WHEN pt_hpi_s5 =>

IF (hrdy = true_h) THEN
ao_wr_| <=false_I;
hds1_| <= false_I;
pt_rdy I <=true_l;

END IF;

WHEN pt_hpi_s6 =>

ao_be I<="1111";
ao_adr <="00000" ; —rev 3
ao_sel | <=false |;
ao_rd_| <=false_|;
pt_rdy | <=false_I;
hcs_| <=false_|;
tbca_hpic <="00011";

WHEN pt_hpi_s7 =>

IF ((ptnum = hpib_acc) AND

— looping back to pt_hpi_s1

suonenb3 aidd WAFON

suonenb3 @idd WAFIW XZ9D0ZESN.L

T1ST-O

(ptatn_I = true_l)) THEN

— ao_adr <=pci_aptd_adr ; —rev 3

ao_sel_I<=true_|;
ao_be |<=x"C";
IF (ptwr = true_h) THEN
ao_rd_| <=true_|;
END IF;
END IF;

WHEN done =>

ao_bsy <=false_h;
ao_sel_| <=false_|;
ao_rd_| <=false_|I;
rdfifo_| <= false_l ;

ao_be | <="0000";

— ao_adr <="00000" ; —rev 3

adr_mux_sel <=true_h; —rev3
pt_rdy | <=false_I;
tbc_rd_| <=false_|;

pcireg_oe <= false_h;

WHEN OTHERS =>

NULL ;
END CASE ;
END IF ; — clocked IF
END PROCESS seq ;

END rtl ;

suonenb3 aidd WAFOW

C-152

Appendix D

TMS320C62x MCEVM
PCI Configuration EEPROM

This appendix documents the EEPROM used on the 'C62x McEVM to initialize
the AMCC S5933 peripheral component interconnect (PCI) controller’s con-
figuration space registers.

The S5933 PCI controller provides the configuration registers required to sup-
port the PCI’s plug-and-play capability. The initialization of these registers is
performed upon power up and system reset by the S5933, which clocks serial
data in from the EEPROM using a two-wire, bidirectional data transfer. This
automatic register initialization is performed since the S5933's SNV pin is
pulled up on the MCEVM to indicate that a serial nonvolatile memory device
is present.

Table D-1 summarizes the contents of the 1K-byte EEPROM. Multibyte de-
fault values are stored in least-significant-byte to most-significant-byte (little-
endian) order. The 64-byte configuration information is stored in the EEPROM
locations 0x40 to 0x7F. Locations 0x00 to Ox3F are reserved for future use by
Texas Instruments. Locations 0x80 to Ox3FF are available for user-defined,
nonvolatile storage that is accessible by both host and DSP software.

D-1

Table D-1. PCI Configuration EEPROM Summary

EEPROM Register

Offset Initialized Description Value Selection
0x00-0x3F - Reserved for future use All 0x00 -
0x40-0x41 VID Vendor identification 0x104C TI
0x42-0x043 DID Device identification 0x1003 McEVM

0x44 - Reserved 0x00 -

0x45 - FIFO configuration OxE1l PCI, async
0x46-0x47 - Reserved 0x0000 =

0x48 RID Revision identification register 0x00 Rev. 0 board
0x49-0x4B CLCD Class code register 0x0B4000 Coprocessor

0x4C - Reserved 0x00 -

0x4D LAT Master latency timer O0xF8 248 clocks

Ox4E HDR Header type 0x00 One function

Ox4F BIST Built-in self test 0x00 No BIST
0x50-0x53 BARO Base address register 0 0x10E8FFCO 16 DWORDs
0x54-0x57 BAR1 Base address register 1 OxFFFFFF80 32 DWORDs
0x58-0x5B BAR2 Base address register 2 OxFFFFFF80 32 DWORDs
0x5C-0x5F BAR3 Base address register 3 O0xBFFFFFFO 4 DWORDs
0x60-0x63 BAR4 Base address register 4 0xBFFC0000 64K DWORDs
0x64—-0x67 BAR5 Base address register 5 0x00000000 Not used
0x68—-0x6F - Reserved All 0x00 -
0x70-0x73 EXROM Expansion ROM base address 0x00000000 No ROM
0x74-0x7B - Reserved All 0x00 -

0x7C INTLN Interrupt line OxFF Autoassign IRQ

0x7D INTPIN Interrupt pin 0x01 INTA#

OX7E MINGNT Minimum grant 0x00 No min grant

Ox7F MAXLAT Maximum latency 0x00 No max latency

0x80—0x3FFt = Not used (available) All 0x00 =

T These address offsets are available for general-purpose use. This is a total of 896 bytes.

D-2

Appendix E

Glossary

A/D: See analog-to-digital.

adaptive differential pulse code modulation (ADPCM): A speech coding
method that calculates the difference between two consecutive speech
samples and encodes it using an adaptive filter to transmit at a lower rate
than the standard 64-kbps pulse code modulation technique.

ADC: See analog-to-digital converter.
address: The logical location of program code or data stored in memory.

administrative privileges: Authority to set software and hardware access;
includes access and privileges to install, manage, and maintain system
and application software and directories on a network server or individual
computer systems.

ADPCM: See adaptive differential pulse code modulation.
A-Law companding: See compress and expand (compand).
ALU: See arithmetic logic unit.

American National Standards Institute (ANSI): A standards-setting, non-
government organization that develops and publishes standards for vol-
untary use in the United States.

American Standard Code for Information Interchange (ASCII): A stan-
dard computer code for representing and exchanging alphanumeric in-
formation.

analog-to-digital (A/D): Conversion of continuously variable electrical sig-
nals to discrete or discontinuous electrical signals.

analog-to-digital converter (ADC): A converter with internal sample-and-
hold circuitry used to translate an analog signal to a digital signal.

