
TMS320C6000 Peripherals
Reference Guide

Literature Number: SPRU190C
April 1999

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1999, Texas Instruments Incorporated

iiiContents

Preface

Read This First

About This Manual

This reference guide describes the on-chip peripherals of the TMS320C6000 dig-
ital signal processors (DSPs). Main topics are the program memory, the data
memory, the direct memory access (DMA) controller, the enhanced DMA control-
ler (EDMA), the host-port interface (HPI), the exansion bus, the external memory
interface (EMIF), the boot configuration, the multichannel buffered serial ports
(McBSPs), the timers, the interrupt selector and external interrupts, and the pow-
er-down modes.

The TMS320C62x (’C62x) and the TMS320C67x (’C67x) generations of digi-
tal signal processors make up the TMS320C6000 platform of the TMS320
family of digital signal processors. The ’C62x devices are fixed-point DSPs,
and the ’C67x devices are floating-point DSPs. The TMS320C6000 (’C6000)
is the first DSP to use the VelociTI architecture, a high-performance, ad-
vanced VLIW (very long instruction word) architecture. The VelocTI archite-
chure makes the ’C6x an excellent choice for multichannel, multifunction, and
high data rate applications.

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, names are shown in a special

font . Here is a sample program listing:

LDW .D1 *A0,A1
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A1,A4,A5

� Throughout this book MSB means most significant bit, and LSB means
least significant bit.

iv

Registers are described throughout this book in register diagrams. Each dia-
gram shows a rectangle divided into fields that represent the fields of the regis-
ter. Each field is labeled with its name inside, its beginning and ending bit num-
bers above, and its properties below. A legend explains the notation used for
the properties. For example:

31 25 24 23 22 21 20 18 17 16

FIELDA FIELDB FIELDC R, +1 RW, +0

RW, +0 RC, +x R, +0 R, +1 HRW, +0

Note: R = Readable by the CPU, W = Writeable by the CPU, +x = Value undefined after reset, +0 = Value is 0 after reset,
+1 = Value is 1 after reset, C = Clearable by the CPU, H = reads/writes performed by the host

Related Documentation From Texas Instruments

The following documents describe the TMS320C6x family and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number.

TMS320C6000 Technical Brief (literature number SPRU197) gives an
introduction to the ’C6000 platform of digital signal processors, develop-
ment tools, and third-party support.

TMS320C6000 CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the ’C6000 CPU architecture, instruction
set, pipeline, and interrupts for these digital signal processors.

TMS320C6000 Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the TMS320C6000
DSPs and includes application program examples.

TMS320C6000 Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the ’C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the ’C6000 generation of devices. The
assembly optimizer helps you optimize your assembly code.

TMS320C6x C Source Debugger User’s Guide (literature number
SPRU188) tells you how to invoke the ’C6x simulator and emulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger, including command entry, code
execution, data management, breakpoints, profiling, and analysis.

Notational Conventions / Related Documentation From Texas Instruments

v

TMS320C6201, TMS320C6201B Digital Signal Processors Data Sheet
(literature number SPRS051) describes the features of the
TMS320C6201 and TMS320C6201B fixed-point DSPs and provides
pinouts, electrical specifications, and timings for the devices.

TMS320C6202 Digital Signal Processor Data Sheet (literature number
SPRS072) describes the features of the TMS320C6202 fixed-point DSP
and provides pinouts, electrical specifications, and timings for the de-
vice.

TMS320C6701 Digital Signal Processor Data Sheet (literature number
SPRS067) describes the features of the TMS320C6701 floating-point
DSP and provides pinouts, electrical specifications, and timings for the
device.

TMS320C6211 Digital Signal Processor Data Sheet (literature number
SPRS073) describes the features of the TMS320C6211 fixed-point DSP
and provides pinouts, electrical specifications, and timings for the de-
vice.

TMS320C6711 Digital Signal Processor Data Sheet (literature number
SPRS088) describes the features of the TMS320C6711 fixed-point DSP
and provides pinouts, electrical specifications, and timings for the de-
vice.

Trademarks

320 Hotline On-line, VelociTI, and XDS510 are trademarks of Texas
Instruments Incorporated.

PC is a trademark of International Business Machines Corporation.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

SPI is a trademark of Motorola, Inc.

ST-BUS is a trademark of Mitel.

Windows and Windows NT are registered trademarks of Microsoft Corporation.

Read This First

Related Documents / Trademarks

vi

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline Email: dsph@ti.com
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32
Email: epic@ti.com

Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: dsph@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

If You Need Assistance

Contents

vii

Contents

1 Introduction 1�1.
TMS320C6201 and TMS320C6701 DSPs and lists their key features.

1.1 TMS320 Family Overview 1�2.
1.1.1 History of TMS320 DSPs 1�2.
1.1.2 Typical Applications for the TMS320 Family 1�2.

1.2 Overview of the TMS320C6000 Platform of DSPs 1�4.
1.3 Features and Options of the TMS320C6000 Devices 1�5.
1.4 Overview of TMS320C6000 Memory 1�6.
1.5 Overview of TMS320C6000 Peripherals 1�8.

2 TMS320C6201/C6701 Program and Data Memory 2 �1.
Describes the program and data memory system for the TMS320C6201/C6701. This includes
program memory organization,cache modes, DMA and peripheral bus operation.

2.1 Program Memory Controller 2�2.
2.2 Internal Program Memory 2�3.

2.2.1 Internal Program Memory Modes 2�3.
2.2.2 Cache Architecture 2�4.

2.3 DMA Controller Access to Program Memory 2�6.
2.4 Data Memory Controller 2�7.
2.5 Data Memory Access 2�8.
2.6 Internal Data Memory Organization 2�9.

2.6.1 TMS320C6201 Revision 2 2�9.
2.6.2 TMS320C6201 Revision 3 2�11.
2.6.3 TMS320C6701 2�13.
2.6.4 Data Alignment 2�15.
2.6.5 Dual CPU Accesses to Internal Memory 2�15.
2.6.6 DMA Accesses to Internal Memory 2�18.
2.6.7 Data Endianness 2�18.

2.7 Peripheral Bus 2�21.
2.7.1 Byte and Halfword Access 2�21.
2.7.2 CPU Wait States 2�22.
2.7.3 Arbitration Between the CPU and the DMA Controller 2�22.

Contents

viii

3 TMS320C6202 Program and Data Memory 3 �1.
Describes the 6202 program memory controller.

3.1 TMS320C6202 Program Memory Controller 3�2.
3.2 Memory Mapped Operation 3�4.
3.3 Cache Operation 3�5.
3.4 Bootload Operation 3�6.
3.5 TMS320C6202 Data Memory Controller 3�7.

4 TMS320C6211/C6711
Two-Level Internal Memory 4 �1.
Describes the program and data memory for the TMS320C6211/C6711.

4.1 Overview 4�2.
4.2 Internal Memory Control Registers 4�5.
4.3 L1P Description 4�6.
4.4 L1D Description 4�9.
4.5 L2 Description 4�13.

4.5.1 L2 Interfaces 4�15.
4.5.2 L2 Operation 4�15.
4.5.3 L2 EDMA Service 4�21.
4.5.4 L2 Invalidation 4�21.

5 Direct Memory Access (DMA) Controller 5 �1.
Describes the direct memory access controller operation.

5.1 Overview 5�2.
5.2 DMA Registers 5�5.

5.2.1 DMA Channel Control Registers 5�8.
5.3 Memory Map 5�12.
5.4 Initiating a Block Transfer 5�13.

5.4.1 DMA Autoinitialization 5�13.
5.5 Transfer Counting 5�16.
5.6 Synchronization: Triggering DMA Transfers 5�17.

5.6.1 Latching of DMA Channel Event Flags 5�18.
5.6.2 Automated Event Clearing 5�19.
5.6.3 Synchronization Control 5�19.

5.7 Address Generation 5�22.
5.7.1 Basic Address Adjustment 5�22.
5.7.2 Address Adjustment With the Global Index Registers 5�23.
5.7.3 Element Size, Alignment, and Endianness 5�23.
5.7.4 Using a Frame Index to Reload Addresses 5�25.
5.7.5 Transferring a Large Single Block 5�25.
5.7.6 Sorting 5�26.

5.8 Split-Channel Operation 5�28.
5.8.1 Split DMA Operation 5�28.
5.8.2 Split Address Generation 5�29.

Contents

ixContents

5.9 Resource Arbitration and Priority Configuration 5�30.
5.9.1 DMA Auxiliary Control Register and Priority Between Channels 5�30.
5.9.2 Switching Channels 5�32.

