
TMS320C6000
DSP/BIOS

User’s Guide

Literature Number: SPRU303
May 1999
Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserves the right to make changes to their products or to
discontinue any product or service without notice, and advises customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale
in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is
not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL
RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE
(“CRITICAL APPLICATIONS). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED,
AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR
SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH
APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty
or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated
Copyright © 1999, portions of the DSP/BIOS plugin software provided by National Instruments

This is a draft version printed from file: ug_pref.fm on 5/4/99
Preface

Read This First

About This Manual

DSP/BIOS gives developers of mainstream applications on Texas
Instruments TMS320C6000 DSP chips the ability to develop embedded real-
time software. DSP/BIOS provides a small firmware real-time library and
easy-to-use tools for real-time tracing and analysis.

Before you read this manual, you should follow the tutorials in the
TMS320C6000 Code Composer Studio Tutorial (literature number
SPRU301) to get an overview of DSP/BIOS. This manual discusses various
aspects of DSP/BIOS in depth and assumes that you have at least a basic
understanding of other aspects of DSP/BIOS.

Notational Conventions

This document uses the following conventions:

❏ The TMS320C6000 core is also referred to as ’C6000.

❏ Program listings, program examples, and interactive displays are shown
in a special typeface. Examples use a bold version of the
special typeface for emphasis; interactive displays use a bold version
of the special typeface to distinguish commands that you enter from items
that the system displays (such as prompts, command output, error
messages, etc.).

Here is a sample program listing:

Void copy(HST_Obj *input, HST_Obj *output)

{

 PIP_Obj *in, *out;

 Uns *src, *dst;

 Uns size;

❏ Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets.
Unless the square brackets are in a bold typeface, do not enter the
brackets themselves.
iii

 Related Documentation From Texas Instruments
Related Documentation From Texas Instruments

The following books describe the TMS320C6000 devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Literature Response Center at (800) 477-8924. When ordering,
please identify the book by its title and literature number.

TMS320C6000 Assembly Language Tools User’s Guide (literature
number SPRU186) describes the assembly language tools (assembler,
linker, and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic
debugging directives for the ’C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the 'C6000 C compiler and the assembly
optimizer. This C compiler accepts ANSI standard C source code and
produces assembly language source code for the ’C6000 generation of
devices. The assembly optimizer helps you optimize your assembly
code.

TMS320C62x/C67x Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the TMS320C62x/
C67x DSPs and includes application program examples.

TMS320C62x/C67x CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the 'C62x/C67x CPU architecture,
instruction set, pipeline, and interrupts for these digital signal
processors.

TMS320C6201/C6701 Peripherals Reference Guide (literature number
SPRU190) describes common peripherals available on the
TMS320C6201/C6701 digital signal processors. This book includes
information on the internal data and program memories, the external
memory interface (EMIF), the host port, multichannel buffered serial
ports, direct memory access (DMA), clocking and phase-locked loop
(PLL), and the power-down modes.

TMS320C62x/C67x Technical Brief (literature number SPRU197) gives an
introduction to the 'C62x/C67x digital signal processors, development
tools, and third-party support.

TMS320C6201 Digital Signal Processor Data Sheet (literature number
SPRS051) describes the features of the TMS320C6201 and provides
pinouts, electrical specifications, and timing for the device.

TMS320 DSP Designer’s Notebook: Volume 1 (literature number
SPRT125) presents solutions to common design problems using 'C2x,
'C3x, 'C4x, 'C5x, and other TI DSPs.
iv

Related Documentation
TMS320C6000 Code Composer Studio Tutorial (literature number
SPRU301) introduces the Code Composer Studio integrated
development environment and software tools.

Related Documentation

You can use the following books to supplement this user’s guide:

American National Standard for Information Systems-Programming
Language C X3.159-1989, American National Standards Institute (ANSI
standard for C)

The C Programming Language (second edition), by Brian W. Kernighan
and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs, New
Jersey, 1988

Programming in C, Kochan, Steve G., Hayden Book Company

Trademarks

MS-DOS, Windows, and Windows NT are trademarks of Microsoft
Corporation.

The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments include:
TI, XDS, Code Composer, Probe Point, Code Explorer, DSP/BIOS, RTDX,
Online DSP Lab, BIOSuite, and SPOX.

All other brand or product names are trademarks or registered trademarks of
their respective companies or organizations.
Read This First v

 If You Need Assistance . . .
Note: When calling a Literature Response Center to order documentation, please specify the literature number of the book.

If You Need Assistance . . .

❏ World-Wide Web Sites
TI Onlinehttp://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutionshttp://www.ti.com/dsps
320 Hotline On-lineTMhttp://www.ti.com/sc/docs/dsps/support.htm

❏ North America, South America, Central America
Product Information Center (PIC)(972) 644-5580
TI Literature Response Center U.S.A.(800) 477-8924
Software Registration/Upgrades(214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades(281) 274-2285
U.S. Technical Training Organization(972) 644-5580
DSP Hotline(281) 274-2320 Fax: (281) 274-2324 Email:dsph@ti.com
DSP Modem BBS(281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

❏ Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:
 Multi-Language Support+33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
 Deutsch+49 8161 80 33 11 or +33 1 30 70 11 68
 English+33 1 30 70 11 65
 Français+33 1 30 70 11 64
 Italiano+33 1 30 70 11 67
EPIC Modem BBS+33 1 30 70 11 99
European Factory Repair+33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

❏ Asia-Pacific
Literature Response Center+852 2 956 7288Fax: +852 2 956 2200
Hong Kong DSP Hotline+852 2 956 7268Fax: +852 2 956 1002
Korea DSP Hotline+82 2 551 2804Fax: +82 2 551 2828
Korea DSP Modem BBS+82 2 551 2914
Singapore DSP HotlineFax: +65 390 7179
Taiwan DSP Hotline+886 2 377 1450Fax: +886 2 377 2718
Taiwan DSP Modem BBS+886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

❏ Japan
Product Information Center+0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline+03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type "Go TIASP"

❏ Documentation
When making suggestions or reporting errors in documentation, please include the following information that
is on the title page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email:dsph@ti.com
 Technical Documentation Services, MS 702
 P.O. Box 1443

Houston, Texas 77251-1443
vi

This is a draft version printed from file: BIOS_UGTOC.fm on 5/4/99
Contents

1 About DSP/BIOS .1-1
DSP/BIOS gives developers of applications for DSP chips the ability to develop and analyze em-
bedded real-time software. DSP/BIOS includes a small firmware real-time library, the DSP/BIOS
API for using real-time library services, and easy-to-use tools for configuration and for real-time
tracing and analysis.
1.1 DSP/BIOS Features and Benefits .1-2
1.2 DSP/BIOS Components .1-3

1.2.1 DSP/BIOS Real-Time Library and API .1-3
1.2.2 The DSP/BIOS Configuration Tool. .1-4
1.2.3 The DSP/BIOS plugins. .1-5

1.3 Naming Conventions .1-8
1.3.1 Module Header Names .1-8
1.3.2 Object Names. .1-9
1.3.3 Operation Names .1-9
1.3.4 Data Type Names .1-10
1.3.5 Memory Segment Names. .1-11

1.4 For More Information .1-11

2 Program Generation .2-1
This chapter describes the process of generating programs with DSP/BIOS. It also explains which
files are generated by DSP/BIOS components and how they are used.
2.1 Development Cycle .2-2
2.2 Using the Configuration Tool .2-3

2.2.1 Creating a New Configuration .2-3
2.2.2 Creating a Custom Template .2-3
2.2.3 Setting Global Properties for a Module .2-4
2.2.4 Creating an Object and Specifying its Properties. .2-4
2.2.5 Files Generated by the Configuration Tool. .2-5

2.3 Files Used to Create DSP/BIOS Programs .2-6
2.3.1 Files Used by the DSP/BIOS Plugins. .2-7

2.4 Compiling and Linking Programs .2-8
2.4.1 Building with a Code Composer Project. .2-8
2.4.2 Makefiles .2-10
2.4.3 Referencing Precreated DSP/BIOS Objects .2-11

2.5 DSP/BIOS Startup Sequence. .2-15
vii

 Contents
3 Instrumentation . 3-1
DSP/BIOS provides both explicit and implicit ways to perform real-time program analysis. These
mechanisms are designed to have minimal impact on the application’s real-time performance.
3.1 Real-Time Analysis . 3-2
3.2 Software vs. Hardware Instrumentation . 3-2
3.3 Instrumentation Performance Issues . 3-3
3.4 Instrumentation APIs. 3-4

3.4.1 Explicit vs. Implicit Instrumentation . 3-4
3.4.2 Message Log Manager (LOG Module) . 3-5
3.4.3 Statistics Accumulator Manager (STS Module) . 3-7
3.4.4 Trace Control Manager (TRC Module) . 3-11

3.5 Implicit DSP/BIOS Instrumentation . 3-14
3.5.1 The Execution Graph . 3-14
3.5.2 The CPU Load . 3-15
3.5.3 CPU Load Accuracy . 3-18
3.5.4 Hardware Interrupt Count and Maximum Stack Depth 3-20
3.5.5 Monitoring Variables . 3-21
3.5.6 Interrupt Latency . 3-23

3.6 Instrumentation for Field Testing. 3-23
3.7 Real-Time Data Exchange . 3-24

3.7.1 RTDX Applications . 3-24
3.7.2 RTDX Usage. 3-25
3.7.3 RTDX Flow of Data . 3-25
3.7.4 RTDX Modes . 3-27
3.7.5 Special Considerations When Writing Assembly Code 3-27
3.7.6 Target Buffer Size . 3-28
3.7.7 Sending Data From Target to Host or Host to Target 3-28

4 Program Execution . 4-1
This chapter describes the types of functions that make up a DSP/BIOS application and their be-
havior and priorities during program execution.
4.1 Program Components . 4-2
4.2 Choosing Which Types of Threads to Use . 4-3
4.3 The Idle Loop . 4-5
4.4 Software Interrupts . 4-6

4.4.1 Setting Software Interrupt Priorities in the Configuration Tool 4-6
4.4.2 Execution of Software Interrupts. 4-7
4.4.3 Using an SWI Object’s Mailbox. 4-8

4.5 Hardware Interrupts . 4-14
4.5.1 Writing an HWI Routine . 4-14
4.5.2 Nesting Interrupts . 4-16

4.6 Preemption and Yielding . 4-17
4.6.1 Preventing Preemption by a Higher-Priority Thread 4-19
4.6.2 Saving Registers During Software Interrupt Preemption 4-20
4.6.3 Setting the Cache Mode During a Hardware Interrupt 4-21
4.6.4 Software Interrupt Priorities and Application Stack Size. 4-21
viii

Contents
4.7 Clock Manager (CLK Module) .4-23
4.7.1 High- and Low-Resolution Clocks .4-23

4.8 Periodic Function Manager (PRD) and the System Clock .4-25
4.8.1 Invoking Functions for PRD Objects .4-25

4.9 Using the Execution Graph to View Program Execution .4-27
4.9.1 States in the Execution Graph Window .4-27
4.9.2 Threads in the Execution Graph Window. .4-27
4.9.3 Sequence Numbers in the Execution Graph Window 4-28
4.9.4 RTA Control Panel Settings for Use with the Execution Graph4-28

4.10 SWI and PRD Accumulators: Real-Time Deadline Headroom.4-30

5 Input/Output .5-1
This chapter discusses data transfer methods.
5.1 Objects Used for I/O .5-2
5.2 Data Pipe Manager (PIP Module). .5-3

5.2.1 Writing Data to a Pipe .5-4
5.2.2 Reading Data from a Pipe .5-5
5.2.3 Using a Pipe’s Notify Functions .5-6
5.2.4 Calling Order for PIP APIs .5-7

5.3 Host Input/Output Manager (HST Module). .5-9
5.3.1 Transfer of HST Data to the Host. .5-10

5.4 I/O Performance Issues .5-10

6 API Functions .6-1
This chapter describes the DSP/BIOS API functions, which are alphabetized by name. In addition,
there are reference sections that describe the overall capabilities of each module.
6.1 DSP/BIOS Modules .6-2
6.2 Naming Conventions .6-2
6.3 List of Operations .6-3
6.4 Assembly Language Interface .6-6

7 Utility Programs .7-1
This chapter provides documentation for utilities that can be used to examine various files from
the MS-DOS command line. These programs are provided with DSP/BIOS in the bin subdirectory.

cdbprint utility .7-2
nmti utility .7-3
sectti utility .7-4
vers utility .7-5
Contents ix

x

Chapter 1

About DSP/BIOS

DSP/BIOS gives developers of applications for DSP chips the ability to
develop and analyze embedded real-time software. DSP/BIOS includes a
small firmware real-time library, the DSP/BIOS API for using real-time library
services, and easy-to-use tools for configuration and for real-time tracing and
analysis.

1.1 DSP/BIOS Features and Benefits . 1–2

1.2 DSP/BIOS Components . 1–3

1.3 Naming Conventions. 1–8

1.4 For More Information . 1–11

Topic Page
1-1

DSP/BIOS Features and Benefits
1.1 DSP/BIOS Features and Benefits

The DSP/BIOS API and host tools are designed to minimize the memory and
CPU requirements on the target. This design goal was accomplished in the
following ways:

❏ All DSP/BIOS objects are created in the Configuration Tool and bound
into an executable program image. This reduces code size and optimizes
internal data structures.

❏ All formatting of instrumentation data (such as logs and traces) is done
on the host.

❏ The API is modularized, so that only the parts of the API that are used by
the program need to be bound into the executable program.

❏ The API is optimized to require the smallest possible number of
instruction cycles.

❏ Communication between the target and the DSP/BIOS plugins is
performed within the background idle loop. This ensures that the
DSP/BIOS plugins do not interfere with the program’s tasks. If the target
CPU is too busy to perform background tasks, the DSP/BIOS plugins
stop receiving information from the target until the CPU is available.

The DSP/BIOS API standardizes DSP programming for a number of TI chips
and provides easy-to-use, powerful program development and testing tools.
The goal is to reduce the time required to create DSP programs. This goal
was accomplished in the following ways:

❏ The Configuration Tool generates code required to declare objects used
within the program.

❏ The Configuration Tool detects errors earlier by validating object
properties before program execution.

❏ The DSP/BIOS plugins allow real-time monitoring of program behavior.

❏ The DSP/BIOS API is a standard API. This allows DSP algorithm
developers to provide code that can be more easily integrated with other
program functions.
1-2

DSP/BIOS Components
1.2 DSP/BIOS Components

This figure shows the components of DSP/BIOS within the program
generation and debugging environment of Code Composer:

On the host PC, you write programs that use the DSP/BIOS API (in C or
assembly). The Configuration Tool lets you define objects to be used in your
program. You then compile or assemble and link the program. The DSP/BIOS
plugins let you test the program on the target chip from Code Composer while
monitoring CPU load, timing, logs, thread execution, and more. (Threads is a
general term used to refer to any thread of execution, e.g., a hardware ISR,
a software interrupt, an idle function, or a periodic function.)

The following sections give a brief overview of the DSP/BIOS components.

1.2.1 DSP/BIOS Real-Time Library and API

The small, firmware DSP/BIOS real-time library provides basic run-time
services to embedded programs that run on the target hardware. It includes
operations for capturing information generated by the application in real time,
I/O modules, a software interrupt manager, a clock manager, and more.

TargetHost

Target hardware

DSP application program

DSP

Code Composer Studio

JTAG
RTDX

Code Composer debugger

DSP/BIOS
plug-ins

RTDX
plug-in

3rd party
plug-ins

cfg.cmd
cfg.s6x
cfg.h6x

.cdb
(Config

database)

Compiler,
assembler,

lnker...

Code
generation

tools
Code Composer project

.asm.h.c

Code Composer editor

source files

DSP/BIOS API

OLE
application

using RTDX

Configuration
Tool

executable

DSP/BIOS

Host emulation support
About DSP/BIOS 1-3

DSP/BIOS Components
The DSP/BIOS API is divided into modules. Depending on what modules are
configured and used by the application, the size of DSP/BIOS ranges from
200 to 2000 words of code.

Application programs use DSP/BIOS by making calls to the API. For C
programs, header files define the API. For applications that need assembly
language optimization, an optimized set of macros is provided. Using C with
DSP/BIOS is optional, as the real-time library itself is written in assembler to
minimize time and space.

1.2.2 The DSP/BIOS Configuration Tool

Using an interface similar to the Windows Explorer, the Configuration Tool
has two roles:

❏ It lets you set a wide range of parameters used by the DSP/BIOS
real-time library at run time.

❏ It serves as a visual editor for creating run-time objects that are used by
the target application’s DSP/BIOS API calls. These objects include
software interrupts, I/O streams, and event logs. You also use this visual
editor to set properties for these objects.
1-4

DSP/BIOS Components
Unlike systems that create objects at run time with API calls that require extra
target overhead (especially code space), all DSP/BIOS objects are
pre-configured and bound into an executable program image. In addition to
minimizing the target memory footprint by eliminating run-time code and
optimizing internal data structures, this static configuration strategy detects
errors earlier by validating object properties before program execution.

The Configuration Tool generates several files that are linked with the code
you write. See section 2.2.5, Files Generated by the Configuration Tool, page
2-5, for details.

1.2.3 The DSP/BIOS plugins

The DSP/BIOS plugins in Code Composer complement the program
debugging utilities by enabling real-time program analysis of a DSP/BIOS
application. You can visually probe, trace, and monitor a DSP application as
it runs with minimal impact on the application’s real-time performance.
About DSP/BIOS 1-5

DSP/BIOS Components
Unlike traditional debugging, which is external to the executing program,
program analysis requires that the target program contain real-time
instrumentation services. By using DSP/BIOS APIs and objects, developers
have automatically instrumented the target for capturing and uploading
real-time information to the host through the DSP/BIOS plugins in Code
Composer.
1-6

DSP/BIOS Components
Several broad real-time program analysis capabilities are provided:

❏ Program tracing. Displaying events written to target logs, reflecting
dynamic control flow during program execution

❏ Performance monitoring. Tracking summary statistics that reflect use
of target resources, such as processor load and timing

❏ File streaming. Binding target-resident I/O objects to host files

When used in tandem with the other debugging capabilities in Code
Composer, the DSP/BIOS real-time analysis tools provide critical views into
target program behavior in the area where traditional debugging techniques
that stop the target offer little or no insight—during program execution. Even
after the debugger halts the program, information already captured by the
host with the DSP/BIOS plugins can provide insights into the sequence of
events that led up to the current point of execution.

Later in the software development cycle, when regular debugging techniques
become ineffective for attacking problems arising from time-dependent
interactions, the DSP/BIOS plugins have an expanded role as the software
counterpart of the hardware logic analyzer.
About DSP/BIOS 1-7

Naming Conventions
1.3 Naming Conventions

Each DSP/BIOS module has a unique 3- or 4-letter name that is used as a
prefix for operations (functions), header files, and objects for the module.

All identifiers beginning with upper-case letters followed by an underscore
(XXX_*) should be treated as reserved words. Identifiers beginning with an
underscore are also reserved for internal system names.

1.3.1 Module Header Names

Each DSP/BIOS module has two header files containing declarations of all
constants, types, and functions made available through that module’s
interface.

❏ module.h. DSP/BIOS API header files for C programs. Your C source
files should include std.h and the header files for any modules the C
functions use.

❏ module.h62. DSP/BIOS API header files for assembly programs.
Assembly source files should include the *.h62 header file for any module
the assembly source uses. This file contains macro definitions specific to
this chip. Data structure definitions shared for all supported chips are
stored in the module.hti files, which are included by the *.h62 header files.

Your program must include the corresponding header for each module used
in a particular program source file. In addition, C source files must include
std.h before any module header files (see section 1.3.4, Data Type Names,
page 1-10, for more information). The std.h file contains definitions for
standard types and constants. Other than including std.h first, you may
include the other header files in any sequence. For example:

#include <std.h>
#include <pip.h>
#include <prd.h>
#include <swi.h>

DSP/BIOS includes a number of modules whose functions are for internal
use. These modules are consequently undocumented and subject to change
at any time. Header files for these internal modules are distributed as part of
DSP/BIOS and must be present on your system when compiling and linking
DSP/BIOS programs.
1-8

Naming Conventions
1.3.2 Object Names

System objects that are included in the configuration by default typically have
names beginning with a 3- or 4-letter code for the module that defines or uses
the object. For example, the default configuration includes a LOG object
called LOG_system.

Objects you create with the Configuration Tool should use a common naming
convention of your choosing. You might want to use the module name as a
suffix in object names. For example, a SWI object that encodes data might be
called encoderSwi.

1.3.3 Operation Names

The format for a DSP/BIOS API operation name is MOD_action where MOD
is the letter code for the module that contains the operation, and action is the
action performed by the operation. For example, the SWI_post function is
defined by the SWI module; it posts a software interrupt.

This implementation of the DSP/BIOS API also includes several built-in
functions that are run by various built-in objects. Here are some examples:

❏ CLK_F_isr. Run by the HWI_INT14 object to provide the low-resolution
CLK tick

❏ PRD_F_tick. Run by the PRD_clock object to provide the system tick

❏ IDL_F_busy. Run by the IDL_cpuLoad object to compute the current
CPU load

❏ RTA_F_dispatch. Run by the RTA_dispatcher object to gather real-time
analysis data

❏ LNK_F_dataPump. Run by the LNK_dataPump object to transfer
real-time analysis and HST channel data to the host

❏ HWI_unused. Not actually a function name. This string is used in the
Configuration Tool to mark unused HWI objects.

Note: Your program code should not call any built-in functions whose
names begin with MOD_F_. These functions are intended to be called only
as function parameters specified within the Configuration Tool.

Operation names beginning with MOD_ and MOD_F_ (where MOD is any
letter code for a DSP/BIOS module) are reserved for internal use.
About DSP/BIOS 1-9

Naming Conventions
1.3.4 Data Type Names

The DSP/BIOS API does not explicitly use the fundamental types of C such
as int or char. Instead, to ensure portability to other processors that support
the DSP/BIOS API, DSP/BIOS defines its own standard data types. In most
cases, the standard DSP/BIOS types are simply capitalized versions of the
corresponding C types.

The following types are defined in the std.h header file:

Additional data types are defined in std.h, but are not used by the DSP/BIOS
API.

In addition, the standard constant NULL (0) is used by DSP/BIOS to signify
an empty pointer value. The constants TRUE (1) and FALSE (0) are used for
values of type Bool.

Object structures used by the DSP/BIOS API modules use a naming
convention of MOD_Obj, where MOD is the letter code for the object’s
module. If your program uses any such objects, it should include an extern
declaration for the object. For example:

extern LOG_Obj trace;

See section 2.4.3, Referencing Precreated DSP/BIOS Objects, page 2-11, for
more information.

Type Description

Arg Type capable of holding both Ptr and Int arguments

Bool Boolean value

Char Character value

Int Signed integer value

LgInt Large signed integer value

LgUns Large unsigned integer value

Ptr Generic pointer value

String Zero-terminated (\0) sequence (array) of characters

Uns Unsigned integer value

Void Empty type
1-10

For More Information
1.3.5 Memory Segment Names

The memory segment names used by DSP/BIOS for the ’C6000 EVM are
described in the following table.

You can change the origin, size, and name of the default memory segments
described above using the Configuration Tool.

The Configuration Tool defines standard memory sections and their default
allocations as follows:

You can change these default allocations by using the MEM manager in the
Configuration Tool. See MEM Module, page 6–51, for more details.

1.4 For More Information

For more information about the components of DSP/BIOS and the modules
in the DSP/BIOS API, see the TMS320C6000 Code Composer Studio
Tutorial.

Memory Segment Description

IPRAM Internal (on-chip) program memory

IDRAM Internal (on-chip) data memory

SBSRAM External SBSRAM on CE0

SDRAM0 External SDRAM on CE2

SDRAM1 External SDRAM on CE3

Memory Segment Section

IDRAM Application stack memory (.stack)

IDRAM Application constants memory (.const)

IPRAM Program memory (.text)

IDRAM Data memory (.data)

IPRAM Startup code memory (.sysinit)

IDRAM C initialization records memory (.cinit)

IDRAM Uninitialized variables memory (.bss)
About DSP/BIOS 1-11

1-12

Chapter 2

Program Generation

This chapter describes the process of generating programs with DSP/BIOS.
It also explains which files are generated by DSP/BIOS components and how
they are used.

2.1 Development Cycle . 2–2

2.2 Using the Configuration Tool . 2–3

2.3 Files Used to Create DSP/BIOS Programs . 2–6

2.4 Compiling and Linking Programs . 2–8

2.5 DSP/BIOS Startup Sequence . 2–15

Topic Page
2-1

Development Cycle
2.1 Development Cycle

DSP/BIOS supports iterative program development cycles. You can create
the basic framework for an application and test it with a simulated processing
load before the DSP algorithms are in place. You can easily change the
priorities and types of program components that perform various functions.

A sample DSP/BIOS development cycle would include the following steps,
though iteration could occur for any step or group of steps:

1) Write a framework for your program. You can use C or assembly code.

2) Use the Configuration Tool to create objects for your program to use.

3) Save the configuration file, which generates files to be included when you
compile and link your program.

4) Compile and link the program using a makefile or a Code Composer
project.

5) Test program behavior using a simulator or initial hardware and the
DSP/BIOS plugins. You can monitor logs and traces, statistics objects,
timing, software interrupts, and more.

6) Repeat steps 2-5 until the program runs correctly. You can add
functionality and make changes to the basic program structure.

7) When production hardware is ready, modify the configuration file to
support the production board and test your program on the board.
2-2

Using the Configuration Tool
2.2 Using the Configuration Tool

The Configuration Tool is a visual editor with an interface similar to Windows
Explorer. It allows you to initialize data structures and set various parameters.
When you save a file, the Configuration Tool creates assembly and header
files and a linker command file to match your settings. When you build your
application, these files are linked with your application programs.

2.2.1 Creating a New Configuration

1) Open the Configuration Tool. From Code Composer, open the
Configuration Tool by selecting File→New→DSP/BIOS Config.

2) Select the appropriate template and click OK. Alternatively, you can open
the Configuration Tool outside of Code Composer from the Configuration
Tool item on the Texas Instruments DSP program menu.

3) From the File menu, select New.

4) Double-click on the configuration template for the board you are using.

2.2.2 Creating a Custom Template

You can add a custom template by creating a configuration file and storing it
in your include folder. This saves time by allowing you to define the
configuration settings for your hardware once and then store the file in the
template directory.

For example, to build DSP/BIOS programs for the ’C67xx floating point DSP,
you may use settings as provided (for the ’C62xx). Or you may instruct the
Configuration Tool to create a new custom template file for projects that
should take advantage of the floating-point run-time library.

To create a custom template, perform the following steps:

1) Invoke the Configuration Tool from outside Code Composer via
Start→Programs→Code Composer Studio ’C6000→Configuration Tool.

2) From the File menu, choose New.

3) In the New window select evm62.cdb and click OK.

4) Right-click on Global Settings and select Properties.

5) Set Target Board Name to evm67.

6) Set DSP Type to 6700 and click OK.

7) Select File→Save As. In the Save As dialog box navigate to
ti\c6000\bios\include.

8) In the File Name box type evm67.cdb.
Program Generation 2-3

Using the Configuration Tool
9) In the Save as type drop-down box select Seed files (*.cdb) and click
Save.

10) In the Set Description Dialog type a string (e.g., evm67 seed file) and
click OK.

11) From the Configuration Tool’s main menu select File->Exit.

2.2.3 Setting Global Properties for a Module

1) When you select a module (by clicking on it), the right side of the window
shows the current properties for the module. (If you see a list of priorities
instead of a property list, right-click on the module and select
Property/value view. If the right side of the window is gray, this module
has no global properties.)

For help about a module, click and then click on the module.

2) Right-click the icon next to the module and select Properties from the
pop-up menu. This opens the property sheet.

3) Change properties as needed. For help on the module’s properties, click
Help in the property sheet.

2.2.4 Creating an Object and Specifying its Properties

1) Right-click on a module and select Insert MOD, where MOD is the name
of the module. This adds a new object for this module. (You cannot create
an object for the GBL, HWI, or RTDX modules.)

2) Rename the object. Right-click on the name and choose Rename from
the pop-up menu.

3) Right-click the icon next to the object and select Properties to open the
property sheet.

Note: When specifying C functions to be run by various objects, add an
underscore before the C function name. For example, type _myfunc to run
a C function called myfunc(). The underscore prefix is necessary because
the Configuration Tool creates assembly source, and the C calling
convention requires the underscore before C functions called from
assembly.

4) Change property settings and click OK. For help on specific properties,
click Help in any property sheet.
2-4

Using the Configuration Tool
2.2.5 Files Generated by the Configuration Tool

When you save a configuration file for your program with the Configuration
Tool, the following files are created. These files are described in section 2.3,
Files Used to Create DSP/BIOS Programs, page 2-6.

❏ program.cdb
❏ programcfg.h62
❏ programcfg.s62
❏ programcfg.cmd
Program Generation 2-5

Files Used to Create DSP/BIOS Programs
2.3 Files Used to Create DSP/BIOS Programs

This diagram shows the files used to create DSP/BIOS programs. Files you
write are represented with a white background; generated files are
represented with a gray background.

A 62 in the file extension shown above indicates that the chip number
abbreviation is used here. (For ’C6000 chips, the abbreviation is 62.)

❏ program.c. C program source file containing the main() function. You
may also have additional .c source files.

❏ *.asm. Optional assembly source file(s). One of these files can contain
an assembly language function called _main as an alternative to using a
C function called main().

❏ module.h. DSP/BIOS API header files for C programs. Your C source
files should include std.h and the header files for any modules the C
program uses.

❏ module.h62. DSP/BIOS API header files for assembly programs.
Assembly source files should include the *.h62 header file for any module
the assembly source uses.

❏ program.obj. Object file(s) compiled or assembled from your source
file(s)

❏ *.obj. Object files for optional assembly source file(s)

program.out

compile or
assemble

assemble

link

generateinclude

program.c
*.cmd

(optional)program.cdb

programcfg.cmdprogramcfg.s62programcfg.h62

*.objprogram.obj programcfg.obj

*.asm or *.c
(optional)

module.h62module.h
2-6

Files Used to Create DSP/BIOS Programs
❏ program.cdb. Configuration file, which stores configuration settings.
This file is created by the Configuration Tool and used by both the
Configuration Tool and the DSP/BIOS plugins.

❏ programcfg.h62. Header file generated by the Configuration Tool. This
header file is included by the programcfg.s62 file.

❏ programcfg.s62. Assembly source generated by the Configuration Tool

❏ programcfg.cmd. Linker command file created by the Configuration Tool
and used when linking the executable file. This file defines
DSP/BIOS-specific link options and object names, and generic data
sections for DSP programs (such as .text, .bss, .data, etc.).

❏ programcfg.obj. Object file created from source file generated by the
Configuration Tool.

❏ *.cmd. Optional linker command file(s) that contains additional sections
for your program not defined by the Configuration Tool.

❏ program.out. An executable program for the ’C6000 target (fully
compiled, assembled, and linked). You can load and run this program
with Code Composer.

2.3.1 Files Used by the DSP/BIOS Plugins

The following files are used by the DSP/BIOS plugins:

❏ program.cdb. The DSP/BIOS plugins use the configuration file to get
object names and other program information.

❏ program.out. The DSP/BIOS plugins use the executable file to get
symbol addresses and other program information.
Program Generation 2-7

Compiling and Linking Programs
2.4 Compiling and Linking Programs

You can build your DSP/BIOS executables using a Code Composer project
or using your own makefile. Code Composer includes gmake.exe, GNU’s
make utility, and sample makefiles for gmake to build the tutorial examples.

2.4.1 Building with a Code Composer Project

When building a DSP/BIOS application using a Code Composer project, you
must add the following files to the project in addition to your own source code
files:

❏ program.cdb (the configuration file)
❏ programcfg.cmd (the linker command file)

Code Composer adds programcfg.s62, the configuration source file,
automatically.

Note that in a DSP/BIOS application, programcfg.cmd is your project’s linker
command file. programcfg.cmd already includes directives for the linker to
search the appropriate libraries (e.g., bios.a62, rtdx.lib, rts6201.lib), so you do
not need to add any of these library files to your project.

Code Composer automatically scans all dependencies in your project files,
adding the necessary DSP/BIOS and RTDX header files for your
configuration to your project’s include folder.

For details on how to create a Code Composer project and build an
executable from it, refer to the Code Composer Studio User’s Guide or the
TMS320C6000 Code Composer Studio Tutorial.
2-8

Compiling and Linking Programs
2.4.1.1 Building with Multiple Linker Command Files

For most DSP/BIOS applications the generated linker command file,
programcfg.cmd, suffices to describe all memory sections and allocations. All
DSP/BIOS memory sections and objects are handled by this linker command
file. In addition, most commonly used sections (such as .text, .bss, .data, etc.)
are already included in programcfg.cmd. Their locations (and sizes, when
appropriate) can be controlled from the MEM manager in the Configuration
Tool.

In some cases the application may require an additional linker command file
(app.cmd) describing application-specific sections that are not described in
the linker command file generated by the Configuration Tool
(programcfg.cmd).

Note: Code Composer allows only one linker command file per project.
When both programcfg.cmd and app.cmd are required by the application,
the project should use app.cmd (rather than programcfg.cmd) as the
project’s linker command file. To include programcfg.cmd in the linking
process, you must add the following line to the beginning of app.cmd:

-lprogramcfg.cmd

Note that it is important that this line appear at the beginning, so that
programcfg.cmd is the first linker command file used by the linker.
Program Generation 2-9

Compiling and Linking Programs
2.4.2 Makefiles

As an alternative to building your program as a Code Composer project, you
can use a makefile.

In the following example, the C source code file is volume.c, additional
assembly source is in load.asm, and the configuration file is volume.cdb. This
makefile is for use with gmake, which is included with Code Composer. You
can find documentation for gmake on the product CD in PDF format. Adobe
Acrobat Reader is included. This makefile and the source and configuration
files mentioned are located in the volume2 subdirectory of the tutorial
directory of Code Composer.

A typical makefile for compiling and linking a DSP/BIOS program looks like
the following.

Makefile for creation of program named by the PROG variable
#
The following naming conventions are used by this makefile:
<prog>.asm - C62 assembly language source file
<prog>.obj - C62 object file (compiled/assembled source)
<prog>.out - C62 executable (fully linked program)
<prog>cfg.s62 - configuration assembly source file
generated by Configuration Tool
<prog>cfg.h62 - configuration assembly header file
generated by Configuration Tool
<prog>cfg.cmd - configuration linker command file
generated by Configuration Tool
#

include $(TI_DIR)/c6000/bios/include/c62rules.mak

#
Compiler, assembler, and linker options.
#
-g enable symbolic debugging
CC62OPTS = -g
AS62OPTS =
-q quiet run
LD62OPTS = -q

Every BIOS program must be linked with:
$(PROG)cfg.o62 - object resulting from assembling
$(PROG)cfg.s62
$(PROG)cfg.cmd - linker command file generated by
the Configuration Tool. If additional
linker command files exist,
$(PROG)cfg.cmd must appear first.
#
PROG = volume
OBJS = $(PROG)cfg.obj load.obj
LIBS =
CMDS = $(PROG)cfg.cmd
2-10

Compiling and Linking Programs
#
Targets:
#
all:: $(PROG).out

$(PROG).out: $(OBJS) $(CMDS)
$(PROG)cfg.obj: $(PROG)cfg.h62
$(PROG).obj:

$(PROG)cfg.s62 $(PROG)cfg.h62 $(PROG)cfg.cmd:
 @ echo Error: $@ must be manually regenerated:
 @ echo Open and save $(PROG).cdb within the BIOS
 Configuration Tool.
 @ check $@

.clean clean::
 @ echo removing generated configuration files ...
 @ remove -f $(PROG)cfg.s62 $(PROG)cfg.h62 $(PROG)cfg.cmd
 @ echo removing object files and binaries ...
 @ remove -f *.obj *.out *.lst *.map

You can copy an example makefile to your program folder and modify the
makefile as necessary.

Unlike the Code Composer project, makefiles allow for multiple linker
command files. If the application requires additional linker command files you
can easily add them to the CMDS variable in the example makefile shown
above. However, they must always appear after the programcfg.cmd linker
command file generated by the Configuration Tool.

2.4.3 Referencing Precreated DSP/BIOS Objects

Although DSP/BIOS itself is compiled using the small model, you may
compile DSP/BIOS applications using either the ’C6000 compiler’s small
model or any variation of the large model. (See the TMS320C6000
Optimizing C Compiler User’s Guide.) In fact, you may mix compilation
models within the application code provided the following conditions are met:

❏ Once the data page register (B14) is initialized to the start address of .bss
at program startup, it must not be modified.

❏ All global data that is accessed by using a displacement relative to B14
must be placed no more than 32K bytes away from the beginning of the
.bss section.

DSP/BIOS uses the .bss section to store global data. However, objects
created with the Configuration Tool are not placed in the .bss section. This
maximizes your flexibility in the placement of application data. For example,
the frequently accessed .bss may be placed in on-chip memory while larger,
less frequently accessed objects may be stored in external memory.
Program Generation 2-11

Compiling and Linking Programs
The small model makes assumptions about the placement of global data in
order to reduce the number of instruction cycles. If you are using the small
model (the default compilation mode) to optimize global data access, your
code may need to be modified to insure that it references objects created with
the Configuration Tool correctly.

There are four methods for dealing with this issue. These methods are
described in the sections below and have the following pros and cons:

2.4.3.1 Referencing Precreated Objects in the Small Model

In the small model, all compiled C code accesses global data relative to a
data page pointer register. The register B14 is treated as a read-only register
by the compiler and is initialized with the starting address of the .bss section
during program startup. Global data is assumed to be at a constant offset
from the beginning of the .bss section and this section is assumed to be at
most 32K bytes in length. Global data can, therefore, be accessed with a
single instruction like the following:

LDW *+DP(_x), A0 ; load _x into A0 (DP = B14)

Declare
objects
with far

Use global
object
pointers

Objects
adjacent
to .bss

Compile
with large
model

Code works independent of compilation model Yes Yes Yes Yes

Code works independent of object placement Yes Yes No Yes

C code is portable to other compilers No Yes Yes Yes

Size of all precreated objects not limited to 32K bytes Yes Yes No Yes

Minimizes size of .bss Yes Yes No Yes

Minimizes instruction cycles
No
(3 cycles)

No
(2-6 cycles)

Yes
(1 cycle)

No
(3 cycles)

Minimizes storage per object
No
(12 bytes)

No
(12 bytes)

Yes
(4 bytes)

No
(12 bytes)

Easy to remember when programming; easy to find
errors

Somewhat Error prone Somewhat Yes
2-12

Compiling and Linking Programs
Since objects created with the Configuration Tool are not placed in the .bss
section, you must ensure that application code compiled with the small model
references them correctly. There are three ways to do this:

❏ Declare precreated objects with the far keyword. The TI compiler
supports this common extension to the C language. The far keyword in a
data declaration indicates that the data is not in the .bss section.