E-1

Glossary

ANSI C: A version of the C programming language that conforms to the C
standards defined by the American National Standards Institute.

application programming interface (API): A set of standard software
function calls and data formats that application programs use to interact
with other applications, device-specific drivers, or the operating system.

application-specific integrated circuit (ASIC): A custom chip designed
for a specific application. Itis designed by integrating standard cells from
a library.

arithmetic logic unit (ALU): The section of the computer that carries out all
arithmetic operations (addition, subtraction, multiplication, division, or
comparison) and logic functions.

ASCIl: See American Standard Code for Information Interchange.
ASIC: See application-specific integrated circuit.

assembler: A software program that creates a machine language program
from a source file that contains assembly language instructions,
directives, and macros. The assembler substitutes absolute operation
codes for symbolic operation codes, and absolute or relocatable
addresses for symbolic addresses.

assert: To make a digital logic device pin active. If the pin is active low, then
a low voltage on the pin asserts it. If the pin is active high, then a high
voltage asserts it.

ball grid array (BGA): An integrated circuit package in which the input and
output connections are solder balls arranged in a grid pattern.

base address register (BAR): A device configuration register that defines
the start address, length, and type of memory space required by a pe-
ripheral component interconnect (PCI) device. The value written to this
register during device configuration programs its memory decoder to de-
tect accesses within the indicated range.

basic input/output system (BIOS): A firmware program that is responsible
for power-on testing and initialization of a computer. In addition, it may
provide runtime services for operating systems.

BBS: See bulletin board service.

benchmarking: A type of program execution that allows you to track the
number of CPU cycles consumed by a specific section of code.

Glossary

BGA: See ball grid array.

big endian: An addressing protocol in which bytes are numbered from left
to right within a word. More significant bytes in a word have lower
numbered addresses. Endian ordering is specific to hardware and is de-
termined at reset. See also little endian.

BIOS: See basic input/output system.
bit: A binary digit, either O or 1.
boot: The process of loading a program into program memory.

boot mode: The method of loading a program into program memory. The
'C62x DSP supports booting from external ROM or the host port interface
(HPI).

bulletin board service (BBS): An electronic bulletin board that allows users
to post and read messages and download software.

bus master: A device capable of initiating a data transfer with another de-
vice.

byte: A sequence of eight adjacent bits operated upon as a unit.

CBT: See crossbar technology.
CD-ROM: See compact disc read-only memory.

central processing unit (CPU): The CPU is the portion of the processor in-
volved in arithmetic, shifting, and Boolean logic operations, as well as the
generation of data- and program-memory addresses. The CPU includes
the central arithmetic logic unit (CALU), the multiplier, and the auxiliary
register arithmetic unit (ARAU).

channel service unit (CSU): A device used to connect a digital phone line,
such as T1/E1, coming in from the phone company to another device
producing a digital signal.

clock cycle: A cycle based on the input from the external clock.

clock mode (clock generator): One of the modes that sets the internal
CPU clock frequency to a fraction or multiple of the frequency of the input
clock signal CLKIN.

clock modes: Options used by the clock generator to change the internal
CPU clock frequency to a fraction or multiple of the frequency of the input
clock signal.

Glossary E-3

Glossary

E-4

CMOS: See complementary metal oxide semiconductor.

coder-decoder or compression/decompression (codec): A device that
codes in one direction of transmission and decodes in another direction
of transmission.

common object file format (COFF): A system of object files configured ac-
cording to a standard developed by AT&T. These files are relocatable in
memory space. The 'C62x code generation tools generate COFF files.

compact disc read-only memory (CD-ROM): A 4.7-inch optical disk that
can hold as much as 660M bytes of digital data. A CD-ROM can store
digitized audio, image, video, text, and application data.

compiler: A translation program that converts a high-level language set of
instructions into a target machine’s assembly language.

complementary metal oxide semiconductor (CMOS): An integrated cir-
cuit technology that uses complementary transistors to efficiently charge
and discharge capacitive loads in both the positive and negative direc-
tions and dissipates power only on transitions.

complex programmable logic device (CPLD): Adigital, user-configurable
integrated circuit used to implement custom logic functions.

compress and expand (compand): A quantization scheme for audio sig-
nals in which the input signal is compressed and then, after processing,
is reconstructed at the output by expansion. There are two distinct com-
panding schemes—A-law, used in Europe, and p-law, used in the United
States.

CPLD: See complex programmable logic device.

crosshar technology (CBT): High-speed bus-connect devices that are
useful for bus isolation, multiplexing, and voltage translation. These de-
vices have an on-state resistance of 5 ohms and a propagation delay of
250 ps.

CPU: See central processing unit.

CSU: See channel service unit.

Glossary

D/IA: See digital-to-analog.
DAC: See digital-to-analog converter.

daughterboard: A circuit board that connects to a motherboard to provide
additional capabilities and/or interfaces. See also motherboard.

dB: See decibels.

debugger: A software interface used to identify and eliminate mistakes in a
program.

decibels (dB): A unit for measuring the level of signal relative to a defined
reference signal that follows it. For example, the notation dBm indicates
a signal power level relative to a 1 milliwatt reference signal.

device driver: Software that enables computer hardware to communicate
with a device. A device driver may also translate data and call other driv-
ers to actually send data to a device.

device ID: Every peripheral component interconnect (PCI) device must
have a device ID configuration register to identify itself.

digital signal processor (DSP): A semiconductor that turns analog sig-
nals—such as sound or light—into digital signals, which are discrete or
discontinuous electrical impulses, so that they can be manipulated.

digital-to-analog (D/A): Conversion of discrete or discontinuous electrical
signals to continuously variable signals. See also digital-to-analog con-
verter.

digital-to-analog converter (DAC): A device that converts a signal repre-
sented by a series of numbers (digital) to a continuously varying signal
(analog). See also digital-to-analog.

DIP: See dual in-line package.

direct memory access (DMA): A mechanism whereby a device other than
the host processor contends for, and receives, mastery of the memory
bus so that data transfers can take place independent of the host.

DLL: See dynamic link library.
DMA: See direct memory access.

doubleword (DWORD): The PCI (host) defines a doubleword as a 32-bit
value. See also word and halfword.