5.10 DMA Channel Condition Determination 5�33.
5.10.1 Definition of Channel Conditions 5�34.

5.11 DMA Controller Structure 5�35.
5.11.1 Read and Write Buses 5�35.
5.11.2 DMA FIFO 5�36.
5.11.3 Internal Holding Registers 5�37.
5.11.4 DMA Performance 5�38.

5.12 DMA Action Complete Pins 5�38.
5.13 Emulation 5�38.

6 EDMA Controller 6�1.
This chapter describes the new enhanced DMA for the TMS320C6211/6711.

6.1 Overview 6�2.
6.2 EDMA Terminology 6�5.
6.3 Event Processing and EDMA Control Registers 6�6.
6.4 Event Encoder 6�8.
6.5 Parameter RAM (PaRAM) 6�9.

6.5.1 EDMA Transfer Parameter Entry 6�12.
6.6 EDMA Transfer Parameters 6�13.

6.6.1 Options Parameter 6�13.
6.6.2 SRC/DST Address 6�14.
6.6.3 Element Count 6�15.
6.6.4 Frame/Array Count 6�15.
6.6.5 Element/(Frame/Array) Index 6�15.
6.6.6 Element Count Reload 6�15.
6.6.7 Link Address 6�16.

6.7 Initiating an EDMA Transfer 6�17.
6.7.1 Synchronization of EDMA Transfers 6�17.

6.8 Types of EDMA Transfers 6�20.
6.8.1 Non-2Dimensional Transfers 6�20.
6.8.2 2-Dimensional Transfers 6�22.

6.9 Linking EDMA Transfers 6�25.
6.10 Element Size and Alignment 6�27.
6.11 Element and Frame/Array Count Updates 6�28.

6.11.1 Element Count Reload (ECRLD) 6�28.
6.12 Src/Dst Address Updates 6�29.
6.13 EDMA Interrupt Generation 6�32.

6.13.1 EDMA Interrupt Servicing by the CPU 6�34.
6.13.2 Chaining EDMA Channels by an Event 6�34.

6.14 Resource Arbitration and Priority Processing 6�36.
6.15 EDMA Performance 6�37.

Contents

x

6.16 Quick DMA (QDMA) 6�38.
6.16.1 QDMA Registers 6�38.
6.16.2 QDMA Register Access 6�40.
6.16.3 Pseudo Mappings 6�40.
6.16.4 QDMA Performance 6�40.
6.16.5 QDMA Stalls and Priority 6�41.

7 Host-Port Interface 7 �1.
Describes the host-port interface (HPI) used to access ’C6201 and ’C6701 memory-map space
by external processors.

7.1 Overview 7�2.
7.2 HPI Signal Descriptions 7�7.

7.2.1 Data Bus: HD[15:0] 7�7.
7.2.2 Access Control Select: HCNTL[1:0] 7�7.
7.2.3 Halfword Identification Select: HHWIL 7�8.
7.2.4 Byte Enables: HBE[1:0] 7�9.
7.2.5 Read/Write Select: HR/W 7�10.
7.2.6 Ready: HRDY 7�10.
7.2.7 Strobes: HCS, HDS1, HDS2 7�10.
7.2.8 Address Strobe Input: HAS 7�12.
7.2.9 Interrupt to Host: HINT 7�12.
7.2.10 HPI Bus Access 7�12.

7.3 HPI Registers 7�16.
7.3.1 HPI Control Register (HPIC) 7�16.
7.3.2 Software Handshaking Using HRDY and FETCH 7�17.
7.3.3 Host Device Using DSPINT to Interrupt the CPU 7�18.
7.3.4 CPU Using HINT to Interrupt the Host 7�18.

7.4 Host Access Sequences 7�19.
7.4.1 Host Initialization of HPIC and HPIA 7�19.
7.4.2 HPID Read Access Without Autoincrement 7�20.
7.4.3 HPID Read Access With Autoincrement 7�22.
7.4.4 Host Data Write Access Without Autoincrement 7�23.
7.4.5 HPID Write Access With Autoincrement 7�25.
7.4.6 Single Halfword Cycles 7�26.

7.5 Memory Access Through the HPI During Reset 7�27.

8 Expansion Bus 8�1.
Describes the expansion bus used by CPU to access off-chip peripherals, FIFOs and PCI
interface chips.

8.1 Overview 8�2.
8.2 Expansion Bus Signals 8�5.
8.3 Expansion Bus Registers 8�6.

8.3.1 Expansion Bus Host Port Registers 8�7.
8.3.2 Expansion Bus Global Control Register 8�8.

Contents

xiContents

8.3.3 XCE Space Control Registers 8�9.
8.4 Expansion Bus I/O Port Operation 8�10.

8.4.1 Asynchronous Mode 8�12.
8.4.2 Synch FIFO Modes 8�13.
8.4.3 DMA Transfer Examples 8�20.

8.5 Expansion Bus Host Port Operation 8�22.
8.5.1 Expansion Bus Host Port Registers Description 8�23.
8.5.2 Synchronous Host Port Mode 8�26.
8.5.3 Asynchronous Host Port Mode 8�41.

8.6 Expansion Bus Arbitration 8�44.
8.6.1 Internal Bus Arbiter Enabled 8�44.
8.6.2 Internal Bus Arbiter Disabled 8�45.
8.6.3 Expansion Bus Requestor Priority 8�48.

8.7 Boot Configuration Control via Expansion Bus 8�49.

9 External Memory Interface 9 �1.
Describes the external memory interface (EMIF) that the CPU uses to access off-chip memory.

9.1 Overview 9�2.
9.2 Resetting the EMIF 9�8.
9.3 EMIF Registers 9�9.

9.3.1 Global Control Register 9�9.
9.3.2 EMIF CE Space Control Registers 9�12.
9.3.3 EMIF SDRAM Control Register 9�15.
9.3.4 EMIF SDRAM Timing Register 9�17.
9.3.5 TMS320C6211/C6711 SDRAM Extension Register 9�18.

9.4 SDRAM Interface 9�20.
9.4.1 SDRAM Initialization 9�25.
9.4.2 Monitoring Page Boundaries 9�25.
9.4.3 SDRAM Refresh 9�26.
9.4.4 Mode Register Set 9�28.
9.4.5 Address Shift 9�32.
9.4.6 Timing Requirements 9�34.
9.4.7 SDRAM Deactivation 9�35.
9.4.8 SDRAM Read 9�37.
9.4.9 SDRAM Write 9�39.
9.4.10 TMS320C6211/C6711 Seamless Data Access 9�41.

9.5 SBSRAM Interface 9�43.
9.5.1 SBSRAM Reads 9�45.
9.5.2 SBSRAM Writes 9�47.

9.6 Asynchronous Interface 9�49.
9.6.1 TMS320C6201/C6202/C6701 ROM Modes 9�52.
9.6.2 Programmable ASRAM Parameters 9�53.
9.6.3 Asynchronous Reads 9�54.
9.6.4 Asynchronous Writes 9�56.

Contents

xii

9.6.5 Ready Input 9�57.
9.7 Hold Interface 9�60.
9.8 Memory Request Priority 9�61.

9.8.1 TMS320C6201/C6202/C6701 Memory Request Priority 9�61.
9.8.2 TMS320C6211/C6711 Memory Request Priority 9�62.

9.9 Boundary Conditions When Writing to EMIF Registers 9�63.
9.10 Clock Output Enabling 9�64.
9.11 Emulation Halt Operation 9�64.
9.12 Power Down 9�64.

10 Boot Modes and Configuration 10 �1.
Describes the boot modes and associated memory maps.

10.1 Overview 10�2.
10.2 Device Reset 10�2.
10.3 Boot Configuration 10�3.

10.3.1 Memory Map 10�5.
10.3.2 Memory at Reset Address 10�8.
10.3.3 Boot Processes 10�8.

10.4 Device Configuration 10�10.
10.4.1 Input Clock Mode 10�10.
10.4.2 Endian Mode 10�10.
10.4.3 TMS320C6202 Expansion Bus 10�10.

11 Multichannel Buffered Serial Ports 11 �1.
Describes the features and operation of the two multichannel buffered serial ports.

11.1 Features 11�2.
11.2 McBSP Interface Signals and Registers 11�3.

11.2.1 Serial Port Configuration 11�7.
11.2.2 Receive and Transmit Control Registers: RCR and XCR 11�14.

11.3 Data Transmission and Reception 11�18.
11.3.1 Resetting the Serial Port: (R/X)RST, GRST, and RESET 11�18.
11.3.2 Determining Ready Status 11�21.
11.3.3 CPU Interrupts: (R/X)INT 11�22.
11.3.4 Frame and Clock Configuration 11�23.
11.3.5 McBSP Standard Operation 11�33.
11.3.6 Frame Synchronization Ignore 11�36.
11.3.7 Serial Port Exception Conditions 11�41.
11.3.8 Receive Data Justification and Sign Extension: RJUST 11�49.
11.3.9 32-Bit Bit Reversal: (R/X)WDREVRS 11�49.