For example, to reference a PIP object called inputObj that was created
with the Configuration Tool, declare the object as follows:

extern far PIP_Obj inputObj;

if (PIP_getReaderNumFrames(&inputObj)) {

 . . .

}

❏ Create and initialize a global object pointer. You may create a global
variable that is initialized to the address of the object you want to
reference. All references to the object must be made using this pointer,
to avoid the need for the far keyword.

extern PIP_Obj inputObj;
PIP_Obj *input = &inputObj; /* input MUST be a global variable */

if (PIP_getReaderNumFrames(input)) {

 . . .

}

Note that declaring and initializing the global pointer consumes an
additional word of data (to hold the 32-bit address of the object).

Also, if the pointer is a static or automatic variable this technique fails.
The following code does not operate as expected when compiled using
the small model:

extern PIP_Obj inputObj;

static PIP_Obj *input = &inputObj; /* ERROR!!!! */

if (PIP_getReaderNumFrames(input)) {

 . . .

}

❏ Place all objects adjacent to .bss. If all objects are placed at the end of
the .bss section and the combined length of the objects and the .bss data
is less than 32K bytes, you can reference these objects as if they were
allocated within the .bss section:

extern PIP_Obj inputObj;

if (PIP_getReaderNumFrames(&inputObj)) {

 . . .

}

Program Generation 2-13

Compiling and Linking Programs
You can guarantee this placement of objects by using the Configuration
Tool as follows:

a) Declare a new memory segment by inserting a MEM object with the
MEM-Memory Section Manager and setting its properties (i.e., the
base and length); or use one of the preexisting data memory MEM
objects.

b) Place all objects that are referenced by small model code in this
memory segment.

c) Place Uninitialized Variables Memory (.bss) in this same segment by
right-clicking on the MEM manager and selecting Properties.

2.4.3.2 Referencing Precreated Objects in the Large Model

In the large model, all compiled C code accesses data by first loading the
entire 32-bit address into an address register and then using the indirect
addressing capabilities of the LDW instruction to load the data. For example:

MVK _x, A0 ; move low 16-bits of _x’s address into A0
MVKH _x, A0 ; move high 16-bits of _x’s address into A0
LDW *A0, A0 ; load _x into A0

Application code compiled with any of the large model variants is not affected
by where precreated objects are located. If all code that directly references
objects created with the Configuration Tool is compiled with any Large model
option, code may reference the objects as ordinary data:

extern PIP_Obj inputObj;
if (PIP_getReaderNumFrames(&inputObj)) {
 . . .
}

Note that the -ml0 large model option is identical to small model except that
all aggregate data is assumed to be far. This option causes all precreated
objects to be assumed to be far objects but allows scalar types (such as int,
char, long) to be accessed as near data. As a result, the performance
degradation for many applications is quite modest.
2-14

DSP/BIOS Startup Sequence
2.5 DSP/BIOS Startup Sequence

When a DSP/BIOS application starts up, the startup sequence is determined
by the calls in the boot.c file. A compiled version of this file is provided with
the bios.a62 library. You should not need to make any changes to this file;
nevertheless, the source file for boot.c is provided and presented here to
illustrate the DSP/BIOS startup sequence.

/*
 * ======== boot.c ========
 * BIOS Boot routine ’C6200.
 *
 * Entry points:
 * _c_int00: called at reset.
 *
 */

extern void main(), auto_init();

/*---*/
/* EXTERNAL BIOS SETUP FUNCTIONS */
/*---*/
extern IDL_loop();
/*
 * BIOS_init and BIOS_start are located in .sysinit rather
 * than .text, hence they may require far branch.
 */
extern far void BIOS_init(), BIOS_start();

/*---*/
/* BIOS C ENVIRONMENT SETUP SYMBOLS */
/*---*/
asm("args: .sect \".args\""); /* address of arguments space */

/*---*/
/* ALLOCATE THE MEMORY FOR THE SYSTEM STACK. THIS SECTION */
/* WILL BE SIZED BY THE LINKER. */
/*---*/
asm(" .global __STACK_SIZE");
asm(" .global __stack");
asm("__stack: .usect .stack, 0, 8");

/***/
/* C_INT00() - C ENVIRONMENT ENTRY POINT */
/***/
extern void interrupt c_int00()
{
 /*--*/
 /* SET UP THE STACK POINTER IN B15. */
 /* THE STACK POINTER POINTS 1 WORD PAST THE TOP OF THE */
 /* STACK, SO SUBTRACT 1 WORD FROM THE SIZE. */
 /*--*/
 asm(" mvk __stack,SP");
 asm(" mvkh __stack,SP");
Program Generation 2-15

DSP/BIOS Startup Sequence
 asm(" mvk __STACK_SIZE - 4,B0");
 asm(" mvkh __STACK_SIZE - 4,B0");
 asm(" add B0,SP,SP");

 /*--*/
 /* THE SP MUST BE ALIGNED ON AN 8-BYTE BOUNDARY. */
 /*--*/
 asm(" and ~7,SP,SP");

 /*--*/
 /* SET UP THE GLOBAL PAGE POINTER IN B14. */
 /*--*/
 asm(" .global $bss");
 asm(" mvk $bss,DP");
 asm(" mvkh $bss,DP");

 /*--*/
 /* SET UP FLOATING POINT REGISTERS FOR C70 ONLY */
 /*--*/
#ifdef _TMS320C6700
 asm(" mvk 0,B3"); /* round to nearest */
 asm(" mvc B3,FADCR");
 asm(" mvc B3,FMCR");
#endif

 /*--*/
 /* INITIALIZE CONTROL REGISTERS (FOR BIOS ONLY) */
 /*--*/
 asm(" mvk 0,B3");
 asm(" mvc B3,AMR"); /* addressing mode register */
 asm(" mvc B3,IER"); /* interrupt enable register */
 asm(" mvc B3,CSR"); /* interrupt enable register */

 /*--*/
 /* GET THE POINTER TO THE AUTOINITIALIZATION TABLES INTO */
 /* THE FIRST ARGUMENT REGISTER (A4), AND CALL A FUNCTION */
 /* TO PERFORM AUTOINITIALIZATION. */
 /*--*/
 asm(" .global cinit");
 asm(" mvk cinit,A4");
 asm(" mvkh cinit,A4");

 /*--*/
 /* PASS THE CURRENT DP TO THE AUTOINITIALIZATION ROUTINE. */
 /*--*/
 asm(" mv DP,B4");

 auto_init(); /* auto_init(A4, B4); */

 /*--*/
 /* INITIALIZE THE RUNTIME ENVIRONMENT FOR BIOS */
 /*--*/
 BIOS_init();

 asm(" mvk args,A0");
2-16

DSP/BIOS Startup Sequence
 asm(" mvkh args,A0");
 asm(" ldw *+A0[2],A6"); /* envp */
 asm(" ldw *+A0[1],B4"); /* argv */
 asm(" ldw *+A0[0],A4"); /* argc */

 /*--*/
 /* CALL THE USER’S PROGRAM. */
 /*--*/
 main(); /* main(A4, B4, A6); */

 /*--*/
 /* START RUNTIME FOR BIOS. */
 /*--*/
 BIOS_start();

 /*--*/
 /* FALL INTO THE BIOS IDLE LOOP, NEVER RETURN. */
 /*--*/
 IDL_loop();
}

The steps followed in the startup sequence are:

1) Initialize the DSP. A DSP/BIOS program starts at the C environment
entry point c_int00. The reset interrupt vector is set up to branch to
c_int00 after reset. At the beginning of c_int00, the software stack pointer
(B15), and the global page pointer (B14) are set up to point to the end of
.stack and the beginning of .bss respectively. Control registers such as
AMR, IER, and CSR are also initialized. Once the SP and DP are set up,
the auto_init() routine is called to initialize the .bss section from the .cinit
records.

2) Call BIOS_init to initialize the DSP/BIOS modules. BIOS_init is
generated by the Configuration Tool and is located in the programcfg.s62
file. BIOS_init is responsible for basic module initialization. BIOS_init
invokes the MOD_init macro for each DSP/BIOS module.

■ HWI_init sets up the ISTP and the interrupt selector registers, clears
the IFR, and sets the NMIE bit in the IER. See Chapter 6, API
Functions, for more information.

Note: When configuring an interrupt with the Configuration Tool, DSP/BIOS
plugs in the corresponding ISR (interrupt service routine) to the appropriate
location of the interrupt service table. However, DSP/BIOS does not enable
the interrupt bit in IER. It is your responsibility to do this at startup or
whenever appropriate during the application execution.
Program Generation 2-17

DSP/BIOS Startup Sequence
■ HST_init initializes the host I/O channel interface. The specifics of
this routine depend on the particular implementation used for the
host to target link. For example, if RTDX is used, HST_init enables
the bit in IER that corresponds to the hardware interrupt reserved for
RTDX.

■ If the Auto calculate idle loop instruction count box was selected in
the Idle Function Manager in the Configuration Tool, IDL_init
calculates the idle loop instruction count at this point in the startup
sequence. The idle loop instruction count is used to calibrate the
CPU load displayed by the CPU Load Graph (see also section 3.5.2,
The CPU Load, page 3-15).

3) Call your program’s main routine . After all DSP/BIOS modules have
completed their initialization procedures, your main routine is called. This
routine can be written in assembly or C. Because the C compiler adds an
underscore prefix to function names, this can be a C function called main
or an assembly function called _main. The boot routine passes three
parameters to main: argc, argv, and envp, which correspond to the C
command line argument count, command line arguments array, and
environment variables array.

Since neither hardware or software interrupts are enabled yet, you can
take care of initialization procedures for your own application (such as
calling your own hardware initialization routines) from the main routine.

4) Call BIOS_start to start DSP/BIOS . Like BIOS_init, BIOS_start is also
generated by the Configuration Tool and is located in the programcfg.s62
file. BIOS_start is called after the return from your main routine.
BIOS_start is responsible for enabling the DSP/BIOS modules and
invoking the MOD_startup macro for each DSP/BIOS module. For
example:

■ CLK_startup sets up the PRD register, enables the bit in the IER for
the timer selected in the CLK manager, and finally starts the timer.
(This macro is only expanded if you enable the CLK manager in the
Configuration Tool.)

■ PIP_startup calls the notifyWriter function for each created pipe
object.

■ SWI_startup enables software interrupts.

■ HWI_startup enables hardware interrupts by setting the GIE bit in the
CSR.

5) Drop into the idle loop . By calling IDL_loop the boot routine falls into the
DSP/BIOS idle loop forever. At this point hardware and software
interrupts can occur and preempt idle execution. Since the idle loop
manages communication with the host, data transfer between the host
and the target can now take place.
2-18

Chapter 3

Instrumentation

DSP/BIOS provides both explicit and implicit ways to perform real-time
program analysis. These mechanisms are designed to have minimal impact
on the application’s real-time performance.

3.1 Real-Time Analysis . 3–2

3.2 Software vs. Hardware Instrumentation . 3–2

3.3 Instrumentation Performance Issues . 3–3

3.4 Instrumentation APIs . 3–4

3.5 Implicit DSP/BIOS Instrumentation . 3–14

3.6 Instrumentation for Field Testing. 3–23

3.7 Real-Time Data Exchange. 3–24

Topic Page
3-1

Real-Time Analysis
3.1 Real-Time Analysis

Real-time analysis is the analysis of data acquired during real-time operation
of a system. The intent is to easily determine whether the system is operating
within its design constraints, is meeting its performance targets, and has
room for further development.

The traditional debugging method for sequential software is to execute the
program until an error occurs. You then stop the execution, examine the
program state, insert breakpoints, and reexecute the program to collect
information. This kind of cyclic debugging is effective for non-real-time
sequential software. However, cyclic debugging is rarely as effective in
real-time systems because real-time systems require continuous operation,
nondeterministic execution, and stringent timing constraints.

The DSP/BIOS instrumentation APIs and the DSP/BIOS plug-ins are
designed to complement cyclic debugging tools to enable you to monitor
real-time systems as they run. This real-time monitoring data lets you view
the real-time system operation so that you can effectively debug and
performance-tune the system.

3.2 Software vs. Hardware Instrumentation

Software monitoring consists of instrumentation code that is part of the target
application. This code is executed at run time, and data about the events of
interest is stored in the target system’s memory. Thus, the instrumentation
code uses both the computing power and memory of the target system.

The advantage of software instrumentation is that it is flexible and that no
additional hardware is required. Unfortunately, because the instrumentation
is part of the target application, performance and program behavior can be
affected. Without using a hardware monitor, you face the problem of finding
a balance between program perturbation and recording sufficient information.
Limited instrumentation provides inadequate detail, but excessive
instrumentation perturbs the measured system to an unacceptable degree.

DSP/BIOS provides a variety of mechanisms that allow you to precisely
control the balance between intrusion and information gathered. In addition,
the DSP/BIOS instrumentation operations all have fixed, short execution
times. Since the overhead time is fixed, the effects of instrumentation are
known in advance and can be factored out of measurements.
3-2

Instrumentation Performance Issues
3.3 Instrumentation Performance Issues

When all implicit instrumentation is enabled, the CPU load increases less
than 1 percent in a typical application. Several techniques have been used to
minimize the impact of instrumentation on application performance:

❏ Instrumentation communication between the target and the host is
performed in the background (IDL) thread, which has the lowest priority,
so communicating instrumentation data does not affect the real-time
behavior of the application.

❏ From the host you can control the rate at which the host polls the target.
You can stop all host interaction with the target if you want to eliminate all
unnecessary external interaction with the target.

❏ The target does not store Execution Graph or implicit statistics
information unless tracing is enabled. You also have the ability to enable
or disable the explicit instrumentation of the application by using the TRC
module and one of the reserved trace masks (TRC_USER0 and
TRC_USER1).

❏ Log and statistics data are always formatted on the host. The average
value for an STS object and the CPU load are computed on the host.
Computations needed to display the Execution Graph are performed on
the host.

❏ LOG, STS, and TRC module operations are very fast and execute in
constant time, as shown in the following list:
■ LOG_printf and LOG_event: approximately 32 instructions
■ STS_add: approximately 18 instructions
■ STS_delta: approximately 21 instructions
■ TRC_enable and TRC_disable: approximately six instructions

❏ Each STS object uses only four words of data memory. This means that
the host transfers only four words to upload data from a statistics object.

❏ Statistics are accumulated in 32-bit variables on the target and in 64-bit
variables on the host. When the host polls the target for real-time
statistics, it resets the variables on the target. This minimizes space
requirements on the target while allowing you to keep statistics for long
test runs.

❏ You can specify the buffer size for LOG objects. The buffer size affects
the program’s data size and the time required to upload log data.

❏ For performance reasons, implicit hardware interrupt monitoring is
disabled by default. When disabled, there is no effect on performance.
When enabled, updating the data in statistics objects consumes between
20 and 30 instructions per interrupt for each interrupt monitored.
Instrumentation 3-3

Instrumentation APIs
3.4 Instrumentation APIs

Effective instrumentation requires both operations that gather data and
operations that control the gathering of data in response to program events.
DSP/BIOS provides the following three API modules for data gathering:

❏ LOG (Message Log Manager). Log objects capture information about
events in real time. System events are captured in the system log. You
can create additional logs using the Configuration Tool. Your program can
add messages to any log.

❏ STS (Statistics Manager). Statistics objects capture count, maximum,
and total values for any variables in real time. Statistics about SWI
(software interrupt), PRD (period), HWI (hardware interrupt), and PIP
(pipe) objects can be captured automatically. In addition, your program
can create statistics objects to capture other statistics.

❏ HST (Host Input/Output Manager). The host channel objects described
in Chapter 5, Input/Output, allow a program to send raw data streams to
the host for analysis.

LOG and STS provide an efficient way to capture subsets of a real-time
sequence of events that occur at high frequencies or a statistical summary of
data values that vary rapidly. The rate at which these events occur or values
change may be so high that it is either not possible to transfer the entire
sequence to the host (due to bandwidth limitations) or the overhead of
transferring this sequence to the host would interfere with program operation.
Therefore, DSP/BIOS also provides an API module for controlling the data
gathering mechanisms provided by the other modules:

❏ TRC (Trace Manager). Controls which events and statistics are captured
either in real time by the target program or interactively through the
DSP/BIOS plug-ins.

Controlling data gathering is important because it allows you to limit the
effects of instrumentation on program behavior, ensure that LOG and STS
objects contain the necessary information, and start or stop recording of
events and data values at run time.

3.4.1 Explicit vs. Implicit Instrumentation

The instrumentation API operations are designed to be called explicitly by the
application. The LOG module operations allow you to explicitly write
messages to any log. The STS module operations allow you to store statistics
about data variables or system performance. The TRC module allows you to
enable or disable log and statistics tracing in response to a program event.
3-4

Instrumentation APIs
The LOG and STS APIs are also used internally by DSP/BIOS to collect
information about program execution. These internal calls in DSP/BIOS
routines provide implicit instrumentation support. As a result, even
applications that do not contain any explicit calls to the DSP/BIOS
instrumentation APIs can be monitored and analyzed using the DSP/BIOS
plug-ins. For example, the execution of a software interrupt is recorded in a
LOG object called LOG_system. In addition, worst-case ready-to-completion
times for software interrupts and overall CPU load are accumulated in STS
objects. The occurrence of a system tick can also be recorded in the
Execution Graph. See section 3.4.4.2, Control of Implicit Instrumentation,
page 3-12, for more information about what implicit instrumentation can be
collected.

3.4.2 Message Log Manager (LOG Module)

This module manages LOG objects, which capture events in real time while
the target program executes. You can use the Execution Graph, or create
user-defined logs with the Configuration Tool.

User-defined logs contain any information your program stores in them using
the LOG_event and LOG_printf operations. You can view messages in these
logs in real time with the Message Log.

The Execution Graph can also be viewed as a graph of the activity for each
program component.

A log can be either fixed or circular. This distinction is valuable in applications
that enable and disable logging programmatically (using the TRC module
operations as described in section 3.4.4, Trace Control Manager (TRC
Module), page 3-11).

❏ Fixed. The log stores the first messages it receives and stops accepting
messages when its message buffer is full. As a result, a fixed log stores
the first events that occur since the log was enabled.

❏ Circular. The log automatically overwrites earlier messages when its
buffer is full. As a result, a circular log stores the last events that occur.

You create LOG objects using the Configuration Tool, in which you assign
properties such as the length and location of the message buffer.
Instrumentation 3-5

Instrumentation APIs
You can specify the length of each message buffer in words. Individual
messages use four words of storage in the log’s buffer. The first word holds a
sequence number. The remaining three words of the message structure hold
event-dependent codes and data values supplied as parameters to
operations such as LOG_event, which appends new events to a LOG object.

As shown in the following figure, LOG buffers are read from the target and
stored in a much larger buffer on the host. Records are marked empty as they
are copied up to the host.

LOG_printf uses the fourth word of the message structure for the offset or
address of the format string (e.g., %d, %d). The host uses this format string
and the two remaining words to format the data for display. This minimizes
both the time and code space used on the target since the actual printf
operation (and the code to perform the operation) are handled on the host.

LOG_event and LOG_printf both operate on logs atomically. This allows ISRs
and other threads of different priorities to write to the same log without having
to worry about synchronization.

Using the RTA Control Panel
Property Page for each
message log, you can control
how frequently the host polls
the target for information on a
particular log. Right-click on
the RTA Control Panel and
choose the Property Page to
set the refresh rate. If you set
the refresh rate to 0, the host
does not poll the target for log
information unless you
right-click on a log window and choose Refresh Window from the pop-up
menu. You can also use the pop-up menu to pause and resume polling for log
information.

HostTarget

LOG object

LOG buffer

read &
clear
3-6

Instrumentation APIs
Log messages shown in a message log window are numbered (in the left
column of the trace window) to indicate the order in which the events
occurred. These numbers are an increasing sequence starting at 0. If your log
never fills up, you can use a smaller log size. If a circular log is not long
enough or you do not poll the log often enough, you may miss some log
entries that are overwritten before they are polled. In this case, you see gaps
in the log message numbers. You may want to add an additional sequence
number to the log messages to make it clear whether log entries are being
missed.

The online help in the Configuration Tool describes LOG objects and their
parameters. See LOG Module, page 6–38, for reference information on the
LOG module API calls.

3.4.3 Statistics Accumulator Manager (STS Module)

This module manages objects called statistics accumulators, which store key
statistics while a program runs.

You create individual statistics accumulators using the Configuration Tool.
Each STS object accumulates the following statistical information about an
arbitrary 32-bit wide data series:

❏ Count. The number of values in an application-supplied data series

❏ Total. The arithmetic sum of the individual data values in this series

❏ Maximum. The largest value already encountered in this series

❏ Average. Using the count and total, the Statistics View plugin also
calculates the average

Calling the STS_add operation updates the statistics accumulator of the data
series being studied. For example, you might study the pitch and gain in a
software interrupt analysis algorithm or the expected and actual error in a
closed-loop control algorithm.

DSP/BIOS statistics accumulators are also useful for tracking absolute CPU
use of various routines during execution. By bracketing appropriate sections
of the program with the STS_set and STS_delta operations, you can gather
real-time performance statistics about different portions of the application.
Instrumentation 3-7

Instrumentation APIs
You can view these statistics in real time with the Statistics View.

Although statistics are accumulated in 32-bit variables on the target, they are
accumulated in 64-bit variables on the host. When the host polls the target for
real-time statistics, it resets the variables on the target. This minimizes space
requirements on the target while allowing you to keep statistics for long test
runs. The Statistics View may optionally filter the data arithmetically before
displaying it.

By clearing the values on the target, the host allows the values displayed to
be much larger without risking lost data due to values on the target wrapping
around to 0. If polling of STS data is disabled or very infrequent there is a
possibility that the STS data wraps around, resulting in incorrect information.

While the host clears the values on the target automatically, you can clear the
64-bit accumulators stored on the host by right-clicking on the STS Data
window and choosing Clear from the shortcut menu.

The host read and clear operations are performed atomically to allow any
thread to update any STS object reliably. For example, an HWI function can
call STS_add on an STS object and no data is missing from any STS fields.

This instrumentation process provides minimal intrusion into the target
program. A call to STS_add requires approximately 18 instructions and an
STS object uses only four words of data memory. Data filtering, formatting,
and computation of the average is done on the host.

Target Host

read
&

clear

Accumulate Filter = (A*x + B) / C Display

Count

(A x total + B) / C

(A x max + B) / C

Count

Total

Maximum

Count

Total

0 Max

32

Previous

Count

Total

Max

Average(A x total + B) /
(C x count)

64
3-8

Instrumentation APIs
You can control the polling rate for statistics information with the Statistics
View Property Page. If you set the polling rate to 0, the host does not poll the
target for information about the STS objects unless you right-click on the
Statistics View window and choose Refresh Window from the pop-up menu.

3.4.3.1 Statistics About Varying Values

STS objects can be used to accumulate statistical information about a time
series of 32-bit data values.

For example, let Pi be the pitch detected by an algorithm on the ith frame of
audio data. An STS object can store summary information about the time
series {Pi}. The following code fragment includes the current pitch value in the
series of values tracked by the STS object:

pitch = ‘do pitch detection‘
STS_add(&stsObj, pitch);

The Statistics View displays the number of values in the series, the maximum
value, the total of all values in the series, and the average value.

3.4.3.2 Statistics About Time Periods

In any real-time system, there are important time periods. Since a period is
the difference between successive time values, STS provides explicit support
for these measurements.

For example, let Ti be the time taken by an algorithm to process the ith frame
of data. An STS object can store summary information about the time series
{Ti}. The following code fragment illustrates the use of CLK_gethtime
(high-resolution time), STS_set, and STS_delta to track statistical information
about the time required to perform an algorithm:

STS_set(&stsObj, CLK_gethtime());
‘do algorithm‘
STS_delta(&stsObj, CLK_gethtime());

STS_set saves the value of CLK_gethtime as the previous value in the STS
object. STS_delta subtracts this saved value from the value it is passed. The
result is the difference between the time recorded before the algorithm
started and after it was completed; i.e., the time it took to execute the
algorithm (Ti). STS_delta then invokes STS_add and passes this result as the
new value to be tracked.

The host can display the count of times the algorithm was performed, the
maximum time to perform the algorithm, the total time performing the
algorithm, and the average time.
Instrumentation 3-9

Instrumentation APIs
The previous field is the fourth component of an STS object. It is provided to
support statistical analysis of a data series that consist of value differences,
rather than absolute values.

3.4.3.3 Statistics About Value Differences

Both STS_set and STS_delta update the previous field in an STS object.
Depending on the call sequence, you can measure specific value differences
or the value difference since the last STS update. The following example
gathers information about a difference between specific values.

 STS_set(&sts, targetValue);
 "processing"
 STS_delta(&sts, currentValue);
 "processing"
 STS_delta(&sts, currentValue);
 "processing"
 STS_delta(&sts, currentValue);

The next example gathers information about a value’s difference from a base
value.

 STS_set(&sts, baseValue);
 "processing"
 STS_delta(&sts, currentValue);
 STS_set(&sts, baseValue);
 "processing"
 STS_delta(&sts, currentValue);

x1 x2 x3 x4 x5 x6 x7 x8

Dx1 Dx2 Dx3 Dx4 Dx5 Dx6 Dx7

{Dx} value differences since the last STS update

STS_set

STS_delta

STS_delta

STS_delta

STS_delta

STS_delta

STS_delta

STS_delta

x1 x2 x3 x4 x5 x6 x7 x8

Dx1 Dx2 Dx3 Dx4

{Dx} value differences with respect to a set base value

STS_set

STS_delta

STS_set

STS_delta

STS_set

STS_delta

STS_set

STS_delta
3-10

Instrumentation APIs
The online help in the Configuration Tool describes statistics accumulators
and their parameters. See STS Module, page 6–90, for reference information
on the STS module API calls.

3.4.4 Trace Control Manager (TRC Module)

The TRC module allows an application to enable and disable the acquisition
of analysis data in real time. For example, the target can use the TRC module
to stop or start the acquisition of data when it discovers an anomaly in the
application’s behavior.

Control of data gathering is important because it allows you to limit the effects
of instrumentation on program behavior, ensure that LOG and STS objects
contain the necessary information, and start or stop recording of events and
data values at run time.

For example, by enabling instrumentation when an event occurs, you can use
a fixed log to store the first n events after you enable the log. By disabling
tracing when an event occurs, you can use a circular log to store the last n
events before you disable the log.

3.4.4.1 Control of Explicit Instrumentation

You can use the TRC module to control explicit instrumentation as shown in
this code fragment:

if (TRC_query(TRC_USER0) == 0) {
‘LOG or STS operation‘
}

Note: TRC_query returns 0 if all trace types in the mask passed to it are
enabled, and is not 0 if any trace types in the mask are disabled.

The overhead of this code fragment is just a few instruction cycles if the
tested bit is not set. If an application can afford the extra program size
required for the test and associated instrumentation calls, it is very practical
to keep this code in the production application simplifying the development
process and enabling field diagnostics. This is, in fact, the model used within
DSP/BIOS itself.
Instrumentation 3-11

Instrumentation APIs
3.4.4.2 Control of Implicit Instrumentation

The TRC module manages a set of trace bits that control the real-time
capture of implicit instrumentation data through logs and statistics
accumulators. For greater efficiency, the target does not store log or statistics
information unless tracing is enabled. (You do not need to enable tracing for
messages explicitly written with LOG_printf or LOG_event and statistics
added with STS_add or STS_delta.)

The trace bits allow the target application to control when to start and stop
gathering system information. This can be important when trying to capture
information about a specific event or combination of events.

DSP/BIOS defines the following constants for referencing specific trace bits:

Constant Tracing Enabled/Disabled Default

TRC_LOGCLK Logs low-resolution clock interrupts off

TRC_LOGPRD Logs system ticks and start of periodic functions off

TRC_LOGSWI Logs posting, start, and completion of software interrupt functions off

TRC_STSHWI Gathers statistics on monitored register values within HWIs off

TRC_STSPIP Counts the number of frames read from or written to data pipe off

TRC_STSPRD
Gathers statistics on the number of ticks elapsed during execution of peri-
odic functions

off

TRC_STSSWI Gathers statistics on number of instruction cycles or time elapsed from post
to completion of software interrupt

off

TRC_USER0
and
TRC_USER1

Enables or disables sets of explicit instrumentation actions. You can use
TRC_query to check the settings of these bits and either perform or omit
instrumentation calls based on the result. DSP/BIOS does not use or set
these bits.

off

TRC_GBLHOST

Simultaneously starts or stops gathering all enabled types of tracing. This bit
must be set in order for any implicit instrumentation to be performed. This
can be important if you are trying to correlate events of different types. This
bit is usually set at run time on the host with the RTA Control Panel.

off

TRC_GBLTARG
This bit must also be set in order for any implicit instrumentation to be per-
formed. This bit can only be set by the target program and is enabled by
default.

on
3-12

Instrumentation APIs
You can enable and disable these trace bits in the following ways:

❏ From the host, use the RTA Control
Panel. This window allows you to
adjust the balance between infor-
mation gathering and time intrusion
at run time. By disabling various im-
plicit instrumentation types, you
lose information but reduce over-
head of processing.

You can control the refresh rate for
trace state information by
right-clicking on the Property Page
of the RTA Control Panel. If you set
the refresh rate to 0, the host does
not poll the target for trace state
information unless you right-click on the RTA Control Panel and choose
Refresh Window from the pop-up menu.

❏ From the target code, enable and disable trace bits using the
TRC_enable and TRC_disable operations, respectively. For example,
the following C code would disable tracing of log information for software
interrupts and periodic functions:

TRC_disable(TRC_LOGSWI | TRC_LOGPRD);

For example, in an overnight run you might be looking for a specific
circumstance. When it occurs, your program can perform the following
statement to turn off all tracing so that the current instrumentation
information is preserved:

TRC_disable(TRC_GBLTARG);

Any changes made by the target program to the trace bits are reflected in the
RTA Control Panel. For example, you could cause the target program to
disable the tracing of information when an event occurs. On the host, you can
simply wait for the global target enable check box to be cleared and then
examine the log.
Instrumentation 3-13

Implicit DSP/BIOS Instrumentation
3.5 Implicit DSP/BIOS Instrumentation

The instrumentation needed to allow the DSP/BIOS plug-ins to display the
Execution Graph, system statistics, and CPU load are all automatically built
into a DSP/BIOS program to provide implicit instrumentation. You can enable
different components of DSP/BIOS implicit instrumentation by using the RTA
Control Panel plugin in Code Composer, as described in section 3.4.4.2,
Control of Implicit Instrumentation, page 3-12.

DSP/BIOS instrumentation is efficient—when all implicit instrumentation is
enabled, the CPU load increases less than one percent for a typical
application. See section 3.3, Instrumentation Performance Issues, page 3-3,
for details about instrumentation performance.

3.5.1 The Execution Graph

The Execution Graph is a special log used to store information about SWI,
PRD, and CLK processing. You can enable or disable logging for each of
these object types at run time using the TRC module API or the RTA Control
Panel in the host. The Execution Graph window in the host shows the
Execution Graph information as a graph of the activity of each object.

CLK and PRD events are shown to provide a measure of time intervals within
the Execution Graph. Rather than timestamping each log event, which is
expensive (because of the time required to get the timestamp and the extra
log space required), the Execution Graph simply records CLK events along
with other system events.

In addition to SWI, PRD, and CLK events, the Execution Graph shows
additional information in the graphical display. Errors are indications that
either a real-time deadline has been missed or an invalid state has been
detected (either because the system log has been corrupted or the target has
performed an illegal operation).

See section 4.9, Using the Execution Graph to View Program Execution,
page 4-27, for details on how to interpret the Execution Graph information in
relation to DSP/BIOS program execution.
3-14

Implicit DSP/BIOS Instrumentation
3.5.2 The CPU Load

The CPU load is defined as the percentage of instruction cycles that the CPU
spends doing application work; i.e., the percentage of the total time that the
CPU is:

❏ Running ISRs, software interrupts, or periodic functions
❏ Performing I/O with the host
❏ Running any user routine

When the CPU is not doing any of
these, it is considered idle, even if
the CPU is not in a power-save or
hardware-idle mode.

All CPU activity is divided into work
time and idle time. To measure the
CPU load over a time interval T, you
need to know how much time during
that interval was spent doing
application work (tw) and how much
of it was idle time (ti). From this you
can calculate the CPU load as follows:

Since the CPU is always either doing work or in idle it is represented as
follows:

You can rewrite this equation:

You can also express CPU load using instruction cycles rather than time
intervals:

In a DSP/BIOS application, the CPU is doing work when hardware interrupts
are serviced, software interrupts and periodic functions are run, user
functions are executed from the idle loop, HST channels are transferring data
to the host, or real-time analysis information is being uploaded to the
DSP/BIOS plug-ins. When the CPU is not performing any of those activities,
it is going through the idle loop, executing the IDL_cpuLoad function, and
calling the other DSP/BIOS IDL objects. In other words, the CPU idle time in
a DSP/BIOS application is the time that the CPU spends doing the following
routine.

CPUload
tw
T
----- 100×=

T tw ti+=

CPUload
tw

tw ti+
-------------- 100×=

CPUload
cw

cw ci+
----------------- 100×=
Instrumentation 3-15

Implicit DSP/BIOS Instrumentation
To measure the CPU load in a DSP/BIOS application over a time interval T, it
is sufficient to know how much time was spent going through the loop, shown
in the IDL_loop example below, and how much time was spent doing
application work; i.e., doing any other activity not included in the example:

Idle_loop:
 Perform IDL_cpuLoad
 Perform all other IDL functions (these return without doing
 work)
 Goto IDL_loop

Over a period of time T, a CPU with M MIPS (million instructions per second)
executes M x T instruction cycles. Of those instruction cycles, cw are spent
doing application work. The rest are spent executing the idle loop shown
above. If the number of instruction cycles required to execute this loop once
is l1, the total number of instruction cycles spent executing the loop is N x l1
where N is the number of times the loop is repeated over the period T. Hence
you have total instruction cycles equals work instruction cycles plus idle
instruction cycles.

From this expression you can rewrite cw as:

Using previous equations, you can calculate the CPU load in a DSP/BIOS
application as:

To calculate the CPU load you need to know l1 and the value of N for a chosen
time interval T, over which the CPU load is being measured.

The IDL_cpuLoad object in the DSP/BIOS idle loop updates an STS object,
IDL_busyObj, that keeps track of the number of times the IDL_loop runs, and
the time as kept by the DSP/BIOS low-resolution clock (see section 4.7,
Clock Manager (CLK Module), page 4-23). This information is used by the
host to calculate the CPU load according to the equation above.

The host uploads the STS objects from the target at time intervals that you
determine (the time interval between updates of the IDL_cpuLoad STS
object, set in its Property Page). The information contained in IDL_busyObj
is used to calculate the CPU load over the period of time between two
uploads of IDL_busyObj. The IDL_busyObj count provides a measure of N
(the number of times the idle loop ran). The IDL_busyObj maximum is not
used in CPU load calculation. The IDL_busyObj total provides the value T in
units of the low-resolution clock.

MT cw Nl1+=

cw MT Nl1–=

CPUload
cw

MT
--------- 100×

MT NI1–

MT
------------------------ 100× 1

NI1
MT
---------–

 100×= = =
3-16

Implicit DSP/BIOS Instrumentation
To calculate the CPU load you still need to know l1 (the number of instruction
cycles spent in the idle loop). When the Auto calculate idle loop instruction
count box is checked in the Idle Function Manager in the Configuration Tool,
DSP/BIOS calculates l1 at initialization from BIOS_init.

The host uses the values described for N, T, l1, and the CPU MIPS to
calculate the CPU load as follows:

Since the CPU load is calculated over the STS polling rate period, the value
displayed is the average CPU load during that time. As the polling period
increases, it becomes more likely that short spikes in the CPU load are not
shown on the graph.

Considering the definition of idle time and work time used to calculate the
CPU load, it follows that a DSP/BIOS application that performs only the loop
shown in the previous IDL_loop example displays 0% CPU load. Since each
IDL function runs once in every idle loop cycle, adding IDL objects to such an
application dramatically increases the measure of CPU load. For example,
adding an IDL function that consumes as many cycles as the rest of the
components in the IDL_loop example results in a CPU load display of 50%.
This increase in the CPU load is real, since the time spent executing the new
IDL user function is, by definition, work time. However, this increase in CPU
load does not affect the availability of the CPU to higher priority threads such
as software or hardware interrupts.

In some cases you may want to consider one or more user IDL routines as
CPU idle time, rather than CPU work time. This changes the CPU idle time to
the time the CPU spends doing the following routine:

Idle_loop:
 Perform IDL_cpuLoad
 Perform user IDL function(s)
 Perform all other IDL functions
 Goto IDL_loop

The CPU load can now be calculated in the same way as previously
described. However, what is considered idle time has now changed, and you
need a new instruction cycle count for the idle loop described above. This
new value must be provided to the host so that it can calculate the CPU load.
To do this, enter the new cycle count in the Idle Function Manager Properties
in the Configuration Tool. The IDL_loop cycle count can be calculated using
the Code Composer Profiler to benchmark one pass through the IDL_loop
when there is no host I/O or real-time analysis information transfer to the host,
and the only routines executed are the IDL_cpuLoad function and any other
user functions you want to include as idle time. (See the TMS320C6000 Code
Composer Studio Tutorial manual for a description on how to use the Profiler.)

CPUload 1
Nl1
MT
---------– 100=
Instrumentation 3-17

Implicit DSP/BIOS Instrumentation
3.5.3 CPU Load Accuracy

The accuracy of the CPU load value measured as described above is
affected by the accuracy in the measurements of T, N, and l1.