Glossary E-5

Glossary

E-6

driver: See device driver.
DSP: See digital signal processor.

dual in-line package (DIP): A common rectangular chip housing with leads
(pins) on both long sides.

DWORD: See doubleword.

dynamic link library (DLL): A Windows software library that is linked dy-
namically at run time, rather than statically at compile time. DLLs can be
shared among multiple applications and be replaced with newer versions
without requiring the applications to be recompiled.

EEPROM: See electrically-erasable programmable read-only memory.

electret microphone: A condenser microphone that requires an external
power source.

electrically-erasable programmable read-only memory (EEPROM): A
nonvolatile memory device that can be programmed in-circuit and have
its contents selectively changed. Although its name includes read-only,
it supports both read and write accesses.

electrostatic discharge (ESD): Discharge of a static charge on a surface
or body through a conductive path to ground, which can be damaging to
integrated circuits.

EMIF: See external memory interface.

erasable programmable read-only memory (EPROM): A nonvolatile
memory device that can be erased with exposure to ultraviolet light. The
device can be randomly accessed, but it is read only.

ESD: See electrostatic discharge.

evaluation module (EVM): A board and software tools that allow the user
to evaluate a specific device.

expansion interface: An interface that allows additional capabilities to be
added to a base product.

external interrupt: A hardware interrupt triggered by a specific value on a
pin.

external memory interface (EMIF): The boundary between the CPU and
external memory through which information is conveyed.

Glossary

firstin, first out (FIFO): A queue; a data structure or hardware buffer from
which items are taken out in the same order they were putin. A FIFO is
useful for buffering a stream of data between a sender and receiver that
are not synchronized; that is, the sender and receiver are not sending
and receiving at exactly the same rate. If the rates differ by too much in
one direction for too long, the FIFO becomes either full (blocking the
sender) or empty (blocking the receiver).

flag: A binary status indicator whose state indicates whether a particular
condition has occurred or is in effect.

Flash memory: Nonvolatile read-only memory that is electronically eras-
able and programmable.

flexible MVIP integrated circuit (FMIC): Device which provides a complete
MVIP-compliantinterface between the MVIP bus and a variety of proces-
sors, telephony interfaces and other circuits. It also provides a 384 x 384
switching matrix between the MVIP bus and four local data streams.

halfword: The’'C62x DSP defines a halfword as al6-bit data value. See also
doubleword and word.

handle: An identifier used by software to reference a file or device.

high-level language (HLL): A general-purpose language that can be used
to program a microprocessor rather than using a low-level, machine-
dependent language.

host: A device to which other devices (peripherals) are connected and that
generally controls those devices.

host port interface (HPI): A 16-bit parallel interface that the host uses to
access the DSP’s memory space.

identifier (ID): Afield that contains aresource-table index, a sequence num-
ber, and a resource-type code; it identifies a kernel resource such as a
port, semaphore, or task.

IEEE 1149.1 standard: “IEEE Standard Test Access Port and Boundary-
Scan Architecture”, first released in 1990. See also JTAG.

Glossary E-7

Glossary

Industry Standard Architecture (ISA): An industry-standard 8/16-bit bus
used in IBMO compatible desktops. It provides a theoretical maximum
data transfer rate of 8.33M bytes per second.

initiator: When a PCI bus master has arbitrated for and won access to the
PCI bus, it becomes the initiator of a transaction.

Institute of Electrical and Electronic Engineers (IEEE): A publishing and
standards-making body focused on advancing the theory and practice
of electrical, electronics, computer engineering, and computer science.

in-system programmable (ISP): The ability to program and reprogram a
device on a circuit board.

Integrated Services Digital Network (ISDN): A worldwide digital commu-
nications network evolving from existing telephone services. Its goal is
to replace current telephone lines that require DA conversions with total-
ly digital switching and transmission facilities capable of carrying a vari-
ety of data—from voice to computer transmissions, music, and video.
The ISDN is built on two main types of communications channels: a B
channel, which carries data at 64 Kb/s, and a D channel, which carries
control information at either 16 or 64 Kb/s. Computers and other devices
connect ISDN lines through simple, standardized interfaces.

integrated switching regulator (ISR): A complete switch-mode power
supply in a modular, board-mounted package.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.
interrupt: A signal sent by hardware or software to a processor requesting
attention. An interrupt tells the processor to suspend its current opera-
tion, save the current task status, and perform a particular set of instruc-
tions. Interrupts communicate with the operating system and prioritize

tasks to be performed.

interrupt service routine : A module of code that is executed in response
to a hardware or software interrupt.

ISDN: See Integrated Services Digital Network.
ISP: See in-system programmable.

ISR: See integrated switching regulator.

Glossary

Joint Test Action Group (JTAG): The Joint Test Action Group was formed
in 1985 to develop economical test methodologies for systems designed
around complex integrated circuits and assembled with surface-mount
technologies. The group drafted a standard that was subsequently
adopted by IEEE as IEEE Standard 1149.1-1990, “IEEE Standard Test
Access Port and Boundary-Scan Architecture.”

kilohertz (kHz): One thousand hertz, or cycles per second, used to indicate
the frequency of a clock signal.

latch phase: The phase ofa CPU cycle during whichinternal values are held
constant.

LBO: See line build out.

light emitting diode (LED): A semiconductor chip that gives off visible or
infrared light when activated.

line build out (LBO): Selectable output attenuation with typical loss of 0.0,
7.5 and 15 dB at 772 kHz.

line interface unit (LIU): A device or a part of a device responsible for inter-
facing to a digital network (T1/E1) line.

linker: A software tool that combines object files to a form an object module,
which can be loaded into memory and executed.

little endian: Anaddressing protocol in which bytes are numbered from right
to left within a word. More significant bytes in a word have higher num-
bered addresses. Endian ordering is specific to hardware and is deter-
mined at reset. See also big endian.

LIU: See line interface unit.
load: To enter data into storage or working registers.

loader: A device that places an executable module into system memory.