11.4 µ-LAW/A-LAW Companding Hardware Operation 11�50.
11.4.1 Companding Internal Data 11�51.

11.5 Programmable Clock and Framing 11�53.
11.5.1 Sample Rate Generator Clocking and Framing 11�54.
11.5.2 Data Clock Generation 11�57.

Contents

xiiiContents

11.5.3 Frame Sync Signal Generation 11�61.
11.5.4 Clocking Examples 11�65.

11.6 Multichannel Selection Operation 11�68.
11.6.1 Multichannel Operation Control Registers 11�68.
11.6.2 Enabling Multichannel Selection 11�71.
11.6.3 Enabling and Masking of Channels 11�71.
11.6.4 DX Enabler: DXENA 11�78.

11.7 SPI Protocol: CLKSTP 11�80.
11.7.1 McBSP Operation as the SPI Master 11�84.
11.7.2 McBSP Operation as the SPI Slave 11�85.
11.7.3 McBSP Initialization for SPI Mode 11�86.

11.8 McBSP Pins as General-Purpose I/O 11�87.

12 Timers 12�1.
Describes the 32-bit timers.

12.1 Overview 12�2.
12.2 Timer Registers 12�4.

12.2.1 Timer Control Register 12�4.
12.2.2 Timer Period Register 12�6.
12.2.3 Timer Counter Register 12�6.

12.3 Resetting the Timers and Enabling Counting: GO and HLD 12�7.
12.4 Timer Counting 12�8.
12.5 Timer Clock Source Selection: CLKSRC 12�8.
12.6 Timer Pulse Generation 12�9.
12.7 Boundary Conditions in the Control Registers 12�11.
12.8 Timer Interrupts 12�11.
12.9 Emulation Operation 12�11.

13 Interrupt Selector and External Interrupts 13 �1.
Describes the interrupt selector external interrupt operation.

13.1 Available Interrupt Sources 13�2.
13.2 External Interrupt Signal Timing 13�5.
13.3 Interrupt Selector Registers 13�7.

13.3.1 External Interrupt Polarity Register 13�7.
13.3.2 Interrupt Multiplexer Register 13�8.

13.4 Configuring the Interrupt Selector 13�10.

14 Power-Down Logic 14 �1.
Describes the power-down modes.

14.1 Overview 14�2.
14.2 Triggering, Wake-Up, and Effects 14�4.
14.3 Additional Power-Saving Modes for the TMS320C6202 14�6.

Contents

xiv

15 Designing for JTAG Emulation 15 �1.
Describes the JTAG emulator cable. Tells you how to construct a 14-pin connector on your
target system and how to connect the target sysem to the emulator.

15.1 Designing Your Target System’s Emulator Connector (14-Pin Header) 15�2.
15.2 Bus Protocol 15�3.
15.3 IEEE 1149.1 Standard 15�3.
15.4 JTAG Emulator Cable Pod Logic 15�4.
15.5 JTAG Emulator Cable Pod Signal Timing 15�5.
15.6 Emulation Timing Calculations 15�6.
15.7 Connections Between the Emulator and the Target System 15�8.

15.7.1 Buffering Signals 15�8.
15.7.2 Using a Target-System Clock 15�10.
15.7.3 Configuring Multiple Processors 15�11.

15.8 Mechanical Dimensions for the 14-Pin Emulator Connector 15�12.
15.9 Emulation Design Considerations 15�14.

15.9.1 Using Scan Path Linkers 15�14.
15.9.2 Emulation Timing Calculations for SPL 15�16.
15.9.3 Using Emulation Pins 15�18.
15.9.4 Performing Diagnostic Applications 15�23.

Figures

xvContents

Figures

1–1 TMS320C6201/C6202/C6701 Block Diagram 1�9.
1–2 TMS320C6211/C6711 Block Diagram 1�10.
2–1 TMS320C6201/C6701 Program Memory Controller in the Block Diagram 2�2.
2–2 Logical Mapping of Cache Address 2�5.
2–3 TMS320C6x Block Diagram 2�7.
2–4 Data Memory Controller Interconnect to Other Banks

(TMS320C6201 Revision 2) 2�10.
2–5 Data Memory Controller Interconnect to Other Banks

(TMS320C6201 Revision 3) 2�12.
2–6 Data Memory Controller Interconnect to Other Blocks (TMS320C6701) 2�14.
2–7 Conflicting Internal Memory Accesses to the Same Block

(TMS320C6201 Revisions 2 and 3) 2�16.
2–8 Conflicting Internal Memory Accesses to the Same Block (TMS320C6701) 2�17.
3–1 TMS320C6202 Program Memory Controller Block Diagram 3�3.
3–2 TMS320C6202 Data Memory Controller Block Diagram 3�7.
4–1 TMS320C6211/C6711 Block Diagram 4�2.
4–2 TMS320C6211 Internal Memory Block Diagram 4�3.
4–3 TMS320C6711 Internal Memory Block Diagram 4�4.
4–4 L1P Address Allocation 4�6.
4–5 L1P Direct Mapped Cache Diagram 4�7.
4–6 L1P Flush Base Address Register Fields (L1PFBAR) 4�8.
4–7 L1P Flush Word Count Register Fields (L1PFWC) 4�8.
4–8 L1D Address Allocation 4�9.
4–9 L1D 2–Way Set Associative Cache Diagram 4�11.
4–10 L1D Flush Base Address Register Fields (L1DFBAR) 4�12.
4–11 L1D Flush Word Count Register Fields (L1DFWC) 4�12.
4–12 Cache Configuration Register Fields (CCFG) 4�13.
4–13 L2 Memory Configuration 4�14.
4–14 L2 Cache Data Request Flow Chart 4�17.
4–15 L2 CE Space Allocation Register Fields 4�18.
4–16 L2 Flush Register Fields (L2FLUSH) 4�22.
4–17 L2 Clean Register Fields (L2CLEAN) 4�22.
4–18 L2 Flush Base Address Register Fields (L2FBAR) 4�22.
4–19 L2 Flush Word Count Register Fields (L2FWC) 4�23.
4–20 L2 Clean Base Address Register Fields (L2CBAR) 4�23.
4–21 L2 Clean Word Count Register Fields (L2CWC) 4�23.

Figures

xvi

5–1 DMA Controller Interconnect to TMS320C6201/C6202/C6701
Memory-Mapped Modules 5�4.

5–2 DMA Channel Primary Control Register 5�8.
5–3 DMA Channel Secondary Control Register 5�10.
5–4 TMS320C6202 Secondary Control Register 5�11.
5–5 DMA Channel Transfer Counter Register 5�16.
5–6 DMA Global Count Reload Register Used As Transfer Counter Reload 5�16.
5–7 Synchronization Flags 5�20.
5–8 DMA Channel Source Address Register 5�22.
5–9 DMA Channel Destination Address Register 5�22.
5–10 DMA Global Index Register 5�23.
5–11 DMA Global Address Register Used for Split Address 5�29.
5–12 DMA Auxiliary Control Register 5�31.
5–13 Generation of DMA Interrupt for Channel x From Conditions 5�33.
5–14 DMA Controller Data Bus Block Diagram 5�35.
6–1 TMS320C6211/C6711 Block Diagram 6�2.
6–2 EDMA Controller 6�3.
6–3 Event Register (ER) 6�7.
6–4 Event Enable Register (EER) 6�7.
6–5 Event Clear Register (ECR) 6�8.
6–6 Event Set Register (ESR) 6�8.
6–7 Parameter Storage for an EDMA Event 6�12.
6–8 Options Bit-Fields 6�13.
6–9 Non-2D R/W Sync EDMA Transfer Without Frame Sync 6�21.
6–10 Non-2D EDMA Transfer With Frame Sync 6�22.
6–11 Read/Write Synchronized 2-D Transfer (No Frame Sync) 6�23.
6–12 Frame Synchronized 2-D Transfer 6�23.
6–13 Linked EDMA Transfer 6�25.
6–14 Channel Interrupt Pending Register (CIPR) 6�32.
6–15 Channel Interrupt Enable Register (CIER) 6�32.
6–16 Channel Chain Enable Register (CCER) 6�35.
6–17 Priority Queue Status Register(PQSR) 6�37.
6–18 QDMA Memory-Mapped Registers 6�38.
6–19 QDMA Pseudo Registers 6�39.
6–20 QDMA Options Register (QDMA_OPT, QDMA_S_OPT) 6�39.
7–1 TMS320C6201/C6701 Block Diagram 7�2.
7–2 TMS320C6211/C6711 Block Diagram 7�3.
7–3 HPI Block Diagram 7�4.
7–4 HPI Block Diagram of TMS320C6211/C6711 7�5.
7–5 Select Input Logic 7�11.
7–6 HPI Read Timing (HAS Not Used, Tied High) 7�14.
7–7 HPI Read Timing (HAS Used) 7�14.
7–8 HPI Write Timing (HAS Not Used, Tied High) 7�15.
7–9 HPI Write Timing (HAS Used) 7�15.