❏ To measure T you use the low resolution clock, so you can only know T
with the accuracy of the resolution of this clock. If the measured time is T
ticks, but the real time elapsed is ticks + ε, with 0 < ε < 1, the error
introduced is as follows:

Error = | actual load – measured load |

Since (N x l1)/(M x T) can be 1 at the most (when the CPU load is 0), the
error is bounded:

 0 < ε < 1

In a typical application, the CPU load is measured at time intervals on the
order of 1 second. The timer interrupt, which gives the resolution of the
tick used to measure T, is triggered at time intervals on the order of 1
millisecond. Hence T is 1000 in low-resolution ticks. This results in a
bounded error of less than 0.1% for the CPU load.

❏ To obtain a measurement of N, the host uses the integer value provided
by the accumulated count in the IDL_busyObj STS object. However, the
value of N could be overestimated or underestimated by as much as 1.
The error introduced by this is:

 Error = | actual load – measured load |

 0 < ε < 1

1
Nl1

M T ε+()----------------------–
 = 1

Nl1
MT
---------–

 –

Nl1
M

1
T

1
T ε+
------------–

 =

Nl1
MT
---------=

ε
T ε+
------------×

Error
ε

T ε+
------------≤

Error
1
T
---<

1
Nl1
MT
---------–

 = 1
N(ε)l1+

MT
-----------------------–

 –

N ε N–+()
l1

MT

 =

ε l1×
MT

-------------=

K
l1

MT
---------<
3-18

Implicit DSP/BIOS Instrumentation
For a measurement period on the order of 1 second and a typical idle
loop cycle count on the order of 200 instruction cycles, the additional
error due to the approximation of N is far below the 0.1% error due to the
resolution in the measure of T.

❏ Finally, there may also be an error in the calculation of l1, the idle cycle
instruction count, that affects the CPU load accuracy. This error depends
on how l1 is measured. When l1 is autocalculated, BIOS_init uses the
on-chip timer with CLKSRC = CPU/4 and the timer counter register value
to estimate the idle loop instruction cycles count. Since the timer counter
register increases at a rate of CPU/4 (one increase for every four CPU
cycles), the resolution that can be achieved when measuring instruction
cycles by reading the timer counter is worse than a single instruction
cycle. This causes an uncertainty in the value estimated for l1 that
introduces a corresponding error in the value of the CPU load. This error
is:

 ∆I1 = error in the measured value of l1

This error is the greatest when N is large; i.e., for CPU loads close to 0%.
For this value, the error equals ∆l1/l1; i.e., the maximum error in the CPU
load calculation equals the percentage that ∆I1 represents in total idle
cycle count l1. ∆l1 is six instruction cycles when BIOS_init auto-calculates
l1 using the on-chip timer counter. Hence, the maximum CPU load error
for a typical application with l1 = 200 instruction cycles is 2.8% for a CPU
load of 0.1%, and it decreases to less than 0.1% error for a CPU load of
99%, as shown in the following table.

CPU Load CPU Load Error due to ∆I1

99% <0.1%

80% 0.6%

75% 0.7%

50% 1.4%

25% 2.1%

10% 2.5%

1% 2.8%

0.1% 2.8%

Error ∆I1
N

MT

 =
Instrumentation 3-19

Implicit DSP/BIOS Instrumentation
The host calculates all the error components for each CPU load reported and
displays the total accuracy for the CPU load value currently reported in the
CPU load display. However, when you enter a value for l1 manually, the last
component of the error (due to l1) is not added to the total error displayed.

3.5.4 Hardware Interrupt Count and Maximum Stack Depth

You can track the number of times an individual HWI function has been
triggered by using the Configuration Tool to set the monitor parameter for an
HWI object to monitor the stack pointer. An STS object is automatically
created for each hardware ISR that is monitored.

For hardware interrupts that are not monitored, there is no overhead—control
passes directly to the HWI function. For interrupts that are monitored, control
first passes to a stub function generated by the Configuration Tool. This
function reads the selected data location, passes the value to the selected
STS operation, and finally branches to the HWI function.

The enable HWI accumulators check box in the RTA Control Panel must be
selected in order for HWI function monitoring to take place. If this type of
tracing is not enabled, the stub function branches to the HWI function without
updating the STS object.

The number of times an interrupt is triggered is recorded in the Count field of
the STS object. When the stack pointer is monitored, the maximum value
reflects the maximum position of the top of the application stack when the
interrupt occurs; this can be useful for determining the application stack size
needed by an application. To determine the maximum depth of the stack,
follow these steps:

1) Using the Configuration Tool right-click on the HWI object and select
Properties. Change the monitor field to Stack Pointer and the operation
field to STS_add(-*addr). Leave the default setting of unsigned for true.
This gives you the minimum value of the stack pointer in the maximum
field of the STS object. On the TMS320C6000 this is the top of the stack,
since the stack grows downward in memory.

IST

00 : b isr0

20 : b isr1

20n : b isrn

isr0

isr1

isrn

IST

00 : b isr0

20 : b stub1

20n : b isrn

isr0

stub1

isrn

isr1

Default Configuration Monitoring isr1
3-20

Implicit DSP/BIOS Instrumentation
2) Link your program and use the nmti program described in Chapter 7,
Utility Programs, page 7–3, to find the address of the end of the
application stack. Or, you can find the address of the end of the
application stack in Code Composer by using a Memory window or the
map file to find the address referenced by the GBL_stackend symbol.
(The GBL_stackbeg symbol references the top of the stack.)

3) Run your program and view the STS object that monitors the stack
pointer for this HWI function in the Statistics View window.

4) Subtract the minimum value of the stack pointer (maximum field in the
STS object) from the end of the application stack to find the maximum
depth of the stack.

3.5.5 Monitoring Variables

In addition to counting hardware interrupt occurrences and monitoring the
stack pointer, you can monitor any register or data value each time a
hardware interrupt is triggered.

This implicit instrumentation can be enabled for any HWI object. Such
monitoring is not enabled by default; the performance of your interrupt
processing is not affected unless you enable this type of instrumentation in
the Configuration Tool. The statistics object is updated each time hardware
interrupt processing begins. Updating such a statistics object consumes
between 20 and 30 instructions per interrupt for each interrupt monitored.

To enable implicit HWI instrumentation:

1) Open the properties window for any HWI object and choose a register to
monitor in the monitor field.

You can monitor any of the following values. When you choose a register
or data value to monitor, the Configuration Tool automatically creates an
STS object which stores statistics for any one of these values:

2) Set the operation parameter to the STS operation you want to perform on
this value.

Data Value
(type in addr field)

Frame Pointer
Stack Pointer
Top of SW Stack

a0
a1
a2
a3
a4
a5
a6
a7

a8
a9
a10
a11
a12
a13
a14
a15

b0
b1
b2
b3
b4
b5
b6
b7

b8
b9
b10
b11
b12
b13
b14
b15
Instrumentation 3-21

Implicit DSP/BIOS Instrumentation
You can perform one of the following operations on the value stored in the
data value or register you select. For all these operations, the count
stores a count of the number of times this hardware interrupt has been
executed. The max and total values are stored in the STS object on the
target. The average is computed on the host.

3) You may also set the properties of the corresponding STS object to filter
the values of this STS object on the host.

For example, you might want to watch the top of the software stack to see
whether the application is exceeding the allocated stack size. The top of the
software stack is initialized to 0xCOFFEE when the program is loaded. If this
value ever changes, the application has either exceeded the allocated stack
or some error has caused the application to overwrite the application’s stack.

One way to watch for this condition is to follow these steps:

1) In the Configuration Tool, enable implicit instrumentation on any regularly
occurring HWI function. Right-click on the HWI object, select Properties,
and change the monitor field to Top of SW Stack with STS_delta(*addr)
as the operation.

2) Set the prev property of the corresponding STS object to 0xCOFFEE.

STS Operation Result

STS_add(*addr) Stores maximum and total for the data value or register value

STS_delta(*addr)
Compares the data value or register value to the prev property of the STS object
(or a value set consistently with STS_set) and stores the maximum and total differ-
ences.

STS_add(-*addr)
Negates the data value or register value and stores the maximum and total. As a
result, the value stored as the maximum is the negated minimum value. The total
and average are the negated total and average values.

STS_delta(-*addr)

Negates the data value or register value and compares the data value or register
value to the prev property of the STS object (or a value set programmatically with
STS_set). Stores the maximum and total differences. As a result, the value stored
as the maximum is the negated minimum difference.

STS_add(|*addr|)
Takes the absolute value of the data value or register value and stores the maximum
and total. As a result, the value stored as the maximum is the largest negative or
positive value. The average is the average absolute value.

STS_delta(|*addr|)

Compares the absolute value of the register or data value to the prev property of the
STS object (or a value set programmatically with STS_set). Stores the maximum
and total differences. As a result, the value stored as the maximum is the largest
negative or positive difference and the average is the average variation from the
specified value.
3-22

Instrumentation for Field Testing
3) Load your program in Code Composer and use the Statistics View to
view the STS object that monitors the stack pointer for this HWI function.

4) Run your program. Any change to the value at the top of the stack is seen
as a non-zero total (or maximum) in the corresponding STS object.

3.5.6 Interrupt Latency

Interrupt latency is the maximum time between the triggering of an interrupt
and when the first instruction of the ISR executes. You can measure interrupt
latency for the timer interrupt by following these steps:

1) Configure the HWI object specified by the CPU Interrupt property of the
CLK manager to monitor a Data Value.

2) Set the addr parameter to the address of the timer counter register for the
on-chip timer device used by the CLK manager.

3) Set the type to unsigned.

4) Set the operation parameter to STS_add(*addr).

5) Set the Host Operation parameter of the corresponding STS object,
HWI_INT14_STS, to A x X + B. Set A to 4 and B to 0.

The STS object HWI_INT14_STS then displays the maximum time (in
instruction cycles) between when the timer interrupt was triggered and when
the Timer Counter Register was able to be read. This is the interrupt latency
experienced by the timer interrupt. The interrupt latency in the system is at
least as large as this value. You can follow the same steps with a different
HWI object to measure interrupt latency for the corresponding interrupt.

3.6 Instrumentation for Field Testing

The embedded DSP/BIOS run-time library and DSP/BIOS plug-ins support a
new generation of testing and diagnostic tools that interact with programs
running on production systems. Since DSP/BIOS instrumentation is so
efficient, your production program can retain explicit instrumentation for use
with manufacturing test and field diagnostic tools, which can be designed to
interact with both implicit and explicit instrumentation.
Instrumentation 3-23

Real-Time Data Exchange
3.7 Real-Time Data Exchange

Real-Time Data Exchange (RTDX) provides real-time, continuous visibility
into the way DSP applications operate in the real world. RTDX allows system
developers to transfer data between a host computer and DSP devices
without interfering with the target application. The data can be analyzed and
visualized on the host using any OLE automation client. This shortens
development time by giving you a realistic representation of the way your
system actually operates.

RTDX consists of both target and host components. A small RTDX software
library runs on the target DSP. The DSP application makes function calls to
this library’s API in order to pass data to or from it. This library makes use of
a scan-based emulator to move data to or from the host platform via a JTAG
interface. Data transfer to the host occurs in real time while the DSP
application is running.

On the host platform, an RTDX host library operates in conjunction with Code
Composer Studio. Displays and analysis tools communicate with RTDX via
an easy-to-use COM API to obtain the target data and/or to send data to the
DSP application. Designers may use their choice of standard software
display packages, including:

❏ National Instruments' LabVIEW
❏ Quinn-Curtis' Real-Time Graphics Tools
❏ Microsoft Excel

Alternatively, you can develop your own Visual Basic or Visual C++
applications. Instead of focusing on obtaining the data, you can concentrate
on designing the display to visualize the data in the most meaningful way.

3.7.1 RTDX Applications

RTDX is well suited for a variety of control, servo, and audio applications. For
example, wireless telecommunications manufacturers can capture the
outputs of their vocoder algorithms to check the implementations of speech
applications.

Embedded control systems also benefit from RTDX. Hard disk drive
designers can test their applications without crashing the drive with improper
signals to the servo-motor. Engine control designers can analyze changing
factors (like heat and environmental conditions) while the control application
is running.

For all of these applications, you can select visualization tools that display
information in a way that is most meaningful to you. Future TI DSPs will
enable RTDX bandwidth increases, providing greater system visibility to an
even larger number of applications.
3-24

Real-Time Data Exchange
3.7.2 RTDX Usage

RTDX can be used within DSP/BIOS or, alternatively, without DSP/BIOS. The
examples presented throughout the online help are written without
DSP/BIOS.

RTDX is available with the PC-hosted Code Composer running Windows 95,
Windows 98, or Windows NT version 4.0. RTDX is not currently available with
the Code Composer Simulator.

This document assumes that the reader is familiar with C, Visual Basic or
Visual C++, and OLE/ActiveX programming.

3.7.3 RTDX Flow of Data

Code Composer controls the flow of data between the host (PC) and the
target (TI processor).

3.7.3.1 Target to Host Data Flow

To record data on the target, you must declare an output channel and write
data to it using routines defined in the user interface. This data is immediately
recorded into an RTDX target buffer defined in the RTDX target library. The
data in the buffer is then sent to the host via the JTAG interface.

The RTDX host library receives this data from the JTAG interface and records
it. The host records the data into either a memory buffer or to an RTDX log
file (depending on the RTDX host recording mode specified).

Host Target

JTAG
interfaceOLE

automation
client

(optional)
log file

RTDX Target
Library

Target DSP
application

Code
ComposerOLE

interface User interface
RTDX host

library
Instrumentation 3-25

Real-Time Data Exchange
The recorded data can be retrieved by any host application that is an OLE
automation client. Some typical examples of OLE-capable host applications
are:

❏ Visual Basic applications
❏ Visual C++ applications
❏ Lab View
❏ Microsoft Excel

Typically, an RTDX OLE automation client is a display that allows you to
visualize the data in a meaningful way.

3.7.3.2 Host to Target Data Flow

For the target to receive data from the host, you must first declare an input
channel and request data from it using routines defined in the user interface.
The request for data is recorded into the RTDX target buffer and sent to the
host via the JTAG interface.

An OLE automation client can send data to the target using the OLE
Interface. All data to be sent to the target is written to a memory buffer within
the RTDX host library. When the RTDX host library receives a read request
from the target application, the data in the host buffer is sent to the target via
the JTAG interface. The data is written to the requested location on the target
in real time. The host notifies the RTDX target library when the operation is
complete.

3.7.3.3 RTDX Target Library User Interface

The user interface provides the safest method of exchanging data between a
target application and the RTDX host library.

The data types and functions defined in the user interface:

❏ Enable a target application to send data to the RTDX host library

❏ Enable a target application to request data from the RTDX host library

❏ Provide data buffering on the target. A copy of your data is stored in a
target buffer prior to being sent to the host. This action helps ensure the
integrity of the data and minimizes real-time interference.

❏ Provide interrupt safety. You can call the routines defined in the user
interface from within interrupt handlers.

❏ Ensures correct utilization of the communication mechanism. It is a
requirement that only one datum at a time can be exchanged between
the host and target using the JTAG interface. The routines defined in the
user interface handle the timing of calls into the lower-level interfaces.
3-26

Real-Time Data Exchange
3.7.3.4 RTDX Host OLE Interface

The OLE interface describes the methods that enable an OLE automation
client to communicate with the RTDX host library.

The functions defined in the OLE interface:

❏ Enable an OLE automation client to access the data that was recorded in
an RTDX log file or is being buffered by the RTDX Host Library

❏ Enable an OLE automation client to send data to the target via the RTDX
host library

3.7.4 RTDX Modes

The RTDX host library provides the following modes of receiving data from a
target application.

❏ Noncontinuous. In noncontinuous mode, data is written to a log file on
the host.

Noncontinuous mode should be used when you want to capture a finite
amount of data and record it in a log file.

❏ Continuous. In continuous mode, the data is simply buffered by the
RTDX host library; it is not written to a log file.

Continuous mode should be used when you want to continuously obtain
and display the data from a DSP application, and you don’t need to store
the data in a log file.

Note: To drain the buffer(s) and allow data to continuously flow up from the
target, the OLE automation client must read from each target output
channel on a continual basis. Failure to comply with this constraint may
cause data flow from the target to cease, thus reducing the data rate, and
possibly resulting in channels being unable to obtain data. In addition, the
OLE automation client should open all target output channels on startup to
avoid data loss to any of the channels.

3.7.5 Special Considerations When Writing Assembly Code

The RTDX functionality in the user library interface can be accessed by a
target application written in assembly code.

See the Texas Instruments C compiler documentation for information about
the C calling conventions, run-time environment, and runtime-support
functions.
Instrumentation 3-27

Real-Time Data Exchange
3.7.6 Target Buffer Size

The RTDX target buffer is used to temporarily store data that is waiting to be
transferred to the host. You may want to reduce the size of the buffer if you
are transferring only a small amount of data or you may need to increase the
size of the buffer if you are transferring blocks of data larger than the default
buffer size.

Using the Configuration Tool you can change the RTDX buffer size by
right-clicking on the RTDX module and selecting Properties.

3.7.7 Sending Data From Target to Host or Host to Target

The user library interface provides the data types and functions for:

❏ Sending data from the target to the host
❏ Sending data from the host to the target

The following data types and functions are defined in the header file rtdx.h.
They are available via DSP/BIOS or standalone.

❏ Declaration Macros

■ RTDX_CreateInputChannel
■ RTDX_CreateOutputChannel

❏ Functions

■ RTDX_channelBusy
■ RTDX_disableInput
■ RTDX_disableOutput
■ RTDX_enableOutput
■ RTDX_enableInput
■ RTDX_read
■ RTDX_readNB
■ RTDX_sizeofInput
■ RTDX_write

❏ Macros

■ RTDX_isInputEnabled
■ RTDX_isOutputEnabled

See Chapter 6, API Functions, for detailed descriptions of all RTDX
functions.
3-28

Chapter 4

Program Execution

This chapter describes the types of functions that make up a DSP/BIOS
application and their behavior and priorities during program execution.

4.1 Program Components. 4–2

4.2 Choosing Which Types of Threads to Use . 4–3

4.3 The Idle Loop . 4–5

4.4 Software Interrupts . 4–6

4.5 Hardware Interrupts . 4–14

4.6 Preemption and Yielding . 4–17

4.7 Clock Manager (CLK Module). 4–23

4.8 Periodic Function Manager (PRD) and the System Clock 4–25

4.9 Using the Execution Graph to View Program Execution. 4–27

4.10 SWI and PRD Accumulators: Real-Time Deadline Headroom. . . . 4–30

Topic Page
4-1

Program Components
4.1 Program Components
There are three major types of threads in a DSP/BIOS program:

❏ Background thread. Has the lowest priority in a DSP/BIOS application
and executes the idle loop (IDL). After main() returns, a DSP/BIOS
application calls the startup routine for each DSP/BIOS module and then
falls into the idle loop. The idle loop is a continuous loop that calls all
functions for the objects in the IDL module. Each function must wait for
all others to finish executing before it is called again. The idle loop runs
continuously except when it is preempted by higher-priority threads. Only
functions that do not have hard deadlines should be executed in the idle
loop.

❏ Software interrupts (SWIs). Patterned after hardware ISRs. While ISRs
are triggered by a hardware interrupt, software interrupts are triggered by
calling SWI functions from the program. Software interrupts provide
additional priority levels between hardware interrupts and the
background thread. SWIs handle tasks subject to time constraints that
preclude them from being run from the idle loop, but whose deadlines are
not as severe as those of hardware ISRs. Software interrupts should be
used to schedule events with deadlines of 100 microseconds or more.
SWIs allow HWIs to defer less critical processing to a lower-priority
thread, minimizing the time the CPU spends inside an ISR, where other
HWIs may be disabled.

❏ Hardware interrupts (HWIs). Triggered in response to external
asynchronous events that occur in the DSP environment. An HWI
function (also called an interrupt service routine or ISR) is executed after
a hardware interrupt is triggered, to perform a critical task that is subject
to a hard deadline. HWI functions are the threads with the highest priority
in a DSP/BIOS application. HWIs should be used for application tasks
that may need to run at frequencies approaching 200 kHz, and that need
to be completed within deadlines of 2 to 100 microseconds.

There are several other kinds of functions that can be performed in a
DSP/BIOS program:

❏ Clock (CLK) functions. Triggered regularly at the rate of the on-chip
timer interrupt. By default, these functions are triggered by the
HWI_INT14 hardware interrupt and are performed as HWI functions.

❏ Periodic (PRD) functions. Performed based on a multiple of either the
on-chip timer interrupt or some other regular occurrence. Periodic
functions are a special type of software interrupt.

❏ Data notification functions. Performed when you use pipes (PIP) or
host channels (HST) to transfer data. The functions are triggered when a
frame of data is read or written to notify the writer or reader that a frame
is free or data is available. These functions are performed as part of the
context of the function that called PIP_alloc, PIP_get, PIP_free, or
PIP_put.
4-2

Choosing Which Types of Threads to Use
4.2 Choosing Which Types of Threads to Use

The type of thread and the priority level that you choose for each routine in
an application program has an impact on whether the program tasks are
scheduled on time and executed correctly. The Configuration Tool makes it
easy to change a routine from one thread type to another.

Here are some rules for deciding which type of object to use for each task to
be performed by a program:

❏ HWI. Perform only critical
processing within a hardware
interrupt service routine. Your HWI
function should post a software
interrupt to perform any
lower-priority processing. If this
lower-priority processing is still
high-priority, give the software
interrupt a high priority relative to
other software interrupts. This
allows other hardware interrupts
to occur. HWIs can run at
frequencies approaching 200 kHz.

❏ SWI. Use software interrupts to
schedule events with deadlines of
100 microseconds or more. Using
an SWI thread instead of an HWI thread in this case minimizes the length
of time interrupts are disabled (interrupt latency). HWIs may defer
less-critical processing to an SWI.

❏ IDL. Create background functions to perform noncritical housekeeping
tasks when no other processing is necessary. IDL functions do not
typically have hard deadlines; instead they run whenever the system has
unused processor time.

❏ CLK. Use CLK functions when you want a function to be triggered directly
by a timer interrupt. These functions are run as HWI functions and should
take minimal processing time. The default CLK object, PRD_clock,
causes a tick for the periodic functions. You can add additional CLK
objects to be run at the same rate. However, you should minimize the
time required to perform all CLK functions because they all run as HWI
functions.

❏ PRD. Use PRD functions when you want a function to run at a rate based
on a multiple of either the on-chip timer’s low-resolution rate or by some
event (such as an external interrupt). These functions run as SWI
functions.

Hardware
interrupts

(HWI)

Software
interrupts

(SWI)

Background
threads

(IDL)

>=2
microseconds

Deadline

no deadline

>=100
microseconds
Program Execution 4-3

Choosing Which Types of Threads to Use
❏ PRD vs. SWI. All PRD functions are run at the same SWI priority, so one
PRD function cannot preempt another. However, PRD functions can post
lower-priority software interrupts to take care of lengthy processing
routines. This ensures that the PRD_swi software interrupt can preempt
those routines when the next system tick occurs and PRD_swi is posted
again.

All DSP/BIOS threads run to completion. While some threads may be
preempted, they cannot be suspended to wait for another event. Therefore,
all input needed by a thread’s function should be ready when the program
posts the thread. The flexible mailbox structure used by SWI functions
provides an efficient way to determine when a software interrupt is ready to
run.
4-4

The Idle Loop
4.3 The Idle Loop

The idle loop is the background thread of DSP/BIOS, which runs continuously
when no hardware interrupt service routines or software interrupts are
running. Any hardware or software interrupt can preempt the idle loop at any
point.

The IDL manager in the Configuration Tool allows you to insert functions that
execute within the idle loop. The idle loop runs the IDL functions that you
configured with the Configuration Tool. IDL_loop() calls the functions
associated with each one of the IDL objects one at a time, and then starts
over again in a continuous loop. The functions are called in the same order in
which they were created in the Configuration Tool. Therefore, an IDL function
must run to completion before the next IDL function can start running. When
the last idle function has completed, the idle loop starts the first IDL function
again. Idle loop functions are often used to poll non-real-time devices that do
not (or cannot) generate interrupts, monitor system status, or perform other
background activities.

The idle loop is the thread with lowest priority in a DSP/BIOS application. The
idle loop functions run only when no other hardware or software interrupts
need to run. Communication between the target and the DSP/BIOS plugins
is performed within the background idle loop. This ensures that the
DSP/BIOS plugins do not interfere with the program’s tasks. If the target CPU
is too busy to perform background tasks, the DSP/BIOS plugins stop
receiving information from the target until the CPU is available.

By default, there are three DSP/BIOS IDL objects in the idle loop:

❏ LNK_dataPump manages transfer of real-time analysis data (e.g., LOG
and STS data), and HST channel data between the target DSP and the
host. Different variants of LNK_dataPump support different target/host
links; e.g., JTAG (via RTDX), shared memory, etc.

❏ RTA_dispatcher is a real-time analysis server on the target that accepts
commands from DSP/BIOS plugins, gathers instrumentation information
from the target, and uploads it at run time. RTA_dispatcher sits at the end
of two dedicated HST channels; its commands/responses are routed
from/to the host via LNK_dataPump.

❏ IDL_cpuLoad uses an STS object (IDL_busyObj) to calculate the target
load. The contents of this object are uploaded to the DSP/BIOS plugins
through RTA_dispatcher to display the CPU load.
Program Execution 4-5

Software Interrupts
4.4 Software Interrupts

Software interrupts are patterned after hardware interrupt service routines.
Software interrupts are triggered programmatically, through a call to a
DSP/BIOS API such as SWI_post. Software interrupts provide a range of
threads that have intermediate priority between HWI functions and the
background idle loop.

These threads are suitable to handle application tasks that recur with slower
rates or are subject to less severe real-time deadlines than those of hardware
interrupts.

The DSP/BIOS APIs that can trigger or post a software interrupt are:

❏ SWI_andn
❏ SWI_dec
❏ SWI_inc
❏ SWI_or
❏ SWI_post

The SWI manager controls the execution of all software interrupts. When one
of the APIs above is called by the application code, the SWI manager
schedules the function corresponding to the software interrupt for execution.
To handle all software interrupts in an application, the SWI manager uses
SWI objects. To add a new software interrupt to an application, create a new
SWI object from the SWI manager in the Configuration Tool. From the
Property Page of each SWI object, you can set the function associated with
each software interrupt that runs when the corresponding SWI object is
triggered by the application. The Configuration Tool also allows you to enter
two arguments for each SWI function. From the Property Page of the SWI
manager, you can determine from which memory segment SWI objects are
allocated. SWI objects are accessed by the SWI manager when software
interrupts are posted and scheduled for execution.

The online help in the Configuration Tool describes SWI objects and their
parameters. See SWI Module, page 6–101, for reference information on the
SWI module API calls.

4.4.1 Setting Software Interrupt Priorities in the Configuration Tool

There are different priority levels among software interrupts. You can create
as many software interrupts as your memory constraints allow for each
priority level. You can choose a higher priority for a software interrupt that
handles a thread with a shorter real-time deadline, and a lower priority for a
software interrupt that handles a thread with a less critical execution deadline.
4-6

Software Interrupts
Notes
❏ You can create up to 15 priority levels. See section 4.6.4, Software

Interrupt Priorities and Application Stack Size, page 4-21, for stack size
restrictions.

❏ You cannot sort software interrupts within a single priority level.

❏ Priority levels automatically disappear if you drag all the software
interrupts out of a priority level.

❏ The Property window for an SWI object shows its numeric priority level
(from 1 to 15; 15 is the highest level). You cannot set a numeric priority in
this window.

To set software interrupt priorities with the Configuration Tool, follow these
steps:

1) In the Configuration Tool, highlight the
Software Interrupt Manager.

Notice the SWI objects in the right half of the
window. If you have not added priority levels,
all SWI objects have the same priority level. (If
you do not see a list of SWI objects in the right
half of the window, choose View→Ordered
collection view.)

2) To add a priority level, drag a software
interrupt to the bottom or top of the list or
between two existing priority levels.

3) Drag the highest priority software interrupts up to the highest numbered
level. Drag any lower priority software interrupts down to a lower
numbered level.

4) Continue adding levels and sorting software interrupts.

4.4.2 Execution of Software Interrupts

Software interrupts can be scheduled for execution with a call to SWI_andn,
SWI_dec, SWI_inc, SWI_or, and SWI_post. These calls can be used virtually
anywhere in the program—interrupt service routines, periodic functions, idle
functions, or other software interrupt functions.

When an SWI object is posted, the SWI manager adds it to a list of posted
software interrupts that are pending execution. Then the SWI manager
checks whether software interrupts are currently enabled. If they are not, as
is the case inside an HWI function, the SWI manager returns control to the
current thread.
Program Execution 4-7

Software Interrupts
If software interrupts are enabled, the SWI manager checks the priority of the
posted SWI object against the priority of the thread that is currently running.
If the thread currently running is the background idle loop or a lower priority
SWI, the SWI manager removes the SWI from the list of posted SWI objects
and switches the CPU control from the current thread to start execution of the
posted SWI function.

If the thread currently running is an SWI of the same or higher priority, the
SWI manager returns control to the current thread, and the posted SWI
function runs after all other SWIs of higher priority or the same priority that
were previously posted finish execution.

Note: When an SWI starts executing it must run to completion without
blocking.

SWI functions can be preempted by threads of higher priority (such as an
HWI or an SWI of higher priority). However, SWI functions cannot block. You
cannot suspend a software interrupt while it waits for something—like a
device—to be ready.

If an SWI is posted multiple times before the SWI manager has removed it
from the posted SWI list, its SWI function executes only once, much like an
ISR is executed only once if the hardware interrupt is triggered multiple times
before the CPU clears the corresponding interrupt flag bit in the interrupt flag
register. (See section 4.4.3, Using an SWI Object’s Mailbox, page 4-8, for
more information on how to handle SWIs that are posted multiple times
before they are scheduled for execution.)

4.4.3 Using an SWI Object’s Mailbox

Each SWI object has a 32-bit mailbox, which is used either to determine
whether to post the software interrupt or as a value that can be evaluated
within the SWI function.

SWI_post, SWI_or, and SWI_inc post an SWI object unconditionally:

❏ SWI_post does not modify the value of the SWI object mailbox when it is
used to post a software interrupt.

❏ SWI_or sets the bits in the mailbox determined by a mask that is passed
as a parameter, and then posts the software interrupt.

❏ SWI_inc increases the SWI’s mailbox value by one before posting the
SWI object.
4-8

Software Interrupts
SWI_andn and SWI_dec post the SWI object only if the value of its mailbox
becomes 0:

❏ SWI_andn clears the bits in the mailbox determined by a mask passed
as a parameter.

❏ SWI_dec decreases the value of the mailbox by one.

The following table summarizes the differences between these functions:

The SWI mailbox allows you to have a tighter control over the conditions that
should cause an SWI function to be posted or the number of times the SWI
function should be executed once the software interrupt is posted and
scheduled for execution.

To access the value of its mailbox, an SWI function can call SWI_getmbox.
SWI_getmbox can be called only from the SWI’s object function. The value
returned by SWI_getmbox is the value of the mailbox before the SWI object
was removed from the posted SWI queue and the SWI function was
scheduled for execution. When the SWI manager removes a pending SWI
object from the posted objects queue, its mailbox is reset to its initial value.
The initial value of the mailbox is set from the Property Page when the SWI
object is created with the Configuration Tool. If while the SWI function is
executing it is posted again, its mailbox is updated accordingly. However, this
does not affect the value returned by SWI_getmbox while the SWI functions
execute. That is, the mailbox value that SWI_getmbox returns is the latched
mailbox value when the software interrupt was removed from the list of
pending SWIs. The SWI’s mailbox however, is immediately reset after the
SWI is removed from the list of pending SWIs and scheduled for execution.
This gives the application the ability to keep updating the value of the SWI
mailbox if a new posting occurs, even if the SWI function has not finished its
execution.

For example, if an SWI object is posted multiple times before it is removed
from the queue of posted SWIs, the SWI manager schedules its function to
execute only once. However, if an SWI function must always run multiple
times when the SWI object is posted multiple times, SWI_inc should be used
to post the SWI. When an SWI has been posted using SWI_inc, once the SWI

Treat mailbox
as bitmask

Treat mailbox
as counter

Always post

Post if
becomes 0

SWI_or

SWI_andn SWI_dec

SWI_inc

Does not modify
mailbox

SWI_post
Program Execution 4-9

Software Interrupts
manager calls the corresponding SWI function for execution, the SWI
function can access the SWI object mailbox to know how many times it was
posted before it was scheduled to run, and proceed to execute the same
routine as many times as the value of the mailbox.

Figure 4–1 Using SWI_inc to Post an SWI

† myswiFxn()
 { . . .
 repetitions = SWI_getmbox();
 while (repetitions --){
 ‘run SWI routine‘
 }
 . . .
 }

Program configuration

SWI object myswi Function myswiFxn()

Program
execution · Calls SWI_inc(&myswi)

· myswi is posted

· Calls SWI_inc(&myswi)
· myswi is posted again
 before it is scheduled
 for execution

· SWI manager removes
 myswi from the posted
 SWI queue
· myswiFxn() is
 scheduled for execution

· myswiFxn() starts
 execution†

Mailbox
value

Value returned by
SWI_getmbox

0

1

2

0 2

0 2

· myswiFxn() is
 preempted by ISR that
 calls SWI_inc(&myswi)
· myswi is added to the
 posted SWI queue

· myswiFxn() continues
 execution

1 2

1 2
4-10

Software Interrupts
If more than one event must always happen for a given software interrupt to
be triggered, SWI_andn should be used to post the corresponding SWI
object. For example, if a software interrupt must wait for input data from two
different devices before it can proceed, its mailbox should have two set bits
when the SWI object was created with the Configuration Tool. When both
routines that provide input data have completed their tasks, they should both
call SWI_andn with complementary bitmasks that clear each of the bits set in
the SWI mailbox default value. Hence, the software interrupt is posted only
when data from both processes is ready.

Figure 4–2 Using SWI_andn to Post an SWI

Program configuration

SWI object myswi Function myswiFxn()

Program
execution · Calls

 SWI_andn(&myswi, 0x1)
· myswi is not posted

· Calls
 SWI_andn(&myswi, 0x2)
· myswi is posted

· SWI manager removes
 myswi from the posted
 SWI queue
· myswiFxn() is scheduled
 for execution

· myswiFxn() starts
 execution

Mailbox
value

Value returned by
SWI_getmbox

0 ... 1 1 ...

0 ... 1 0

0 ... 0 0

0 ... 1 1

0 ... 1 1

...

...

0 ... 0 0

0 ... 0 0
Program Execution 4-11

Software Interrupts
In some situations the SWI function may call different routines depending on
the event that posted it. In that case the program can use SWI_or to post the
SWI object unconditionally when an event happens. The value of the bitmask
used by SWI_or encodes the event type that triggered the post operation, and
can be used by the SWI function as a flag that identifies the event and serves
to choose the routine to execute

Figure 4–3 Using SWI_or to Post an SWI.

† myswiFxn()
 {
 ...
 eventType = SWI_getmbox();
 switch (eventType) {
 case '0x1':
 'run processing algorithm 1'
 case '0x2':
 'run processing algorithm 2'
 case '0x4':
 'run processing algorithm 3'
 ...
 }
 ...
 }

Program configuration

SWI object myswi Function myswiFxn()

Program
execution · Calls

 SWI_or(&myswi, 0x1)
· myswi is posted

· myswiFxn() is executed†

· Calls
 SWI_or(&myswi, 0x2)
· myswi is posted

· myswiFxn() is executed†

Mailbox
value

Value returned by
SWI_getmbox

0 ... 0 0 ...

0 ... 0 1

0 ... 0 0

0 ... 1 0

0 ... 0 0

...

0 ... 0 1

...

0 ... 1 0
4-12

Software Interrupts
If the program execution requires that multiple occurrences of the same event
must take place before an SWI is posted, SWI_dec should be used to post
the SWI. By configuring the SWI mailbox to be equal to the number of
occurrences of the event before the SWI should be posted and calling
SWI_dec every time the event occurs, the SWI is posted only after its mailbox
reaches 0; i.e., after the event has occurred a number of times equal to the
mailbox value.

Figure 4–4 Using SWI_dec to Post an SWI

Program configuration

SWI object myswi Function myswiFxn()

Program
execution · Calls SWI_dec(&myswi)

· myswi is not posted

· Calls SWI_dec(&myswi)
· myswi is posted

· SWI manager removes
 myswi from the posted
 SWI queue
· myswiFxn() is scheduled
 for execution

· myswiFxn() starts
 execution

Mailbox
value

Value returned by
SWI_getmbox

2

1

0

2 0

2 0
Program Execution 4-13

Hardware Interrupts
4.5 Hardware Interrupts

Hardware interrupts handle critical processing that the application must
perform in response to external asynchronous events. The DSP/BIOS HWI
module is used to manage hardware interrupts. Using the HWI manager in
the Configuration Tool, you can configure the ISR for each hardware interrupt
in the DSP. The HWI manager contains an HWI object for each hardware
interrupt in your DSP. All HWI objects are listed in the Configuration Tool in
order of priority, from the highest to the lowest priority interrupt.

You need to enter only the name of the ISR that is called in response to a
hardware interrupt in the Property Page of the corresponding HWI object in
the Configuration Tool. DSP/BIOS takes care of setting up the interrupt
service table so that each hardware interrupt is handled by the appropriate
ISR. The Configuration Tool also allows you to select the memory segment
where the interrupt service table is located.

All ISRs run uninterrupted to completion. If an HWI is posted multiple times
before its ISR has a chance to run, the ISR runs only one time. For this
reason, you should minimize the amount of code performed by an HWI
function.

The online help in the Configuration Tool describes HWI objects and their
parameters. See HWI Module, page 6–22, for reference information on the
HWI module API calls.

4.5.1 Writing an HWI Routine

When a hardware interrupt preempts the function that is currently executing,
the HWI function must save and restore any registers it uses or modifies. This
gives the function that resumes running when the HWI function completes the
same context it had when it was preempted.