Glossary E-9

Glossary

E-10

mA: See milliamp.

macro: A sequence of statements or instructions that is represented by a
symbolic symbol.

UF: See microfarad.
p-Law companding: See compress and expand (compand).

mailbox: A 32-bit register that provides a simple communication method to
pass messages between the host and DSP software. Multiple mailboxes
are typically available to support bidirectional, multiword message trans-
fers.

maskable interrupt : An interrupt that can be enabled or disabled through
software.

master clock output signal (CLKOUTL1): The output signal of the on-chip
clock generator. The CLKOUT1 high pulse signifies the CPU’s logic
phrase (when internal values are changed), while the CLKOUTL1 low
pulse signifies the CPU'’s latch phase (when the values are held
constant).

Mbps: See megabit per second.
McBSP: See multichannel buffered serial port.

McEVM: A multichannel communications development board and software
tools that allow the user to evaluate a specific device.

megabit per second (Mbps): A million bits of data per second.

megahertz (MHz): One million hertz, or cycles per second, used to indicate
the frequency of a clock signal.

memory map: A graphical representation of a computer system’s memory,
showing the locations of program space, data space, reserved space,
and other memory-resident elements.

memory-mapped register: An on-chip register mapped to an address in
memory. Some memory-mapped registers are mapped to data memory,
and some are mapped to input/output memory.

MHz: See megahertz.

microfarad (uF): One-millionth of a farad, which is the basic unit of capaci-
tance.

Glossary

microsecond (ps): One-millionth of a second.

milliamp (mA): One-thousandth of an ampere, which is the basic unit of cur-
rent.

millimeter (mm): One-thousandth of a meter.

million instructions per second (MIPS): A unit of instruction execution
speed of a computer.

millisecond (ms): One-thousandth of a second.

millivolts root mean square (mV yns): One-thousandth of a volt root mean
square. See also volts root mean square.,

MIPS: See million instructions per second.
mm: See millimeter.

most significant byte (MSbyte): The byte in a multibyte word that has the
most influence on the value of a word.

motherboard: The main circuit board that contains the processor, main
memory, circuitry, bus controller, connectors, and primary components
of the computer. See also daughterboard.

us: See microsecond.
ms: See millisecond.
MShbyte: See most significant byte.

multichannel buffered serial port (McBSP): A standard serial port inter-
face found on 'C62x devices. It provides full-duplex communication,
double-buffered data registers, independent transmit and receive fram-
ing and clocking, direct interface to industry-standard serial devices, in-
ternal and external clock support, and an autobuffering capability using
a DMA controller.

multiplexing: A process of transmitting more than one set of signals at a
time over a single wire or communications link. (Also known as muxing.)

Multi-Vendor Integration Protocol (MVIP): A family of standards that al-
lows products from different vendors to interoperate withina computer or
group of computers. The MVIP bus is a telephony bus that provides 256
full-duplex voice channels (16 streams of 32 timeslots) over a ribbon
cables between PC boards.

mutex: A mutual exclusion semaphore used to restrict access to a resource.

Glossary E-11

Glossary

E-12

MVIP: See Multi-Vendor Integration Protocol.

MVims: See millivolts root mean square.

nanosecond (ns): One-billionth of a second, the basic unit of time.

nonmaskable interrupt (NMI): An interrupt that uses the same logic as the
maskable interrupts, but can be neither masked nor disabled. It is often
used as a soft reset.

nonvolatile random access memory (NVRAM): A type of random access
memory that retains its data when its power source is turned off, provid-
ing nonvolatile storage.

object file: A file that has been assembled or linked and contains machine
language object code.

off chip: A device external to the device.

on chip: An element or module internal to the device.

parallel debug manager (PDM): A program used for creating and control-
ling multiple debuggers for the purpose of debugging code in a parallel-
processing environment.

PC: Personal computer.
PCI: See peripheral component interconnect.
PCM: See pulse code modulation.

PDM: See parallel debug manager.

peripheral component interconnect (PCI): A high-speed local bus that
supports data-transfer speeds of up to 132M bytes per second at
33 MHz.

phase-locked loop (PLL): A unit within a system that uses phase to lock on
to a signal to ensure synchronous clocking of digital signals.

Glossary

pitch: The distance between successive centers of leads of a component
package.

plastic quad flat pack (PQFP): A low-profile, surface-mount integrated cir-
cuit package that is plastic and has leads (pins) on all four sides.

PLL: See phase-locked loop.
poll: A continuous test used by the program until a desired condition is met.

PQFP: See plastic quad flat pack.

profiling environment: A special debugger environment that provides a
method for collecting execution statistics about specific areas in applica-
tion code.

pulse code modulation (PCM): The most common method of encoding an
analog voice signal into digital data. Voice signals are encoded into 8-bit
data samples at an 8-kHz sample rate, resulting in a 64-kbps digital data
stream.

random-access memory (RAM): A memory element that can be written to
as well as read from.

read-only memory (ROM): A semiconductor storage element containing
permanent data that cannot be changed.

ready: A task state indicating that the task either is currently executing or is
able to execute as soon as it acquires the processor.

realtime: The actual time during which the physical process of computation
transpires in order that results of the computation interact with a physical
process.

reduced instruction set computer (RISC): A computer whose instruction
set and related decode mechanism are much simpler than those of
microprogrammed complex instruction set computers. The result is a
higher instruction throughput and a faster real-time interrupt service re-
sponse from a smaller, cost-effective chip.

register: A small area of high-speed memory, located within a processor or
electronic device, that is used for temporarily storing data or instructions.
Each register is given a name, contains a few bytes of information, and
is referenced by programs.

Glossary E-13

Glossary

E-14

reset: A means to bring processors to known states by setting registers and
control bits to predetermined values and signaling execution to start at
a specified address.

ring 0: Highest level of privilege available on an Intel processor that defines
what data can be accessed, what code in memory can be executed, and
what machine instructions can be executed by a program. Low-level de-
vice drivers run at ring 0. See also ring 3.

ring 3: Lowest level of privilege available on an Intel processor that defines
what data can be accessed, what code in memory can be executed, and
what machine instructions can be executed by a program. High-level
user-mode applications and DLL run at ring 3. See also ring O.