Figures

xviiContents

7–10 HPIC Register 7�17.
8–1 Expansion Bus Block Diagram 8�2.
8–2 The Expansion Bus Interface in the TMS320C6202 Block Diagram 8�4.
8–3 Expansion Bus Global Control Register 8�8.
8–4 Expansion Bus XCE(0/1/2/3) Space Control Register Diagram 8�9.
8–5 Example of the Expansion Bus Interface to Four 8-Bit FIFOs 8�11.
8–6 Example of the Expansion Bus Interface to Two 16-Bit FIFOs 8�12.
8–7 Glueless Write FIFO Interface 8�15.
8–8 Read and Write FIFO Interface With Glue 8�16.
8–9 FIFO Write Cycles 8�16.
8–10 Glueless Read FIFO Interface 8�17.
8–11 FIFO Read Mode – Read Timing (glueless case) 8�17.
8–12 FIFO Read Mode – With Glue 8�18.
8–13 Expansion Bus Host Port Interface Block Diagram 8�22.
8–14 Expansion Bus Data Register 8�23.
8–15 Expansion Bus Internal Slave Address Register (XBISA) 8�23.
8–16 Expansion Bus Internal Master Address Register 8�24.
8–17 Expansion Bus External Address Register 8�24.
8–18 Expansion Bus Host Port Interface Control (XBHC) Register 8�25.
8–19 Read Transfer Initiated by the TMS320C6202 and Throttled by

XWAIT and XRDY (Internal Bus Arbiter Disabled) 8�29.
8–20 Write Transfer Initiated by the TMS320C6202 and Throttled by

XWAIT and XRDY (Internal Bus Arbiter Disabled) 8�31.
8–21 External Device Requests the Bus From the TMS320C6202 Using XBOFF 8�33.
8–22 The Expansion Bus Master Writes a Burst of Data to the TMS320C6202 8�37.
8–23 The Bus Master Reads a Burst of Data From the TMS320C6202 8�39.
8–24 Timing Diagrams for Asynchronous Host Port Mode of the Expansion Bus 8�43.
8–25 Timing Diagrams for Bus Arbitration–XHOLD/XHOLDA

(Internal Bus Arbiter Enabled) 8�45.
8–26 Timing Diagrams for Bus Arbitration XHOLD/XHOLDA

(Internal Bus Arbiter Disabled) 8�45.
8–27 XHOLD Timing When the External Host Starts a Transfer to DSP Instead of

Granting the DSP Access to the Expansion Bus(Internal Bus Arbiter Disabled) 8�46.
8–28 Expansion Bus Boot Configuration via Pull Up/Pull Down Resistors on XD[31:0] 8�49.
9–1 External Memory Interface in the TMS320C6201/C6202/C6701BlockDiagram 9�3.
9–2 External Memory Interface in the TMS320C6211/C6711BlockDiagram 9�3.
9–3 TMS320C6201/C6701 External Memory Interface 9�4.
9–4 TMS320C6202 External Memory Interface 9�5.
9–5 TMS320C6211/C6711 External Memory Interface 9�6.
9–6 EMIF Global Control Register Diagram 9�9.
9–7 TMS320C6201/C6202/C6701 EMIF CE Space Control Register Diagram 9�12.
9–8 TMS320C6211/C6711 EMIF CE Space Control Register 9�12.
9–9 TMS320C6211/C6711 Byte Alignment by Endianness 9�14.
9–10 TMS320C6201/C6202/C6701 EMIF SDRAM Control Register 9�15.
9–11 TMS320C6211/C6711 EMIF SDRAM Control Register 9�15.

Figures

xviii

9–12 EMIF SDRAM Timing Register 9�17.
9–13 TMS320C6211/C6711 SDRAM Extension Register 9�18.
9–14 TMS320C6201/C6202/C6701 EMIF to 16M-Bit SDRAM Interface 9�21.
9–15 TMS320C6211/C6711 EMIF to 16M-Bit SDRAM Interface 9�21.
9–16 TMS320C6201/C6202/C6701 EMIF to 64M-Bit SDRAM Interface 9�22.
9–17 SDRAM Refresh 9�28.
9–18 TMS320C6201/C6202/C6701 Mode Register Value 9�29.
9–19 TMS320C6211/C6711 Mode Register Value (0032h) 9�30.
9–20 TMS320C6211/C6711 Mode Register Value (0022h) 9�30.
9–21 SDRAM Mode Register Set: MRS Command 9�31.
9–22 SDRAM DCAB — Deactivate all Banks 9�35.
9–23 TMS320C6211/C6711 SDRAM DEAC — Deactivate Single Bank 9�36.
9–24 TMS3206201/C6202/C6701 SDRAM Read 9�37.
9–25 TMS320C6211 SDRAM Read 9�38.
9–26 TMS320C6201/C6202/C6701 SDRAM Three Word Write 9�39.
9–27 TMS320C6211/C6711 SDRAM Three Word Write 9�40.
9–28 Burst Reads to 2 Pages of SDRAM 9�41.
9–29 Seamless SDRAM Write 9�42.
9–30 TMS320C6201/C6202/C6701 SBSRAM Interface 9�44.
9–31 TMS320C6211/C6711 SBSRAM interface 9�44.
9–32 SBSRAM Four-Word Read 9�45.
9–33 TMS320C6211/C6711 SBSRAM Six-Word Read 9�46.
9–34 TMS320C6201/C6202/C6701 SBSRAM Four Word Write 9�48.
9–35 TMS320C6211/C6711 SBSRAM Write 9�48.
9–36 TMS6201/C6202/C6701 EMIF to 32-bit SRAM Interface 9�50.
9–37 TMS320C6211/C6711 EMIF to 16-bit SRAM (Big Endian) 9�50.
9–38 EMIF to 8-Bit ROM Interface 9�51.
9–39 EMIF to 16-Bit ROM Interface 9�51.
9–40 EMIF to 32-Bit ROM Interface 9�51.
9–41 Asynchronous Read Timing Example 9�55.
9–42 Asynchronous Write Timing Example 9�57.
9–43 TMS320C6201/C6202/C6701 Ready Operation 9�58.
9–44 TMS320C6211/C6711 Ready Operation 9�59.
11–1 McBSP Block Diagram 11�3.
11–2 Serial Port Control Register (SPCR) 11�7.
11–3 Pin Control Register (PCR) 11�11.
11–4 Receive Control Register (RCR) 11�14.
11–5 Transmit Control Register (XCR) 11�14.
11–6 Frame and Clock Operation 11�23.
11–7 Receive Data Clocking 11�25.
11–8 Dual-Phase Frame Example 11�26.
11–9 Inter-IC Sound (IIS) Timing 11�27.
11–10 Single-Phase Frame of Four 8-Bit Elements 11�29.
11–11 Single-Phase Frame of One 32-Bit Element 11�29.