HWI functions are usually written in assembly language for efficiency.
DSP/BIOS provides two assembly macros to be used as preamble and
postamble to an ISR: HWI_enter and HWI_exit. HWI_enter saves the register
context for a DSP/BIOS ISR. HWI_exit restores the register context for a
DSP/BIOS ISR. Both macros use two input parameters, ABMASK and
CMASK, that specify the set of registers that must be saved and restored.
ABMASK specifies the registers within the a0-a15 and b0-b14 set, and
CMASK specifies control registers.
4-14

Hardware Interrupts
If you want to write your ISR in C, you need to write a minimal assembly
routine to call HWI_enter and HWI_exit to save the required registers around
the call to your C function. You must save all registers that might be used in
C before calling a C function from assembly. You can use HWI_enter with the
C62_ABTEMPS mask to save these registers. This mask and others are
defined in the c62.h62 file, which is in the bios\include folder provided with
Code Composer.

;
; ======== _DSS_isr ========
;
; Calls the C ISR code
;
_DSS_isr:

 HWI_enter C62_ABTEMPS, 0, 0xffff, 0

 b _DSS_cisr
 mvk dssi,b3
 mvkh dssi,b3
 nop 3
dssi:
 HWI_exit C62_ABTEMPS, 0, 0xffff, 0

The HWI_enter and HWI_exit macros also ensure that no software interrupts
preempt the ISR, even if they are posted from the HWI function. Hence, within
an HWI function, the HWI_enter macro must be called previous to any
DSP/BIOS API call that could post or affect a software interrupt. HWI_enter
guarantees that any software interrupt posted during the execution of an ISR
does not run until the HWI function calls the HWI_exit macro. The DSP/BIOS
API calls that require an HWI function to use HWI_enter and HWI_exit are:

❏ SWI_andn
❏ SWI_dec
❏ SWI_inc
❏ SWI_or
❏ SWI_post
❏ PRD_tick

If your ISR is written in C and calls any of the functions listed above, you must
write a minimal assembly routine to call HWI_enter and HWI_exit around the
calls to your C function.

Note that if an HWI function calls any of the PIP APIs—PIP_alloc, PIP_free,
PIP_get, PIP_put—the pipe's notifyWriter or notifyReader functions run as
part of the HWI context. Any HWI function must use HWI_enter if it indirectly
runs a function containing any of the SWI or PRD calls listed above. Also, any
registers that the notification functions might change should also be saved
and restored with HWI_enter and HWI_exit.
Program Execution 4-15

Hardware Interrupts
HWI_enter and HWI_exit macros must coordinate the disabling and enabling
of the SWI manager to ensure that software interrupts do not run until the HWI
function has completed execution.

4.5.2 Nesting Interrupts

When an interrupt is triggered, the processor disables interrupts globally (by
clearing the GIE bit in the control status register (CSR)) and then jumps to the
ISR set up in the interrupt service table. The HWI_enter macro reenables
interrupts by setting the GIE in the CSR. Before doing so, HWI_enter
selectively disables some interrupts by clearing the appropriate bits in the
interrupt enable register (IER). The bits that are cleared in the IER are
determined by the IEMASK input parameter passed to the HWI_enter macro.
Hence, HWI_enter gives you control to select what interrupts can and cannot
preempt the current HWI function.

When HWI_exit is called, you can also provide an IEMASK parameter. The
bit pattern in the IEMASK determines what interrupts are restored by
HWI_exit, by setting the corresponding bits in the IER. Of the interrupts in
IEMASK, HWI_exit restores only those that were disabled with HWI_enter. If
upon exiting the ISR you do not wish to restore one of the interrupts that was
disabled with HWI_enter, do not set that interrupt bit in IEMASK in HWI_exit.
HWI_exit does not affect the status of interrupt bits that are not in IEMASK.
4-16

Preemption and Yielding
4.6 Preemption and Yielding

Within DSP/BIOS, hardware interrupts have the highest priority. Software
interrupts have lower priority than hardware interrupts. The background idle
loop is the thread with the lowest priority of all.

Figure 4–5 Thread Priorities

Clock
functions

(CLK)

Hardware
interrupts

(HWI)

Periodic
functions

(PRD)

Software
interrupts

(SWI)

Background
threads

(IDL)

P
rio

rit
y

Program Execution 4-17

Preemption and Yielding
This figure shows what happens when one type of thread is running (left
column) and another thread is posted (top row). When a software interrupt or
background thread is running, the results depend on whether or not hardware
interrupts or software interrupts have been disabled. (The action indicated in
the boxes is that of the posted thread.)

Figure 4–6 Thread Preemption

B
ackground

S
oftw

are interrupt -- SWIs disabled

-- SWIs enabled

-- HWIs disabled

P = Preempts
W = Waits
-- = No such object of this priority

W

P

W

P

P

P

P

W

P

W

W

W

W

W

-- SWIs enabled

-- HWIs disabled W

P

P

P

P

P

P

W-- SWIs disabled

--

--

--

--

--

S
W

I (
lo

w
er

 p
rio

rit
y)

S
W

I (
hi

gh
er

pr
io

rit
y)Thread

running

Thread
posted

Hardware interrupt

-- HWIs enabled

-- HWIs enabled
H

W
I (

an
y

pr
io

rit
y)
4-18

Preemption and Yielding
The figure below shows the thread of execution for a scenario in which SWIs
and HWIs are enabled (the default), and a hardware interrupt routine posts a
software interrupt whose priority is higher than that of the software interrupt
running when the interrupt occurs. Also, a higher priority hardware interrupt
occurs while the first ISR is running. The second ISR is held off because the
first ISR masks off (i.e., disables) the higher priority interrupt during the first
ISR.

Figure 4–7 Preemption Scenario

The low priority software interrupt is asynchronously preempted by the
hardware interrupts. The first ISR posts a higher priority software interrupt,
which is executed after both hardware interrupt routines finish executing.

4.6.1 Preventing Preemption by a Higher-Priority Thread

Within an idle loop function or a software interrupt function, you can
temporarily prevent preemption by a higher priority software interrupt by
calling SWI_disable, which disables all SWI preemption. To reenable SWI
preemption you must call SWI_enable.

Calls to SWI_disable can be nested. When a series of SWI_disable calls
occur contiguously, the same number of SWI_enable calls must occur before
SWI preemption is enabled again.

Thread
priority

Background

 Software interrupt B
(SWI B)

 Software interupt A
(SWI A)

Hardware interrupt
2

(HWI 2)

Time

Ba
ck

gr
ou

nd
 p

os
ts

S

W
I B

H
W

I 2
 o

cc
ur

s
H

W
I 2

 p
os

ts
 S

W
I A

H
W

I 2
 fi

ni
sh

es

SW
I A

 fi
ni

sh
es

SW
I B

 fi
ni

sh
es

Hardware interrupt
1

(HWI 1)

Events

H
W

I 1
 o

cc
ur

s

H
W

I 1
 fi

ni
sh

es
Program Execution 4-19

Preemption and Yielding
You can also protect any thread from being preempted by a hardware
interrupt. By calling HWI_disable, interrupts are globally disabled in your
application. HWI_disable clears the GIE bit in the CSR, preventing the CPU
from taking any maskable hardware interrupt. To reenable interrupts, call
HWI_enable. HWI_enable sets the GIE in the CSR.

4.6.2 Saving Registers During Software Interrupt Preemption

When a software interrupt preempts another software interrupt or the
background idle loop, DSP/BIOS preserves the context of the preempted
thread by automatically saving all of the following CPU registers onto the
application stack:

Your SWI function does not need to save and restore all these registers, even
if the SWI function is written in assembly.

However, SWI functions that are written in assembly must follow C register
usage conventions: they must save and restore any of the registers
numbered A10 to A15 and B10 to B15. (See the TMS320C6000 Optimizing
C Compiler User’s Guide for more details on C register conventions.) The
data page register (B14) is initialized at program startup to the start address
of .bss and must not be modified.

SWI functions must also save and restore the following registers if their
values are modified:

❏ CSR
❏ AMR
❏ IER
❏ ISR
❏ ICR

If an SWI function that modifies AMR (setting it to some value other than the
default1) does not restore this control register before it returns, unpredictable
results and/or program failure can follow. If an SWI function that modifies
CSR does not restore this control register before it returns, other threads that
run afterwards can inherit the new CSR value, and this can cause
unexpected results and/or program failure.

1. AMR is initialized at program startup to its default value AMR=0. Any SWI that changes this default value must save and
restore AMR.

a0
a1
a2
a3
a4

a5
a6
a7
a8
a9

b0
b1
b2
b3
b4

b5
b6
b7
b8
b9
4-20

Preemption and Yielding
An SWI function that modifies the IER, ISR, or ICR register should save it and
then restore it before it returns. If the SWI function fails to do this, the change
becomes permanent and any other thread that starts to run or that the
program returns to afterwards can inherit the modification to the control
register.

The context is not saved automatically within an HWI function. You must use
the HWI_enter and HWI_exit macros to preserve the interrupted context
when an HWI function is triggered.

4.6.3 Setting the Cache Mode During a Hardware Interrupt

The input parameter CCMASK specifies the program cache control (PCC)
and data cache control (DCC) settings that are used in the context of the ISR.
Some typical values for this mask are defined in c62.h62 (e.g.,
C62_PCC_ENABLE). You can OR the PCC code and DCC code together to
generate CCMASK. If you use 0 as CCMASK, a default value is used. You
set this value in the Global Settings Properties in the Configuration Tool by
right-clicking and selecting Properties.

CLK_F_isr, which handles one of the on-chip timer interrupts when the Clock
Manager is enabled, also uses the default cache value set by the
Configuration Tool.

HWI_enter saves the current CSR status before it sets the cache bits as
defined by CCMASK. HWI_exit restores CSR to its value at the interrupted
context.

4.6.4 Software Interrupt Priorities and Application Stack Size

All threads in DSP/BIOS, including hardware interrupts, software interrupts,
and the functions of the background idle loop, are executed using the same
software stack (the application stack).

The application stack stores the register context when a software interrupt
preempts another thread. To allow the maximum number of preemptions that
may occur at run time, the required stack size grows each time you add a
software interrupt priority level. Thus, giving software interrupts the same
priority level is more efficient in terms of stack size than giving each software
interrupt a separate priority.

The default application stack size for the MEM module is 256 words. You can
change the sizes in the Configuration Tool. The estimated sizes required are
shown in the status bar at the bottom of the Configuration Tool.
Program Execution 4-21

Preemption and Yielding
You can create up to 15 software interrupt priority levels, but each level
requires a larger application stack. If you see a pop-up message that says
“the application stack size is too small to support a new software interrupt
priority level,” increase the Application Stack Size property of the Memory
Section Manager.

Creating the first PRD object creates a new SWI object called PRD_swi (see
section 4.8, Periodic Function Manager (PRD) and the System Clock, page
4-25, for more information on PRD). If no SWI objects have been created
before the first PRD object is added, adding PRD_swi creates the first priority
level, producing a corresponding increase in the required application stack.
4-22

Clock Manager (CLK Module)
4.7 Clock Manager (CLK Module)

DSPs typically have one or more on-chip timers that generate a hardware
interrupt at periodic intervals. DSP/BIOS normally uses one of the available
on-chip timers as the source for its own real-time clocks.

The CLK module provides two 32-bit real-time clocks with different
resolutions: the high-resolution and low-resolution clocks. These clocks can
be used to measure the passage of time in conjunction with STS accumulator
objects, as well as to add time stamp messages to message logs. Using the
on-chip timer hardware present on most TMS320 DSPs, the CLK module
supports time resolutions close to the single instruction cycle.

The following figure shows the relationship between the on-chip timer,
configuration properties, and timer interrupt rates

Figure 4–8 CLK Module Properties

The CLK manager also allows you to create an arbitrary number of clock
functions. Clock functions are executed by the CLK manager each time a
timer interrupt occurs.

4.7.1 High- and Low-Resolution Clocks

Using the CLK manager in the Configuration Tool, you can disable or enable
DSP/BIOS to use an on-chip timer to drive high- and low-resolution times.
The TMS320C6000 has two general-purpose timers. The Configuration Tool
allows you to select the on-chip timer that is used by the CLK manager. It also
allows you to enter the period at which the timer interrupt is triggered. See
CLK Module, page 6–7, for more details about these properties. By entering
the period of the timer interrupt, DSP/BIOS automatically sets up the
appropriate value for the Period Register.

If the CLK manager is enabled in the Configuration Tool, the timer counter
register is incremented every four CPU cycles. When this register reaches
the value set for the Period Register, the counter is reset to zero and a timer
interrupt occurs.

Period Register Interrupt periodProperty:

200 MHz 49999 1 millisecondExample:

CPUOn-chip
CPU clock

Divide on-chip CPU
clock by 4

Divide by on-chip timer
period register

(result = high-resolution time) (result = low-resolution time)
Program Execution 4-23

Clock Manager (CLK Module)
When a timer interrupt occurs, the HWI object for the selected timer runs the
CLK_F_isr function. This function causes these events to occur:

❏ The low-resolution time is incremented by 1.

❏ All the functions specified by CLK objects are performed in sequence in
the context of that ISR.

Therefore, the low-resolution clock ticks at the timer interrupt rate and the
clock’s time is equal to the number of timer interrupts that have occurred. To
obtain the low-resolution time, you can call CLK_getltime from your
application code.

The CLK functions performed when a timer interrupt occurs are performed in
the context of the hardware interrupt that caused the system clock to tick.
Therefore, the amount of processing performed within CLK functions should
be minimized and these functions may invoke only DSP/BIOS calls that are
allowable from within a hardware ISR. (They should not call HWI_enter and
HWI_exit as these are called internally from CLK_F_isr before and after CLK
functions are called.)

The high-resolution clock ticks at the same rate the timer counter register is
incremented. Hence, the high-resolution time is the number of times the timer
counter register has been incremented (or the number of instruction cycles
divided by 4). Given the high CPU clock rate, the 32-bit timer counter register
may reach the period register value very quickly. The 32-bit high-resolution
time is actually calculated by multiplying the low-resolution time (i.e., the
interrupt count) by the value of the period register and adding the current
value of the timer counter register. To obtain the value of the high-resolution
time you can call CLK_gethtime from your application code.

The values of both clocks restart at 0 when the maximum 32-bit value is
reached.

Other CLK module APIs are CLK_getprd, which returns the value set for the
period register in the Configuration Tool; and CLK_countspms, which returns
the number of timer counter register increments per millisecond.

Modify the properties of the CLK manager with the Configuration Tool to
configure the low-resolution clock. For example, to make the low-resolution
clock tick every millisecond (.001 sec), type 1000 in the CLK manager’s
Microseconds/Int field. The Configuration Tool automatically calculates the
correct value for the period register.

You can directly specify the period register value if you put a checkmark in the
Directly configure on-chip timer registers box. To generate a 1 millisecond
(.001 sec) system clock period on a 160 MIPS processor using the CPU
clock/4 to drive the clock, the period register value is:

Period = 0.001 sec * 160,000,000 cycles per second / 4 cycles = 50,000
4-24

Periodic Function Manager (PRD) and the System Clock
4.8 Periodic Function Manager (PRD) and the System Clock

Many applications need to schedule functions based on I/O availability or
some other programmed event. Other applications can schedule functions
based on a real-time clock.

The PRD manager allows you to create objects that schedule periodic
execution of program functions. To drive the PRD module, DSP/BIOS
provides a system clock. The system clock is a 32-bit counter that ticks every
time PRD_tick is called. You can use the timer interrupt or some other
periodic event to call PRD_tick and drive the system clock.

There can be several PRD objects but all are driven by the same system
clock. The period of each PRD object determines the frequency at which its
function is called. The period of each PRD object is specified in terms of the
system clock time; i.e., in system clock ticks.

To schedule functions based on certain events, use the following procedures:

❏ Based on a real-time clock. Put a check mark in the Use CLK Manager
to Drive PRD box by right-clicking on the PRD manager and selecting
Properties in the Configuration Tool. By doing this you are setting the
timer interrupt used by the CLK manager to drive the system clock. Note
that when you do this a CLK object called PRD_clock is added to the CLK
module. This object calls PRD_tick every time the timer interrupt goes off,
advancing the system clock by one tick.

Note: When the CLK manager is used to drive PRD, the system clock that
drives PRD functions ticks at the same rate as the low-resolution clock. The
low-resolution and system time coincide.

❏ Based on I/O availability or some other event. Remove the check
mark from the Use the CLK Manager to Drive PRD box for the PRD
manager. Your program should call PRD_tick to increment the system
clock. In this case the resolution of the system clock equals the frequency
of the interrupt from which PRD_tick is called.

4.8.1 Invoking Functions for PRD Objects

When PRD_tick is called two things occur:

❏ PRD_D_tick, the system clock counter, increases by one; i.e., the system
clock ticks.

❏ An SWI called PRD_swi is posted.

Note that when a PRD object is created with the Configuration Tool, a new
SWI object is automatically added called PRD_swi.
Program Execution 4-25

Periodic Function Manager (PRD) and the System Clock
When PRD_swi runs, its function executes the following type of loop:

for ("Loop through period objects") {
 if ("time for a periodic function")
 "run that periodic function";
}

Hence, the execution of periodic functions is deferred to the context of
PRD_swi, rather than being executed in the context of the ISR where
PRD_tick was called. As a result, there may be a delay between the time the
system tick occurs and the execution of the periodic objects whose periods
have expired with the tick. If these functions run immediately after the tick,
you should configure PRD_swi to have a high priority with respect to other
threads in your application.
4-26

Using the Execution Graph to View Program Execution
4.9 Using the Execution Graph to View Program Execution

You can use the Execution Graph in Code Composer to see a visual display
of thread activity by choosing Tools→DSP/BIOS→Execution Graph.

4.9.1 States in the Execution Graph Window

This window examines the information in the system log (LOG_system in the
Configuration Tool) and shows the thread states in relation to the timer
interrupt (Time) and system clock ticks (PRD Ticks).

White boxes indicate that a thread has been posted and is ready to run.
Blue-green boxes indicate that the host had not yet received any information
about the state of this thread at that point in the log. Dark blue boxes indicate
that a thread is running.

Bright blue boxes in the Errors row indicate that an error has occurred. For
example, an error is shown when the Execution Graph detects that a thread
did not meet its real-time deadline. It also shows invalid log records, which
may be caused by the program writing over the system log. Double-click on
an error to see the details.

4.9.2 Threads in the Execution Graph Window

The SWI and PRD functions listed in the left column are listed from highest
to lowest priority. However, for performance reasons, there is no information
in the Execution Graph about interrupt and background threads (aside from
the CLK ticks, which are normally performed by an interrupt). Time not spent
within an SWI or PRD thread must be within an HWI or IDL thread, so this
time is shown in the Other Threads row.

Functions run by PIP (notify functions) run as part of the thread that called the
PIP API. The LNK_dataPump object runs a function that manages the host’s
end of an HST (Host Channel manager) object. This object and other IDL
objects run from the IDL background thread, and are included in the Other
Threads row.
Program Execution 4-27

Using the Execution Graph to View Program Execution
Note: The Time marks and the PRD Ticks are not equally spaced. This
graph shows a square for each event. If many events occur between two
Time interrupts or PRD Ticks, the distance between the marks is wider than
for intervals during which fewer events occurred.

4.9.3 Sequence Numbers in the Execution Graph Window

The numbers below the bottom scroll bar show the sequence numbers in the
Execution Graph for the events.

Note: Circular logs (the default for the Execution Graph) contain only the
most recent n events. Normally, there are events that are not listed in the
log because they occur after the host polls the log and are overwritten
before the next time the host polls the log. The Execution Graph shows a
red vertical line and a break in the log sequence numbers at the end of each
group of log events it polls.

You can view more log events by increasing the size of the log to hold the full
sequence of events you want to examine. You can also set the RTA Control
Panel to log only the events you want to examine.

4.9.4 RTA Control Panel Settings for Use with the Execution Graph

The TRC module allows you to control
what events are recorded in the
Execution Graph at any given time
during the application execution. The
recording of SWI, PRD, and CLK
events in the Execution Graph can be
controlled from the host (using the RTA
Control Panel; Tools→DSP/BIOS→
RTA Control Panel in Code Composer)
or from the target code (through the
TRC_enable and TRC_disable APIs).
See section 3.4.4.2, Control of Implicit
Instrumentation, page 3-12, for details
on how to control implicit
instrumentation.
4-28

Using the Execution Graph to View Program Execution
When using the Execution Graph, turning off automatic polling stops the log
from scrolling frequently and gives you time to examine the graph. You can
use either of these methods to turn off automatic polling:

❏ Right-click on the Execution Graph and choose Pause from the shortcut
menu.

❏ Right-click on the RTA Control Panel and choose Property Page. Set the
Message Log/Execution Graph refresh rate to 0. Click OK.

You can poll log data from the target whenever you want to update the graph:

❏ Right-click on the Execution Graph and choose Refresh Window from the
shortcut menu.

You can choose Refresh Window several times to see additional data.
The shortcut menu you see when you right-click on the graph also allows
you to clear the previous data shown on the graph.

If you plan to use the Execution Graph and your program has a complex
execution sequence, you can increase the size of the Execution Graph in the
Configuration Tool. Right-click on the LOG_system LOG object and select
Properties to increase the buflen property. Each log message uses four
words, so the buflen should be at least the number of events you want to store
multiplied by four.
Program Execution 4-29

SWI and PRD Accumulators: Real-Time Deadline Headroom
4.10 SWI and PRD Accumulators: Real-Time Deadline Headroom

Many tasks in a real-time system are periodic; that is, they execute
continuously and at regular intervals. It is important that such tasks finish
executing before it is time for them to run again. A failure to complete in this
time represents a missed real-time deadline. While internal data buffering can
be used to recover from occasional missed deadlines, repeated missed
deadlines eventually result in an unrecoverable failure.

The implicit statistics gathered for SWI functions measure the time from when
a software interrupt is ready to run and the time it completes. This timing is
critical because the processor is actually executing numerous hardware and
software interrupts. If a software interrupt is ready to execute but must wait
too long for other software interrupts to complete, the real-time deadline is
missed. Additionally, if a task starts executing, but is interrupted too many
times for too long a period of time, the real-time deadline is also missed.

The maximum ready-to-complete time is a good measure of how close the
system is to potential failure. The closer a software interrupt’s maximum
ready-to-complete time is to its period, the more likely it is that the system
cannot survive occasional bursts of activity or temporary data-dependent
increases in computational requirements. The maximum ready-to-complete
time is also an indication of how much headroom exists for future product
enhancements (which invariably require more MIPS).

Note: DSP/BIOS does not implicitly measure the amount of time each
software interrupt takes to execute. This measurement can be determined
by running the software interrupt in isolation using either the simulator or
the emulator to count the precise number of execution cycles required.

It is important to realize even when the sum of the MIPS requirements of all
routines in a system is well below the MIPS rating of the DSP, the system may
not meet its real-time deadlines. It is not uncommon for a system with a CPU
load of less than 70% to miss its real-time deadlines due to prioritization
problems. The maximum ready-to-complete times monitored by DSP/BIOS,
however, provide an immediate indication when these situations exist.
4-30

SWI and PRD Accumulators: Real-Time Deadline Headroom
When statistics accumulators for software interrupts and periodic objects are
enabled, the host automatically gathers the count, total, maximum, and
average for the following types of statistics:

❏ SWI. Statistics about the period elapsed from the time the software
interrupt was posted to its completion.

❏ PRD. The number of periodic system ticks elapsed from the time the
periodic function is ready to run until its completion. By definition, the i x
period execution of a periodic function is ready to run when i x period ticks
have occurred, where period is the period parameter for this periodic
object.

You can set the units for the SWI completion period measurement by setting
global SWI and CLK parameters. This period is measured in instruction
cycles if the CLK module’s Use high resolution time for internal timings
parameter is set to True (the default) and the SWI module’s Statistics Units
parameter is set to Raw (the default). If this CLK parameter is set to False and
the Statistics Units is set to Raw, SWI statistics are displayed in units of timer
interrupt periods. You can also choose milliseconds or microseconds for the
Statistics Units parameter.

For example, if the maximum value for a PRD object increases continuously,
the object is probably not meeting its real-time deadline. In fact, the maximum
value for a PRD object should be less than or equal to the period (in system
ticks) property of this PRD object. If the maximum value is greater than the
period, the periodic function has missed its real-time deadline.
Program Execution 4-31

4-32

Chapter 5

Input/Output

This chapter discusses data transfer methods.

5.1 Objects Used for I/O . 5–2

5.2 Data Pipe Manager (PIP Module) . 5–3

5.3 Host Input/Output Manager (HST Module) . 5–9

5.4 I/O Performance Issues. 5–10

Topic Page
5-1

Objects Used for I/O
5.1 Objects Used for I/O

DSP/BIOS provides the following modules for data transfer:

❏ PIP. Manages data pipes, which are used to buffer streams of input and
output data. These data pipes provide a consistent software data
structure you can use to drive I/O between threads and between the DSP
chip and all kinds of real-time peripheral devices.

❏ HST. For simplified I/O between the target and the host, DSP/BIOS
provides host channel objects. Pipes are used internally to implement
and interface with host channels. The Host Channel Control in Code
Composer simplifies the process by managing one end of the pipe.

During early development—especially when testing processing algorithms—
programs can use host channels to input canned data sets and to output the
results to the host for analysis.

Once the algorithm appears sound, you can replace host channel objects
with I/O drivers for production hardware built around DSP/BIOS pipe objects.
5-2

Data Pipe Manager (PIP Module)
5.2 Data Pipe Manager (PIP Module)

Pipes are designed to manage block I/O (also called stream-based or
asynchronous I/O). Each pipe object maintains a buffer divided into a fixed
number of fixed length frames, specified by the numframes and framesize
properties. All I/O operations on a pipe deal with one frame at a time.
Although each frame has a fixed length, the application may put a variable
amount of data in each frame (up to the length of the frame).

A pipe has two ends. The writer end is where the program writes frames of
data. The reader end is where the program reads frames of data.

Data notification functions (notifyReader and notifyWriter) are performed to
synchronize data transfer. These functions are triggered when a frame of
data is read or written to notify the program that a frame is free or data is
available. These functions are performed in the context of the function that
calls PIP_free or PIP_put. They may also be called from the thread that calls
PIP_get or PIP_alloc. When PIP_get is called, DSP/BIOS checks whether
there are more full frames in the pipe. If so, the notifyReader function is
executed. When PIP_alloc is called, DSP/BIOS checks whether there are
more empty frames in the pipe. If so, the notifyWriter function is executed.

A pipe should have a single reader and a single writer. Often, one end of a
pipe is controlled by a hardware ISR and the other end is controlled by a
software interrupt function. Pipes can also be used to transfer data within the
program between two application threads.

During program startup (which is described in detail in section 2.5, DSP/BIOS
Startup Sequence, page 2-15), the BIOS_start function enables the
DSP/BIOS modules. As part of this step, the PIP_startup function calls the
notifyWriter function for each pipe object, since at startup all pipes have
available empty frames.

There are no special format or data type requirements for the data to be
transferred by a pipe.

ReaderWriter

1. PIP_alloc
2. Puts data into frame
3. PIP_put (runs notifyReader)

1. PIP_get
2. Uses data

3. PIP_free (runs notifyWriter)
Input/Output 5-3

Data Pipe Manager (PIP Module)
The online help in the Configuration Tool describes data pipe objects and
their parameters. See PIP Module, page 6–53, for reference information on
the PIP module API.

5.2.1 Writing Data to a Pipe

The steps that a program should perform to write data to a pipe are as follows:

1) A function should first check the number of empty frames available to be
filled with data. To do this, the program must check the return value of
PIP_getWriterNumFrames. This function call returns the number of
empty frames in a pipe object.

2) If the number of empty frames is greater than 0, the function then calls
PIP_alloc to get an empty frame from the pipe.

3) Before returning from the PIP_alloc call, DSP/BIOS checks whether
there are additional empty frames available in the pipe. If so, the
notifyWriter function is called at this time.

4) Once PIP_alloc returns, the empty frame can be used by the application
code to store data. To do this the function needs to know the frame's start
address and its size. The API function PIP_getWriterAddr returns the
address of the beginning of the allocated frame. The API function
PIP_getWriterSize returns the number of words that can be written to the
frame. (The default value for an empty frame is the configured frame
size.)

5) When the frame is full of data, it can be returned to the pipe. If the number
of words written to the frame is less than the frame size, the function can
specify this by calling the PIP_setWriterSize function. Afterwards, call
PIP_put to return the data to the pipe.

6) Calling PIP_put causes the notifyReader function to run. This enables the
writer thread to notify the reader thread that there is data available in the
pipe to be read.
5-4

Data Pipe Manager (PIP Module)
The following code fragment demonstrates the previous steps:

extern far PIP_Obj writerPipe; /* pipe object created with
 the Configuration Tool */
writer()
{
 Uns size;
 Uns newsize;
 Ptr addr;

 if (PIP_getWriterNumFrames(&writerPipe) > 0) {
 PIP_alloc(&writerPipe); /* allocate an empty frame */
 }
 else {
 return; /* There are no available empty frames */
 }

 addr = PIP_getWriterAddr(&writerPipe);
 size = PIP_getWriterSize(&writerPipe);

 ’ fill up the frame ’

 /* optional */
 newsize = ’number of words written to the frame’;
 PIP_setWriterSize(&writerPipe, newsize);

 /* release the full frame back to the pipe */
 PIP_put(&writerPipe);
}

5.2.2 Reading Data from a Pipe

To read a full frame from a pipe, a program should perform the following
steps:

1) The function should first check the number of full frames available to be
read from the pipe. To do this, the program must check the return value
of PIP_getReaderNumFrames. This function call returns the number of
full frames in a pipe object.

2) If the number of full frames is greater than 0, the function then calls
PIP_get to get a full frame from the pipe.

3) Before returning from the PIP_get call, DSP/BIOS checks whether there
are additional full frames available in the pipe. If so, the notifyReader
function is called at this time.

4) Once PIP_get returns, the data in the full frame can be read by the
application. To do this the function needs to know the frame’s start
address and its size. The API function PIP_getReaderAddr returns the
address of the beginning of the full frame. The API function
PIP_getReaderSize returns the number of valid data words in the frame.
Input/Output 5-5

Data Pipe Manager (PIP Module)
5) When the application has finished reading all the data, the frame can be
returned to the pipe by calling PIP_free.

6) Calling PIP_free causes the notifyWriter function to run. This enables the
reader thread to notify the writer thread that there is a new empty frame
available in the pipe.

The following code fragment demonstrates the previous steps:

extern far PIP_Obj readerPipe; /* created with the
 Configuration Tool */
reader()
{
 Uns size;
 Ptr addr;

 if (PIP_getReaderNumFrames(&readerPipe) > 0) {
 PIP_get(&readerPipe); /* get a full frame */
 }
 else {
 return; /* There are no available full frames */
 }

 addr = PIP_getReaderAddr(&readerPipe);
 size = PIP_getReaderSize(&readerPipe);

 ’ read the data from the frame ’

 /* release the empty frame back to the pipe */
 PIP_free(&readerPipe);
}

5.2.3 Using a Pipe’s Notify Functions

The reader or writer threads of a pipe can operate in a polled mode and
directly test the number of full or empty frames available before retrieving the
next full or empty frame. The example code in section 5.2.1, Writing Data to
a Pipe, page 5-4, and section 5.2.2, Reading Data from a Pipe, page 5-5,
demonstrates this type of polled read and write operation.

When used to buffer real-time I/O streams written (read) by a hardware
peripheral, pipe objects often serve as a data channel between the HWI
routine triggered by the peripheral itself and the program function that
ultimately reads (writes) the data. In such situations, the application can
effectively synchronize itself with the underlying I/O stream by configuring the
pipe’s notifyReader (notifyWriter) function to automatically post a software
interrupt that runs the reader (writer) function. When the HWI routine finishes
filling up (reading) a frame and calls PIP_put (PIP_free), the pipe’s notify
function can be used to automatically post a software interrupt. In this case,
rather than polling the pipe for frame availability, the reader (writer) function
runs only when the software interrupt is triggered; i.e., when frames are
available to be read (written).
5-6

Data Pipe Manager (PIP Module)
Such a function would not need to check for the availability of frames in the
pipe, since it is called only when data is ready. As a precaution, the function
may still check whether frames are ready, and if not, cause an error condition,
as in the following example code:

if (PIP_getReaderNumFrames(&readerPipe) = 0) {
 error(); /* writer function should not have been posted! */
}

Hence, the notify function of pipe objects can serve as a flow-control
mechanism to manage I/O to other threads and hardware devices.

5.2.4 Calling Order for PIP APIs

Each pipe object internally maintains a list of empty frames and a counter with
the number of empty frames on the writer side of the pipe, and a list of full
frames and a counter with the number of full frames on the reader side of the
pipe. The pipe object also contains a descriptor of the current writer frame
(i.e., the last frame allocated and currently being filled by the application) and
the current reader frame (i.e., the last full frame that the application got and
that is currently reading).

When PIP_alloc is called, the writer counter is decreased by 1. An empty
frame is removed from the writer list and the writer frame descriptor is
updated with the information from this frame. When the application calls
PIP_put after filling the frame, the reader counter is increased by one, and the
writer frame descriptor is used by DSP/BIOS to add the new full frame to the
pipe’s reader list.

Note: Every call to PIP_alloc must be followed by a call to PIP_put before
PIP_alloc can be called again: the pipe I/O mechanism does not allow
consecutive PIP_alloc calls. Doing so would overwrite previous descriptor
information and would produce undetermined results.

/* correct */ /* error! */
PIP_alloc(); PIP_alloc();
... ...
PIP_put(); PIP_alloc();
... ...
PIP_alloc(); PIP_put();
... ...
PIP_put(); PIP_put();
Input/Output 5-7

Data Pipe Manager (PIP Module)
Similarly when PIP_get is called, the reader counter is decreased by 1. A full
frame is removed from the reader list and the reader frame descriptor is
updated with the information from this frame. When the application calls
PIP_free after reading the frame, the writer counter is increased by 1, and the
reader frame descriptor is used by DSP/BIOS to add the new empty frame to
the pipe’s writer list. Hence, every call to PIP_get must be followed by a call
to PIP_free before PIP_get can be called again: the pipe I/O mechanism does
not allow consecutive PIP_get calls. Doing so would overwrite previous
descriptor information and would produce undetermined results.

/* correct */ /* error! */
PIP_get(); PIP_get();
... ...
PIP_free(); PIP_get();
... ...
PIP_get(); PIP_free();
... ...
PIP_free(); PIP_free();

5.2.4.1 Avoiding Recursion Problems

Care should be applied when a pipe’s notify functions call PIP APIs for the
same pipe.

Consider the following example: A pipe’s notifyReader function calls PIP_get
for the same pipe. The pipe’s reader is an HWI routine. The pipe’s writer is an
SWI routine. Hence the reader has higher priority than the writer. (Calling
PIP_get from the notifyReader in this situation may make sense because this
allows the application to get the next full buffer ready to be used by the
reader—the HWI routine—as soon as it is available and before the hardware
interrupt is triggered again.)

The pipe's reader function, the HWI routine, calls PIP_get to read data from
the pipe. The pipe's writer function, the SWI routine, calls PIP_put. Since the
call to the notifyReader happens within PIP_put in the context of the current
routine, a call to PIP_get also happens from the SWI writer routine.

Hence, in the example described two threads with different priorities call
PIP_get for the same pipe. This could have catastrophic consequences if one
thread preempts the other and as a result, PIP_get is called twice before
calling PIP_free, or PIP_get is preempted and called again for the same pipe
from a different thread.

Note: As a general rule to avoid recursion, you should avoid calling PIP
functions as part of notifyReader and notifyWriter. If necessary for
application efficiency, such calls should be protected to prevent reentrancy
for the same pipe object and the wrong calling sequence for the PIP APIs.
5-8

Host Input/Output Manager (HST Module)
5.3 Host Input/Output Manager (HST Module)

The HST module manages host channel objects, which allow an application
to stream data between the target and the host. Host channels are configured
for input or output. Input streams read data from the host to the target. Output
streams transfer data from the target to the host.

Note:

HST channel names cannot start with a leading underscore (_).

You dynamically bind channels to files on the PC host by right-clicking on the
Host Channel Control in Code Composer. Then you start the data transfer for
each channel.

Each host channel is internally implemented using a pipe object. To use a
particular host channel, the program uses HST_getpipe to get the
corresponding pipe object and then transfers data by calling the PIP_get and
PIP_free operations (for input) or PIP_alloc and PIP_put operations (for
output).

The code for reading data might look like the following:

extern far HST_Obj input;

readFromHost()
{
 PIP_Obj *pipe;
 Uns size;
 Ptr addr;

 pipe = HST_getpipe(&input) /* get a pointer to the host
 channel’s pipe object */
 PIP_get(pipe); /* get a full frame from the
 host */
 size = PIP_getReaderSize(pipe);
 addr = PIP_getReaderAddr(pipe);

 ’ read data from frame ’

 PIP_free(pipe); /* release empty frame to the host */
}

Input/Output 5-9

I/O Performance Issues
Each host channel can specify a data notification function to be performed
when a frame of data for an input channel (or free space for an output
channel) is available. This function is triggered when the host writes or reads
a frame of data.

HST channels treat files as 32-bit words of raw data. The format of the data
is application-specific, and you should verify that the host and the target
agree on the data format and ordering. For example, if you are reading 32-bit
integers from the host, you need to make sure the host file contains the data
in the correct byte order. Other than correct byte order, there are no special
format or data type requirements for data to be transferred between the host
and the target.

While you are developing a program, you may want to use HST objects to
simulate data flow and to test changes made to canned data by program
algorithms. During early development, especially when testing signal
processing algorithms, the program would explicitly use input channels to
access data sets from a file for input for the algorithm and would use output
channels to record algorithm output. The data saved to a file with the output
host channel can be compared with expected results to detect algorithm
errors. Later in the program development cycle, when the algorithm appears
sound, you can change the HST objects to PIP objects communicating with
other threads or I/O drivers for production hardware.

5.3.1 Transfer of HST Data to the Host

While the amount of usable bandwidth for real-time transfer of data streams
to the host ultimately depends on the choice of physical data link, the HST
Channel interface remains independent of the physical link. The HST
manager in the Configuration Tool allows you to choose among the physical
connections available.

The actual data transfer to the host occurs during the idle loop, from the
LNK_dataPump idle function.

5.4 I/O Performance Issues

If you are using an HST object, the host PC reads or writes data using the
function specified by the LNK_dataPump object. This is a built-in IDL object
that runs its function as part of the background thread. Since background
threads have the lowest priority, software interrupts and hardware interrupts
preempt data transfer.