RISC: See reduced instruction set computer.

ROM: See read-only memory.

samplerate: The rate at which the audio codec samples audio data. Usually
specified in hertz (samples per second).

SBSRAM: See synchronous burst static random-access memory.
SDRAM: See synchronous dynamic random-access memory.

slave: Another name for the target being addressed during a PCI transac-
tion.

static random-access memory (SRAM): Fast memory that does not re-
quire refreshing, as DRAM does. It is more expensive than DRAM,
though, and is not available in as high a density as DRAM.

structure: A collection of one or more variables grouped together under a
single name.

surface-mount technology: A method of assembling printed wiring boards
where components are mounted onto the surface rather than through
holes.

synchronous burst static random-access memory (SBSRAM): High-
performance SRAM device with accesses that are synchronized to a mi-
croprocessor clock and includes a burst address counter.

synchronous dynamic random-access memory (SDRAM): High-
performance DRAM device with accesses that are synchronized to a
microprocessor clock and support for page bursts.

syntax: The grammatical and structural rules of a language. All higher-level
programming languages possess a formal syntax.

Glossary

T1/E1l: T1lisadigital transmission link with a capacity of 1.544 Mbps. It uses
two pairs of normal twisted-wires and can handle 24-voice conversa-
tions, each digitized using mu-law coding at 64 kbps. T1 is used in USA,
Canada, Hong Kong, and Japan. E1 is a digital transmission link with a
capacity of 2.048 Mbps. Itis the European equivalent of T1. It can handle
30-voice conversations, each digitized using A-law coding at 64 kbps.

target : Whenrelatedto PCl, itis the device thatis the target of a PCl transac-
tioninitiated by a PCl bus master. When related to the debugger, the DSP
is the target of an emulation access.

target memory: Physical memory in a device into which executable object
code is loaded.

TDM: See time-division multiplexed.

test bus controller (TBC): Application-specific integrated circuit that con-
trols an IEEE 1149.1-1990 (JTAG) serial-test bus to support production
testing and in-system microprocessor emulation. The TBC provides con-
trol of the DSP and access to all of its registers and memory.

thin quad flat pack (TQFP): A very low-profile, surface-mount integrated
circuit package that is plastic and has leads (pins) on all four sides.

thread of execution: A schedulable unit of execution in a multitasking
system. The term refers specifically to the progressive execution of a
program element; it excludes other attributes, such as the system
resources allocated to a task or process.

time-division multiplexed (TDM): The process by which a single serial bus
is shared by multiple devices with each device taking turns to communi-
cate on the bus. The total number of time slots (channels) depends on
the number of devices connected. During a time slot, a given device may
talk to any combination of devices on the bus.

timer: A programmable peripheral used to generate pulses or to time
events.

TQFP: See thin quad flat pack.

transistor-transistor logic (TTL): A family of logic devices that are made
with bipolar junction transistors and resistors. A TTL low level is defined
as avoltage level below 0.4 volts. ATTL high level is defined as a voltage
level above 2.4 volts.

tri-state: High impedance.

Glossary E-15

Glossary

E-16

V. See volt.
VBAP: See voice-band audio processor.
Vge: See volts direct current.

VelociTl: Architecture developed by Texas Instruments that features very
long instruction words.

vendor ID: Every PCI device must have a vendor ID configuration register
that identifies the vendor of the device.

very long instruction word (VLIW): Architecture using words between the
sizes of 256 bits and 1024 bits.

virtual device driver (VxD): A 32-bit, ring-0 module that virtualizes hard-
ware for ring-3 modules to provide a primary interface to hardware or
specialized software services.

VLIW: See very long instruction word.

voice-band audio processor (VBAP): A voice codec device that provides
filtering, analog-to-digital and digital-to-analog conversion with inter-
faces to a microphone, speaker, and serial, digital itherface. It can oper-
ate in either mu-law or A-law companding or 13-bit linear modes.

volt (V): The unit of voltage, or potential difference.

voltsdirectcurrent(V 4c): The voltage measurement of a direct current sig-
nal.

volts peak-to-peak (V IDI[,): A measurement of a signal that indicates the dif-
ference between its maximum and minimum voltage values.

volts root mean square (V ps): A measurement of a periodic signal that
indicates the effective voltage at which a direct current voltage would de-
liver the same average power. This measurement provides a method for
comparing the power delivered by different waveforms.

VxD: See virtual device driver.

Glossary

Win32: The 32-bit application programming interface for both Windows 95
and Windows NT.

word: Acharacter or bit string considered as an entity. The length of the word
is machine-dependent. The 'C62x DSP defines a word as a 16-bit data
value. The PCI (host) defines aword as a 16-bit data value. See also dou-
bleword and halfword.

XDS510: A hardware emulator that provides a scan-path connection to a
DSP for source code debugging.

xDSL: Ageneric name (x is the generic) for digital subscriber line equipment
and services. Asymmetric DSL (ADSL) is one of the more popular types,
providing up to 6 Mbsp downstream and 640 kbps upstream data rates
using standard twisted pair wiring.