Figures

xixContents

11–12 Data Delay 11�30.
11–13 2-Bit Data Delay Used to Discard Framing Bit 11�31.
11–14 AC97 Dual-Phase Frame Format 11�32.
11–15 AC97 Bit Timing Near Frame Synchronization 11�33.
11–16 McBSP Standard Operation 11�34.
11–17 Receive Operation 11�34.
11–18 Transmit Operation 11�35.
11–19 Maximum Frame Frequency Transmit and Receive 11�36.
11–20 Unexpected Frame Synchronization With (R/X)FIG = 0 11�37.
11–21 Unexpected Frame Synchronization With (R/X)FIG = 1 11�38.
11–22 Maximum Frame Frequency Operation With 8-Bit Data 11�39.
11–23 Data Packing at Maximum Frame Frequency With (R/X)FIG = 1 11�40.
11–24 Serial Port Receive Overrun 11�42.
11–25 Serial Port Receive Overrun Avoided 11�42.
11–26 Decision Tree Response to Receive Frame Synchronization Pulse 11�44.
11–27 Unexpected Receive Synchronization Pulse 11�44.
11–28 Transmit With Data Overwrite 11�45.
11–29 Transmit Empty 11�46.
11–30 Transmit Empty Avoided 11�46.
11–31 Response to Transmit Frame Synchronization 11�47.
11–32 Unexpected Transmit Frame Synchronization Pulse 11�48.
11–33 Companding Flow 11�50.
11–34 Companding Data Formats 11�51.
11–35 Transmit Data Companding Format in DXR 11�51.
11–36 Companding of Internal Data 11�52.
11–37 Clock and Frame Generation 11�53.
11–38 Sample Rate Generator 11�54.
11–39 Sample Rate Generator Register (SRGR) 11�55.
11–40 CLKG Synchronization and FSG Generation When GSYNC = 1

and CLKGDV = 1 11�59.
11–41 CLKG Synchronization and FSG Generation When GSYNC = 1

and CLKGDV = 3 11�59.
11–42 Programmable Frame Period and Width 11�62.
11–43 ST-BUS and MVIP Example 11�65.
11–44 Single-Rate Clock Example 11�66.
11–45 Double-Rate Clock Example 11�67.
11–46 Multichannel Control Register 11�69.
11–47 Element Enabling by Subframes in Partitions A and B 11�72.
11–48 XMCM Operation 11�74.
11–49 Receive Channel Enable Register (RCER) 11�76.
11–50 Transmit Channel Enable Register (XCER) 11�76.
11–51 DX Timing for Multichannel Operation 11�78.
11–52 SPI Configuration: McBSP as the Master 11�80.
11–53 SPI Configuration: McBSP as the Slave 11�81.

Figures

xx

11–54 SPI Transfer with CLKSTP = 10b 11�82.
11–55 SPI Transfer with CLKSTP = 11b 11�82.
12–1 Timer Block Diagram 12�3.
12–2 Timer Control Register 12�4.
12–3 Timer Period Register 12�6.
12–4 Timer Counter Register 12�6.
12–5 Timer Operation in Pulse Mode (C/P = 0) 12�9.
12–6 Timer Operation in Clock Mode (C/P = 1) 12�9.
13–1 Timing of External Interrupt Related Signals 13�6.
13–2 External Interrupt Polarity Register 13�7.
13–3 Interrupt Multiplexer Low Register Diagram 13�8.
13–4 Interrupt Multiplexer High Register Diagram 13�8.
14–1 Power-Down Mode Logic 14�3.
14–2 PWRD Field of the CSR Register 14�3.
14–3 Peripheral Power-Down Control Fields for the TMS320C6202 14�6.
15–1 14-Pin Header Signals and Header Dimensions 15�2.
15–2 JTAG Emulator Cable Pod Interface 15�4.
15–3 JTAG Emulator Cable Pod Timings 15�5.
15–4 Target-System-Generated Test Clock 15�10.
15–5 Multiprocessor Connections 15�11.
15–6 Pod/Connector Dimensions 15�12.
15–7 14-Pin Connector Dimensions 15�13.
15–8 Connecting a Secondary JTAG Scan Path to an SPL 15�15.
15–9 EMU0/1 Configuration 15�19.
15–10 EMU0/1 Configuration With Additional AND Gate to Meet Timing Requirements 15�21.
15–11 Suggested Timings for the EMU0 and EMU1 Signals 15�21.
15–12 EMU0/1 Configuration Without Global Stop 15�22.
15–13 TBC Emulation Connections for n JTAG Scan Paths 15�23.

Tables

xxiContents

Tables

1–1 Typical Applications for the TMS320 DSPs 1�3.
1–2 TMS320C6000 Peripherals 1�8.
2–1 Internal Program Memory Mode Summary 2�4.
2–2 Data Memory Organization (TMS320C6201 Revision 2) 2�9.
2–3 Data Memory Organization (TMS320C6201 Revision 3) 2�11.
2–4 Data Memory Organization 2�13.
2–5 Register Contents After Little-Endian or Big-Endian Data Loads

(TMS320C6201 and TMS320C6701) 2�19.
2–6 Register Contents After Little-Endian or Big-Endian Data Loads

(TMS320C6701 only) 2�20.
2–7 Memory Contents After Little-Endian or Big-Endian Data Stores

(TMS320C6201/C6701) 2�20.
2–8 Memory Contents After Little-Endian or Big-Endian Data Stores 2�21.
3–1 TMS320C6201/C6701/C6202 Internal Memory Configurations 3�2.
3–2 TMS320C6201/C6701/C6202 Cache Architectures 3�2.
3–3 Internal Program RAM Address Mapping in Memory Mapped Mode 3�4.
3–4 Internal Program RAM Address Mapping in Cache Mode 3�5.
3–5 Internal Data RAM Address Mapping 3�7.
4–1 TMS320C6211/C6711 Internal Memory Configurations 4�2.
4–2 TMS320C6211/C6711 Cache Architectures 4�2.
4–3 Internal Memory Control Register Addresses 4�5.
4–4 Level 1 Program Cache Mode Settings 4�6.
4–5 Level 1 Data Cache Mode Settings 4�10.
4–6 Cache Configuration Register Field Description 4�13.
4–7 Memory Attribute Register Functions 4�20.
4–8 L2 Flush Register Fields Description 4�22.
4–9 L2 Clean Register Fields Description 4�22.
5–1 DMA Control Registers by Address 5�6.
5–2 DMA Control Registers by Register Name 5�7.
5–3 DMA Channel Primary Control Register Field Descriptions 5�8.
5–4 DMA Channel Secondary Control Register Field Descriptions 5�10.
5–5 Synchronization Configuration Options 5�11.
5–6 Synchronization Events 5�17.
5–7 Sorting Example in Order of DMA Transfers 5�26.
5–8 Sorting in Order of First by Address 5�27.
5–9 DMA Auxiliary Control Register Field Descriptions 5�31.
5–10 DMA Channel Condition Descriptions 5�34.

Tables

xxii

6–1 EDMA Control Registers 6�6.
6–2 EDMA Parameter RAM Contents 6�10.
6–3 EDMA Channel Options Field Description 6�13.
6–4 EDMA Channel Association with Sync Events 6�18.
6–5 Link Conditions 6�26.
6–6 EDMA Element and Frame/Array Count Updates 6�28.
6–7 EDMA SRC Address Parameter Updates 6�30.
6–8 EDMA DST Address Parameter Updates 6�31.
6–9 Transfer Complete Code (TCC) to DMA Interrupt Mapping 6�33.
6–10 Programmable Priority Levels for Data Requests 6�36.
7–1 HPI External Interface Signals 7�7.
7–2 HPI Input Control Signals Function Selection Descriptions 7�8.
7–3 HPI Data Write Access 7�8.
7–4 Byte Enables for HPI Data Write Access 7�10.
7–5 HPI Registers 7�16.
7–6 HPI Control Register (HPIC) Bit Descriptions 7�17.
7–7 Initialization of HWOB = 1 and HPIA 7�19.
7–8 Initialization of HWOB = 0 and HPIA 7�20.
7–9 Data Read Access to HPI Without Autoincrement: HWOB = 1 7�21.
7–10 Data Read Access to HPI Without Autoincrement: HWOB = 0 7�21.
7–11 Read Access to HPI With Autoincrement: HWOB = 1 7�22.
7–12 Read Access to HPI With Autoincrement: HWOB = 0 7�23.
7–13 Data Write Access to HPI Without Autoincrement: HWOB = 1 7�24.
7–14 Data Write Access to HPI Without Autoincrement: HWOB = 0 7�24.
7–15 Write Access to HPI With Autoincrement: HWOB = 1 7�25.
7–16 Write Access to HPI With Autoincrement: HWOB = 0 7�26.
8–1 Expansion Bus Signals 8�5.
8–2 Expansion Bus Memory Mapped Registers 8�6.
8–3 Expansion Bus Host Port Registers 8�7.
8–4 Expansion Bus Global Control Register Field Description 8�8.
8–5 Expansion Bus XCE(0/1/2/3) Space Control Register Field Description 8�9.
8–6 Addressing Scheme – Case When Expansion Bus is Interfaced to Four

8-Bit FIFOs 8�11.
8–7 Addressing Scheme – Case When the Expansion Bus is Interfaced to Two

16-Bit FIFOs 8�12.
8–8 Synch FIFO Pin Description 8�14.
8–9 Content of Relevant Registers (single frame transfer) 8�20.
8–10 Content of DMA Channel Primary Control Register Fields 8�20.
8–11 Content of Relevant Registers (multiple frame transfer) 8�21.
8–12 Content of TMS320C6202 DMA Primary Control Register 8�21.
8–13 Content of TMS320C6202 DMA Secondary Control Register 8�21.
8–14 XBISA Register Description 8�23.
8–15 XBHC Register Description 8�25.
8–16 Expansion Bus Pin Description (Synchronous Host Port Mode) 8�26.