Note that the polling rates you set in the LOG, STS, and TRC controls do not
control the data transfer rate for HST objects. (Faster polling rates actually
slow the data transfer rate somewhat because LOG, STS, and TRC data also
need to be transferred.)
5-10

Chapter 6

API Functions

This chapter describes the DSP/BIOS API functions, which are alphabetized
by name. In addition, there are reference sections that describe the overall
capabilities of each module.

6.1 DSP/BIOS Modules . 6–2

6.2 Naming Conventions. 6–2

6.3 List of Operations . 6–3

6.4 Assembly Language Interface . 6–6

Topic Page
6-1

DSP/BIOS Modules
6.1 DSP/BIOS Modules

These are the DSP/BIOS modules:

6.2 Naming Conventions

The format for a DSP/BIOS operation name is a 3- or 4-letter prefix for the
module that contains the operation, an underscore, and the action.

In the Assembly Interface section for each macro, Preconditions lists
registers that must be set before using the macro. Postconditions lists the
registers set by the macro that you may want to use. Modifies lists all
individual registers modified by the macro, including registers in the
Postconditions list.

Module Description

CLK System clock manager

GBL Global setting manager

HST Host input/output manager

HWI Hardware interrupt manager

IDL Idle function and processing loop manager

LOG Message Log manager

MEM Memory manager

PIP Data pipe manager

PRD Periodic function manager

RTDX Real-Time Data Exchange manager

STS Statistics accumulator manager

SWI Software interrupt manager

TRC Trace manager
6-2

List of Operations
6.3 List of Operations

This is a list of the DSP/BIOS operations.

Function Operation

CLK_countspms Number of hardware timer counts per millisecond

CLK_gethtime Get high-resolution time

CLK_getltime Get low-resolution time

CLK_getprd Get period register value

HST_getpipe Get corresponding pipe object

HWI_disable Globally disable hardware interrupts

HWI_enable Globally enable hardware interrupts

HWI_enter Hardware interrupt service routine prolog

HWI_exit Hardware interrupt service routine epilog

HWI_restore Restore global interrupt enable state

IDL_run Make one pass through idle functions

LOG_disable Disable a log

LOG_enable Enable a log

LOG_error/LOG_message Write a message to the system log

LOG_event Append an unformatted message to a log

LOG_reset Reset a log

PIP_alloc Get an empty frame from a pipe

PIP_free Recycle a frame that has been read back into a pipe

PIP_get Get a full frame from a pipe
API Functions 6-3

List of Operations
PIP_getReaderAddr Get the value of the readerAddr pointer of the pipe

PIP_getReaderNumFrames Get the number of pipe frames available for reading

PIP_getReaderSize Get the number of words of data in a pipe frame

PIP_getWriterAddr Get the value of the writerAddr pointer of the pipe

PIP_getWriterNumFrames Get the number of pipe frames available to be written to

PIP_getWriterSize Get the number of words that can be written to a pipe frame

PIP_put Put a full frame into a pipe

PIP_setWriterSize Set the number of valid words written to a pipe frame

PRD_getticks Get the current tick counter

PRD_start Arm a periodic function for one-time execution

PRD_stop Stop a periodic function from execution

PRD_tick Advance tick counter, dispatch periodic functions

RTDX_channelBusy Return status indicating whether a channel is busy

RTDX_CreateInputChannel Declare an input channel

RTDX_CreateOutputChannel Declare an output channel

RTDX_disableInput Disable an input channel

RTDX_disableOutput Disable an output channel

RTDX_enableInput Enable an input channel

RTDX_enableOutput Enable an output channel

RTDX_isInputEnabled Return true if the input channel is enabled

RTDX_isOutputEnabled Return true if the output channel is enabled

RTDX_read Read from an input channel

RTDX_readNB Read from an input channel without blocking

RTDX_sizeofInput Return the number of sizeof() units read from an input channel

Function Operation
6-4

List of Operations
RTDX_write Write to an output channel

STS_add Add a value to a statistics accumulator

STS_delta Add computed value of an interval to accumulator

STS_reset Reset the values stored in an STS object

STS_set Store initial value of an interval to accumulator

SWI_andn Clear bits from SWI’s mailbox and post if becomes 0

SWI_dec Decrement SWI’s mailbox and post if becomes 0

SWI_disable Disable software interrupts

SWI_enable Enable software interrupts

SWI_getmbox Return SWI’s mailbox value

SWI_getpri Return a SWI’s priority mask

SWI_inc Increment SWI’s mailbox and post

SWI_or Set or mask in SWI’s mailbox and post

SWI_post Post a software interrupt

SWI_raisepri Raise a SWI’s priority

SWI_restorepri Restore a SWI’s priority

SWI_self Return address of currently executing SWI object

TRC_disable Disable a set of trace controls

TRC_enable Enable a set of trace controls

TRC_query Test whether a set of trace controls is enabled

Function Operation
API Functions 6-5

Assembly Language Interface
6.4 Assembly Language Interface

When calling DSP/BIOS APIs from assembly source code, you should
include the module.h62 header file for any API modules used. This modular
approach reduces the assembly time of programs that do not use all the
modules.

Where possible, you should use the DSP/BIOS API macros instead of using
assembly instructions directly. The DSP/BIOS API macros provide a portable,
optimized way to accomplish the same task. For example, use HWI_disable
instead of the equivalent instruction to temporarily disable interrupts. On
some chips, disabling interrupts in a threaded interface is more complex than
it appears.

Most of the DSP/BIOS API macros do not have parameters. Instead they
expect parameter values to be stored in specific registers when the API
macro is called. This makes your program more efficient. A few API macros
accept constant values as parameters. For example, HWI_enter and
HWI_exit accept constants defined as bitmasks identifying the registers to
save or restore.

The Preconditions section for each DSP/BIOS API macro in this chapter lists
registers that must be set before using the macro.

The Postconditions section lists registers set by the macro.

Modifies lists all individual registers modified by the macro, including registers
in the Postconditions list.

Example:

Assembly Interface

Syntax HWI_enter ABMASK CMASK IEMASK CCMASK

Preconditions interrupts are globally disabled (i.e., GIE == 0)

Postconditions amr = 0

Modifies a0, a1, amr, b0, b1, b2, b3, b14, b15, csr, ier

Assembly functions can call C functions. Remember that the C compiler adds
an underscore prefix to function names, so when calling a C function from
assembly, add an underscore to the beginning of the C function name. For
example, call _myfunction instead of myfunction. See the TMS320C6000
Optimizing C Compiler User’s Guide for more details.

By default, the Configuration Tool creates two names for each object: one
beginning with an underscore, and one without. This allows you to use the
name without the underscore in both C and assembly language functions.
You can turn off this feature by clicking off the box called Generate C Names
for All Objects in the Properties box of the Project Manager in the
Configuration Tool.
6-6

CLK Module
Functions

❏ CLK_countspms. Timer counts per millisecond
❏ CLK_gethtime. Get high resolution time
❏ CLK_getltime. Get low resolution time
❏ CLK_getprd. Get period register value

Description
The CLK module provides a method for invoking functions periodically.

DSP/BIOS provides two separate timing methods—the high- and
low-resolution times managed by the CLK module and the system clock. In
the default configuration, the low-resolution time and the system clock are the
same.

The CLK module provides a real-time clock with functions to access this clock
at two resolutions. This clock can be used to measure the passage of time in
conjunction with STS accumulator objects, as well as to add timestamp
messages to event logs. Both the low-resolution and high-resolution times
are stored as 32-bit values. The value restarts at 0 when the maximum value
is reached.

If the CLK manager is enabled in the Configuration Tool, the timer counter
register is incremented every four CPU cycles. When this register reaches
the value set for the period register property of the CLK module, the counter
is reset to 0 and a timer interrupt occurs.

Note: Specifying On-Chip Timer

The Configuration Tool allows you to specify which on-chip timer you want
to use. DSP/BIOS requires the default setting in the interrupt selector
register for the selected timer. For example, interrupt 14 must be configured
for timer 0, or interrupt 15 must be configured for timer 1.

The TMS320C6000 has two general-purpose timers. The Configuration Tool
allows you to select an on-chip timer for the CLK manager. When a timer
interrupt occurs, the HWI object for the selected timer runs the CLK_F_isr
function. This function causes these events to occur:

❏ The low-resolution time is incremented by 1

❏ All the functions specified by CLK objects are performed in sequence in
the context of that ISR

CLK Module System clock manager
API Functions 6-7

CLK Module
Therefore, the low-resolution clock ticks at the timer interrupt rate and the
clock’s value is equal to the number of timer interrupts that have occurred.
You can use the CLK_getltime function to get the low-resolution time and the
CLK_getprd function to get the value of the period register property.

The high-resolution time is the number of times the timer counter register has
been incremented (number of instruction cycles divided by 4). Given the high
CPU clock rate, the 16-bit timer counter register wraps around quite fast. The
32-bit high-resolution time is actually calculated by multiplying the
low-resolution time by the value of the period register property and adding the
current value of the timer counter register. You can use the CLK_gethtime
function to get the high-resolution time and the CLK_countspms function to
get the number of hardware timer counter register ticks per millisecond.

The CLK functions performed when a timer interrupt occurs are performed in
the context of the hardware interrupt that caused the system clock to tick.
Therefore, the amount of processing performed within CLK functions should
be minimized and these functions may only invoke DSP/BIOS calls that are
allowable from within a hardware ISR. (They should not call HWI_enter and
HWI_exit as these are called internally before and after CLK functions.)

If you do not want the on-chip timer to drive the system clock, delete the CLK
object named CLK_system.

CLK Manager Properties

The following global parameters can be set for the CLK module:

❏ Object Memory. The memory segment that contains the CLK objects
created with the Configuration Tool

❏ Timer Selection. The on-chip timer to use. Changing this setting also
automatically changes the CPU Interrupt used to drive the timer services
and the function property of the relevant HWI objects.

❏ Enable CLK Manager. If checked, the on-chip timer hardware is used to
drive the high- and low-resolution times and to trigger execution of CLK
functions

❏ Use high resolution time for internal timings. If checked, the
high-resolution timer is used to monitor internal periods; otherwise the
less intrusive, low-resolution timer is used

❏ Microseconds/Int. The number of microseconds between timer
interrupts. The period register is set to a value that achieves the desired
period as closely as possible.
6-8

CLK Module
❏ Directly configure on-chip timer registers. If checked, the period
register can be directly set to the desired value. In this case, the
Microseconds/Int field is computed based on the value in period register
and the CPU clock speed.

❏ PRD Register. If Directly configure on-chip timer registers is checked,
this value is written to the period register

The following informational fields are also displayed for the CLK module:

❏ CPU Interrupt. Shows which HWI interrupt is used to drive the timer
services. The value is changed automatically when you change the Timer
Selection.

❏ Instructions/Int. The number of instruction cycles represented by the
period specified above

CLK Object Properties

The Clock manager allows you to create an arbitrary number of clock
functions. Clock functions are functions executed by the Clock Manager
every time a timer interrupt occurs. These functions may invoke any
DSP/BIOS operations allowable from within a hardware ISR except
HWI_enter or HWI_exit.

The following fields can be set for a clock function object:

❏ comment. Type a comment to identify this CLK object

❏ function. The function to be executed when the timer hardware interrupt
occurs. This function must be written like an HWI function; it must be
written in assembly and must save and restore any registers this function
modifies. However, this function may not call HWI_enter or HWI_exit
because DSP/BIOS calls them internally before and after this function
runs.
These functions should be very short as they are performed frequently.
Since all functions are performed using the same periodic rate, functions
that need to occur at a multiple of that rate should count the number of
interrupts and perform their activities when the counter reaches the
appropriate value.
If this function is written in C, use a leading underscore before the C
function name. (The Configuration Tool generates assembly code which
must use the leading underscore when referencing C functions or labels.)

CLK - DSP/BIOS Plug-ins Interface

To enable CLK logging, choose Tools→DSP/BIOS→RTA Control Panel and
put a check in the appropriate box. You see indicators for low resolution clock
interrupts in the Time row of the Execution Graph, which you can open by
choosing Tools→DSP/BIOS→Execution Graph.
API Functions 6-9

CLK_countspms
C Interface

Syntax ncounts = CLK_countspms();

Parameters Void

Return Value Uns ncounts;

Assembly Interface

Syntax CLK_countspms

Preconditions amr = 0

Postconditions a4

Modifies a4

Reentrant yes

Description
CLK_countspms returns the number of hardware timer register ticks per
millisecond. This corresponds to the number of high-resolution ticks per
millisecond.

CLK_countspms may be used to compute an absolute length of time from the
number of hardware timer counts. For example, the following returns the
number of milliseconds since the 32-bit high-resolution time last wrapped
back to 0:

timeAbs = CLK_gethtime() / CLK_countspms();

See Also
CLK_gethtime
CLK_getprd
STS_delta

CLK_countspms Number of hardware timer counts per millisecond
6-10

CLK_gethtime
C Interface

Syntax currtime = CLK_gethtime(Void);

Parameters Void

Return Value LgUns currtime /* high-resolution time */

Assembly Interface

Syntax CLK_gethtime

Preconditions interrupts are disabled
b14 = pointer to the start of .bss
amr = 0

Postconditions a4 = high-resolution time value

Modifies a2, a3, a4, a5, b1, b2, b3, b4, b5

Reentrant no

Description
CLK_gethtime returns the number of high resolution clock cycles that have
occurred as a 32-bit time value. When the number of cycles reaches the
maximum value that can be stored in 32 bits, the value wraps back to 0.

The timer counter is incremented every four CPU cycles. The high-resolution
time is the number of times the timer counter has been incremented (number
of instruction cycles divided by 4).

The high-resolution time is actually calculated by multiplying the
low-resolution time by the value of the period register property and adding the
current value of the timer counter.

In contrast, CLK_getltime returns a value that is also affected by the period
register value. CLK_gethtime provides a value with greater accuracy than
CLK_getltime, but which wraps back to 0 more frequently.

For example, if the chip’s clock rate is 200 MHz, then regardless of the period
register value, the CLK_gethtime value wraps back to 0 approximately every
86 seconds.

CLK_gethtime can be used in conjunction with STS_set and STS_delta to
benchmark code. CLK_gethtime can also be used to add a time stamp to
event logs.

CLK_gethtime Get high-resolution time
API Functions 6-11

CLK_gethtime
Example
/* ======== showTime ======== */

 Void showTicks()
 {
 LOG_printf(&trace, "time = %d", (Int)CLK_gethtime());
 }

See Also
CLK_getltime
PRD_getticks
STS_delta
6-12

CLK_getltime
C Interface

Syntax currtime = CLK_getltime(Void);

Parameters Void

Return Value LgUns currtime /* low-resolution time */

Assembly Interface

Syntax CLK_getltime

Preconditions b14 = pointer to the start of .bss
amr = 0

Postconditions a4 = low-resolution time value

Modifies a4

Reentrant yes

Description
CLK_getltime returns the number of timer interrupts that have occurred as a
32-bit time value. When the number of interrupts reaches the maximum value
that can be stored in 32 bits, value wraps back to 0 on the next interrupt.

The low-resolution time is the number of timer interrupts that have occurred.

The timer counter is incremented every four CPU cycles. When this register
reaches the value set for the period register property of the CLK module, the
counter is reset to 0 and a timer interrupt occurs. When a timer interrupt
occurs, all the functions specified by CLK objects are performed in sequence
in the context of that ISR.

The default low resolution interrupt rate is 1 millisecond/interrupt. By
adjusting the period register, you can set rates from less than 1
microsecond/interrupt to more than 1 second/interrupt.

If you use the default configuration, the system clock rate matches the
low-resolution rate.

CLK_getltime Get low-resolution time
API Functions 6-13

CLK_getltime
In contrast, CLK_gethtime returns a value that is not affected by the period
register value. Therefore, CLK_gethtime provides a value with greater
accuracy than CLK_getltime, but which wraps back to 0 more frequently. For
example, if the chip’s clock rate is 200 MHz, and you use the default period
register value of 50000, the CLK_gethtime value wraps back to 0
approximately every 86 seconds, while the CLK_getltime value wraps back
to 0 approximately every 49.7 days.

CLK_getltime is often used to add a time stamp to event logs for events that
occur over a relatively long period of time.

Example
/* ======== showTicks ======== */

 Void showTicks()
 {
 LOG_printf(&trace, "time = %d", (Int)CLK_getltime());
 }

See Also
CLK_gethtime
PRD_getticks
STS_delta
6-14

CLK_getprd
C Interface

Syntax period = CLK_getprd(Void);

Parameters Void

Return Value Uns period /* period register value */

Assembly Interface

Syntax CLK_getprd

Preconditions amr = 0

Postconditions a4

Modifies a4

Reentrant yes

Description
CLK_getprd returns the value set for the period register property of the CLK
manager in the Configuration Tool. CLK_getprd can be used to compute an
absolute length of time from the number of hardware timer counts. For
example, the following returns the number of milliseconds since the 32-bit
low-resolution time last wrapped back to 0:

timeAbs = (CLK_getltime() * CLK_getprd()) / CLK_countspms();

See Also
CLK_countspms
CLK_gethtime
STS_delta

CLK_getprd Get period register value
API Functions 6-15

Global Settings
Functions
None

Description
This module does not manage any individual objects, but rather allows you to
control global or system-wide settings used by other modules.

Global Settings Properties

The following Global Settings can be made:

❏ Target Board Name. The type of board on which your target chip is
mounted

❏ DSP MIPS (CLKOUT). This number, times 1000000, is the number of
instructions the processor can execute in 1 second. This value is used by
the CLK manager to calculate register settings for the on-chip timers.

❏ DSP Type. The target CPU type. If you are using a custom board, you
can type a value in this field. Type the number after the C in the chip
model. For example, type 62 for a ’C6000 chip.

❏ DSP Endian Mode. This setting controls which libraries are used to link
the application. If you change this setting, you must set the compiler and
linker options to correspond. This field must match the setting in the
DSP’s CSR register.

❏ C Autoinitialization Model. Select the run-time initialization model

❏ Program Cache Control. This field specifies the cache mode for the
DSP

Global Settings Global settings manager
6-16

HST Module
Functions

❏ HST_getpipe. Get corresponding pipe object

Description
The HST module manages host channel objects, which allow an application
to stream data between the target and the host. Host channels are statically
configured for input or output. Input channels (also called the source) read
data from the host to the target. Output channels (also called the sink)
transfer data from the target to the host.

Note:

HST channel names cannot start with a leading underscore (_).

Each host channel is internally implemented using a data pipe (PIP) object.
To use a particular host channel, the program uses HST_getpipe to get the
corresponding pipe object and then transfers data by calling the PIP_get and
PIP_free operations (for input) or PIP_alloc and PIP_put operations (for
output).

During early development—especially when testing software interrupt
processing algorithms—programs can use host channels to input canned
data sets and to output the results. Once the algorithm appears sound, you
can replace these host channel objects with I/O drivers for production
hardware built around DSP/BIOS pipe objects. By attaching host channels as
probes to these pipes, you can selectively capture the I/O channels in real
time for off-line and field-testing analysis.

The notify function is called from the context of the code that calls PIP_free
or PIP_put. This function may be written in C or assembly. The code that calls
PIP_free or PIP_put should preserve any necessary registers.

The other end of the host channel is managed by the LNK_dataPump IDL
object. Thus, a channel can only be used when some CPU capacity is
available for IDL thread execution.

HST Manager Properties

The following global parameters can be set for the HST module:

❏ Object Memory. The memory segment that contains the HST objects

❏ Host Link Type. The underlying physical link to be used for host-target
data transfer

HST Module Host input/output manager
API Functions 6-17

HST Module
HST Object Properties

A host channel maintains a buffer partitioned into a fixed number of fixed
length frames. All I/O operations on these channels deal with one frame at a
time; although each frame has a fixed length, the application may put a
variable amount of data in each frame.

The following fields can be set for a host file object:

❏ comment. Type a comment to identify this HST object

❏ mode. The type of channel: input or output. Input channels are used by
the target to read data from the host; output channels are used by the
target to transfer data from the target to the host.

❏ bufseg. The memory segment from which the buffer is allocated; all
frames are allocated from a single contiguous buffer (of size framesize x
numframes).

❏ bufalign. The alignment (in words) of the buffer allocated within the
specified memory segment

❏ framesize. The length of each frame (in words)

❏ numframes. The number of frames

❏ statistics. Check this box if you want to monitor this channel with an STS
object. You can display the STS object for this channel to see a count of
the number of frames transferred with the Statistics View plug-in.

❏ notify. The function to execute when a frame of data for an input channel
(or free space for an output channel) is available. To avoid problems with
recursion, this function should not directly call any of the PIP module
functions for this HST object.

❏ arg0, arg1. Two 32-bit arguments passed to the notify function. They can
be either unsigned 32-bit constants or symbolic labels.
6-18

HST Module
HST - Host Channel Control Interface

If you are using host channels, you need to use the Host Channel Control to
bind each channel to a file on your host computer and start the channels.

1) Choose the Tools→DSP/BIOS→Host Channel Control menu item. You
see a window that lists your host input and output channels.

2) Right-click on a channel and choose Bind from the pop-up menu.

3) Select the file to which you want to bind this channel. For an input
channel, select the file that contains the input data. For an output
channel, you can type the name of a file that does not exist or choose any
file that you want to overwrite.

4) Right-click on a channel and choose Start from the pop-up menu. For an
input channel, this causes the host to transfer the first frame of data and
causes the target to run the function for this HST object. For an output
channel, this causes the target to run the function for this HST object.
API Functions 6-19

HST_getpipe
C Interface

Syntax PIP_Obj *HST_getpipe(HST_Obj *hst);

Parameters HST_Obj *host /* host object */

Return Value PIP_Obj *pipe /* corresponding pipe */

Assembly Interface

Syntax HST_getpipe

Preconditions a4 = HST channel object pointer
amr = 0

Postconditions a4 = address of the pipe object

Modifies a4

Reentrant yes

Description
HST_getpipe gets the address of the pipe object for the specified host
channel object.

Example

Void copy(HST_Obj *input, HST_Obj *output)
{
 PIP_Obj *in, *out;
 Uns *src, *dst;
 Uns size;

 in = HST_getpipe(input);
 out = HST_getpipe(output);

 if (PIP_getReaderNumFrames() == 0 || PIP_getWriterNumFrames() == 0) {
 error();
 }

 /* get input data and allocate output frame */
 PIP_get(in);
 PIP_alloc(out);

 /* copy input data to output frame */
 src = PIP_getReaderAddr(in);
 dst = PIP_getWriterAddr(out);

 size = PIP_getReaderSize;
 out->writerSize = size;

HST_getpipe Get corresponding pipe object
6-20

HST_getpipe
 for (; size > 0; size--) {
 *dst++ = *src++;
 }

 /* output copied data and free input frame */
 PIP_put(out);
 PIP_free(in);
}

See Also
PIP_alloc
PIP_free
PIP_get
PIP_put
API Functions 6-21

HWI Module
Functions

❏ HWI_disable. Disable hardware interrupts
❏ HWI_enable. Enable hardware interrupts
❏ HWI_enter. Hardware ISR prolog
❏ HWI_exit. Hardware ISR epilog
❏ HWI_restore. Restore hardware interrupt state

Description
The HWI module manages hardware interrupts. Using the Configuration Tool,
you can assign routines that run when specific hardware interrupts occur.
Some routines are assigned to interrupts automatically by the HWI module.
For example, the interrupt for the timer that you select for the CLK global
properties is automatically configured to run a macro that increments the
low-resolution time. See the CLK module for more details.

Interrupt routines can be written in assembly language, or a mix of assembly
and C. Within an HWI function, the HWI_enter assembly macro must be
called prior to any DSP/BIOS API calls that could post or affect a software
interrupt. HWI functions can post software interrupts, but they do not run until
your HWI function calls the HWI_exit assembly macro, which must be the last
statement in any HWI function that calls HWI_enter.

Note: Do not call SWI_disable or SWI_enable within an HWI function.

Note: Do not call HWI_enter, HWI_exit, or any other DSP/BIOS functions
from a non-maskable interrupt (NMI) service routine.

Note: You must use HWI_disable and HWI_enable to bracket a block of
code that atomically makes DSP/BIOS API calls.

The DSP/BIOS API calls that require an HWI function to use HWI_enter and
HWI_exit are:

❏ SWI_andn
❏ SWI_dec
❏ SWI_inc
❏ SWI_or
❏ SWI_post
❏ PIP_alloc
❏ PIP_free
❏ PIP_get
❏ PIP_put
❏ PRD_tick

HWI Module Hardware interrupt manager
6-22

HWI Module
Note: Any PIP API call can cause the pipe’s notifyReader or notifyWriter
function to run. If an HWI function calls a PIP function, the notification
functions run as part of the HWI function.

Note: An HWI function must use HWI_enter if it indirectly runs a function
containing any of the API calls listed above.

If your HWI function and the functions it calls do not call any of these API
operations, you do not need to disable software interrupt scheduling by
calling HWI_enter and HWI_exit.

The mask argument to HWI_enter and HWI_exit allows you to save and
restore registers used within the function.

Hardware interrupts always interrupt software interrupts unless hardware
interrupts have been disabled with HWI_disable.

Note: By using HWI_enter and HWI_exit as an HWI function’s prolog and
epilog, an HWI function can be interrupted; i.e., a hardware interrupt can
interrupt another interrupt. You can use the IEMASK parameter for the
HWI_enter API to prevent this from occurring.

HWI Manager Properties

DSP/BIOS manages the hardware interrupt vector table and provides basic
hardware interrupt control functions; e.g., enabling and disabling the
execution of hardware interrupts.

The following global parameter can be set for the HWI module:

❏ Function Stub Memory. Select the memory segment where the dispatch
code should be placed for interrupt service routines that are configured
to be monitored

❏ Interrupt Service Table Memory. Select the memory segment where
the Interrupt Service Table (IST) should be placed.
IST can be placed anywhere on the memory map, but a copy of the
RESET vector always remains at address 0x00000000.

❏ External Interrupt Pin 4-7 Polarity. Choose whether the device
connected to this pin causes an interrupt when a high-to-low transition
occurs, or when a low-to-high transition occurs
API Functions 6-23

HWI Module
HWI Object Properties

The following fields can be set for a hardware interrupt service routine object:

❏ comment. A comment is provided to identify each HWI object

❏ interrupt source. Select the pin, DMA channel, timer, or other source of
the interrupt

❏ function. The function to execute. Interrupt routines must be written in
assembly language. Within an HWI function, the HWI_enter assembly
macro must be called prior to any DSP/BIOS API calls that could post or
affect a software interrupt. HWI functions can post software interrupts,
but they do not run until your HWI function calls the HWI_exit assembly
macro, which must be the last statement in any HWI function that calls
HWI_enter.

❏ monitor. If set to anything other than Nothing, an STS object is created
for this ISR that is passed the specified value on every invocation of the
interrupt service routine. The STS update occurs just before entering the
ISR.

❏ addr. If the monitor field above is set to Data Address, this field lets you
specify a data memory address to be read; the word-sized value is read
and passed to the STS object associated with this HWI object

❏ type. The type of the value to be monitored: unsigned or signed. Signed
quantities are sign extended when loaded into the accumulator; unsigned
quantities are treated as word-sized positive values.

❏ operation. The operation to be performed on the value monitored. You
can choose one of several STS operations.

Although it is not possible to create new HWI objects, most interrupts
supported by the chip architecture have a precreated HWI object. Your
application may require that you select interrupt sources other than the
default values in order to rearrange interrupt priorities or to select previously
unused interrupt sources.

The following table lists, in priority order (highest to lowest), these precreated
objects and their default interrupt sources. The HWI object names are the
same as the interrupt names.
6-24

HWI Module
HWI interrupts for the TMS320C6000:

HWI - Execution Graph Interface

Time spent performing HWI functions is not directly traced for performance
reasons. However, the Other Threads row in the Execution Graph, which you
can open by choosing Tools→DSP/BIOS→Execution Graph, includes time
spent performing both HWI and IDL functions.

In addition, if you set the HWI object properties to perform any STS
operations on a register, address, or pointer, you can track time spent
performing HWI functions in the Statistics View window, which you can open
by choosing Tools→DSP/BIOS→Statistics View.

Name Default Interrupt Source

HWI_RESET Reset

HWI_NMI NMI

HWI_INT4 INT4

HWI_INT5 INT5

HWI_INT6 INT6

HWI_INT7 INT7

HWI_INT8 INT8

HWI_INT9 INT9

HWI_INT10 INT10

HWI_INT11 INT11

HWI_INT12 INT12

HWI_INT13 INT13

HWI_INT14 INT14

HWI_INT15 INT15
API Functions 6-25

HWI_disable
C Interface

Syntax oldCSR = HWI_disable(Void);

Parameters Void

Return Value Uns oldCSR;

Assembly Interface

Syntax HWI_disable

Preconditions amr = 0

Postconditions GIE = 0
a4 = CSR when HWI_disable was invoked

Modifies a4, b0, csr

Reentrant yes

Description
HWI_disable disables hardware interrupts by clearing the GIE bit in the
Control Status Register (CSR). Call HWI_disable before a portion of a
function that needs to run without interruption. When critical processing is
complete, call HWI_enable to reenable hardware interrupts.

Interrupts that occur while interrupts are disabled are postponed until
interrupts are reenabled. However, if the same type of interrupt occurs
several times while interrupts are disabled, the interrupt’s function is
executed only once when interrupts are reenabled.

Constraints and Calling Context

❏ HWI_disable cannot be called from an ISR context.

Example
old = HWI_disable();
 ’do some critical operation’
HWI_restore(old);

See Also
HWI_enable
SWI_disable
SWI_enable

HWI_disable Disable hardware interrupts
6-26

HWI_enable
C Interface

Syntax Void HWI_enable(Void);

Parameters Void

Return Value Void

Assembly Interface

Syntax HWI_enable

Preconditions amr = 0

Postconditions GIE = 1

Modifies b0, csr

Reentrant yes

Description
HWI_enable enables hardware interrupts by setting the GIE bit in the Control
Status Register (CSR).

Hardware interrupts are enabled unless a call to HWI_disable disables them.

Interrupts that occur while interrupts are disabled are postponed until
interrupts are reenabled. However, if the same type of interrupt occurs
several times while interrupts are disabled, the interrupt’s function is
executed only once when interrupts are reenabled.

Any call to HWI_enable enables interrupts, even if HWI_disable has been
called several times.

Constraints and Calling Context

❏ HWI_enable cannot be called from an ISR context.

Example
HWI_disable();
"critical processing takes place"
HWI_enable();
"non-critical processing"

See Also
HWI_disable
SWI_disable
SWI_enable

HWI_enable Enable interrupts
API Functions 6-27

HWI_enter
C Interface

Syntax none

Parameters none

Return Value none

Assembly Interface

Syntax HWI_enter ABMASK CMASK IEMASK CCMASK

Preconditions interrupts are globally disabled (i.e., GIE == 0)

Postconditions amr = 0

Modifies a0, a1, amr, b0, b1, b2, b3, b14, b15, csr, ier

Reentrant yes

Description
HWI_enter is an API (assembly macro) used to save the appropriate context
for a DSP/BIOS interrupt service routine (ISR). HWI_enter must be used in
an ISR before any DSP/BIOS API calls which could trigger a software
interrupt; e.g., SWI_post. HWI_enter is used in tandem with HWI_exit to
ensure that the DSP/BIOS SWI manager is called at the appropriate time.
Normally, HWI_enter and HWI_exit must surround all statements in any
DSP/BIOS assembly language ISRs.

The input parameter CCMASK specifies the program cache control (PCC)
and data cache control (DCC) settings that are used in the context of the ISR.
Some typical values for this mask are defined in c62.h62 (e.g.,
C62_PCC_ENABLE). The PCC code and DCC code can be ORed together
to generate CCMASK. If you use 0 as CCMASK, a default value is used. You
set this value in the Global Settings Properties in the Configuration Tool.

Two common masks, C62_ABTEMPS and C62_CTEMPS, are defined in
c62.h62. These masks specify the C temporary registers and should be used
when saving the context for an ISR that is written in C.

HWI_enter Hardware ISR prolog
6-28

HWI_enter
The input parameter CCMASK specifies the program cache control (PCC)
and data cache control (DCC) codes you need to use in the context of the
ISR. These cache control codes are also defined in c62.h62. The PCC code
and DCC code can be ORed together (e.g., C62_PCC_ENABLE |
C62_PCC_DISABLE) to generate CCMASK. If you use 0 as CCMASK,
C62_CCDEFAULT is used. C62_CCDEFAULT is defined in c62.h62 as
C62_PCC_DISABLE | C62_PCC_DISABLE.

The following parameters and constants are available for HWI_enter:

❏ ABMASK. Register mask specifying A, B registers to save

■ C62_ABTEMPS. Mask to use if calling C function from within ISR;
defined in c62.h62

■ C62_A0-C62_A15, C62_B0-C62_B15. Individual register constants;
can be ORed together for more precise control than using
C62_ABTEMPS

❏ CMASK. Register mask specifying control registers to save

■ C62_CTEMPS. Mask to use if calling C function from within ISR;
defined in c62.h62

■ C62_AMR, C62_CSR, C62_IER, C62_IST, C62_IRP, C62_NRP.
Individual register constants; can be ORed together for more precise
control than using C62_CTEMPS

❏ IEMASK. Bit mask specifying IER bits to disable. Any bit mask can be
specified, with bits having a one-to-one correspondence with the
assigned values in the IER.

■ C62_NMIE, C62_IE4, C62_IE5-C62_IE15. These convenience
macros can be ORed together to specify the mask of interrupts to
disable

❏ CCMASK. Bit mask specifying cache control bits in CSR

■ C62_PCC_DISABLE, C62_PCC_ENABLE, C62_PCC_FREEZE,
C62_PCC_BYPASS. These macros directly correspond to the
possible modes of the program cache specified in the CSR

Constraints and Calling Context

❏ This API should not be used for the NMI HWI function.

❏ This API must be called within any hardware interrupt function (except
NMI’s HWI function) before the first operation in an ISR that uses any
DSP/BIOS API calls that might post or affect a software interrupt. Such
functions must be written in assembly language.

❏ If an interrupt function calls HWI_enter, it must end by calling HWI_exit.
API Functions 6-29

HWI_enter
Example
CLK_isr:

HWI_enter C62_ABTEMPS, C62_CTEMPS, 0xf0, C62_PCC_ENABLE|C62_PCC_DISABLE
PRD_tick
HWI_exit C62_ABTEMPS, C62_CTEMPS, 0xf0, C62_PCC_ENABLE|C62_PCC_DISABLE

See Also
HWI_exit
6-30

HWI_exit
C Interface

Syntax none

Parameters none

Return Value none

Assembly Interface

Syntax HWI_exit ABMASK CMASK IERRESTOREMASK CCMASK

Preconditions b14 = pointer to the start of .bss
amr = 0

Postconditions none

Modifies a0, a1, amr, b0, b1, b2, b3, b14, b15, csr, ier, irp

Reentrant yes

Description
HWI_exit is an API (assembly macro) which is used to restore the context that
existed before a DSP/BIOS interrupt service routine (ISR) was invoked.
HWI_exit must be the last statement in an ISR that uses DSP/BIOS API calls
which could trigger a software interrupt; e.g., SWI_post.

HWI_exit restores the registers specified by ABMASK and CMASK. ABMASK
and CMASK are used to specify the set of registers that were saved by
HWI_enter.

HWI_enter and HWI_exit must surround all statements in any DSP/BIOS
assembly language ISRs that call C functions.

HWI_exit calls the DSP/BIOS Software Interrupt manager if DSP/BIOS itself
is not in the middle of updating critical data structures, if no currently
interrupted ISR is also in a HWI_enter/ HWI_exit region. The DSP/BIOS SWI
manager services all pending SWI handlers (functions).

Of the interrupts in IERRESTOREMASK, HWI_exit only restores those that
were enabled upon entering the ISR. HWI_exit does not affect the status of
interrupt bits that are not in IERRESTOREMASK.

If upon exiting an ISR you do not wish to restore one of the interrupts that
were disabled with HWI_enter, do not set that interrupt bit in the
IERRESTOREMASK in HWI_exit.

HWI_exit Hardware ISR epilog
API Functions 6-31

HWI_exit
If upon exiting an ISR you do wish to enable an interrupt that was disabled
upon entering the ISR, set the corresponding bit in IERRESTOREMASK
before calling HWI_exit. (Including the interrupt IER bit in the
IERRESTOREMASK of HWI_exit does not have the effect of enabling the
interrupt if it was disabled when the ISR was entered.)

To be symmetrical, even though CCMASK has no effect on HWI_exit, you
should use the same CCMASK that is used in HWI_enter for HWI_exit.
HWI_exit restores CSR to its value at the interrupted context.

The following parameters and constants are available for HWI_exit:

❏ ABMASK. Register mask specifying A, B registers to restore

■ C62_ABTEMPS. Mask to use if calling C function from within ISR;
defined in c62.h62

■ C62_A0-C62_A15, C62_B0-C62_B15. Individual register constants;
can be ORed together for more precise control than using
C62_ABTEMPS

❏ CMASK. Register mask specifying control registers to restore

■ C62_CTEMPS. Mask to use if calling C function from within ISR;
defined in c62.h62

■ C62_AMR, C62_CSR, C62_IER, C62_IST, C62_IRP, C62_NRP.
Individual register constants; can be ORed together for more precise
control than using C62_CTEMPS

❏ IEMASK. Bit mask specifying IER bits to restore. Any bit mask can be
specified, with bits having a one-to-one correspondence with the
assigned values in the IER.

■ C62_NMIE, C62_IE4, C62_IE5-C62_IE15. These convenience
macros can be ORed together to specify the mask of interrupts to
restore

❏ CCMASK. Bit mask specifying cache control bits in CSR

■ C62_PCC_DISABLE, C62_PCC_ENABLE, C62_PCC_FREEZE,
C62_PCC_BYPASS. These macros directly correspond to the
possible modes of the program cache specified in the CSR
6-32

HWI_exit
Constraints and Calling Context

❏ This API should not be used for the NMI HWI function.

❏ This API must be the last operation in an ISR that uses any DSP/BIOS
API calls. Basically, this API must be called at the end of a function used
to process a hardware interrupt. Such functions must be written in
assembly language.

❏ The ABMASK and CMASK parameters must match the corresponding
parameters used for HWI_enter.