Glossary E-17

E-18

E-19

add-on FIFO register port (AFIFO) 1-29

add-on general control/status register
(AGCSTS) 1-29

add-on incoming mailbox registers
(AIMB1-AIMB4) 1-29

add-on interrupt control register (AINT) 1-29

add-on mailbox empty/full status register
(AMBEF) 1-29

add-on outgoing mailbox registers
(AOMB1-AOMB4) 1-29

AFIFO register 1-29
AGCSTS register 1-29
AIMB1-AIMB4 registers 1-29
AINT register 1-29

AMBEF register 1-29
AOMB1-AOMB4 registers 1-29

asynchronous expansion memory 1-14,1-15
See also expansion memory

audio codec
in detailed block diagram 1-3
registers
in MAP 0 memory map 1-14
in MAP 1 memory map 1-15
summary table 1-80

audio interface, MVIP interface 1-78 to 1-81
audio jacks, in detailed block diagram 1-3
audio op amps, in detailed block diagram 1-3

base address registers (BARs) 1-24to 1-25, E-2
big-endian mode, setting 2-44
blocking routines 3-2

Index

board
closing driver connectionto 2-11
initializing 3-41
opening driver connectionto 2-36
reading data from 2-37
resetting 2-39
retrieving type and version information 2-9
setting user options 2-44
writing datato 2-49
board support library, API functions summary 3-24,
3-38
boot modes
definition E-3
description 1-75
setting 2-40
bus master control/status register (MCSR) 1-28
bus switch
description 1-8
in detailed block diagram 1-3
in EMIF data bus topology diagram 1-9
BUSY macro 3-6

Callback data type 3-7
cautions, avoiding simultaneous NVRAM
accesses 2-33, 2-35
CE memory space 1-12,1-16
clear message event function 2-10
CLKOUT2 1-17
clock modes
definition E-3
description 1-75
setting 2-44
clock rates 1-75, 2-44
close a driver connection function 2-11
close HPI for a board function 2-18
close McBSP and release device handle func-
tion 3-14

Index-1

Index

CLOSED macro 3-6
CNTL register 1-51, 1-61
codec

definition E-4

registers, RO-R3 1-80

sample rate crystals 1-3
codec library, API functions summary 3-56, 3-58
codec.h header file 3-2
COFF

definition E-4

displaying information 2-12

loading image using HPI 2-13
configure McBSP function 3-15
connectors, pinouts A-1to A-12
continuously send buffer function 3-16
CPLD

definition E-4

description C-2to C-14

equations C-1to C-82

pin definitons C-4to C-14
CPLD ISP header, in detailed block diagram 1-3
CPLD registers 1-30, 1-49
CPLDREV register 1-55
CPU

definition E-3

delaying a specified number of microse-

conds 3-39
delaying a specified number of millisec-
onds 3-39

description 1-4

cpu_freq function 3-39

data transfers
setting time-out value 2-46
terminating 2-7, 2-8, 2-37, 2-49
data types
FMIC driver APl 3-25
McBSP driver APl 3-7 to 3-9
Win32 DLL APl 2-3
daughterboard
definition E-5
description 1-21to 1-22
envelopes and connections diagram 1-22
purpose 1-18
debugger, definition E-5

Index-2

delay CPU (microseconds) function 3-39
delay CPU (milliseconds) function 3-39
delay_msec function 3-39
delay_usec function 3-39
DIP, definition E-6
DIP switches

boot mode 1-90

default settings 1-89

in detailed block diagram 1-3

user options 1-89

using default settings 2-44
DIPBOOT register 1-54, 1-63
DIPOPT register 1-53, 1-62
direct memory access (DMA) E-5
disable McBSP function 3-20
disable NMI source externally function 3-43
disable selected LED function 3-42
display COFF information function 2-12
DMA E-5
driver connection

closing 2-11
opening 2-36
DSP

architecture 1-4

CNTL register 1-61

control/status registers
description 1-58
in MAP O memory map 1-14
in MAP 1 memory map 1-15
summary table 1-59

core voltages 1-5

core, peripherals, and external interfaces
diagram 1-6

CPU features 1-4

definition E-5

DIPBOOT register 1-63

DIPOPT register 1-62

DSPBOOT register 1-64

DSPOPT register 1-63

EMIF registers 1-16 to 1-17

FIFOSTAT register 1-64

in detailed block diagram 1-3

interrupt control 1-71to 1-73

JTAG compatibility 1-5

memory features 1-4

memory maps 1-13to 1-15

peripherals features 1-4

procedure to load and start 2-40

releasing from halted state 2-47

resetting 2-40
retrieving message from 2-41
SDCNTL register 1-65
sending message to 2-43
STAT register 1-62
unresetting 2-47
DSP clocks
dual oscillator control 1-45 to 1-46
in detailed block diagram 1-3
selecting 1-7
summary table 1-7
supported rates 1-7
DSP support software
board support library 3-24 to 3-29, 3-38 to 3-43,
3-44 to 3-49
codec library 3-56 to 3-72
components 3-2
McBSP driver 3-6 to 3-23
using the components 3-4
DSPBOOT register 1-55, 1-64
DSPOPT register 1-54, 1-63

DSP-to-host data transfer 2-37

EEPROM 1-24, 1-40, D-1to D-2, E-6
EMI emissions, minimizing 1-16
EMIF
address bus 1-8, 1-10
CE space control registers 1-16
data bus 1-8, 1-9
definition E-6
global control register 1-16
in detailed block diagram 1-3
initializing registers 2-31
initializing to clock rate-tailored values 3-41
initializing to default parameters 3-40
emulation 1-38 to 1-39
enable NMI source externally function 3-43
enable selected LED function 3-42

endian modes
description 1-75
setting 2-44

evaluation module (EVM)
connector pinouts A-1to A-12
CPLD equations C-1to C-82
definition E-6
schematics B-1 to B-42

Index

evm_codec_disable 3-40
evm_codec_enable 3-40
evm_default_emif_init function 3-40
evm_emif_init function 3-41

evm_init function 3-41
evm_led_disable function 3-42
evm_led_enable function 3-42
evm_nmi_disable function 3-43
evm_nmi_enable function 3-43
evm_nmi_sel 3-43

evmo6x.sys driver 2-2

evmo6x.vxd driver 2-2
evm6x_abort_read function 2-7
evm6x_abort_write function 2-8
evm6x_board_type function 2-9
evmb6x_clear_message_event function 2-10
evm6x_close function 2-11
evm6x_coff_display function 2-12
evm6x_coff_load function 2-13
evmo6x_generate_nmi_int function 2-17
evm6x_hpi_close function 2-18
evm6x_hpi_fill function 2-19
evm6x_hpi_generate_int function 2-21
evm6x_hpi_open function 2-22
evm6x_hpi_read function 2-23
evm6x_hpi_write function 2-27
evme6x_init_emif function 2-31
evm6x_nvram_read function 2-32, 2-33
evmo6x_nvram_write function 2-35
evm6x_open function 2-36

evm6x_read function 2-37
evm6x_reset_board function 2-39
evmo6x_reset_dsp function 2-40
evmo6x_retrieve_message function 2-41
evm6x_send_message function 2-43
evm6x_set_board_config function 2-44
evmo6x_set_timeout function 2-46
evm6x_unreset_dsp function 2-47
evme6x_write function 2-49
EVM6XDLL_BOARD_TYPE data type 2-3
EVM6XDLL_BOOT_MODE data type 2-3
EVM6XDLL_CLOCK_MODE data type 2-4
EVM6XDLL_ENDIAN_MODE data type 2-4
EVM6XDLL_MESSAGE data type 2-4