Tables

xxiiiContents

8–17 Expansion Bus Pin Description (Asynchronous Host Port Mode) 8�41.
8–18 XARB Bit Value and XHOLD/XHOLDA Signal Functionality 8�44.
8–19 Possible Expansion Bus Arbitration Scenarios (Internal Bus Arbiter Disabled) 8�46.
8–20 Description of Expansion Bus Boot Configuration via Pull Up/Pull Down

Resistors on XD[31:0] 8�50.
9–1 EMIF Signal Descriptions 9�7.
9–2 EMIF Memory-Mapped Registers 9�9.
9–3 EMIF Global Control Register Field Descriptions 9�10.
9–4 EMIF CE Space Control Registers Field Descriptions 9�13.
9–5 EMIFtoSDRAMControlRegisterFieldDescription 9�16.
9–6 EMIFSDRAM Timing Register Field Descriptions 9�17.
9–7 TMS320C6211/C6711 SDRAM Extension Register Field Descriptions 9�19.
9–8 TMS320C6201/C6202/C6701 EMIF SDRAM Commands 9�20.
9–9 TMS320C6201/C6202/C6701 SDRAM Memory Population 9�22.
9–10 SDRAM Control Pins 9�23.
9–11 TMS320C6201/C6202/C6701 Implied SDRAM Configuration by MRS Value 9�29.
9–12 TMS320C6211/C6711 Implied SDRAM Configuration by MRS 9�30.
9–13 TMS320C6201/C6202/C6701 Byte Address to EA Mapping for

SDRAM RAS and CAS 9�32.
9–14 TMS320C6211/C6711 Byte Address to EA Mapping for 32-bit Interface 9�33.
9–15 TMS320C6201/C6202/C6701 SDRAM Timing Parameters 9�34.
9–16 SBSRAM in Linear Burst Mode 9�43.
9–17 EMIF SBSRAM Pins 9�45.
9–18 EMIF Asynchronous Interface Pins 9�49.
9–19 Byte Address to EA Mapping for Asynchronous Memory Widths 9�52.
9–20 TMS320C6201/C6202/C6701 EMIF Prioritization of Requests 9�61.
9–21 TMS320C6211/C6711 EMIF Prioritization of Requests 9�62.
10–1 Boot Configuration Summary 10�3.
10–2 TMS320C6211/C6711 Boot Configuration Summary 10�5.
10–3 TMS320C6201/C6701 Memory Map Summary 10�5.
10–4 TMS320C6202 Memory Map Summary 10�6.
10–5 TMS320C6211/C6711 Memory Map Summary 10�7.
10–6 DLL Multiplier Select 10�10.
11–1 McBSP Interface Signals 11�5.
11–2 McBSP Registers 11�6.
11–3 TMS320C6211/C6711 Data Receive and Transmit Registers (DRR/DXR) Mapping 11�6. . .
11–4 McBSP CPU Interrupts and DMA Synchronization Events 11�7.
11–5 Serial Port Control Register (SPCR) Field Descriptions 11�8.
11–6 Pin Control Register (PCR) Field Descriptions 11�11.
11–7 Receive/Transmit Control Register (RCR/XCR) Field Descriptions 11�15.
11–8 Reset State of McBSP Pins 11�19.
11–9 RCR/XCR Fields Controlling Elements per Frame and Bits per Element 11�26.
11–10 McBSP Receive/Transmit Frame Length 1/2 Configuration 11�27.
11–11 McBSP Receive/Transmit Element Length Configuration 11�28.

Tables

xxiv

11–12 Effect of RJUST Values With 12-Bit Example Data ABCh 11�49.
11–13 Justification of Expanded Data in DRR 11�51.
11–14 Sample Rate Generator Register (SRGR) Field Summary 11�55.
11–15 Receive Clock Selection 11�60.
11–16 Transmit Clock Selection 11�61.
11–17 Receive Frame Synchronization Selection 11�63.
11–18 Transmit Frame Synchronization Selection 11�64.
11–19 Multichannel Control Register Field Descriptions 11�69.
11–20 Receive/Transmit Channel Enable Register Field Description 11�77.
11–21 SPI-Mode Clock Stop Scheme 11�81.
11–22 Configuration of Pins as General Purpose I/O 11�87.
12–1 Timer Registers 12�4.
12–2 Timer Control Register Field Descriptions 12�4.
12–3 Timer GO and HLD Field Operation 12�7.
12–4 TSTAT Parameters in Pulse and Clock Modes 12�10.
13–1 TMS320C6201/C6202/C6701 Available Interrupts 13�3.
13–2 TMS320C6211/C6711 Available Interrupts 13�4.
13–3 Interrupt Selector Registers 13�7.
13–4 Default Interrupt Mapping 13�9.
14–1 Power-Down Mode and Wake-Up Selection 14�3.
14–2 Characteristics of the Power-Down Modes 14�5.
14–3 TMS320C6202 Peripheral Power-Down Memory-Mapped Register 14�6.
14–4 Description of TMS320C6202 Power-Down Control Fields 14�7.
15–1 14-Pin Header Signal Descriptions 15�2.
15–2 Emulator Cable Pod Timing Parameters 15�5.

1-1

Introduction

The TMS320C6000 (‘C6000) platform of devices consists of the first off-the-
shelf digital signal processors (DSPs) to use advanced very long instruction
word (VLIW) to achieve high performance through increased instruction-level
parallelism. The VelociTI advanced very long instruction word (VLIW) archi-
tecture uses multiple execution units operating in parallel to execute multiple
instructions during a single clock cycle. Parallelism is the key to extremely high
performance, taking these DSPs well beyond the performance capabilities of
traditional designs.

This chapter introduces the TMS320 family of DSPs and the ’C6000 platform
of this family, and it describes the features, memory, and peripherals of the
’C6000 devices.

Topic Page

1.1 The TMS320 Family Overview 1-2.

1.2 Overview of the TMS320C6000 Platform of DSPs 1-4.

1.3 Features and Options of the TMS320C6000 Devices 1-5.

1.4 Overview of TMS320C6000 Memory 1-6.

1.5 Overview of TMS320C6000 Peripherals 1-8.

Chapter 1

TMS320 Family Overview

 1-2

1.1 TMS320 Family Overview

The TMS320 family consists of fixed-point, floating-point, and multiprocessor
digital signal processors (DSPs). TMS320 DSPs are specifically designed for
real-time signal processing.

1.1.1 History of TMS320 DSPs

In 1982, Texas Instruments introduced the TMS32010—the first fixed-point
DSP in the TMS320 family. Before the end of the year, Electronic Products
magazine awarded the TMS32010 the title “Product of the Year”. Today, the
TMS320 family consists of these generations: ’C1x, ’C2x, ’C27x, ’C5x, and
’C54x, ’C55x fixed-point DSPs; ’C3x and ’C4x floating-point DSPs; and ’C8x
multiprocessor DSPs. Now there is a new generation of DSPs, the
TMS320C6000 platform, with performance and features that are reflective of
Texas Instruments’ commitment to lead the world in DSP solutions.

1.1.2 Typical Applications for the TMS320 Family

Table 1-1 lists some typical applications for the TMS320 family of DSPs. The
TMS320 DSPs offer adaptable approaches to traditional signal-processing
problems. They also support complex applications that often require multiple
operations to be performed simultaneously.