Example
CLK_isr:

HWI_enter C62_ABTEMPS, C62_CTEMPS, 0xf0, C62_PCC_ENABLE|C62_PCC_DISABLE
PRD_tick
HWI_exit C62_ABTEMPS, C62_CTEMPS, 0xf0, C62_PCC_ENABLE|C62_PCC_DISABLE

See Also
HWI_enter
API Functions 6-33

HWI_restore
C Interface

Syntax Void HWI_restore(oldCSR);

Parameters Uns oldCSR;

Returns Void

Assembly Interface

Syntax HWI_restore

Preconditions a4 = mask (GIE is set to the value of bit 0)
GIE = 0
amr = 0

Postconditions none

Modifies a1, b0, csr

Reentrant no

Description
HWI_restore sets the global interrupt enable (GIE) bit in the control status
register (CSR) using the least significant bit of the oldCSR parameter. If bit 0
is 0, the GIE bit is not modified. If bit 0 is 1, the GIE bit is set to 1, which
enables interrupts.

When you call HWI_disable, the previous contents of the CSR register are
returned. You can use this returned value with HWI_restore.

Constraints

❏ HWI_restore cannot be called from an ISR context.

Example
oldCSR = HWI_disable(); /* disable interrupts */
 ’do some critical operation’
HWI_restore(oldCSR); /* re-enable interrupts if they were
 enabled at the start of the
 critical section */

See Also
HWI_enable
HWI_disable

HWI_restore Restore global interrupt enable state
6-34

IDL Module
Functions

❏ IDL_run. Make one pass through idle functions

Description
The IDL module manages the lowest-level task in the application. This task
executes functions that communicate with the host.

There are three kinds of threads that can be executed by DSP/BIOS
programs: hardware interrupts (HWI module), foreground software interrupts
(SWI module), and background threads (IDL module). Background threads
have the lowest priority, and execute only if no hardware interrupts or
software interrupts need to run.

An application’s main function must return before any software interrupts can
run. After the return, DSP/BIOS runs the idle loop. Once an application is in
this loop, hardware ISRs, SWI software interrupts, PRD periodic functions,
and IDL background threads are all enabled.

The functions for IDL objects registered with the Configuration Tool are run in
sequence each time the idle loop runs. IDL functions are called from the IDL
context. IDL functions can be written in C or assembly and must follow the C
calling conventions described in the compiler manual.

An application always has an IDL_cpuLoad object, which runs a function that
provides data about the CPU utilization of the application. In addition, the
LNK_dataPump function handles host I/O in the background.

The IDL function manager allows you to insert additional functions that are
executed in a loop whenever no other processing (such as hardware ISRs or
higher-priority tasks) is required.

IDL Manager Properties

The following global parameters can be set for the IDL module:

❏ Auto calculate idle loop instruction count. When this box is checked,
the program runs one pass through the IDL functions at system startup
to get an approximate value for the idle loop instruction count. This value,
saved in the global variable CLK_D_idletime, is read by the host and
used in CPU load calculation. The instruction count takes into account all
IDL functions, not just LNK_dataPump, RTA_dispatcher, and
IDL_cpuLoad. If this box is checked, it is important to make sure that the
IDL functions do not block on this first pass, otherwise your program
never gets to main.

❏ Object Memory. The memory segment that contains the IDL objects

IDL Module Idle function and processing loop manager
API Functions 6-35

IDL Module
The following informational field is also displayed for the IDL module:

❏ Idle Loop Instruction Count. The number of instruction cycles required
to perform the IDL loop and the default IDL functions (LNK_dataPump
and IDL_cpuLoad) that communicate with the host.
Since these functions are performed whenever no other processing is
needed, background processing is subtracted from the CPU load before
it is displayed.

IDL Object Properties

Each idle function runs to completion before another idle function can run. It
is important, therefore, to insure that each idle function completes (i.e.,
returns) in a timely manner.

The following fields can be set for an IDL object:

❏ comment. Type a comment to identify this IDL object

❏ function. The function to be executed.
If this function is written in C, use a leading underscore before the C
function name. (The Configuration Tool generates assembly code which
must use the leading underscore when referencing C functions or labels.)

IDL- Execution Graph Interface

Time spent performing IDL functions is not directly traced. However, the
Other Threads row in the Execution Graph, which you can open by choosing
Tools→DSP/BIOS→Execution Graph, includes time spent performing both
HWI and IDL functions.
6-36

IDL_run
C Interface

Syntax Void IDL_run(Void)

Parameters Void

Return Value Void

Assembly Interface none

Description
IDL_run makes one pass through the list of configured IDL objects, calling
one function after the next. IDL_run returns after all IDL functions have been
executed one time. IDL_run is not used by most DSP/BIOS applications since
the IDL functions are executed in a loop when the user application returns
from main. IDL_run is provided to allow easy integration of the real-time
analysis features of DSP/BIOS (e.g., LOG and STS) into existing
applications.

IDL_run must be called to transfer the real-time analysis data to and from the
host computer. Though not required, this is usually done during idle time
when no HWI or SWI threads are running.

Note: BIOS_init and BIOS_start must be called before IDL_run to ensure
that DSP/BIOS has been initialized. For example, the DSP/BIOS boot file
contains the following system calls around the call to main:
BIOS_init();/* initialize DSP/BIOS */
main();

BIOS_start();/* start DSP/BIOS */
IDL_loop();/* call IDL_run() in an infinite loop */

IDL_run Make one pass through idle functions
API Functions 6-37

LOG Module
Functions

❏ LOG_disable. Disable the system log
❏ LOG_enable. Enable the system log
❏ LOG_error. Write a user error event to the system log
❏ LOG_event. Append unformatted message to message log
❏ LOG_message. Write a user message event to the system log
❏ LOG_printf. Append formatted message to message log
❏ LOG_reset. Reset the system log

Description
The Message Log manager is used to capture events in real time while the
target program executes. You can use the system log or create user-defined
logs. If the logtype is circular, the log buffer of size buflen contains the last
buflen elements. If the logtype is fixed, the log buffer contains the first buflen
elements.

The system log stores messages about system events for the types of log
tracing you have enabled. See the TRC Module, page 6–121, for a list of
events that can be traced in the system log.

You can add messages to user logs or the system log by using LOG_printf or
LOG_event. To reduce execution time, log data is always formatted on the
host. Calls that access LOG objects return in less than 2 microseconds.

LOG_error writes a user error event to the system log. This operation is not
affected by any TRC trace bits; an error event is always written to the system
log. LOG_message writes a user message event to the system log, provided
that both TRC_GBLHOST and TRC_GBLTARG (the host and target trace
bits, respectively) traces are enabled.

When a problem is detected on the target it is valuable to put a message in
the system log. This allows you to correlate the occurrence of the detected
event with the other system events in time. LOG_error and LOG_message
can be used for this purpose.

Log buffers are of a fixed size and reside in data memory. Individual
messages use four words of storage in the log’s buffer. The first word holds a
sequence number that allows the Message Log to display logs in the correct
order. The remaining three words contain data specified by the call that wrote
the message to the log.

See the TMS320C6000 Code Composer Studio Tutorial for examples of how
to use the LOG manager.

LOG Module Message Log manager
6-38

LOG Module
LOG Manager Properties

The following global parameter can be set for the LOG module:

❏ Object Memory. The memory segment that contains the LOG objects

LOG Object Properties

The following fields can be set for a log object:

❏ comment. Type a comment to identify this LOG object

❏ bufseg. The name of a memory segment to contain the log buffer

❏ buflen. The length of the log buffer (in words)

❏ logtype. The type of the log: circular or fixed. Events added to a full
circular log overwrite the oldest event in the buffer, whereas events
added to a full fixed log are dropped.

■ Fixed. The log stores the first messages it receives and stops
accepting messages when its message buffer is full

■ Circular. The log automatically overwrites earlier messages when its
buffer is full. As a result, a circular log stores the last events that
occur.

❏ datatype. Choose printf if you use LOG_printf to write to this log and
provide a format string.
Choose raw data if you want to use LOG_event to write to this log and
have the Message Log apply a printf-style format string to all records in
the log.

❏ format. If you choose raw data as the datatype, type a printf-style format
string in this field. Provide up to three (3) conversion characters (such as
%d) to format words two, three, and four in all records in the log. Do not
put quotes around the format string. The format string can use %d, %x,
%o, %s, and %r conversion characters; it cannot use other types of
conversion characters.
See LOG_printf, page 6–47, and LOG_event, page 6–45, for information
about the structure of a log record.
API Functions 6-39

LOG Module
LOG - DSP/BIOS Plug-ins Interface

You can view log messages in real time while your program is running with
the Message Log. To see the system log as a graph, choose
Tools→DSP/BIOS→Execution Graph. To see a user log, choose
Tools→DSP/BIOS→Message Log and select the log or logs you want to see.

You can also control how
frequently the host polls the
target for log information.
Right-click on the RTA Control
Panel and choose the Property
Page to set the refresh rate. If
you set the refresh rate to 0,
the host does not poll the target
unless you right-click on the log
window and choose Refresh
Window from the pop-up menu.
6-40

LOG_disable
C Interface

Syntax Void LOG_disable(LOG_Obj *log);

Parameters LOG_Obj *log /* log to be disabled */

Return Value Void

Assembly Interface

Syntax LOG_disable

Preconditions a4 = address of the LOG object
amr = 0

Postconditions none

Modifies a0

Reentrant no

Description
LOG_disable disables the logging mechanism and prevents the log buffer
from being modified.

Example
LOG_disable(&trace);

See Also
LOG_enable
LOG_reset

LOG_disable Disable a message log
API Functions 6-41

LOG_enable
C Interface

Syntax Void LOG_enable(LOG_Obj *log);

Parameters LOG_Obj *log /* log to be enabled */

Return Value Void

Assembly Interface

Syntax LOG_enable

Preconditions a4 = address of the LOG object
amr = 0

Postconditions none

Modifies a0

Reentrant no

Description
LOG_enable enables the logging mechanism and allows the log buffer to be
modified.

Example
LOG_enable(&trace);

See Also
LOG_disable
LOG_reset

LOG_enable Enable a message log
6-42

LOG_error, LOG_message
C Interface

Syntax Void LOG_error(String format, Arg arg0);
Void LOG_message(String format, Arg arg0);

Parameters String format; /* printf-style format string */
Arg arg0; /* copied to second word of log record */

Return Value Void

Assembly Interface

Syntax LOG_error format [section]; LOG_message format [section]

Preconditions b4 = arg0
b14 = address of the start of .bss
amr = 0

Postconditions none (see the description of the section argument below)

Modifies a0, a1, a2, a3, a4, a6, a7, b0, b2, b3, b5, b6, b7

Reentrant yes

Description
LOG_error writes a program-supplied error message to the system log, which
is defined in the default configuration by the LOG_system object. LOG_error
is not affected by any TRC bits; an error event is always written to the system
log.

LOG_message writes a program-supplied message to the system log,
provided that both the host and target trace bits are enabled.

The format argument passed to LOG_error and LOG_message may contain
any of the conversion characters supported for LOG_printf. See LOG_printf,
page 6–47, for details.

The LOG_error and LOG_message assembly macros take an optional
section argument. If you do not specify a section argument, assembly code
following the macros is assembled into the .text section by default. If you do
not want your program to be assembled into the .text section, you should
specify the desired section name when calling the macros.

LOG_error,
LOG_message

Write a message to the system log
API Functions 6-43

LOG_error, LOG_message
Example
/* ======== UTL_doError ======== */
Void UTL_doError(String s, Int errno)
{
 LOG_error("SYS_error called: error id = 0x%x", errno);
 LOG_error("SYS_error called: string = ’%s’", s);
}

See Also
LOG_event
LOG_printf
TRC_disable
TRC_enable
6-44

LOG_event
C Interface

Syntax Void LOG_event(LOG_Obj *log, Arg arg0, Arg arg1, Arg arg2);

Parameters LOG_Obj *log; /* log handle */
Arg arg0; /* copied to second word of log record */
Arg arg1; /* copied to third word of log record */
Arg arg2; /* copied to fourth word of log record */

Return Value Void

Assembly Interface

Syntax LOG_event

Preconditions a4 = address of the LOG object
b4 = val1
a6 = val2
b6 = val3
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a7, b0, b2, b3, b5, b7

Reentrant yes

Description
LOG_event copies a sequence number and three arguments to the specified
log’s buffer. Each log message uses four words. The contents of these four
words written by LOG_event are shown here:

You can format the log by using LOG_printf instead of LOG_event.

If you want the Message Log to apply the same printf-style format string to all
records in the log, use the Configuration Tool to choose raw data for the Data
type property of this log object and typing a format string for the Format
property.

If the logtype is circular, the log buffer of size buflen contains the last buflen
elements. If the logtype is fixed, the log buffer contains the first buflen
elements.

LOG_event Append an unformatted message to a message log

Sequence # arg0 arg1 arg2LOG_event
API Functions 6-45

LOG_event
Any combination of threads can write to the same log. Internally, hardware
interrupts are temporarily disabled during a call to LOG_event. Log
messages are never lost due to thread preemption.

Example
LOG_event(&trace, value1, value2, (Arg)CLK_gethtime());

See Also
LOG_error
LOG_printf
TRC_disable
TRC_enable
6-46

LOG_printf
C Interface

Syntax Void LOG_printf(LOG_Obj *log, String format);
 or
Void LOG_printf(LOG_Obj *log, String format, Int arg0);
 or
Void LOG_printf(LOG_Obj *log, String format, Int arg0, Int arg1);

Parameters LOG_Obj *log; /* log handle */
String format; /* printf format stringb */
Arg arg0; /* value for first format string token */
Arg arg1; /* value for second format string token */

Return Value Void

Assembly Interface

Syntax LOG_printf format [section]

Preconditions a4 = address of the LOG object
b4 = arg0
a6 = arg1
amr = 0

Postconditions none (see the description of the section parameter below)

Modifies a0, a1, a2, a3, a7, b0, b2, b3, b5, b6, b7

Reentrant yes

Description
As a convenience for C (as well as assembly language) programmers, the
LOG module provides a variation of the ever-popular printf. LOG_printf
copies a sequence number, the format address, and two arguments to the
specified log’s buffer.

To reduce execution time, log data is always formatted on the host. The
format string is stored on the host and accessed by the Message Log.

LOG_printf Append a formatted message to a message log
API Functions 6-47

LOG_printf
The arguments passed to LOG_printf must be integers, strings, or a pointer
if the special %r conversion character is used. The format string can use the
following conversion characters:

If you want the Message Log to apply the same printf-style format string to all
records in the log, use the Configuration Tool to choose raw data for the Data
type property of this log object and typing a format string for the Format
property.

Conversion
Character Description

%d Signed integer

%x Unsigned hexadecimal integer

%o Unsigned octal integer

%s

Character string
This character can only be used with constant string pointers. That is, the string must
appear in the source and be passed to LOG_printf. For example, the following is sup-
ported:

char *msg = "Hello world!";
LOG_printf(&trace, "%s", msg);

However, the following example is not supported:

char msg[100];
strcpy(msg, "Hello world!");
LOG_printf(&trace, "%s", msg);

If the string appears in the COFF file and a pointer to the string is passed to LOG_printf,
then the string in the COFF file is used by the Message Log to generate the output.
If the string can not be found in the COFF file, the format string is replaced with ***
ERROR: 0x%x 0x%x ***\n, which displays all arguments in hexadecimal.

%r

Symbol from symbol table
This is an extension of the standard printf format tokens. This character treats its param-
eter as a pointer to be looked up in the symbol table of the executable and displayed.
That is, %r displays the symbol (defined in the executable) whose value matches the
value passed to %r. For example:

Int testval = 17;
LOG_printf("%r = %d", &testval, testval);

displays:

testval = 17

If no symbol is found for the value passed to %r, the Message Log uses the string
<unknown symbol>.
6-48

LOG_printf
The LOG_printf assembly macro takes an optional section parameter. If you
do not specify a section parameter, assembly code following the LOG_printf
macro is assembled into the .text section by default. If you do not want your
program to be assembled into the .text section, you should specify the
desired section name as the second parameter to the LOG_printf call.

Each log message uses 4 words. The contents of these four words written by
LOG_printf are shown here:

You configure the characteristics of a log in the Configuration Tool. If the
logtype is circular, the log buffer of size buflen contains the last buflen
elements. If the logtype is fixed, the log buffer contains the first buflen
elements.

Any combination of threads can write to the same log. Internally, hardware
interrupts are temporarily disabled during a call to LOG_printf. Log messages
are never lost due to thread preemption.

Constraints and Calling Context

❏ LOG_printf (even the C version) supports 0, 1, or 2 arguments after the
format string.

❏ The format string address is put in b6 as the third value for LOG_event.

Example
LOG_printf(&trace, "hello world");
LOG_printf(&trace, "Current time: %d", (Arg)CLK_getltime());

See Also
LOG_error
LOG_event
TRC_disable
TRC_enable

Sequence # Format
addressarg0 arg1LOG_printf
API Functions 6-49

LOG_reset
C Interface

Syntax Void LOG_reset(LOG_Obj *log);

Parameters LOG_Obj *log /* log to be reset */

Return Value Void

Assembly Interface

Syntax LOG_reset

Preconditions a4 = address of the LOG object
amr = 0

Postconditions none

Modifies a0, a1

Reentrant no

Description
LOG_reset enables the logging mechanism and allows the log buffer to be
modified starting from the beginning of the buffer, with sequence number
starting from 0.

LOG_reset does not disable interrupts or otherwise protect the log from being
modified by an ISR or other thread. It is therefore possible for the log to
contain inconsistent data if LOG_reset is preempted by an ISR or other
thread that uses the same log.

Example
LOG_reset(&trace);

See Also
LOG_disable
LOG_enable

LOG_reset Reset a message log
6-50

MEM Module
Functions
None

Description
The MEM manager allows you to specify the memory segments required to
locate the various code and data sections of a DSP/BIOS application.

MEM Manager Properties

The DSP/BIOS memory segment manager allows you to specify the memory
segments required to locate the various code and data sections of a
DSP/BIOS application.

The following global parameters can be set for the MEM module:

❏ Map Mode. Select ’C6000 Memory Map 0 or Memory Map 1

❏ Stack Size (MAUs). The size of the software stack in MAUs. This value
is shown in hex.
The Configuration Tool status bar shows the estimated minimum stack
size required for this application (as a decimal number).

❏ Stack Section (.stack). The memory segment containing the software
stack

❏ Constant Section (.const). The memory segment containing the .const
section generated by the C compiler to hold program constants such as
string constants; if the C compiler is not used, this parameter is unused.

❏ Text Section (.text). The memory segment containing the application
code

❏ BIOS Code Section (.bios). The memory segment containing the
DSP/BIOS code

❏ Data Sections (.data, .switch, .cio, .sysmem). These data sections
contain program data, C switch statements, C standard I/O buffers, and
the memory heap used by malloc and free.

❏ Startup Code Section (.sysinit). The memory segment containing
DSP/BIOS startup initialization code; this memory may be reused after
main() starts executing

❏ C Initialization Section (.cinit). The memory segment containing the
.cinit section, to hold initialization records for C run-time autoinitialization

❏ Uninitialized Sections (.bss, .far). The memory segment containing the
.bss, .far, and .sysdata sections

MEM Module Memory segment manager
API Functions 6-51

MEM Module
MEM Object Properties

A memory segment represents a contiguous length of code or data memory
in the address space of the processor. A MEM object has the following fields.
The values in these fields cannot be changed; they are set automatically to
match the board you choose for the Global Settings.

❏ comment. Type a comment to identify this MEM object

❏ base. The address at which this memory segment begins. This value is
shown in hex.

❏ len. The length of this memory segment in words. This value is shown in
hex.

❏ space. Type of memory segment. This is set to code for memory
segments that store programs, and data for memory segments that store
program data.

The following memory segments are predefined:

Memory Segment Description

IPRAM Internal (on-chip) program memory

IDRAM Internal (on-chip) data memory

SBSRAM External SBSRAM on CE0

SDRAM0 External SDRAM on CE2

SDRAM1 External SDRAM on CE3
6-52

PIP Module
Functions

❏ PIP_alloc. Get an empty frame from the pipe
❏ PIP_free. Recycle a frame back to the pipe
❏ PIP_get. Get a full frame from the pipe
❏ PIP_getReaderAddr. Get the value of the readerAddr pointer of the pipe
❏ PIP_getReaderNumFrames. Get the number of pipe frames available

for reading
❏ PIP_getReaderSize. Get the number of words of data in a pipe frame
❏ PIP_getWriterAddr. Get the value of the writerAddr pointer of the pipe
❏ PIP_getWriterNumFrames. Get the number of pipe frames available to

write to
❏ PIP_getWriterSize. Get the number of words that can be written to a

pipe frame
❏ PIP_put. Put a full frame into the pipe
❏ PIP_setWriterSize. Set the number of valid words written to a pipe frame

PIP_Obj Structure Members

❏ Ptr readerAddr. Pointer to the address to begin reading from after calling
PIP_get

❏ Uns readerSize. Number of words of data in the frame read with PIP_get
❏ Uns readerNumFrames. Number of frames available to be read
❏ Ptr writerAddr. Pointer to the address to begin writing to after calling

PIP_alloc
❏ Uns writerSize. Number of words available in the frame allocated with

PIP_alloc
❏ Uns writerNumFrames. Number of frames available to be written to

Description
The PIP module manages data pipes, which are used to buffer streams of
input and output data. These data pipes provide a consistent software data
structure you can use to drive I/O between the DSP chip and all kinds of
real-time peripheral devices.

Each pipe object maintains a buffer divided into a fixed number of fixed length
frames, specified by the numframes and framesize properties. All I/O
operations on a pipe deal with one frame at a time; although each frame has
a fixed length, the application may put a variable amount of data in each
frame up to the length of the frame.

PIP Module Data pipe manager
API Functions 6-53

PIP Module
A pipe has two ends, as shown in the following figure. The writer end (also
called the producer) is where your program writes frames of data. The reader
end (also called the consumer) is where your program reads frames of data.

Internally, pipes are implemented as a circular list; frames are reused at the
writer end of the pipe after PIP_free releases them.

The notifyReader and notifyWriter functions are called from the context of the
code that calls PIP_put or PIP_free. These functions may be written in C or
assembly. To avoid problems with recursion, the notifyReader and
notifyWriter functions should not directly call any of the PIP module functions
for the same pipe. Instead, they should post a software interrupt that uses the
PIP module functions.

Note: When DSP/BIOS starts up, it calls the notifyWriter function internally
for each created pipe object to initiate the pipe’s I/O.

The code that calls PIP_free or PIP_put should preserve any necessary
registers.

Often one end of a pipe is controlled by a hardware ISR and the other end is
controlled by a SWI function.

HST objects use PIP objects internally for I/O between the host and the
target. Your program only needs to act as the reader or the writer when you
use an HST object, because the host controls the other end of the pipe.

Pipes can also be used to transfer data within the program between two
application threads.

ReaderWriter

1. PIP_alloc
2. Puts data into frame
3. PIP_put (runs notifyReader)

1. PIP_get
2. Uses data

3. PIP_free (runs notifyWriter)
6-54

PIP Module
PIP Manager Properties

The pipe manager manages objects that allow the efficient transfer of frames
of data between a single reader and a single writer. This transfer is often
between a hardware ISR and an application software interrupt, but pipes can
also be used to transfer data between two application threads.

The following global parameter can be set for the PIP module:

❏ Object Memory. The memory segment that contains the PIP objects.

PIP Object Properties

A pipe object maintains a single contiguous buffer partitioned into a fixed
number of fixed length frames. All I/O operations on a pipe deal with one
frame at a time; although each frame has a fixed length, the application may
put a variable amount of data in each frame (up to the length of the frame).

The following fields can be set for a pipe object:

❏ comment. Type a comment to identify this PIP object

❏ bufseg. The memory segment that the buffer is allocated within; all
frames are allocated from a single contiguous buffer (of size framesize x
numframes)

❏ bufalign. The alignment (in words) of the buffer allocated within the
specified memory segment

❏ framesize. The length of each frame (in words)

❏ numframes. The number of frames

❏ monitor. The end of the pipe to be monitored by a hidden STS object.
Can be set to reader, writer, or nothing. In the Statistics View plug-in, your
choice determines whether the STS display for this pipe shows a count
of the number of frames handled at the reader or writer end of the pipe.

❏ notifyWriter. The function to execute when a frame of free space is
available. This function should notify (e.g., by calling SWI_andn) the
object that writes to this pipe that an empty frame is available.
The notifyWriter function is performed as part of the thread that called
PIP_free or PIP_alloc. To avoid problems with recursion, the notifyWriter
function should not directly call any of the PIP module functions for the
same pipe.

❏ nwarg0, nwarg1. Two 32-bit arguments passed to notifyWriter; these
arguments can each be either an unsigned 32-bit constant or a symbolic
label
API Functions 6-55

PIP Module
❏ notifyReader. The function to execute when a frame of data is available.
This function should notify (e.g., by calling SWI_andn) the object that
reads from this pipe that a full frame is ready to be processed.
The notifyReader function is performed as part of the thread that called
PIP_put or PIP_get. To avoid problems with recursion, the notifyReader
function should not directly call any of the PIP module functions for the
same pipe.

❏ nrarg0, nrarg1. Two 32-bit arguments passed to notifyReader; these
arguments can each be either an unsigned 32-bit constant or a symbolic
label

PIP - DSP/BIOS Plug-ins Interface

To enable PIP accumulators, choose Tools→DSP/BIOS→RTA Control Panel
and put a check in the appropriate box. Then choose
Tools→DSP/BIOS→Statistics View, which lets you select objects for which
you want to see statistics. If you choose a PIP object, you see a count of the
number of frames read from or written to the pipe.
6-56

PIP_alloc
C Interface

Syntax Void PIP_alloc(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* pipe to be allocated */

Return Value Void

Assembly Interface

Syntax PIP_alloc

Preconditions a4 = address of the pipe object
pipe.writerNumFrames > 0
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9

Reentrant no

Description
PIP_alloc allocates an empty frame from the pipe object you specify. You can
write to this frame and then use PIP_put to put the frame into the pipe.

If empty frames are available after PIP_alloc allocates a frame, PIP_alloc
runs the function specified by the notifyWriter property of the PIP object. This
function should notify (e.g., by calling SWI_andn) the object that writes to this
pipe that an empty frame is available. The notifyWriter function is performed
as part of the thread that calls PIP_free or PIP_alloc. To avoid problems with
recursion, the notifyWriter function should not directly call any PIP module
functions for the same pipe.

Constraints and Calling Context

❏ Before calling PIP_alloc, a function should check the writerNumFrames
member of the PIP_Obj structure by calling PIP_getWriterNumFrames to
make sure it is greater than 0 (i.e., at least one empty frame is available).

❏ PIP_alloc can only be called one time before calling PIP_put. You cannot
operate on two frames from the same pipe simultaneously.

Note: Registers used by notifyWriter functions might also be modified.

PIP_alloc Allocate an empty frame from a pipe
API Functions 6-57

PIP_alloc
Example

Void copy(HST_Obj *input, HST_Obj *output)
{
 PIP_Obj *in, *out;
 Uns *src, *dst;
 Uns size;

 in = HST_getpipe(input);
 out = HST_getpipe(output);

 if (PIP_getReaderNumFrames(in) == 0 || PIP_getWriterNumFrames(out) == 0) {
 error();
 }

 /* get input data and allocate output frame */
 PIP_get(in);
 PIP_alloc(out);

 /* copy input data to output frame */
 src = PIP_getReaderAddr(in);
 dst = PIP_getWriterAddr(out);

 size = PIP_getReaderSize(in);
 PIP_setWriterSize(out, size);

 for (; size > 0; size--) {
 *dst++ = *src++;
 }

 /* output copied data and free input frame */
 PIP_put(out);
 PIP_free(in);
}

The example for HST_getpipe, page 6–20, also uses a pipe with host channel
objects.

See Also
PIP_free
PIP_get
PIP_put
HST_getpipe
6-58

PIP_free
C Interface

Syntax Void PIP_free(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* pipe to be freed */

Return Value Void

Assembly Interface

Syntax PIP_free

Preconditions a4 = address of the pipe object
amr = 0

Postconditions none

Modifies a1, a2, a3, a4, a5, b0, b1, b2, b3, b4

Reentrant no

Description
PIP_free releases a frame after you have read the frame with PIP_get. The
frame is recycled so that PIP_alloc can reuse it.

After PIP_free releases the frame, it runs the function specified by the
notifyWriter property of the PIP object. This function should notify (e.g., by
calling SWI_andn) the object that writes to this pipe that an empty frame is
available. The notifyWriter function is performed as part of the thread that
called PIP_free or PIP_alloc. To avoid problems with recursion, the
notifyWriter function should not directly call any of the PIP module functions
for the same pipe.

Note: Registers used by notifyWriter functions might also be modified.

Example
See the example for PIP_alloc, page 6–57. The example for HST_getpipe,
page 6–20, also uses a pipe with host channel objects.

See Also
PIP_alloc
PIP_get
PIP_put
HST_getpipe

PIP_free Recycle a frame that has been read to a pipe
API Functions 6-59

PIP_get
C Interface

Syntax Void PIP_get(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* pipe giving a frame */

Return Value Void

Assembly Interface

Syntax PIP_get

Preconditions a4 = address of the pipe object
pipe.readerNumFrames > 0
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9

Reentrant no

Description
PIP_get gets a frame from the pipe after some other function puts the frame
into the pipe with PIP_put.

If full frames are available after PIP_get gets a frame, PIP_get runs the
function specified by the notifyReader property of the PIP object. This
function should notify (e.g., by calling SWI_andn) the object that reads from
this pipe that a full frame is available. The notifyReader function is performed
as part of the thread that calls PIP_get or PIP_put. To avoid problems with
recursion, the notifyReader function should not directly call any PIP module
functions for the same pipe.

Constraints and Calling Context

❏ Before calling PIP_get, a function should check the readerNumFrames
member of the PIP_Obj structure by calling PIP_getReaderNumFrames
to make sure it is greater than 0 (i.e., at least one full frame is available).

❏ PIP_get can only be called one time before calling PIP_free. You cannot
operate on two frames from the same pipe simultaneously.

Note: Registers used by notifyReader functions might also be modified.

PIP_get Get a full frame from the pipe
6-60

PIP_get
Example
See the example for PIP_alloc, page 6–57. The example for HST_getpipe,
page 6–20, also uses a pipe with host channel objects.

See Also
PIP_alloc
PIP_free
PIP_put
HST_getpipe
API Functions 6-61

PIP_getReaderAddr
C Interface

Syntax Ptr PIP_getReaderAddr(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* address of the PIP object */

Return Value Ptr ra

Assembly Interface

Syntax mvk pipe, a4;
mvkh pipe, a4;
ldw *+a4(PIP_READPTR), a4;
nop 4

Preconditions amr = 0

Postconditions none

Modifies none

Reentrant yes

Description
PIP_getReaderAddr is a C function that returns the value of the readerAddr
pointer of a pipe object.

The readerAddr pointer is normally used following a call to PIP_get, as the
address to begin reading from.

Example
/*
 * ======== audio ========
 */
Void audio(PIP_Obj *in, PIP_Obj *out)
{
 Uns *src, *dst;
 Uns size;

 if (PIP_getReaderNumFrames(in) == 0 ||
 PIP_getWriterNumFrames(out) == 0) {
 error();
 }

PIP_getReaderAddr Get the value of the readerAddr pointer of the pipe
6-62

PIP_getReaderAddr
 /* get input data and allocate output buffer */
 PIP_get(in);
 PIP_alloc(out);

 /* copy input data to output buffer */
 src = PIP_getReaderAddr(in);
 dst = PIP_getWriterAddr(out);

 size = PIP_getReaderSize(in);
 PIP_setWriterSize(out,size);

 for (; size > 0; size--) {
 *dst++ = *src++;
 }

 /* output copied data and free input buffer */
 PIP_put(out);
 PIP_free(in);
}

API Functions 6-63

PIP_getReaderNumFrames
C Interface

Syntax Uns PIP_getReaderNumFrames(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* address of the PIP object */

Return Value Uns num /* number of filled frames to be read */

Assembly Interface

Syntax mvk pipe, a4;
mvkh pipe, a4;
ldw *+a4(PIP_FULLBUFS), a4;
nop 4

Preconditions amr = 0

Postconditions none

Modifies none

Reentrant yes

Description
PIP_getReaderNumFrames is a C function that returns the value of the
readerNumFrames element of a pipe object.

Before a function attempts to read from a pipe it should call
PIP_getReaderNumFrames to ensure at least one full frame is available.

Example
See the example for PIP_getReaderAddr, page 6–62.

PIP_getReaderNumFrames Get the number of pipe frames available for reading
6-64

PIP_getReaderSize
C Interface

Syntax Uns PIP_getReaderSize(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* address of the PIP object */

Return Value Uns num /* number of words to be read from filled frame */

Assembly Interface

Syntax mvk pipe, a4;
mvkh pipe, a4;
ldw *+a4(PIP_READCNT), a4;
nop 4

Preconditions amr = 0

Postconditions none

Modifies none

Reentrant yes

Description
PIP_getReaderSize is a C function that returns the value of the readerSize
element of a pipe object.

As a function reads from a pipe it should use PIP_getReaderSize to
determine the number of valid words of data in the pipe frame.

Example
See the example for PIP_getReaderAddr, page 6–62.

PIP_getReaderSize Get the number of words of data in a pipe frame
API Functions 6-65

PIP_getWriterAddr
C Interface

Syntax Ptr PIP_getWriterAddr(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* address of the PIP object */

Return Value Ptr wa

Assembly Interface

Syntax mvk pipe, a4;
mvkh pipe, a4;
ldw *+a4(PIP_WRITEPTR), a4;
nop 4

Preconditions amr = 0

Postconditions none

Modifies none

Reentrant yes

Description
PIP_getWriterAddr is a C function that returns the value of the writerAddr
pointer of a pipe object.

The writerAddr pointer is normally used following a call to PIP_alloc, as the
address to begin writing to.

Example
See the example for PIP_getReaderAddr, page 6–62.

PIP_getWriterAddr Get the value of the writerAddr pointer of the pipe
6-66

PIP_getWriterNumFrames
C Interface

Syntax Uns PIP_getWriterNumFrames(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* address of the PIP object */

Return Value Uns num /* number of empty frames to be written */

Assembly Interface

Syntax mvk pipe, a4;
mvkh pipe, a4;
ldw *+a4(PIP_EMPTYBUFS), a4;
nop 4

Preconditions amr = 0

Postconditions none

Modifies none

Reentrant yes

Description
PIP_getWriterNumFrames is a C function that returns the value of the
writerNumFrames element of a pipe object.

Before a function attempts to write to a pipe it should call
PIP_getWriterNumFrames to ensure at least one empty frame is available.

Example
See the example for PIP_getReaderAddr, page 6–62.

PIP_getWriterNumFrames Get the number of pipe frames available to be written to
API Functions 6-67

PIP_getWriterSize
C Interface

Syntax Uns PIP_getWriterSize(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* address of the PIP object */

Return Value Uns num /* number of words to be written in empty frame */

Assembly Interface

Syntax mvk pipe, a4;
mvkh pipe, a4;
ldw *+a4(PIP_WRITECNT), a4;
nop 4

Preconditions amr = 0

Postconditions none

Modifies none

Reentrant yes

Description
PIP_getWriterSize is a C function that returns the value of the writerSize
element of a pipe object.

As a function writes to a pipe it can use PIP_getWriterSize to determine the
maximum number words that can be written to a pipe frame.

Example
if (PIP_getWriterNumFrames(rxPipe) > 0) {
 PIP_alloc(rxPipe);
 DSS_rxPtr = PIP_getWriterAddr(rxPipe);
 DSS_rxCnt = PIP_getWriterSize(rxPipe);
}

PIP_getWriterSize Get the number of words that can be written to a pipe frame
6-68

PIP_put
C Interface

Syntax Void PIP_put(PIP_Obj *pipe);

Parameters PIP_Obj *pipe /* pipe accepting a frame */

Return Value Void

Assembly Interface

Syntax PIP_put

Preconditions a4 = address of the pipe object
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, b0, b1, b2, b3, b4

Reentrant no

Description
PIP_put puts a frame into a pipe after you have allocated the frame with
PIP_alloc and written data to the frame. The reader can then use PIP_get to
get a frame from the pipe.

After PIP_put puts the frame into the pipe, it runs the function specified by the
notifyReader property of the PIP object. This function should notify (e.g., by
calling SWI_andn) the object that reads from this pipe that a full frame is
ready to be processed. The notifyReader function is performed as part of the
thread that called PIP_get or PIP_put. To avoid problems with recursion, the
notifyReader function should not directly call any of the PIP module functions
for the same pipe.

Note: Registers used by notifyReader functions might also be modified.

Example
See the example for PIP_alloc, page 6–57. The example for HST_getpipe,
page 6–20, also uses a pipe with host channel objects.

See Also
PIP_alloc
PIP_free
PIP_get
HST_getpipe

PIP_put Put a full frame into the pipe
API Functions 6-69

PIP_setWriterSize
C Interface

Syntax Void PIP_setWriterSize(PIP_Obj *pipe, Uns size);

Parameters PIP_Obj *pipe /* relevant pipe */
Uns size /* size to be set */

Return Value Void

Assembly Interface

Syntax mvk pipe, a4;
mvkh pipe, a4;
mvk SIZE, b4;
mvkh SIZE, b4;
stw b4, *+a4(PIP_WRITECNT);

Preconditions amr = 0

Postconditions none

Modifies none

Reentrant no

Description
PIP_setWriterSize is a C function that sets the value of the writerSize element
of a pipe object.

As a function writes to a pipe it can use PIP_setWriterSize to indicate the
number of valid words being written to a pipe frame.

Example
See the example for PIP_getReaderAddr, page 6–62.

PIP_setWriterSize Set the number of valid words written to a pipe frame
6-70

PRD Module
Functions

❏ PRD_getticks. Get the current tick count
❏ PRD_start. Arm a periodic function for one-time execution
❏ PRD_stop. Stop a periodic function from continuous execution
❏ PRD_tick. Advance tick counter, dispatch periodic functions

Description
While some applications can schedule functions based on a real-time clock,
many applications need to schedule functions based on I/O availability or
some other programmatic event.