Index-3

Index

expansion interfaces 1-18 to 1-22, E-6
expansion memory
CE memory space 1-12,1-16
description 1-12to 1-13
interface 1-18 to 1-19
transceivers 1-12
expansion peripheral interface
description 1-19to 1-20
in detailed block diagram 1-3
external memory
CE memory space initialization 1-16
description 1-8to 1-17
DSP EMIF registers 1-16 to 1-17
expansion memory 1-12to 1-13
memory maps 1-13to 1-15
SBSRAM 1-10to 1-11
SDRAM 1-11 to 1-12
external power connector
description 1-86 to 1-87
drawing 1-87
in detailed block diagram 1-3
externally disable NMA function 3-43
externally enable NMA function 3-43

extinguish selected LED function 3-42

fan (DSP)
description 1-87
power connector 1-3, 1-87

FIFO register 1-14, 1-15, 1-28

FIFOSTAT register 1-64

fill DSP memory using HPI function 2-19

flag, definition E-7

Flash memory 1-13, E-7

FMIC device handle (FMIC_dev) data type 3-25

FMIC driver, API data types 3-25

FMIC configuration structure (Mcbsp_config) data
type 3-25

FMIC state macros 3-24
8KMASTER_MVIP_MASTER 3-24
8KMASTER_MVIP_SLAVE 3-24
CNTRL_REG_ID 3-24
CONN_MEM_HIGH_ID 3-24
DATA_MEMORY_ID 3-24
DSi_IN 3-24
DSo_IN 3-24

Index-4

MASTER_REG_ID 3-24

MVIP_SLAVE 3-24

T1E1 MVIP_MASTER 3-24
FMIC_config data type 3-25
FMIC_dev data type 3-25

generate interrupt to DSP using HPI function 2-21
generate NMI to DSP function 2-17

hardware
detailed block diagram 1-3
theory of operation 1-1 to 1-80
host support software
components 2-2
example program 2-51
low-level Windows drivers 2-2
Win32 DLL API
data types 2-3
example program 2-51
functions summary 2-5
host-to-DSP data transfer 2-49
HPI
closing for a board 2-18
definition E-7
opening for a board 2-22
using to fill DSP memory 2-19
using to generate interruptto DSP 2-21
using to load a COFF image 2-13
using to read DSP memory 2-23
using to write DSP memory 2-27
HPI address register (HPIA) 1-31
HPI control register (HPIC) 1-31
HPI data register (HPID) 1-31
HPI registers (BAR3) 1-31

IEEE 1149.1 standard E-7

illuminate selected LED function 3-42
incoming mailbox registers (IMB1-IMB4) 1-28
index address register (R0) 1-80

indexed data register (R1) 1-80

indicators 1-91
See also LEDs

initialize EMIF for EVM board function 3-41
initialize EMIF registers function 2-31

initialize EMIF to default parameters function 3-40
initialize EVM board function 3-41

initialize McBSP driver function 3-18

INTCSR register 1-28

Integrated Services Digital Network (ISDN) E-8
integrated switching regulator (ISR) 1-86, E-8
interface connector 1-12

internal data memory 1-14, 1-15

internal peripherals 1-14, 1-15

internal program memory 1-14, 1-15

interrupt control 1-71 to 1-73

interrupt control/status register INTCSR) 1-28

JTAG
definition E-9
emulation 1-75
header 1-3

Jumper options 1-90

LED, definition E-9
LEDs

description 1-91

disabling 3-42

enabling 3-42

in detailed block diagram 1-3
little-endian mode, setting 2-44
load COFF image using HPI function 2-13
low-level Windows drivers 2-2

macros
definition E-10
McBSP driver APl 3-6
mailbox empty/full status register (MBEF) 1-28
master read address register (MRAR) 1-28
master read transfer count register (MRTC) 1-28
master write address register (MWAR) 1-28
master write transfer count register (MWTC) 1-28

Index

MBEF register 1-28
McBSP
definition E-11
in detailed block diagram 1-3
McBSP callback function data type 3-7
McBSP configuration structure (Mcbsp_config) data
type 3-7
McBSP device handle (Mcbsp_dev) data type 3-7
McBSP driver
API data types 3-7 to 3-9
API functions summary 3-10
APl macros 3-6
asynchronous routines
description 3-2
mcbsp_async_receive function 3-11
mcbsp_async_send function 3-13
synchronous routines
description 3-2
mcbsp_sync_receive function 3-21
mcbsp_sync_send function 3-22

McBSP receiver configuration structure
(Mcbsp_rx_config) data type 3-9

McBSP sample rate generator configuration struc-
ture (Mcbsp_srg_config) data type 3-9
McBSP state macros 3-6

McBSP transmitter configuration structure
(Mcbsp_tx_config) data type 3-8

mcbsp.h header file 3-6
mcbsp_async_receive function 3-11
mchsp_async_send 3-13
mchsp_close function 3-14
Mcbsp_config data type 3-7
mcbsp_config function 3-15
mcbsp_cont_async_send function 3-16
Mcbsp_dev data type 3-7
mcbsp_drv_init function 3-18
mcbsp_open function 3-19
mchsp_reset function 3-20
Mcbsp_rx_config data type 3-9
Mcbsp_srg_config data type 3-9
mcbsp_stop function 3-20
mcbsp_sync_receive function 3-21
mcbsp_sync_send function 3-22
Mcbsp_tx_config data type 3-8