TMS320 Family Overview

1-3Introduction

Table 1–1. Typical Applications for the TMS320 DSPs

Automotive Consumer Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation
Vibration analysis
Voice commands

Digital radios/TVs
Educational toys
Music synthesizers
Pagers
Power tools
Radar detectors
Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General Purpose Graphics/Imaging Industrial

Adaptive filtering
Convolution
Correlation
Digital filtering
Fast Fourier transforms
Hilbert transforms
Waveform generation
Windowing

3-D computing
Animation/digital maps
Homomorphic processing
Image compression/transmission
Image enhancement
Pattern recognition
Robot vision
Workstations

Numeric control
Power-line monitoring
Robotics
Security access

Instrumentation Medical Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids
Patient monitoring
Prosthetics
Ultrasound equipment

Image processing
Missile guidance
Navigation
Radar processing
Radio frequency modems
Secure communications
Sonar processing

Telecommunications Voice/Speech

1200- to 56 600-bps modems
Adaptive equalizers
ADPCM transcoders
Base stations
Cellular telephones
Channel multiplexing
Data encryption
Digital PBXs
Digital speech interpolation (DSI)
DTMF encoding/decoding
Echo cancellation

Faxing
Future terminals
Line repeaters
Personal communications

systems (PCS)
Personal digital assistants (PDA)
Speaker phones
Spread spectrum communications
Digital subscriber loop (xDSL)
Video conferencing
X.25 packet switching

Speaker verification
Speech enhancement
Speech recognition
Speech synthesis
Speech vocoding
Text-to-speech
Voice mail

Overview of the TMS320C6000 Platform of DSPs

 1-4

1.2 Overview of the TMS320C6000 Platform of DSPs

With a performance of up to 2000 million instructions per second (MIPS) and
an efficient C compiler, the TMS320C6000 DSPs give system architects unlim-
ited possibilities to differentiate their products from others. High performance,
ease of use, and affordable pricing make the TMS320C6000 platform the ideal
solution for multichannel, multifunction applications, such as:

� Pooled modems
� Wireless local loop base stations
� Remote access servers (RAS)
� Digital subscriber loop (DSL) systems
� Cable modems
� Multichannel telephony systems

The TMS320C6000 platform is also an ideal solution for exciting new applica-
tions, for example:

� Personalized home security with face and hand/fingerprint recognition
� Advanced cruise control with GPS navigation and accident avoidance
� Remote medical diagnostics
� Beam-forming base stations
� Virtual reality 3-D graphics
� Speech recognition
� Audio
� Radar
� Atmospheric modeling
� Finite element analysis
� Imaging (for example, fingerprint recognition, ultrasound, and MRI)

Features and Options of the TMS320C6000 Devices

1-5Introduction

1.3 Features and Options of the TMS320C6000 Devices

The ’C6000 devices execute up to eight 32-bit instructions per cycle. The de-
vice’s core CPU consists of 32 general-purpose registers of 32-bit-word length
and eight functional units:
� Two multipliers
� Six arithmetic logic units (ALUs)

The ’C6000 generation has a complete set of optimized development tools,
including an efficient C compiler, an assembly optimizer for simplified assem-
bly-language programming and scheduling, and a Windows based debug-
ger interface for visibility of source code execution characteristics.

Features of the ’C6000 devices include:

� Advanced VLIW CPU with eight functional units, including two multipliers
and six arithmetic units

� Executes up to eight instructions per cycle for up to ten times the per-
formance of other DSPs

� Allows designers to develop highly effective RISC-like code for rapid
development

� Instruction packing

� Gives code size equivalence for eight instructions executed serially or
in parallel

� Reduces code size, program fetches, and power consumption

� Conditional execution of all instructions

� Reduces costly branching

� Increases parallelism for higher sustained performance

� Efficient code execution on independent functional units

� Industry’s most efficient C compiler on DSP benchmark suite

� Industry’s first assembly optimizer for fast development and improved
parallelism

Features and Options of the TMS320C6000 Devices

 1-6

� 8/16/32-bit data support, providing efficient memory support for a variety
of applications

� 40-bit arithmetic options, which add extra precision for vocoders and other
computationally intensive applications

� Saturation and normalization, which provide support for key arithmetic op-
erations

� Field manipulation and instruction extract, set, clear, and bit counting,
which support common operations found in control and data manipulation
applications.

� Hardware support for IEEE single-precision and double-precision instruc-
tions. (’C6701 only)

� Pin-compatible fixed-point and floating-point DSPs.

For more information on features and options of the TMS320C6000, see the
TMS320C6000 CPU and Instruction Set Reference Guide.

1.4 Overview of TMS320C6000 Memory

The internal memory configuration varies between the different ’C6000 de-
vices. All devices include:

� Internal data/program memory
� Internal peripherals
� External memory accessed through the external memory interface (EMIF)

TMS320C6201/C6202/C6701: The ‘C6201, ‘C6202, and ‘C6701 each have
separate data and program memories. The internal program memory can be
mapped into the CPU address space or operated as a program cache. A
256-bit-wide path is provided from to the CPU to allow a continuous stream of
eight 32-bit instructions for maximum performance.

Data memory is accessed through the data memory controller, which controls
the following functions:

� The CPU and the direct memory access (DMA) controller accesses to the
internal data memory, and performs the necessary arbitration.

� The CPU data access to the EMIF
� The CPU access to on-chip peripherals

The internal data memory is divided into 16-bit-wide banks. The data memory
controller performs arbitration between the CPU and the DMA controller inde-
pendently for each bank, allowing both sides of the CPU and the DMA to ac-
cess different memory locations simultaneously without contention. The data
memory controller supports configurable endianness. The LENDIAN pin on
the device selects the endianness of the device.

Features and Options of the TMS320C6000 Devices / Overview of TMS320C6000 Memory

Features and Options of the TMS320C6000 Devices

1-7Introduction

TMS320C6211/C6711: The ‘C6211/C6711 is a cache-based architecture,
with separate level-one program and data caches. These cache spaces are
not included in the memory map and are enabled at all times. The level-one
caches are only accessible by the CPU.

The level-one program cache (L1P) controller interfaces the CPU to the L1P.
A 256-bit wide path is provided from to the CPU to allow a continuous stream
of 8 32-bit instructions for maximum performance.

The level-one data cache (L1D) controller provides the interface between the
CPU and the L1D. The L1D is a dual-ported memory, which allows simulta-
neous access by both sides of the CPU.

On a miss to either L1D or L1P, the request is passed to the L2 controller. The
L2 controller facilitates:

� The CPU and the enhanced direct memory access (EDMA) controller ac-
cesses to the internal memory, and performs the necessary arbitration

� The CPU data access to the EMIF
� The CPU accesses to on-chip peripherals
� Sends request to EMIF for an L2 data miss

The internal SRAM of the ‘C6211/C6711 is a unified program and data memory
space. The L2 memory space may be configured as all memory-mapped
SRAM, all cache, or a combination of the two.

Overview of TMS320C6000 Memory

Overview of TMS320C6000 Peripherals

 1-8

1.5 Overview of TMS320C6000 Peripherals

Peripherals available on the TMS320C6000 devices are shown in Table 1-2.

Table 1–2. TMS320C6000 Peripherals

Peripheral C6201 C6202 C6211 C6701 C6711

Direct memory access (DMA)
controller

Y Y N Y N

Enhanced direct memory access
(EDMA) controller

N N Y N Y

Host-port interface (HPI) Y N Y Y Y

Expansion bus N Y N N N

External memory interface (EMIF) Y Y Y Y Y

Boot configuration Y Y Y Y Y

Multichannel buffered serial ports
(McBSPs)

2 3 2 2 2

Interrupt selector Y Y Y Y Y

32-bit timers 2 2 2 2 2

Power-down logic Y Y Y Y Y

The user-accessible peripherals are configured via a set of memory-mapped
control registers. The peripheral bus controller performs the arbitration for ac-
cesses of on-chip peripherals. The Boot Configuration logic is interfaced
through external signals only, and the Power-down logic is accessed directly
by the CPU.

Figure 1-1 shows the peripherals in the block diagram for the TMS320C6201,
‘C6202, and ‘C6701 devices. Figure 1-2 shows a block diagram for the
TMS320C6211 and ’C6711 devices.

Overview of TMS320C6000 Peripherals

1-9Introduction

Figure 1–1. TMS320C6201/C6202/C6701 Block Diagram

Data path B

External
memory
interface
(EMIF)

Multichannel
buffered

serial port 0
(McBSP 0)

Multichannel
buffered

serial port 1
(McBSP 1)

Host port/
expansion

bus
Direct memory access

controller (DMA)

Timer 0

Timer 1

Program
memory/

cache
controller

Internal program memory

.L1 .S1 .M1 .D1 .D2 .M2 .S2 .L2

A register file

Data path A

B register file

In
te

rr
up

t c
on

tr
ol

CPU

Instruction fetch

Instruction dispatch

Instruction decode In-circuit emulation

Control registers

Data memory
controller

Internal data
memoryPower down

logic

D
M

A
 b

us
es

Program bus

D
at

a
bu

s

Expansion bus control
registers

1 2

PLL

Boot
configuration

Overview of TMS320C6000 Peripherals

 1-10

Figure 1–2. TMS320C6211/C6711 Block Diagram

L1P cache
direct mapped

4K bytes

L2 memory
4 banks

64K bytes

L1D cache
2–way set
associative

4K bytes
Timer 0Timer 1

Enhanced
DMA

controller

Power down logic

External
memory
interface
(EMIF)

Multichannel
buffered

serial port 1
(McBSP 1)

Host port
interface

(HPI)

CPU

Data path 2
B register file

L2S2M2D2

Data path 1
A register file

L1 S1 M1 D1

Instruction fetch

Instruction dispatch

Instruction decode

Control
registers
In–circuit
emulation

In
te

rr
up

t c
on

tr
ol

Multichannel
buffered

serial port 0
(McBSP 0)

DMA Controller: The DMA controller transfers data between address ranges
in the memory map without intervention by the CPU. The DMA controller has
four programmable channels and a fifth auxiliary channel.