The PRD module allows you to create PRD objects that schedule periodic
execution of program functions. The period may be driven by the CLK module
or by calls to PRD_tick whenever a specific event occurs. There can be
several PRD objects, but all are driven by the same period counter. Each
PRD object can execute its functions at different intervals based on the period
counter.

❏ To schedule functions based on a real-time clock. Set the clock
interrupt rate you want to use in the Clock Manager property sheet. Put
a check mark in the Use On-chip Clock (CLK) box for the Periodic
Function Manager. Set the frequency of execution (in number of ticks) in
the period field for the individual period object.

❏ To schedule functions based on I/O availability or some other event.
Remove the check mark from the Use On-chip Clock (CLK) property field
for the Periodic Function Manager. Set the frequency of execution (in
number of ticks) in the period field for the individual period object. Your
program should call PRD_tick to increment the tick counter.

The function executed by a PRD object is statically defined in the
Configuration Tool. PRD functions are called from the context of the PRD_swi
SWI. PRD functions can be written in C or assembly and must follow the C
calling conventions described in the compiler manual.

The PRD module uses an SWI object (called PRD_swi by default) which itself
is triggered on a periodic basis to manage execution of period objects.
Normally, this SWI object should have the highest software interrupt priority
to allow this software interrupt to be performed once per tick. This software
interrupt is automatically created (or deleted) by the Configuration Tool if one
or more (or no) PRD objects exist.

See the TMS320C6000 Code Composer Studio Tutorial for an example that
demonstrates the interaction between the PRD module and the SWI module.

PRD Module Periodic function manager
API Functions 6-71

PRD Module
When the PRD_swi object runs its function, the following actions occur:

for ("Loop through period objects") {
 if ("time for a periodic function")
 "run that periodic function";
}

PRD Manager Properties

The DSP/BIOS Periodic Function Manager allows the creation of an arbitrary
number of objects that encapsulate a function, two arguments, and a period
specifying the time between successive invocations of the function. The
period is expressed in ticks, where a tick is defined as a single invocation of
the PRD_tick operation. The time between successive invocations of
PRD_tick defines the period represented by a tick.

The following global parameters can be set for the PRD module:

❏ Object Memory. The memory segment that contains the PRD objects

❏ Use CLK Manager to drive PRD. If this field is checked, the on-chip
timer hardware (managed by CLK) is used to advance the tick count;
otherwise, the application must invoke PRD_tick on a periodic basis.

❏ Microseconds/Tick. The number of microseconds between ticks. If the
Use CLK Manager to drive PRD field above is checked, this field is
automatically set by the CLK module; otherwise, you must explicitly set
this field.

PRD Object Properties

The following instance fields can be set for each PRD object:

❏ comment. Type a comment to identify this PRD object

❏ period (ticks). The function executes after period ticks have elapsed

❏ mode. If continuous is selected the function executes every period ticks;
otherwise it executes just once after each call to PRD_tick

❏ function. The function to be executed

❏ arg0, arg1. Two 32-bit arguments passed to function; these arguments
can be either an unsigned 32-bit constant or a symbolic label

The following informational field is also displayed for each PRD object:

❏ period (ms). The number of milliseconds represented by the period
specified above
6-72

PRD Module
PRD - DSP/BIOS Plug-ins Interface

To enable PRD logging, choose Tools→DSP/BIOS→RTA Control Panel and
put a check in the appropriate box. You see indicators for PRD ticks in the
PRD ticks row of the Execution Graph, which you can open by choosing
Tools→DSP/BIOS→Execution Graph. In addition, you see a graph of activity,
including PRD function execution.

You can also enable PIP accumulators in the RTA Control Panel. Then you
can choose Tools→DSP/BIOS→Statistics View, which lets you select objects
for which you want to see statistics. If you choose a PRD object, you see
statistics about the number of ticks that elapsed during execution of the PRD
function.
API Functions 6-73

PRD_getticks
C Interface

Syntax LgUns PRD_getticks(Void);

Parameters Void

Return Value LgUns num /* current tick counter */

Assembly Interface

Syntax PRD_getticks

Preconditions b14 = pointer to the start of .bss
amr = 0

Postconditions a4 = PRD_D_tick

Modifies a4

Reentrant yes

Description
PRD_getticks returns the current period tick count as a 32-bit value.

If the periodic functions are being driven by the on-chip timer, the tick value
is the number of low resolution clock ticks that have occurred since the
program started running. When the number of ticks reaches the maximum
value that can be stored in 32 bits, the value wraps back to 0. See the CLK
Module, page 6–7, for more details.

If the periodic functions are being driven programmatically, the tick value is
the number of times PRD_tick has been called.

Example
/* ======== showTicks ======== */
Void showTicks()
 {
 LOG_printf(&trace, "ticks = %d", PRD_getticks());
 }

See Also
PRD_start
PRD_tick
CLK_gethtime
CLK_getltime
STS_delta

PRD_getticks Get the current tick count
6-74

PRD_start
C Interface

Syntax Void PRD_start(PRD_Obj *period);

Parameters PRD_Obj *prd /* periodic object *

Return Value Void

Assembly Interface

Syntax PRD_start

Preconditions a4 = address of the PRD object
amr = 0

Postconditions none

Modifies a1, b1

Reentrant no

Description
PRD_start starts a period object that has its mode property set to one-shot in
the Configuration Tool.

Unlike PRD objects that are configured as continuous, one-shot PRD objects
do not automatically continue to run. A one-shot PRD object runs its function
only after the specified number of ticks have occurred after a call to
PRD_start.

For example, you might have a function that should be executed a certain
number of periodic ticks after some condition is met.

When you use PRD_start to start a period object, the exact time that function
runs can vary by nearly one tick cycle. As this figure shows, PRD ticks occur
at a fixed rate and the call to PRD_start may occur at any point between ticks:

Due to implementation details, if a PRD function calls PRD_start for a PRD
object that is lower in the list of PRD objects, the function sometimes runs a
full tick cycle early.

PRD_start Arm a periodic function for one-time (or continuous) execution

Tick Tick Tick

Time to first tick after PRD_start is called.
API Functions 6-75

PRD_start
Example
/* ======== startClock ======== */
Void startPrd(Int periodID)
 {
 if ("condition met") {
 PRD_start(&periodID);
 }
 }

See Also
PRD_tick
PRD_getticks
6-76

PRD_stop
C Interface

Syntax Void PRD_stop(PRD_Obj *period);

Parameters PRD_Obj *prd /* periodic object */

Return Value Void

Assembly Interface

Syntax PRD_stop

Preconditions a4 = address of the PRD object
amr = 0

Postconditions none

Modifies a1, b1

Reentrant no

Description
PRD_stop stops a period object to prevent its function execution. In most
cases, PRD_stop is used to stop a period object that has its mode property
set to one-shot in the Configuration Tool.

Unlike PRD objects that are configured as continuous, one-shot PRD objects
do not automatically continue to run. A one-shot PRD object runs its function
only after the specified numbers of ticks have occurred after a call to
PRD_start.

PRD_stop is the way to stop those one-shot PRD objects once started and
before their period counters have run out.

Example
PRD_stop(&prd);

See Also
PRD_getticks
PRD_start
PRD_tick

PRD_stop Stop a period object to prevent its function execution
API Functions 6-77

PRD_tick
C Interface

Syntax Void PRD_tick(Void);

Parameters Void

Return Value Void

Assembly Interface

Syntax PRD_tick

Preconditions GIE = 0 (interrupts are disabled)
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, b0, b1, b2, b3, b4, b5, b6, b7, b8, csr

Reentrant no

Description
PRD_tick advances the period counter by one tick. Unless you are driving
PRD functions using the on-chip clock, PRD objects execute their functions
at intervals based on this counter.

For example, a hardware ISR could perform PRD_tick to notify a periodic
function when data is available for processing.

Constraints and Calling Context

❏ This API should be invoked from interrupt service routines. All the
registers that are modified by this API should be saved and restored,
before and after the API is invoked, respectively.

See Also
PRD_start
PRD_getticks

PRD_tick Advance tick counter, enable periodic functions
6-78

RTDX Module
Syntax #include <rtdx.h>

RTDX Data Declaration Macros

❏ RTDX_CreateInputChannel
❏ RTDX_CreateOutputChannel

Functions
❏ RTDX_channelBusy
❏ RTDX_disableInput
❏ RTDX_disableOutput
❏ RTDX_enableInput
❏ RTDX_enableOutput
❏ RTDX_read
❏ RTDX_readNB
❏ RTDX_sizeofInput
❏ RTDX_write

Macros
❏ RTDX_isInputEnabled
❏ RTDX_isOutputEnabled

Description
The RTDX module provides the data types and functions for:

❏ Sending data from the target to the host.
❏ Sending data from the host to the target.

Data channels are represented by globally declared structures. A data
channel may be used either for input or output, but not both. The contents of
an input or output structure are not known to the user. A channel structure
contains two states: enabled and disabled. When a channel is enabled, any
data written to the channel is sent to the host. Channels are initialized to be
disabled.

RTDX Manager Properties

The following settings refer to target configuration parameters:

❏ Enable Real-Time Data Exchange (RTDX). This box should be checked
if you want to link RTDX support into your application

❏ RTDX Buffer Memory Segment. The memory segment used for
buffering target-to-host data transfers

RTDX Module Real-Time Data Exchange manager
API Functions 6-79

RTDX Module
❏ RTDX Buffer Size (MAUs). The size of the RTDX target-to-host
message buffer, in minimum addressable units (MAUs). The default size
is 1032 to accommodate a full 1024 byte block and two control words.
HST channels that use RTDX are limited by this parameter.

For comprehensive information about RTDX, you can choose
Help→Tools→RTDXclick .
6-80

RTDX_CreateInputChannel, RTDX_CreateOutputChannel
C Interface

Syntax RTDX_CreateInputChannel(name);
RTDX_CreateOutputChannel(name);

Parameters name /* Label of the channel. */

Return Value none

Description
These macros declare and initialize RTDX data channels for input and output,
respectively.

Data channels must be declared as global objects. A data channel may be
used either for input or output, but not both. The contents of an input or output
data channel are unknown to the user.
A channel can be in one of two states: enabled or disabled. Channels are
initialized as disabled.

Channels can be enabled or disabled via a User Interface function. They can
also be enabled or disabled remotely from Code Composer or its OLE
interface.

RTDX_CreateInputChannel,
RTDX_CreateOutputChannel

Declare channel structure
API Functions 6-81

RTDX_channelBusy
C Interface

Syntax int RTDX_channelBusy(RTDX_inputChannel *pichan);

Parameters pichan /* Identifier for the input data channel */

Return Value int /* Status: 0 = Channel is not busy. non-zero = Channel is busy. */

Assembly Interface

Syntax none

Preconditions C callable

Postconditions none

Modifies none

Reentrant yes

Note: No assembly macro is provided for this API. See the TMS320C6000
Optimizing C Compiler User’s Guide for more information.

Description
RTDX_channelBusy is designed to be used in conjunction with
RTDX_readNB. The return value indicates whether the specified data
channel is currently in use or not.

See Also
RTDX_readNB

RTDX_channelBusy Return status indicating whether data channel is busy
6-82

RTDX_disableInput, RTDX_disableOutput, RTDX_enableInput, RTDX_enableOutput
C Interface

Syntax void RTDX_disableInput(RTDX_inputChannel *ichan);
void RTDX_disableOutput(RTDX_outputChannel *ochan);
void RTDX_enableInput(RTDX_inputChannel *ichan);
void RTDX_enableOutput(RTDX_outputChannel *ochan);

Parameters ochan /* Identifier for an output data channel */
ichan /* Identifier for the input data channel */

Return Value void

Assembly Interface

Syntax none

Preconditions C callable

Postconditions none

Modifies none

Reentrant yes

Note: No assembly macro is provided for this API. See the TMS320C6000
Optimizing C Compiler User’s Guide for more information.

Description
A call to an enable function causes the specified data channel to be enabled.
Likewise, a call to a disable function causes the specified channel to be
disabled.

See Also
RTDX_read
RTDX_write

RTDX_disableInput, RTDX_disableOutput,
RTDX_enableInput, RTDX_enableOutput

Enable or disable a data channel
API Functions 6-83

RTDX_read
C Interface

Syntax int RTDX_read(RTDX_inputChannel *ichan, void *buffer, int bsize);

Parameters ichan /* Identifier for the input data channel */
buffer /* A pointer to the buffer that receives the data */
bsize /* The size of the buffer in address units */

Return Value > 0 /* The number of address units of data actually
supplied in buffer. */

0 /* Failure. Cannot post read request because the
target buffer is full. */

RTDX_READ_ERROR /* Failure. Channel currently busy or not enabled. */

Assembly Interface

Syntax none

Preconditions C callable

Postconditions none

Modifies none

Reentrant yes

Note: No assembly macro is provided for this API. See the TMS320C6000
Optimizing C Compiler User’s Guide for more information.

Description
RTDX_read causes a read request to be posted to the specified input data
channel. If the channel is enabled, RTDX_read busy waits until the data has
arrived. On return from the function, the data has been copied into the
specified buffer and the number of address units of data actually supplied is
returned. The function returns RTDX_READ_ERROR immediately if the
channel is currently busy reading or is not enabled.

When RTDX_read is used, the target application notifies the RTDX Host
Library that it is ready to receive data and then waits for the RTDX Host
Library to write data into the target buffer. When the data is received, the
target application continues execution.

RTDX_read Read from an input channel
6-84

RTDX_read
When the function RTDX_readNB is used, the target application notifies the
RTDX Host Library that it is ready to receive data but the target application
does not wait. Execution of the target application continues immediately. Use
the RTDX_channelBusy and RTDX_sizeofInput functions to determine when
the RTDX Host Library has written data into the target buffer.

See Also
RTDX_channelBusy
RTDX_readNB
RTDX_sizeofInput
API Functions 6-85

RTDX_readNB
C Interface

Syntax int RTDX_readNB(RTDX_inputChannel *ichan, void *buffer, int bsize);

Parameters ichan /* Identifier for the input data channel */
buffer /* A pointer to the buffer that receives the data */
bsize /* The size of the buffer in address units */

Return Value RTDX_OK /* Success. */
0 (zero) /* Failure. The target buffer is full. */
RTDX_READ_ERROR /* Channel is currently busy reading. */

Assembly Interface

Syntax none

Preconditions C callable

Postconditions none

Modifies none

Reentrant yes

Note: No assembly macro is provided for this API. See the TMS320C6000
Optimizing C Compiler User’s Guide for more information.

Description
RTDX_readNB is a nonblocking form of the function RTDX_read.
RTDX_readNB issues a read request to be posted to the specified input data
channel and immediately returns. If the channel is not enabled or the channel
is currently busy reading, the function returns RTDX_READ_ERROR. The
function returns 0 if it cannot post the read request due to lack of space in the
RTDX target buffer.

When the function RTDX_readNB is used, the target application notifies the
RTDX Host Library that it is ready to receive data but the target application
does not wait. Execution of the target application continues immediately. Use
the RTDX_channelBusy and RTDX_sizeofInput functions to determine when
the RTDX Host Library has written data into the target buffer.

When RTDX_read is used, the target application notifies the RTDX Host
Library that it is ready to receive data and then waits for the RTDX Host
Library to write data into the target buffer. When the data is received, the
target application continues execution.

See Also
RTDX_channelBusy
RTDX_read
RTDX_sizeofInput

RTDX_readNB Read from input channel without blocking
6-86

RTDX_sizeofInput
C Interface

Syntax int RTDX_sizeofInput(RTDX_inputChannel *pichan);

Parameters pichan /* Identifier for the input data channel */

Return Value int /* Number of sizeof() units of data actually supplied in buffer */

Assembly Interface

Syntax none

Preconditions C callable

Postconditions none

Modifies none

Reentrant yes

Note: No assembly macro is provided for this API. See the TMS320C6000
Optimizing C Compiler User’s Guide for more information.

Description
RTDX_sizeofInput is designed to be used in conjunction with RTDX_readNB
after a read operation has completed. The function returns the number of
sizeof() units actually read from the specified data channel.

See Also
RTDX_readNB

RTDX_sizeofInput Return the number of bytes read from a data channel
API Functions 6-87

RTDX_write
C Interface

Syntax int RTDX_write(RTDX_outputChannel *ochan, void *buffer, int bsize);

Parameters ochan /* Identifier for the output data channel */
buffer /* A pointer to the buffer containing the data */
bsize /* The size of the buffer in address units */

Return Value int /* Status: non-zero = Success. 0 = Failure. */

Assembly Interface

Syntax none

Preconditions C callable

Postconditions none

Modifies none

Reentrant yes

Note: No assembly macro is provided for this API. See the TMS320C6000
Optimizing C Compiler User’s Guide for more information.

Description
RTDX_write causes the specified data to be written to the specified output
data channel, provided that channel is enabled. On return from the function,
the data has been copied out of the specified user buffer and into the RTDX
target buffer. If the channel is not enabled, the write operation is suppressed.
If the RTDX target buffer is full, Failure is returned.

See Also
RTDX_read

RTDX_write Write to an output channel
6-88

RTDX_isInputEnabled, RTDX_isOutputEnabled
C Interface

Syntax #include<rtdx.h>
RTDX_isInputEnabled(c);
RTDX_isOutputEnabled(c);

Parameter c /* Identifier for an input/output channel. */

Return Value 0 /* Not enabled. */
non-zero /* Enabled. */

Description
The RTDX_isInputEnabled and RTDX_isOutputEnabled macros return the
enabled status of a data channel.

RTDX_isInputEnabled,
RTDX_isOutputEnabled

Return status of the data channel
API Functions 6-89

STS Module
Syntax #include <sts.h>

Functions struct STS_Obj {
 LgInt num; /* count */
 LgInt acc; /* total value */
 LgInt max; /* maximum value */
}

❏ STS_add. Update statistics using provided value
❏ STS_delta. Update statistics using difference between provided value

and setpoint
❏ STS_reset. Reset values stored in STS object
❏ STS_set. Save a setpoint value

Note: STS objects should not be shared across threads. Therefore,
STS_add, STS_delta, STS_reset, and STS_set are not reentrant.

Description
The STS module manages objects called statistics accumulators. Each STS
object accumulates the following statistical information about an arbitrary
32-bit wide data series:

❏ Count. The number of values in an application-supplied data series
❏ Total. The sum of the individual data values in this series
❏ Maximum. The largest value already encountered in this series

Using the count and total, the Statistics View plug-in calculates the average
on the host.

Statistics are accumulated in 32-bit variables on the target and in 64-bit
variables on the host. When the host polls the target for real-time statistics, it
resets the variables on the target. This minimizes space requirements on the
target while allowing you to keep statistics for long test runs.

Default STS Tracing
In the RTA Control Panel, you can enable statistics tracing for the following
modules by right-clicking on them. You can also set the HWI object properties
to perform various STS operations on registers, addresses, or pointers.

STS Module Statistics accumulator manager
6-90

STS Module
Your program does not need to include any calls to STS functions in order to
gather these statistics. The units for the statistics values are controlled by the
Statistics Units property of the manager for the module being traced:

Custom STS Objects
You can create custom STS objects using the Configuration Tool. The
STS_add operation updates the count, total, and maximum using the value
you provide. The STS_set operation sets a previous value. The STS_delta
operation accumulates the difference between the value you pass and the
previous value and updates the previous value to the value you pass.

By using custom STS objects and the STS operations, you can do the
following:

❏ Count the number of occurrences of an event. You can pass a value
of 0 to STS_add. The count statistic tracks how many times your program
calls STS_add for this STS object.

❏ Track the maximum and average values for a variable in your
program. For example, suppose you pass amplitude values to STS_add.
The count tracks how many times your program calls STS_add for this
STS object. The total is the sum of all the amplitudes. The maximum is
the largest value. The Statistics View calculates the average amplitude.

❏ Track the minimum value for a variable in your program. Negate the
values you are monitoring and pass them to STS_add. The maximum is
the negative of the minimum value.

❏ Time events or monitor incremental differences in a value. For
example, suppose you want to measure the time between hardware
interrupts. You would call STS_set when the program begins running and
STS_delta each time the interrupt routine runs, passing the result of
CLK_gethtime each time. STS_delta subtracts the previous value from
the current value. The count tracks how many times the interrupt routine
was performed. The maximum is the largest number of clock counts
between interrupt routines. The Statistics View also calculates the
average number of clock counts.

Module Units

HWI Gather statistics on monitored values within HWIs

PIP Number of frames read from or written to data pipe (count only)

PRD Number of ticks elapsed from start to end of execution

SWI Instruction cycles elapsed from time posted to completion
API Functions 6-91

STS Module
❏ Monitor differences between actual values and desired values. For
example, suppose you want to make sure a value stays within a certain
range. Subtract the midpoint of the range from the value and pass the
absolute value of the result to STS_add. The count tracks how many
times your program calls STS_add for this STS object. The total is the
sum of all deviations from the middle of the range. The maximum is the
largest deviation. The Statistics View calculates the average deviation.

You can further customize the statistics data by setting the STS object
properties to apply a printf format to the Total, Max, and Average fields in the
Statistics View window and choosing a formula to apply to the data values on
the host.

Statistics Data Gathering by the Statistics View Plug-in
The statistics manager allows the creation of any number of statistics objects,
which in turn can be used by the application to accumulate simple statistics
about a time series. This information includes the 32-bit maximum value, the
last 32-bit value passed to the object, the number of samples (up to 232 - 1
samples), and the 32-bit sum of all samples.

These statistics are accumulated on the target in real time until the host reads
and clears these values on the target. The host, however, continues to
accumulate the values read from the target in a host buffer which is displayed
by the Statistics View real-time analysis tool. Provided that the host reads and
clears the target statistics objects faster than the target can overflow the
32-bit wide values being accumulated, no information loss occurs.

Using the Configuration Tool, you can select a Host Operation for an STS
object. The statistics are filtered on the host using the operation and variables
you specify. This figure shows the effects of the (A x X + B) / C operation.

STS Manager Properties

The following global parameter can be set for the STS module:

❏ Object Memory. The memory segment that contains the STS objects

Target Host

Read
&

clear

Accumulate Filter = (A*x + B) / C Display

Count

(A x total + B) / C

(A x max + B) / C

Count

Total

Maximum

Count

Total

0 Max

32

Previous

Count

Total

Max

Average(A x total + B) /
(C x count)

64
6-92

STS Module
STS Object Properties

The following fields can be set for a statistics object:

❏ comment. Type a comment to identify this STS object

❏ prev. The initial 32-bit history value to use in this object

❏ format. The printf-style format string used to display the data for this
object

❏ Host Operation. The expression evaluated (by the host) on the data for
this object before it is displayed by the Statistics View real-time analysis
tool. The operation can be:

■ A x X
■ A x X + B
■ (A x X + B) / C

❏ A, B, C. The integer parameters used by the expression specified by the
Host Operation field above

STS - Statistics View Interface

You can view statistics in real time with the Statistics View plug-in by choosing
the Tools→DSP/BIOS→Statistics View menu item.

To pause the display, right-click on this window and choose Pause from the
pop-up menu. To reset the values to 0, right-click on this window and choose
Clear from the pop-up menu.
API Functions 6-93

STS Module
You can also control how
frequently the host polls
the target for statistics in-
formation. Right-click on
the RTA Control Panel
and choose the Property
Page to set the refresh
rate. If you set the refresh
rate to 0, the host does
not poll the target unless
you right-click on the Sta-
tistics View window and
choose Refresh Window
from the pop-up menu.

See the TMS320C6000 Code Composer Studio Tutorial for more information
on how to monitor statistics with the Statistics View plug-in.
6-94

STS_add
C Interface

Syntax Void STS_add(STS_Obj *sts, LgInt value);

Parameters STS_Obj *sts; /* statistics object handle */
LgInt value; /* new value to update statistics object */

Return Value Void

Assembly Interface

Syntax STS_add

Preconditions a4 = STS object handle
b4 = 32-bit sample
amr = 0

Postconditions none

Modifies a1, a3, b1, b2, b3

Reentrant no

Description
STS_add updates a custom STS object’s Total, Count, and Max fields using
the data value you provide.

For example, suppose your program passes 32-bit amplitude values to
STS_add. The Count field tracks how many times your program calls
STS_add for this STS object. The Total field tracks the total of all the
amplitudes. The Max field holds the largest value passed to this point. The
Statistics View plug-in calculates the average amplitude.

You can count the occurrences of an event by passing a dummy value (such
as 0) to STS_add and watching the Count field.

You can view the statistics values with the Statistics View plug-in by enabling
statistics in the Tools→DSP/BIOS→RTA Control Panel window and choosing
your custom STS object in the Tools→DSP/BIOS→Statistics View window.

See Also
STS_delta
STS_reset
STS_set
TRC_disable
TRC_enable

STS_add Update statistics using the provided value
API Functions 6-95

STS_delta
C Interface

Syntax Void STS_delta(STS_Obj *sts, LgInt value);

Parameters STS_Obj *sts; /* statistics object handle */
LgInt value; /* new value to update statistics object */

Return Value Void

Assembly Interface

Syntax STS_delta

Preconditions a4 = STS object handle
b4 = 32-bit sample
amr = 0

Postconditions none

Modifies a1, a3, b1, b2, b3, b4, b5

Reentrant no

Description
Each STS object contains a previous value that can be initialized with the
Configuration Tool or with a call to STS_set. A call to STS_delta subtracts the
previous value from the value it is passed and then invokes STS_add with the
result to update the statistics. STS_delta also updates the previous value with
the value it is passed.

STS_delta can be used in conjunction with STS_set to monitor the difference
between a variable and a desired value or to benchmark program
performance.

STS_set(&sts, CLK_gethtime());
 "processing to be benchmarked"
STS_delta(&sts, CLK_gethtime());

You can benchmark your code by using paired calls to STS_set and
STS_delta that pass the value provided by CLK_gethtime.

STS_set(&sts, CLK_getltime());
 "processing to be benchmarked"
STS_delta(&sts, CLK_getltime());

STS_delta Update statistics using the difference between the provided value and
the setpoint
6-96

STS_delta
Constraints and Calling Context

❏ Before the first call to STS_delta is made, the previous value of the STS
object should be initialized either with a call to STS_set or by setting the
prev property of the STS object using the Configuration Tool.

Example
STS_set(&sts, targetValue);
 "processing"
STS_delta(&sts, currentValue);
 "processing"
STS_delta(&sts, currentValue);
 "processing"
STS_delta(&sts, currentValue);

See Also
STS_add
STS_reset
STS_set
CLK_gethtime
CLK_getltime
PRD_getticks
TRC_disable
TRC_enable
API Functions 6-97

STS_reset
C Interface

Syntax Void STS_reset(STS_Obj *sts);

Parameters STS_Obj *sts; /* statistics object handle */

Return Value Void

Assembly Interface

Syntax STS_reset

Preconditions a4 = STS object handle
amr = 0

Postconditions none

Modifies a1

Reentrant no

Description
STS_reset resets the values stored in an STS object. The Count and Total
fields are set to 0 and the Max field is set to the largest negative number.
STS_reset does not modify the value set by STS_set.

After the Statistics View plug-in polls statistics data on the target, it performs
STS_reset internally. This keeps the 32-bit total and count values from
wrapping back to 0 on the target. The host accumulates these values as
64-bit numbers to allow a much larger range than can be stored on the target.

Example
STS_reset(&sts);
STS_set(&sts, value);

See Also
STS_add
STS_delta
STS_set
TRC_disable
TRC_enable

STS_reset Reset the values stored in an STS object
6-98

STS_set
C Interface

Syntax Void STS_set(STS_Obj *sts, LgInt value);

Parameters STS_Obj *sts; /* statistics object handle */
LgInt value; /* new value to update statistics object */

Return Value Void

Assembly Interface

Syntax STS_set

Preconditions a4 = STS object handle
b4 = new 32-bit value to store as previous
amr = 0

Postconditions none

Modifies none

Reentrant no

Description
STS_set can be used in conjunction with STS_delta to monitor the difference
between a variable and a desired value or to benchmark program
performance. STS_set saves a value as the previous value in an STS object.
STS_delta subtracts this saved value from the value it is passed and invokes
STS_add with the result.

STS_delta also updates the previous value with the value it was passed.
Depending on what you are measuring, you may need to use STS_set to
reset the previous value before the next call to STS_delta.

You can also set a previous value for an STS object in the Configuration Tool.
STS_set changes this value.

See STS_delta for details on how to use the value you set with STS_set.

Example
This example gathers performance information for the processing between
STS_set and STS_delta.

STS_set(&sts, CLK_getltime());
 "processing to be benchmarked"
STS_delta(&sts, CLK_getltime());

STS_set Save a value for STS_delta
API Functions 6-99

STS_set
This example gathers information about a value’s deviation from the desired
value.

STS_set(&sts, targetValue);
 "processing"
STS_delta(&sts, currentValue);
 "processing"
STS_delta(&sts, currentValue);
 "processing"
STS_delta(&sts, currentValue);

This example gathers information about a value’s difference from a base
value.

STS_set(&sts, baseValue);
 "processing"
STS_delta(&sts, currentValue);
STS_set(&sts, baseValue);
 "processing"
STS_delta(&sts, currentValue);
STS_set(&sts, baseValue);

See Also
STS_add
STS_delta
STS_reset
TRC_disable
TRC_enable
6-100

SWI Module
Functions

❏ SWI_andn. Clear bits from SWI’s mailbox; post if becomes 0
❏ SWI_dec. Decrement SWI’s mailbox value; post if becomes 0
❏ SWI_disable. Disable software interrupts
❏ SWI_enable. Enable software interrupts
❏ SWI_getmbox. Return a SWI’s mailbox value
❏ SWI_getpri. Return a SWI’s priority mask
❏ SWI_inc. Increment SWI's mailbox value
❏ SWI_or. Or mask with value contained in SWI's mailbox field
❏ SWI_post. Post a software interrupts
❏ SWI_raisepri. Raise a SWI’s priority
❏ SWI_restorepri. Restore a SWI’s priority
❏ SWI_self. Return address of currently executing SWI object

Description
The SWI module manages software interrupt service routines, which are
patterned after HWI hardware interrupt service routines.

DSP/BIOS manages three distinct levels of execution threads: background
idle functions, hardware interrupt service routines, and software interrupts. A
software interrupt is an object that encapsulates a function to be executed
and a priority. Software interrupts are prioritized, preempt background tasks,
and are preempted by hardware interrupt service routines.

Note: SWI functions are called after the processor register state has been
saved. SWI functions can be written in C or assembly and must follow the
C calling conventions described in the compiler manual.

Note: The processor registers that are saved before SWI functions are
called include a0-a9 and b0-b9. These registers are the parent-preserved
registers mentioned in the “TMS320C6000 Optimizing C Compiler User’s
Guide”. The child-preserved registers, a10-a15 and b10-b15, are not
saved.

Each software interrupt has a priority level. A software interrupt of one priority
preempts any lower priority software interrupt currently executing.

SWI Module Software interrupt manager
API Functions 6-101

SWI Module
A target program uses an API call to post a SWI object. This causes the SWI
module to schedule execution of the software interrupt’s function. When a
software interrupt is posted by an API call, the SWI object’s function is not
executed immediately. Instead, the function is scheduled for execution.
DSP/BIOS uses the software interrupt’s priority to determine whether to
preempt the thread currently running. Note that if a software interrupt is
posted several times before it begins running, because HWIs and higher
priority interrupts are running, the software interrupt only runs one time.

Software interrupts can be scheduled for execution with a call to SWI_post or
a number of other SWI functions. Each SWI object has a 32-bit mailbox which
is used either to determine whether to post the software interrupt or as a value
that can be evaluated within the software interrupt’s function. SWI_andn and
SWI_dec post the software interrupt if the mailbox value transitions to 0.
SWI_or and SWI_inc also modify the mailbox value. (SWI_or sets bits, and
SWI_andn clears bits.)

The SWI_disable and SWI_enable operations allow you to post several
software interrupts and enable them all for execution at the same time. The
software interrupt priorities then determine which software interrupt runs first.

All software interrupts run to completion; you cannot suspend a software
interrupt while it waits for something—e.g., a device—to be ready. So, you
can use the mailbox to tell the software interrupt when all the devices and
other conditions it relies on are ready. Within a software interrupt processing
function, a call to SWI_getmbox returns the value of the mailbox when the
software interrupt started running. The mailbox is automatically reset to its
original value when a software interrupt runs.

A software interrupt preempts any currently running software interrupt with a
lower priority. Software interrupts can have up to 15 priority levels. If two
software interrupts with the same priority level have been posted, the
software interrupt that was posted first runs first. Hardware interrupts in turn
preempt any currently running software interrupt, allowing the target to
respond quickly to hardware peripherals. For information about setting
software interrupt priorities, you can choose Help→Help Topics in the
Configuration Tool, click the Index tab, and type priority.

Treat mailbox
as bitmask

Treat mailbox
as counter

Always post

Post if
becomes 0

SWI_or

SWI_andn SWI_dec

SWI_inc

Does not modify
mailbox

SWI_post
6-102

SWI Module
Threads—including hardware interrupts, software interrupts, and background
threads—are all executed using the same stack. A context switch is
performed when a new thread is added to the top of the stack. The SWI
module automatically saves the processor’s registers before running a
higher-priority software interrupt that preempts a lower-priority software
interrupt. After the higher-priority software interrupt finishes running, the
registers are restored and the lower-priority software interrupt can run if no
other higher-priority software interrupts have been posted.

Note: If you create a SWI function that modifies the addressing mode
register (AMR), that function must save and restore the AMR register at the
beginning and end of the function, respectively. Also note that a SWI
function that requires a different cache control mode must set the cache
control bits in the control status register (CSR) when it starts executing, and
must restore the previous cache mode before returning. Changing and
restoring the cache mode in an SWI function is your responsibility.

See the TMS320C6000 Code Composer Studio Tutorial for more information
on how to post software interrupts and scheduling issues for the Software
Interrupt manager.

SWI Manager Properties

The following global parameters can be set for the SWI module:

❏ Object Memory. The memory segment that contains the SWI objects

❏ Statistics Units. The units used to display the elapsed instruction cycles
or time from when a software interrupt is posted to its completion within
the Statistics View plug-in. Raw causes the STS Data to display the
number of instruction cycles if the CLK module’s Use high resolution time
for internal timings parameter is set to True (the default). If this CLK
parameter is set to False and the Statistics Units is set to Raw, SWI
statistics are displayed in units of timer interrupt periods. You can also
choose milliseconds or microseconds.

SWI Object Properties

The following fields can be set for a SWI object:

❏ comment. Type a comment to identify this SWI object

❏ priority. This field shows the numeric priority level for this SWI object.
Priority levels range from 1 to 15, with 15 being the highest priority.
Instead of typing a number in this field, you change the relative priority
levels of SWI objects.

❏ function. The function to execute
API Functions 6-103

SWI Module
❏ mailbox. The initial value of the 32-bit word used to determine if this
software interrupt should be posted

❏ arg0, arg1. Two 32-bit arguments passed to function; these arguments
can be either an unsigned 32-bit constant or a symbolic label

SWI - DSP/BIOS Plug-ins Interface

To enable SWI logging, choose Tools→DSP/BIOS→RTA Control Panel and
put a check in the appropriate box. To view a graph of activity that includes
SWI function execution, choose Tools→DSP/BIOS→Execution Graph.

You can also enable SWI accumulators in the RTA Control Panel. Then you
can choose Tools→DSP/BIOS→Statistics View, which lets you select objects
for which you want to see statistics. If you choose an SWI object, you see
statistics about the number of instruction cycles elapsed from the time the
SWI was posted to the SWI function’s completion.
6-104

SWI_andn
C Interface

Syntax Void SWI_andn(SWI_Obj *swi, Uns mask);

Parameters SWI_Obj *swi /* SWI object */
Uns mask /* value to be ANDed */

Return Value Void

Assembly Interface

Syntax SWI_andn

Preconditions a4 = address of the SWI object
b4 = mask
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a9, b0, b1, b2, b3, b4, b5, b6, b7, csr

Reentrant yes

Description
SWI_andn is used to conditionally post a software interrupt. SWI_andn clears
the bits specified by a mask from SWI’s internal mailbox. If SWI’s mailbox
becomes 0, SWI_andn posts the software interrupt. The bitwise logical
operation performed is:

mailbox = mailbox AND (NOT MASK)

For example, if there are multiple conditions that must all be met before a
software interrupt can run, you should use a different bit in the mailbox for
each condition. When a condition is met, clear the bit for that condition.

You specify a software interrupt’s initial mailbox value in the Configuration
Tool. The mailbox value is automatically reset when the software interrupt
executes.

SWI_andn Clear bits from SWI’s mailbox and post if mailbox becomes 0
API Functions 6-105

SWI_andn
The following figure shows an example of how a mailbox with an initial value
of 3 can be cleared by two calls to SWI_andn with values of 2 and 1. The
entire mailbox could also be cleared with a single call to SWI_andn with a
value of 3.

Constraints and Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt service
routine, interrupts must be enabled.

Example
/* ======== ioReady ======== */

 Void ioReady(unsigned int mask)
 {
 SWI_andn(©SWI, mask); /* clear bits of "ready mask" */
 }

See Also
SWI_dec
SWI_getmbox
SWI_inc
SWI_or
SWI_post
SWI_self
6-106

SWI_dec
C Interface

Syntax Void SWI_dec(SWI_Obj *swi);

Parameters SWI_Obj *swi /* SWI object */

Return Value Void

Assembly Interface

Syntax SWI_dec

Preconditions a4 = address of the SWI object
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a9, b0, b1, b2, b3, b4, b5, b6, b7, csr

Reentrant yes

Description
SWI_dec is used to conditionally post a software interrupt. SWI_dec
decrements the value in SWI’s mailbox by 1. If SWI’s mailbox value becomes
0, SWI_dec posts the software interrupt. You can increment a mailbox value
by using SWI_inc, which always posts the software interrupt.

For example, you would use SWI_dec if you wanted to post a software
interrupt after a number of occurrences of an event.

You specify a software interrupt’s initial mailbox value in the Configuration
Tool. The mailbox value is automatically reset when the software interrupt
executes.

Constraints and Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt service
routine, interrupts must be enabled.