McBSPO
selection 1-81
signals 1-19

Index-5

Index

McBSP1 1-3,1-19
mcbspdrv.h header file 3-6
MCSR register 1-28
memory decoding 1-74
memory maps

definition E-10

MAPO 1-14

MAP 1 1-15

message event, clearing 2-10
MRAR register 1-28

MRTC register 1-28

MUTEX 2-22

MVIP interface. See audio interface
MWAR register 1-28

MWTC register 1-28

NMI
definition E-12
externally disabling 3-43
externally enabling 3-43
generating to DSP 2-17

nonvolatile memory 1-13
NVRAM
definition E-12
reading byte of 2-32, 2-33
writing byte of 2-35

OMB1-OMBA4 registers 1-28

op amps, in detailed block diagram 1-3

open driver connection function 2-36

open HPI for a board function 2-22

OPEN macro 3-6

open McBSP/obtain device handle function 3-19
oscillators 1-3, 1-7, 1-45 to 1-46

outgoing mailbox registers (OMB1-OMB4) 1-28

PCI
bus mastering support 1-33
CNTL register 1-51
CPLD control/status registers 1-48 to 1-54

Index-6

CPLDREV register 1-55
definition E-12
DIPBOOT register 1-54
DIPOPT register 1-53
DSPBOOT register 1-55
DSPOPT register 1-54
FIFO 1-14,1-15
interrupt control 1-71to 1-73
slave support 1-30
STAT register 1-52
SWBOQOT register 1-53
SWOPT register 1-52

PCI add-on bus, operation registers
AFIFO 1-29
AGCSTS 1-29
AIMB1-AIMB4 1-29
AINT 1-29
AMBEF 1-29
AOMB1-AOMB4 1-29
description 1-29 to 1-30
in MAP 0 memory map 1-14
in MAP 1 memory map 1-15
summary table 1-29
PCI bus
description 1-23
in detailed block diagram 1-3
PCI controller
base address registers (BARs) 1-24
description 1-24
interfaces 1-25
operation registers
FIFO 1-28
IMB1-IMB4 1-28
INTCSR 1-28
MBEF 1-28
MCSR 1-28
MRAR 1-28
MRTC 1-28
MWAR 1-28
MWTC 1-28
OMB1-OMB4 1-28
summary table 1-28
PCl interface
description 1-23
implementation 1-24to 1-27
in detailed block diagram 1-3
plug-and-play feature 1-23
pinouts, connector
CPLD ISP header A-7
DSP fan power A-11

expansion memory interface A-8
expansion peripheral interface A-9
external power A-11

JTAG emulation header A-10

PCl local bus A-12

stereo line output jack A-3
summary A-2

PIO data register (R3) 1-80
plug-and-play feature 1-23

power management 1-44 to 1-45, 1-88
power sequence control 1-3

power supplies 1-86 to 1-87

programmable logic
description 1-40to 1-41
in detailed block diagram 1-3

RO-R3 registers 1-80

read byte of NVRAM function 2-32, 2-33
read data from board function 2-37

read DSP memory using HPI function 2-23
read operation, terminating 2-7

receive buffer on McBSP asynchronously func-
tion 3-11

receive buffer on McBSP synchronously func-
tion 3-21

requester arbitration mode 1-16

reset board function 2-39

reset control 1-42 to 1-44, 1-88

reset DSP function 2-40

reset McBSP function 3-20

reset pushbutton 1-88

retrieve board type and version function 2-9

retrieve message from DSP function 2-41

return current CPU frequency function 3-39

ring0 E-14

ring3 E-14

sample rate crystals, codec 1-3
SBSRAM

definition E-14

description 1-10to 1-11

Index

in detailed block diagram 1-3
in MAP 0 memory map 1-14
in MAP 1 memory map 1-15
power management 1-11
selecting clock speed 1-10to 1-11
schematics B-1to B-42
SDCNTL register 1-65
SDRAM
control register 1-17
definiton E-14
description 1-11
disabling 1-12
enabling 1-11
in detailed block diagram 1-3
in MAP 0 memory map 1-14
in MAP 1 memory map 1-15
power management 1-11
refreshing 1-11
selecting refresh period 1-17
timing register 1-17
send buffer on McBSP asynchronously func-
tion 3-13
send buffer on McBSP continuously function 3-16
send buffer on McBSP synchronously func-
tion 3-22
send message to DSP function 2-43
set transfer time-out value function 2-46
set user board options functions 2-44
setting the boot mode 2-40
STAT register 1-52, 1-62
status register (R2) 1-80
stop McBSP operation function 3-20
SWBOOT register 1-53
SWOPT register 1-52

terminate pending read transfer function 2-7
terminate pending write transfer function 2-8
test bus controller

definition E-15

description 1-30, 1-38

in detailed block diagram 1-3
timer

definition E-15

delaying CPU with 3-39
timing fields, EMIF SDRAM control register 1-17
transceivers 1-74

Index-7

Index

transferring data very long instruction word (VLIW) 1-4, E-16
from DSP to host 2-37 voltage regulators
from host to DSP 2-49 description 1-86 to 1-87
setting time-out value ~ 2-46 in detailed block diagram 1-3

TTL, definition E-15 .
voltage supervisor

description 1-88
in detailed block diagram 1-3

unreset DSP function 2-47

user options
control 1-74

description 1-89

DIP switches 1-89 Win32 DLL API

dual-use option support diagram 1-77 data types 2-3

in detailed block diagram 1-3 functions summary 2-5
summary table 1-75 Windows drivers 2-2

user defined 1-75, 1-89 write a byte of NVRAM function 2-35

write data to board function 2-49

write DSP memory using HPI function 2-27
VelociTl 1-4, E-16 write operation, terminating 2-8

Index-8