SWI_dec Decrement SWI’s mailbox value and post if mailbox becomes 0
API Functions 6-107

SWI_dec
Example
/* ======== strikeOrBall ======== */

 Void strikeOrBall(unsigned int call)
 {
 if (call == 1) {
 SWI_dec(&strikeoutSwi); /* initial mailbox value is 3 */
 }
 if (call == 2) {
 SWI_dec(&walkSwi); /* initial mailbox value is 4 */
 }
 }

See Also
SWI_andn
SWI_getmbox
SWI_inc
SWI_or
SWI_post
SWI_self
6-108

SWI_disable
C Interface

Syntax key = SWI_disable(Void);

Parameters Void

Return Value Arg key; /* key for use with SWI_enable() */

Assembly Interface

Syntax SWI_disable

Preconditions b14 = address of the start of .bss
GIE = 1 (interrupts must be enabled)
amr = 0

Postconditions none

Modifies a4

Reentrant yes

Description
SWI_disable and SWI_enable control SWI software interrupt processing.
SWI_disable disables all other SWI functions from running until SWI_enable
is called. Hardware interrupts can still run.

SWI_disable and SWI_enable allow you to ensure that statements that must
be performed together during critical processing are not interrupted. In the
following example, the critical section is not preempted by any software
interrupts.

SWI_disable();
 ‘critical section‘
SWI_enable();

You can also use SWI_disable and SWI_enable to post several software
interrupts and allow them to be performed in priority order. See the example
that follows.

SWI_disable calls can be nested—the number of nesting levels is stored
internally. Software interrupt handling is not reenabled until SWI_enable has
been called as many times as SWI_disable.

SWI_disable Disable software interrupts
API Functions 6-109

SWI_disable
Constraints and Calling Context

❏ The calls to HWI_enter and HWI_exit required in any hardware ISRs that
schedules software interrupts automatically disable and reenable
software interrupt handling. You should not call SWI_disable or
SWI_enable within a hardware ISR.

Example
/* ======== postEm ======== */

 Void postEm()
 {
 SWI_disable();

 SWI_post(&encoderSwi);
 SWI_andn(©Swi, mask);
 SWI_dec(&strikeoutSwi);

 SWI_enable();
 }

See Also
HWI_disable
HWI_enable
SWI_enable
6-110

SWI_enable
C Interface

Syntax Void SWI_enable(key);

Parameters Arg key; /* key returned by SWI_disable() */

Return Value Void

Assembly Interface

Syntax SWI_enable

Preconditions SWI_D_lock>= 0 (SWI execution is disabled; i.e., locked)
GIE = 1 (interrupts must be enabled)
amr = 0

Postconditions none

Modifies a1, a4, b0, b1, b3, b4, csr

Reentrant yes

Description
SWI_disable and SWI_enable control SWI software interrupt processing.
SWI_disable disables all other software interrupt functions from running until
SWI_enable is called. Hardware interrupts can still run. See the SWI_disable
section for details.

SWI_disable calls can be nested—the number of nesting levels is stored
internally. Software interrupt handling is not be reenabled until SWI_enable
has been called as many times as SWI_disable.

Constraints and Calling Context

❏ The calls to HWI_enter and HWI_exit required in any hardware ISRs that
schedules software interrupts automatically disable and reenable
software interrupt handling. You should not call SWI_disable or
SWI_enable within a hardware ISR.

See Also
HWI_disable
HWI_enable
SWI_disable

SWI_enable Enable software interrupts
API Functions 6-111

SWI_getmbox
C Interface

Syntax Uns SWI_getmbox(Void);

Parameters Void

Return Value Uns num /* mailbox value */

Assembly Interface

Syntax SWI_getmbox

Preconditions b14 = address of the start of .bss
amr = 0

Postconditions al4 = current software interrupt’s mailbox value

Modifies a4

Reentrant yes

Description
SWI_getmbox returns the value that SWI’s mailbox had when the software
interrupt started running. DSP/BIOS saves the mailbox value internally so
that SWI_getmbox can access it at any point within a SWI object’s function.
DSP/BIOS then automatically resets the mailbox to its initial value (defined
with the Configuration Tool) so that other threads can continue to use the
software interrupt’s mailbox.

SWI_getmbox should only be called within a function run by a SWI object.

Example
This example could be used within a SWI object’s function to use the value of
the mailbox within the function. For example, if you use SWI_or or SWI_inc
to post a software interrupt, different mailbox values may require different
processing.

/* get current SWI mailbox value */
swicount = SWI_getmbox();

See Also
SWI_andn
SWI_dec
SWI_inc
SWI_or
SWI_post
SWI_self

SWI_getmbox Return a SWI’s mailbox value
6-112

SWI_getpri
C Interface

Syntax key = SWI_getpri(SWI_Obj *swi);

Parameters SWI_Obj *swi /* SWI object */

Return Value Uns key /* Priority mask of swi */

Assembly Interface

Syntax SWI_getpri

Preconditions a4 = address of the SWI object
b14 = address of start of .bss

Postconditions a4 = SWI object’s priority mask

Modifies a4

Reentrant yes

Description
SWI_getpri returns the priority mask of the SWI passed in as the argument.

Example
/* Get the priority key of swi1 */
key = SWI_getpri(&swi1);
/* Get the priorities of swi1 and swi3 */
key = SWI_getpri(&swi1) | SWI_getpri(&swi3);

See Also
SWI_raisepri
SWI_restorepri

SWI_getpri Return a SWI’s priority mask
API Functions 6-113

SWI_inc
C Interface

Syntax Void SWI_inc(SWI_Obj *swi);

Parameters SWI_Obj *swi /* SWI object */

Return Value Void

Assembly Interface

Syntax SWI_inc

Preconditions a4 = address of the SWI object
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a9, b0, b1, b2, b3, b4, b5, b6, b7, csr

Reentrant no

Description
SWI_inc increments the value in SWI’s mailbox by 1 and posts the software
interrupt regardless of the resulting mailbox value. You can decrement a
mailbox value by using SWI_dec, which only posts the software interrupt if
the mailbox value is 0.

If a software interrupt is posted several times before it has a chance to begin
executing, because HWIs and higher priority software interrupts are running,
the software interrupt only runs one time. If this situation occurs, you can use
SWI_inc to post the software interrupt. Within the software interrupt’s
function, you could then use SWI_getmbox to find out how many times this
software interrupt has been posted since the last time it was executed.

You specify a software interrupt’s initial mailbox value in the Configuration
Tool. The mailbox value is automatically reset when the software interrupt
executes. To get the mailbox value, use SWI_getmbox.

Constraints and Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt service
routine, interrupts must be enabled.

SWI_inc Increment SWI’s mailbox value
6-114

SWI_inc
Example
/* ======== AddAndProcess ======== */

 Void AddAndProcess(int count)
 {
 int i;

 for (i = 1; I <= count; ++i)
 SWI_inc(&MySwi);
 SWI_post(&MySwi);
 }

See Also
SWI_andn
SWI_dec
SWI_getmbox
SWI_or
SWI_post
SWI_self
API Functions 6-115

SWI_or
C Interface

Syntax Void SWI_or(SWI_Obj *swi, Uns mask);

Parameters SWI_Obj *swi /* SWI object */
Uns mask /* value to be ORed */

Return Value Void

Assembly Interface

Syntax SWI_or

Preconditions a4 = address of the SWI object
b4 = mask
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a9, b0, b1, b2, b3, b4, b5, b6, b7, csr

Reentrant no

Description
SWI_or is used to post a software interrupt. SWI_or sets the bits specified by
a mask in SWI’s mailbox. SWI_or posts the software interrupt regardless of
the resulting mailbox value. The bitwise logical operation performed on the
mailbox value is:

mailbox = mailbox OR mask

You specify a software interrupt’s initial mailbox value in the Configuration
Tool. The mailbox value is automatically reset when the software interrupt
executes. To get the mailbox value, use SWI_getmbox.

For example, you might use SWI_or to post a software interrupt if any of three
events should cause a software interrupt to be executed, but you want the
software interrupt’s function to be able to tell which event occurred. Each
event would correspond to a different bit in the mailbox.

Constraints and Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt service
routine, interrupts must be enabled.

See Also
SWI_andn
SWI_dec
SWI_getmbox
SWI_inc
SWI_post
SWI_self

SWI_or OR mask with the value contained in SWI’s mailbox field
6-116

SWI_post
C Interface

Syntax Void SWI_post(SWI_Obj *swi);

Parameters SWI_Handle swi; /* software interrupt object handle */

Return Value Void

Assembly Interface

Syntax SWI_post

Preconditions a4 = address of the SWI object
amr = 0

Postconditions none

Modifies a0, a1, a2, a3, a4, a5, a6, a7, a9, b0, b1, b2, b3, b4, b5, b6, b7, csr

Reentrant no

Description
SWI_post is used to post a software interrupt regardless of the mailbox value.
No change is made to SWI’s mailbox value.

To have a PRD object post a SWI object’s function, you can set _SWI_post
as the function property of a PRD object and the name of the software
interrupt object you want to post its function as the arg0 property.

Constraints and Calling Context

❏ If this macro (API) is invoked outside the context of an interrupt service
routine, interrupts must be enabled.

See Also
SWI_andn
SWI_dec
SWI_getmbox
SWI_inc
SWI_or
SWI_self

SWI_post Post a software interrupt
API Functions 6-117

SWI_raisepri
C Interface

Syntax key = SWI_raisepri(Uns mask);

Parameters Uns mask /* mask of desired priority level */

Return value Uns key /* key for use with SWI_restorepri */

Assembly Interface

Syntax SWI_raisepri

Preconditions b14 = address of start of .bss
a4 = priority mask of desired priority level

Postconditions a4 = key for use with SWI_restorepri

Modifies a1, a2, a4

Reentrant yes

Description
SWI_raisepri is used to raise the priority of the currently running SWI to the
priority mask passed in as the argument.

SWI_raisepri can be used in conjunction with SWI_restorepri to provide a
mutual exclusion mechanism without disabling software interrupts.

SWI_raisepri should be called before the shared resource is accessed, and
SWI_restorepri should be called after the access to the shared resource.

A call to SWI_raisepri not followed by a SWI_restorepri will keep the SWI’s
priority for the rest of the processing at the raised level. A SWI_post of the
SWI will post the SWI at its original priority level.

SWI_raisepri will never lower the current SWI priority.

Example
/* raise priority to the priority of swi_1 */
key = SWI_raisepri(SWI_getpri(&swi_1));
--- access shared resource ---
SWI_restore(key);

See Also
SWI_getpri
SWI_restorepri

SWI_raisepri Raise a SWI’s priority
6-118

SWI_restorepri
C Interface

Syntax Void SWI_restorepri(Uns key);

Parameters Uns key /* key to restore original priority level */

Return Value Void

Assembly Interface

Syntax SWI_restorepri

Preconditions b14 = address of start of .bss
a4 = return value from the SWI_raisepri call

Postconditions none

Modifies a1, a2, a4, b0,csr

Reentrant yes

Description
SWI_restorepri restores the priority to the SWI’s priority prior to the
SWI_raisepri call returning the key. SWI_restorepri can be used in
conjunction with SWI_raisepri to provide a mutual exclusion mechanism
without disabling all software interrupts.

SWI_raisepri should be called right before the shared resource is referenced,
and SWI_restorepri should be called after the reference to the shared
resource.

Example
/* raise priority to the priority of swi_1 */
key = SWI_raisepri(SWI_getpri(&swi_1));
--- access shared resource ---
SWI_restore(key);

See Also
SWI_getpri
SWI_raisepri

SWI_restorepri Restore a SWI’s priority
API Functions 6-119

SWI_self
C Interface

Syntax SWI_Obj *SWI_self(Void);

Parameters Void

Return Value SWI_Obj *swi /* currently executing SWI */

Assembly Interface

Syntax SWI_self

Preconditions b14 = address of the start of .bss
amr = 0

Postconditions a4 = address of the current SWI object

Modifies a4, b4

Reentrant yes

Description
SWI_self returns the address of the currently executing software interrupt.

Within a hardware ISR, SWI_self returns the address of the software interrupt
highest in the processing stack—i.e., the software interrupt that yielded to the
hardware interrupt. If no software interrupt is running or yielding, SWI_self
returns NULL.

Example
You can use SWI_self if you want a software interrupt to repost itself:

SWI_post(SWI_self());

See Also
SWI_andn
SWI_dec
SWI_getmbox
SWI_inc
SWI_or
SWI_post

SWI_self Return address of currently executing SWI object
6-120

TRC Module
Functions

❏ TRC_disable. Disable trace class(es)
❏ TRC_enable. Enable trace type(s)
❏ TRC_query. Query trace class(es)

Description
The TRC module manages a set of trace control bits which control the
real-time capture of program information through event logs and statistics
accumulators. For greater efficiency, the target does not store log or statistics
information unless tracing is enabled.

The following events and statistics can be traced. The constants defined in
trc.h and trc.h62 are shown in the left column:

TRC Module Trace manager

Constant Tracing Enabled/Disabled Default

TRC_LOGCLK Log timer interrupts off

TRC_LOGPRD Log periodic ticks and start of periodic functions off

TRC_LOGSWI Log events when a software interrupt is posted and completes off

TRC_STSHWI Gather statistics on monitored values within HWIs off

TRC_STSPIP Count number of frames read from or written to data pipe off

TRC_STSPRD Gather statistics on number of ticks elapsed during execution off

TRC_STSSWI Gather statistics on length of SWI execution off

TRC_USER0
 and
TRC_USER1

Your program can use these bits to enable or disable sets of explicit instru-
mentation actions. You can use TRC_query to check the settings of these
bits and either perform or omit instrumentation calls based on the result.
DSP/BIOS does not use or set these bits.

off

TRC_GBLHOST

This bit must be set in order for any implicit instrumentation to be performed.
Simultaneously starts or stops gathering of all enabled types of tracing. This
can be important if you are trying to correlate events of different types. This
bit is usually set at run time on the host in the RTA Control Panel.

off

TRC_GBLTARG
This bit must also be set in order for any implicit instrumentation to be per-
formed. This bit can only be set by the target program and is enabled by
default.

on
API Functions 6-121

TRC Module
All trace constants except TRC_GBLTARG are switched off initially. To enable
tracing you can use calls to TRC_enable or the Tools→DSP/BIOS→RTA
Control Panel, which uses the TRC module internally. You do not need to
enable tracing for messages written with LOG_printf or LOG_event and
statistics added with STS_add or STS_delta.

Your program can call the TRC_enable and TRC_disable operations to
explicitly start and stop event logging or statistics accumulation in response
to conditions encountered during real-time execution. This enables you to
preserve the specific log or statistics information you need to see.

TRC - DSP/BIOS Plug-ins Interface

You can choose Tools→DSP/BIOS→RTA
Control Panel to open a window that allows
you to control run-time tracing.

Once you have enabled tracing, you can use
Tools→DSP/BIOS→Execution Graph and
Tools→DSP/BIOS→Message Log to see log
information, and Tools→DSP/BIOS→Statistics
View to see statistical information.

You can also control how
frequently the host polls the
target for trace information.
Right-click on the RTA Control
Panel and choose the Property
Page to set the refresh rate. If
you set the refresh rate to 0,
the host does not poll the
target unless you right-click on
the RTA Control Panel and
choose Refresh Window from
the pop-up menu.

See the TMS320C6000 Code Composer Studio Tutorial for more information
on how to enable tracing in the RTA Control Panel.
6-122

TRC_disable
C Interface

Syntax Void TRC_disable(Uns mask);

Parameters Uns mask; /* trace type constant mask */

Return Value Void

Assembly Interface

Syntax TRC_disable mask

Inputs mask (see the TRC Module for a list of constants to use in the mask)

Preconditions constant - mask for trace types (TRC_LOGSWI, TRC_LOGPRD, ...)
b14 = address of the start of .bss
amr = 0

Postconditions none

Modifies a2, a4

Reentrant no

Description
TRC_disable disables tracing of one or more trace types. Trace types are
specified with a 32-bit mask. The following C code would disable tracing of
statistics for software interrupts and periodic functions:

TRC_disable(TRC_LOGSWI | TRC_LOGPRD);

Internally, DSP/BIOS uses a bitwise AND NOT operation to disable multiple
trace types.

The full list of constants you can use to disable tracing is included in the
description of the TRC module.

For example, you might want to use TRC_disable with a circular log and
disable tracing when an unwanted condition occurs. This allows test
equipment to retrieve the log events that happened just before this condition
started.

See Also
TRC_enable
TRC_query
LOG_printf
LOG_event
STS_add
STS_delta

TRC_disable Disable trace class(es)
API Functions 6-123

TRC_enable
C Interface

Syntax Void TRC_enable(Uns mask);

Parameters Uns mask; /* trace type constant mask */

Return Value Void

Assembly Interface

Syntax TRC_enable mask

Inputs mask (see the TRC Module for a list of constants to use in the mask)

Preconditions constant - mask for trace types (TRC_LOGSWI, TRC_LOGPRD, ...)
b14 = address of the start of .bss
amr = 0

Postconditions none

Modifies a2, a4

Reentrant no

Description
TRC_enable enables tracing of one or more trace types. Trace types are
specified with a 32-bit mask. The following C code would enable tracing of
statistics for software interrupts and periodic functions:

TRC_enable(TRC_STSSWI | TRC_STSPRD);

Internally, DSP/BIOS uses a bitwise OR operation to enable multiple trace
types.

The full list of constants you can use to enable tracing is included in the
description of the TRC module.

For example, you might want to use TRC_enable with a fixed log to enable
tracing when a specific condition occurs. This allows test equipment to
retrieve the log events that happened just after this condition occurred.

See Also
TRC_disable
TRC_query
LOG_printf
LOG_event
STS_add
STS_delta

TRC_enable Enable trace type(s)
6-124

TRC_query
C Interface

Syntax result = TRC_query(Uns mask);

Parameters Uns mask; /* trace type constant mask */

Return Value Int result /* indicates whether all trace types enabled */

Assembly Interface

Syntax TRC_query mask

Inputs mask (see the TRC Module for a list of constants to use in the mask)

Preconditions constant - mask for trace types
b14 = address of the start of .bss
amr = 0

Postconditions a4 == 0 if all queried trace types enabled
a4 != 0 if any of the queried trace types are disabled

Modifies a2, a4

Reentrant yes

Description
TRC_query determines whether particular trace types are enabled.
TRC_query returns 0 if all trace types in the mask are enabled. If any trace
types in the mask are disabled, TRC_query returns a value with a bit set for
each trace type in the mask that is disabled.

Trace types are specified with a 32-bit mask. The full list of constants you can
use is included in the description of the TRC module.

For example, the following C code returns 0 if statistics tracing for the PRD
class is enabled:

result = TRC_query(TRC_STSPRD);

The following C code returns 0 if both logging and statistics tracing for the
SWI class are enabled:

result = TRC_query(TRC_LOGSWI | TRC_STSSWI);

Note that TRC_query does not return 0 unless the bits you are querying and
the TRC_GBLHOST and TRC_GBLTARG bits are set. TRC_query returns
non-zero if either TRC_GBLHOST or TRC_GBLTARG are disabled. This is
because no tracing is done unless these bits are set.

TRC_query Query trace class(es)
API Functions 6-125

TRC_query
For example, if the TRC_GBLHOST, TRC_GBLTARG, and TRC_LOGSWI
bits are set, the following C code returns the results shown:

result = TRC_query(TRC_LOGSWI) /* returns 0 */
result = TRC_query(TRC_LOGPRD) /* returns non-zero */

However, if only the TRC_GBLHOST and TRC_LOGSWI bits are set, the
same C code returns the results shown:

result = TRC_query(TRC_LOGSWI) /* returns non-zero */
result = TRC_query(TRC_LOGPRD) /* returns non-zero */

See Also
TRC_enable
TRC_disable
6-126

Chapter 7

Utility Programs

This chapter provides documentation for utilities that can be used to examine
various files from the MS-DOS command line. These programs are provided
with DSP/BIOS in the bin subdirectory.

7-1

cdbprint utility
cdbprint utility

Syntax cdbprint [-a] [-l] [-w] cdb-file

Description
This utility reads a .cdb file created with the Configuration Tool and creates a
list of all the objects and parameters. This tool can be used to compare two
configuration files or to simply review the values of a single configuration file.

The -a flag causes cdbprint to list all objects and fields including those that
are normally not visible (i.e., unconfigured objects and hidden fields). Without
this flag, cdbprint ignores unconfigured objects or modules as well as any
fields that are hidden.

The -l flag causes cdbprint to list the internal parameter names instead of the
labels used by the Configuration Tool. Without this flag, cdbprint lists the
labels used by the Configuration Tool.

The -w flag causes cdbprint to list only those parameters that can also be
modified in the Configuration Tool. Without this flag, cdbprint lists both
read-only and read-write parameters.

Example
The following sequence of commands can be used to compare a
configuration file called test62.cdb to the default configuration provided with
DSP/BIOS:

cdbprint ../../include/bios62.cdb > original.txt
cdbprint test62.cdb > test62.txt
diff original.txt test62.txt

cdbprint Prints a listing of all parameters defined in a configuration file
7-2

nmti utility
nmti utility

Syntax nmti [file1 file2 ...]

Description
nmti prints the symbol table (name list) for each TI executable file listed on
the command line. Executable files must be stored as COFF (Common
Object File Format) files.

If no files are listed, the file a.out is searched. The output is sent to stdout.
Note that both linked (executable) and unlinked (object) files can be
examined with nmti.

Each symbol name is preceded by its value (blanks if undefined) and one of
the following letters:

A absolute symbol

B bss segment symbol

D data segment symbol

E external symbol

S section name symbol

T text segment symbol

U undefined symbol

The type letter is upper case if the symbol is external, and lower case if it is
local.

nmti Display symbols and values in a TI COFF file
Utility Programs 7-3

sectti utility
sectti utility

Syntax sectti [-a] [file1 file2 ...]

Description
sectti displays location and size information for all the sections in a TI
executable file. Executable files must be stored as COFF (Common Object
File Format) files.

All values are in hexadecimal. If no file names are given, a.out is assumed.
Note that both linked (executable) and unlinked (object) files can be
examined with sectti.

Using the -a flag causes sectti to display all program sections, including
sections used only on the target by the DSP/BIOS plugins. If you omit the -a
flag, sectti displays only the program sections that are loaded on the target.

sectti Display information about sections in TI COFF files
7-4

vers utility
vers utility

Syntax vers [file1 file2 ...]

Description
The vers utility displays the version number of DSP/BIOS files installed in
your system. For example, the following command checks the version
number of the bios.a62 file in the lib sub-directory.

..\bin\vers bios.a62
bios.a62:
 *** library
 *** "date and time"
 *** bios-c05
 *** "version number"

The actual output from vers may contain additional lines of information. To
identify your software version number to Technical Support, use the version
number shown.

Note that both libraries and source files can be examined with vers.

vers Display version information for a DSP/BIOS source or library file
Utility Programs 7-5

7-6

This is a draft version printed from file: BIOS_UGIX.fm on 5/4/99
Index
A
application stack

measuring 3-20
application stack size 4-22
assembly language

calling C functions from 6-6
assertions 4-27
average 6-90

B
B14 register 2-11
background loop 6-35
background processes 4-2
background threads

suggested use 4-3
boards

setting 6-16

C
.c files 2-6
C functions

calling from assembly language 6-6
.cdb files 2-7
cdbprint utility 7-2
channels 5-2, 5-9, 6-17
CLK module 6-7

trace types 6-121
CLK_countspms() 6-10
CLK_F_isr function 1-9
CLK_gethtime 6-11
CLK_getltime 6-13
CLK_getprd 6-15
clock 4-23

See also CLK module
clock functions 4-2

suggested use 4-3
clocks

real time vs. data-driven 4-25, 6-71

.cmd files 2-7
compiling 2-10
components 1-3
configuration files 2-7

creating 2-3
custom templates 2-3
printing 7-2
See Also custom template files

Configuration Tool 1-4, 2-3
constants

trace enabling 3-12
conventions 1-8
count 6-90
counts per millisecond 6-10
CPU load

tracking 3-9
creating configuration files 2-3
creating custom template files 2-3
custom template files

creating 2-3
See Also configuration files

D
data access 5-2
data analysis 3-9
data channels 6-17
data notification functions 4-2
data page register 2-11
data pipes 5-2
data transfer 5-10, 6-53
data types 1-10
design philosophy 1-2
development cycle 2-2
disable

HWI 6-26, 6-34
LOG 6-41
SWI 6-109
TRC 6-123

disabling
hardware interrupts 4-18, 6-26, 6-34
software interrupts 4-18

DSP/BIOS 1-3
Index-1

 Index
DSP/BIOS Configuration Tool 1-4
files generated 2-5

DSP/BIOS plugins 1-5
files used 2-7

E
enable

HWI 6-27
LOG 6-42
SWI 6-111
TRC 6-124

enabling
hardware interrupts 6-27

endian mode 6-16
Event Log Manager 3-5
explicit instrumentation 3-4

F
field testing 3-23
file access 5-2
file names 2-6
file streaming 1-7
files

generated by Configuration Tool 2-5
used by DSP/BIOS plugins 2-7

floating point 2-3
frequencies

typical for HWI vs. SWI
function names 1-9
functions

list of 6-3

G
global settings 6-16
gmake 2-10

H
.h files 1-8, 2-6
hardware interrupts 4-2, 6-22

counting 3-20
disabling 6-26, 6-34
enabling 6-27
statistics 3-21
typical frequencies

header files 2-6
including 1-8

high-resolution time 6-11
host channels 5-2, 5-9
host data interface 6-17
host operation 3-23
HST module 5-9, 6-17

for instrumentation 3-4
HST_getpipe 6-20
HWI interrupts. See hardware interrupts
HWI module 6-22

implicit instrumentation 3-20
statistics units 6-91
trace types 6-121

HWI_disable 6-26, 6-34
preemption diagram 4-18
vs. instruction 6-6

HWI_enable 6-27
preemption diagram 4-18

HWI_enter 6-28
HWI_exit 6-31
HWI_INT14 4-2
HWI_unused 1-9

I
I/O 5-2

performance 5-10
IDL module 6-35
IDL_F_busy function 1-9
IDL_run 6-37
idle loop 4-5
IDRAM0 memory segment 1-11, 6-52
IDRAM1 memory segment 1-11, 6-52
implicit instrumentation 3-14
input 5-2
instrumentation 3-1

explicit vs. implicit 3-4
hardware interrupts 3-21
implicit 3-14
software vs. hardware 3-2
System Log 3-14

interrupt latency 3-23
interrupt service routines 6-22
IPRAM memory segment 1-11, 6-52
ISRs 6-22

L
linker command files 2-7
linking 2-10
LNK_dataPump object 5-10
LNK_F_dataPump 1-9
LOG module 6-38

explicit instrumentation 3-5
Index-2

Index
implicit instrumentation 3-14
overview 3-5

LOG_disable 6-41
LOG_enable 6-42
LOG_error 6-43
LOG_event 6-45
LOG_printf 6-47
LOG_reset 6-50
LOG_system object 4-29
logged events 6-121
logs

objects 3-14
performance 3-3
sequence numbers 4-28

low-resolution time 6-13

M
mailbox

clear bits 6-105
decrement 6-107
get value 6-112
increment 6-114
set bits 6-116

makefiles 2-10
maximum 6-90
MEM module 6-51
memory

segment names 1-11
modifies registers 6-2
modules

list of 6-2

N
naming conventions 1-8, 6-2
nmti utility 7-3
notify function 5-10
notifyReader function 5-3

use of HWI_enter 6-23
notifyWriter function 5-3

O
object names 1-9
object structures 1-10
on-chip timer 6-7
operations

HWI objects 3-23
list of 6-3
names 1-9

optimization 1-2

instrumentation 3-3
output 5-2
overview 1-3

P
parameters

listing 7-2
vs. registers 6-6

performance 1-2
I/O 5-10
instrumentation 3-3
real-time statistics 3-9

performance monitoring 1-7
period register 6-15
periodic functions 4-2

suggested use 4-3
PIP module 6-53

statistics units 6-91
PIP_alloc 6-57
PIP_free 6-59
PIP_get 6-60
PIP_getReaderAddr 6-62
PIP_getReaderNumFrames 6-64
PIP_getReaderSize 6-65
PIP_getWriterAddr 6-66
PIP_getWriterNumFrames 6-67
PIP_getWriterSize 6-68
PIP_put 6-69
PIP_setWriterSize 6-70
pipe object 6-20
pipes 5-2, 6-53
postconditions 6-2, 6-6
posting software interrupts 6-102, 6-117
PRD module 6-71

implicit instrumentation 4-31
statistics units 6-91
trace types 6-121

PRD register 6-9
PRD_F_tick function 1-9
PRD_getticks 6-74
PRD_start 6-75
PRD_stop 6-77
PRD_tick 6-78
preconditions 6-2, 6-6
preemption 4-18
printing configuration file 7-2
priorities 6-102

setting for software interrupts 4-7
processes 4-2
program analysis 3-1
program tracing 1-7
Index-3

 Index
R
read data 6-54
real-time analysis 3-2
Real-Time Data Exchange

See RTDX
real-time deadline 4-30
registers

B14 2-11
modified 6-6
monitoring in HWI 3-21
vs. parameters 6-6

reserved function names 1-9
RTA_F_dispatch function 1-9
RTDX 3-24
RTDX_bytesRead 6-87
RTDX_channelBusy 6-82
RTDX_CreateInputChannel 6-81
RTDX_CreateOutputChannel 6-81
RTDX_disableInput 6-83
RTDX_disableOutput 6-83
RTDX_enableInput 6-83
RTDX_enableOutput 6-83
RTDX_isInputEnabled 6-89
RTDX_isOutputEnabled 6-89
RTDX_read 6-84
RTDX_readNB 6-86
RTDX_write 6-88

S
SBSRAM memory segment 1-11, 6-52
SDRAM0 memory segment 1-11, 6-52
SDRAM1 memory segment 1-11, 6-52
sections

in executable file 7-4
sectti utility 7-4
software interrupts 4-2, 6-101

setting priorities 4-7
suggested use 4-3

software interrupts. See interrupts
source files 2-6
stack, execution 6-103
standardization 1-2
statistics

gathering 4-31
performance 3-3
units 4-31, 6-91, 6-121

Statistics Manager 3-7
std.h header file 1-10
STS manager 6-79, 6-90
STS module

explicit instrumentation 3-7
implicit instrumentation 4-31

operations on registers 3-22
overview 3-7

STS_add 3-9, 6-95
uses of 3-22

STS_delta 3-9, 6-96
uses of 3-22

STS_reset 6-98
STS_set 3-9, 6-99
SWI module 6-101

implicit instrumentation 4-31
statistics units 6-91
trace types 6-121

SWI_andn 6-105
SWI_dec 6-107
SWI_disable 6-109

preemption diagram 4-18
SWI_enable 6-111

preemption diagram 4-18
SWI_getmbox 6-112
SWI_getpri 6-113
SWI_inc 6-114
SWI_or 6-116
SWI_post 6-117
SWI_raisepri 6-118
SWI_restorepri 6-119
SWI_self 6-120
symbol table 7-3
System Log 3-14

viewing graph 4-27

T
target board 6-16
TDDR register 6-9
threads

choosing types 4-3
viewing execution graph 4-27
viewing states 4-27

timer 6-7
total 6-90
trace state 3-12

for System Log 4-29
performance 3-3

trace types 6-121
TRC module 6-121

control of implicit instrumentation 3-12
explicit instrumentation 3-11

TRC_disable 6-123
constants 3-12

TRC_enable 6-124
constants 3-12

TRC_query 6-125
Index-4

Index
U
underscores in function names 6-6
units for statistics 6-91
USER traces 3-12, 6-121
user-defined logs 3-5
utilities

cdbprint 7-2
nmti 7-3
sectti 7-4
vers 7-5

V
variables

watching 3-21
vers utility 7-5
version information 7-5

W
write data 6-54

Y
yielding 4-18
Index-5

Index-6

	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks

	Contents
	About DSP/BIOS
	1.1 DSP/BIOS Features and Benefits
	1.2 DSP/BIOS Components
	1.2.1 DSP/BIOS Real-Time Library and API
	1.2.2 The DSP/BIOS Configuration Tool
	1.2.3 The DSP/BIOS plugins

	1.3 Naming Conventions
	1.3.1 Module Header Names
	1.3.2 Object Names
	1.3.3 Operation Names
	1.3.4 Data Type Names
	1.3.5 Memory Segment Names

	1.4 For More Information

	Program Generation
	2.1 Development Cycle
	2.2 Using the Configuration Tool
	2.2.1 Creating a New Configuration
	2.2.2 Creating a Custom Template
	2.2.3 Setting Global Properties for a Module
	2.2.4 Creating an Object and Specifying its Proper...
	2.2.5 Files Generated by the Configuration Tool

	2.3 Files Used to Create DSP/BIOS Programs
	2.3.1 Files Used by the DSP/BIOS Plugins

	2.4 Compiling and Linking Programs
	2.4.1 Building with a Code Composer Project
	2.4.1.1 Building with Multiple Linker Command File...

	2.4.2 Makefiles
	2.4.3 Referencing Precreated DSP/BIOS Objects
	2.4.3.1 Referencing Precreated Objects in the Smal...
	2.4.3.2 Referencing Precreated Objects in the Larg...

	2.5 DSP/BIOS Startup Sequence

	Instrumentation
	3.1 Real-Time Analysis
	3.2 Software vs. Hardware Instrumentation
	3.3 Instrumentation Performance Issues
	3.4 Instrumentation APIs
	3.4.1 Explicit vs. Implicit Instrumentation
	3.4.2 Message Log Manager (LOG Module)
	3.4.3 Statistics Accumulator Manager (STS Module)
	3.4.3.1 Statistics About Varying Values
	3.4.3.2 Statistics About Time Periods
	3.4.3.3 Statistics About Value Differences

	3.4.4 Trace Control Manager (TRC Module)
	3.4.4.1 Control of Explicit Instrumentation
	3.4.4.2 Control of Implicit Instrumentation

	3.5 Implicit DSP/BIOS Instrumentation
	3.5.1 The Execution Graph
	3.5.2 The CPU Load
	3.5.3 CPU Load Accuracy
	3.5.4 Hardware Interrupt Count and Maximum Stack D...
	3.5.5 Monitoring Variables
	3.5.6 Interrupt Latency

	3.6 Instrumentation for Field Testing
	3.7 Real-Time Data Exchange
	3.7.1 RTDX Applications
	3.7.2 RTDX Usage
	3.7.3 RTDX Flow of Data
	3.7.3.1 Target to Host Data Flow
	3.7.3.2 Host to Target Data Flow
	3.7.3.3 RTDX Target Library User Interface
	3.7.3.4 RTDX Host OLE Interface

	3.7.4 RTDX Modes
	3.7.5 Special Considerations When Writing Assembly...
	3.7.6 Target Buffer Size
	3.7.7 Sending Data From Target to Host or Host to ...

	Program Execution
	4.1 Program Components
	4.2 Choosing Which Types of Threads to Use
	4.3 The Idle Loop
	4.4 Software Interrupts
	4.4.1 Setting Software Interrupt Priorities in the...

	Notes
	4.4.2 Execution of Software Interrupts
	4.4.3 Using an SWI Object’s Mailbox

	4.5 Hardware Interrupts
	4.5.1 Writing an HWI Routine
	4.5.2 Nesting Interrupts

	4.6 Preemption and Yielding
	4.6.1 Preventing Preemption by a Higher-Priority T...
	4.6.2 Saving Registers During Software Interrupt P...
	4.6.3 Setting the Cache Mode During a Hardware Int...
	4.6.4 Software Interrupt Priorities and Applicatio...

	4.7 Clock Manager (CLK Module)
	4.7.1 High- and Low-Resolution Clocks

	4.8 Periodic Function Manager (PRD) and the System...
	4.8.1 Invoking Functions for PRD Objects

	4.9 Using the Execution Graph to View Program Exec...
	4.9.1 States in the Execution Graph Window
	4.9.2 Threads in the Execution Graph Window
	4.9.3 Sequence Numbers in the Execution Graph Wind...
	4.9.4 RTA Control Panel Settings for Use with the ...

	4.10 SWI and PRD Accumulators: Real-Time Deadline ...

	Input/Output
	5.1 Objects Used for I/O
	5.2 Data Pipe Manager (PIP Module)
	5.2.1 Writing Data to a Pipe
	5.2.2 Reading Data from a Pipe
	5.2.3 Using a Pipe's Notify Functions
	5.2.4 Calling Order for PIP APIs
	5.2.4.1 Avoiding Recursion Problems

	5.3 Host Input/Output Manager (HST Module)
	5.3.1 Transfer of HST Data to the Host

	5.4 I/O Performance Issues

	API Functions
	6.1 DSP/BIOS Modules
	6.2 Naming Conventions
	6.3 List of Operations
	6.4 Assembly Language Interface
	CLK Module
	CLK_countspms
	CLK_gethtime
	CLK_getltime
	CLK_getprd

	Global Settings
	HST Module
	HST_getpipe

	HWI Module
	HWI_disable
	HWI_enable
	HWI_enter
	HWI_exit
	HWI_restore

	IDL Module
	IDL_run

	LOG Module
	LOG_disable
	LOG_enable
	LOG_error, LOG_message
	LOG_event
	LOG_printf
	LOG_reset

	MEM Module
	PIP Module
	PIP_alloc
	PIP_free
	PIP_get
	PIP_getReaderAddr
	PIP_getReaderNumFrames
	PIP_getReaderSize
	PIP_getWriterAddr
	PIP_getWriterNumFrames
	PIP_getWriterSize
	PIP_put
	PIP_setWriterSize

	PRD Module
	PRD_getticks
	PRD_start
	PRD_stop
	PRD_tick

	RTDX Module
	RTDX_CreateInputChannel, RTDX_CreateOutputChannel
	RTDX_channelBusy
	RTDX_disableInput, RTDX_disableOutput, RTDX_enable...
	RTDX_read
	RTDX_readNB
	RTDX_sizeofInput
	RTDX_write
	RTDX_isInputEnabled, RTDX_isOutputEnabled

	STS Module
	STS_add
	STS_delta
	STS_reset
	STS_set

	SWI Module
	SWI_andn
	SWI_dec
	SWI_disable
	SWI_enable
	SWI_getmbox
	SWI_getpri
	SWI_inc
	SWI_or
	SWI_post
	SWI_raisepri
	SWI_restorepri
	SWI_self

	TRC Module
	TRC_disable
	TRC_enable
	TRC_query

	Utility Programs
	cdbprint utility
	cdbprint

	nmti utility
	nmti

	sectti utility
	sectti

	vers utility
	vers

	Index