EDMA Controller: The EDMA controller performs the same functions as the
DMA controller. The EDMA has sixteen programmable channels, as well as
a RAM space to hold multiple configurations for future transfers.

HPI: The HPI is a parallel port through which a host processor can directly ac-
cess the CPU’s memory space. The host device has ease of access because
it is the master of the interface. The host and the CPU can exchange informa-
tion via internal or external memory. In addition, the host has direct access to
memory-mapped peripherals.

Expansion Bus: The expansion bus is a replacement for the HPI, as well as
an expansion of the EMIF. The expansion provides two distinct areas of
functionality, (host port and I/O port) which can co-exist in a system. The host
port of the expansion bus can operate in either asynchronous slave mode,
similar to the HPI, or in synchronous master/slave mode. This allows the
device to interface to a variety of host bus protocols. Synchronous FIFOs and
asynchronous peripheral I/O devices may interface to the expansion bus.

Overview of TMS320C6000 Peripherals

1-11Introduction

EMIF: The EMIF supports a glueless interface to several external devices, in-
cluding:

� Synchronous burst SRAM (SBSRAM)
� Synchronous DRAM (SDRAM)
� Asynchronous devices, including SRAM, ROM, and FIFOs
� An external shared-memory device

Boot Configuration: The TMS320C62x and TMS320C67x provide a variety
of boot configurations that determine what actions the DSP performs after de-
vice reset to prepare for initialization. These include loading in code from an
external ROM space on the EMIF and loading code through the HPI/expan-
sion bus from an external host.

McBSP: The multichannel buffered serial port (McBSP) is based on the stan-
dard serial port interface found on the TMS320C2000 and ’C5000 platform de-
vices. In addition, the port can buffer serial samples in memory automatically
with the aid of the DMA/EDMA controller. It also has multichannel capability
compatible with the T1, E1, SCSA, and MVIP networking standards. Like its
predecessors, it provides:

� Full-duplex communication

� Double-buffered data registers that allow a continuous data stream

� Independent framing and clocking for receive and transmit

� Direct interface to industry-standard codecs, analog interface chips
(AICs), and other serially connected A/D and D/A devices

In addition, the McBSP has the following capabilities:

� Direct interface to:
� T1/E1 framers
� ST-BUS� compliant devices
� IOM-2 compliant devices
� AC97 compliant devices
� IIS compliant devices
� SPI devices

� Multichannel transmission and reception of up to 128 channels
� A wider selection of data sizes including 8-, 12-, 16-, 20-, 24-, and 32-bits
� µ-law and A-law companding
� 8-bit data transfers with LSB or MSB first
� Programmable polarity for both frame synchronization and data clocks
� Highly programmable internal clock and frame generation

Overview of TMS320C6000 Peripherals

 1-12

Timer: The ’C6000 devices have two 32-bit general-purpose timers that are
used to:

� Time events
� Count events
� Generate pulses
� Interrupt the CPU
� Send synchronization events to the DMA/EDMA controller

Interrupt Selector: The ’C6000 peripheral set produces 14–16 interrupt
sources. The CPU has 12 interrupts available. The interrupt selector allows
you to choose which 12 interrupts your system needs. The interrupt selector
also allows you to change the polarity of external interrupt inputs.

Power-down: The power-down logic allows reduced clocking to reduce pow-
er consumption. Most of the operating power of CMOS logic dissipates during
circuit switching from one logic state to another. By preventing some or all of
the chip’s logic from switching, you can realize significant power savings with-
out losing any data or operational context.

2-1

TMS320C6201/C6701
Program and Data Memory

This chapter describes the program memory organization, the program
memory and cache modes, and access of program memory through the DMA
controller for the TMS320C6201/C6701.

Topic Page

2.1 Program Memory Controller 2-2.

2.2 Internal Program Memory 2-3.

2.3 DMA Controller Access to Program Memory 2-6.

2.4 Data Memory Controller 2-7.

2.5 Data Memory Access 2-8.

2.6 Internal Data Memory Organization 2-9.

2.7 Peripheral Bus 2-21.

Chapter 2

Program Memory Controller

 2-2

2.1 Program Memory Controller

The program memory controller, shown in Figure 2–1 performs the following
tasks:

� Performs CPU and DMA requests to internal program memory and the
necessary arbitration

� Performs CPU requests to external memory through the external memory
interface (EMIF)

� Manages the internal program memory when it is configured as cache.

Figure 2–1. TMS320C6201/C6701 Program Memory Controller in the Block Diagram

Program memory/cache

Program memory controller

EMIF

PLL

Host port DMA
controller

Peripheral
bus

controller

EMIF control
DMA control
HPI control

McBSPs
Interrupt selector

Timers
Data memory

controller
Data memory

CPU core

2
Data path

1
Data path

Instruction decode
Instruction dispatch

Program fetch

down
Power

Boot
configuration

’C6201/C6701

Internal Program Memory

2-3TMS320C6201/C6701 Program and Data Memory

2.2 Internal Program Memory

The internal program memory contains 64K bytes of RAM or, equivalently, 2K
256-bit fetch packets or 16K 32-bit instructions. The CPU, through the pro-
gram memory controller, has a single-cycle throughput, 256-bit-wide connec-
tion to internal program memory.

2.2.1 Internal Program Memory Modes

The internal program memory can be used in any of four modes which are se-
lected by the program cache control (PCC) field (bits 7–5) in the CPU control
and status register (CSR) as shown in Table 2–1. The modes are:

� Mapped: Depending on the memory map selected, the program memory
is located at one of these addresses:

� 0000 0000h–0000 FFFFh for map 1
� 0140 0000h–0140 FFFFh for map 0

In mapped mode, program fetches from the internal program memory ad-
dress return the fetch packet at that address. In the other modes, CPU
accesses to this address range return undefined data. Mapped mode is
the default state of the internal program memory at reset. The CPU cannot
access internal program memory through the data memory controller.
(See Chapter 7, Boot Configuration, Reset, and Memory Map, for informa-
tion about how to select the memory map.)

� Cache enabled: In cache enabled mode, any initial program fetch at an ad-
dress causes a cache miss. In a cache miss, the fetch packet is loaded from
the external memory interface (EMIF) and stored in the internal cache
memory, one 32-bit instruction at a time. While the fetch packet is being
loaded, the CPU is halted. The number of wait states incurred depends on
the type of external memory used, the state of that memory, and any conten-
tion for the EMIF with other requests, such as the DMA controller or a CPU
data access. Any subsequent read from a cached address causes a cache
hit, and that fetch packet is sent to the CPU from the internal program
memory without any wait states. Changing from program memory mode to
cache enabled mode flushes the program cache. This mode transition is the
only means to flush the cache.

� Cache freeze: During a cache freeze, the cache retains its current state.
A program read of a frozen cache is identical to a read of an enabled cache
except that on a cache miss the data read from the external memory inter-
face is not stored in the cache. A subsequent read of the same address
causes a cache miss, and the data is again fetched from external memory.

Internal Program Memory

 2-4

Cache freeze ensures that critical program data is not overwritten in the
cache.

� Cache bypass: When the cache is bypassed, any program read fetches
data from external memory. The data is not stored in the cache memory.
As in cache freeze, the cache retains its state in cache bypass. This mode
ensures that external program data is being fetched.

Table 2–1. Internal Program Memory Mode Summary

Internal Program
Memory Mode

PCC
Value Description

Mapped 000 Cache disabled (default state at reset)

Cache enabled 010 Cache accessed and updated on reads

Cache freeze 011 Cache accessed but not updated on reads

Cache bypass 100 Cache not accessed or updated on reads

Other Reserved

Note:

If you change the operation mode of the PMEMC, you should use the follow-
ing assembly routine to ensure correct operation of the PMEMC. This routine
enables the cache. To change the PMEMC operation mode to a state other
than cache enable, you should modify line four of the routine to correspond
the the value of PCC that you want moved into B5. For example, to put the
cache into mapped mode 0000h should be moved into B5. The CPU regis-
ters used in this example have no significance. Any of the registers A0–A15
or B0–B15 can be used in the program.

.align 32
MVC .S2 CSR,B5 ;copy control status register

|| MVK .S1 0xff1f,A5
AND .L1x A5,B5,A5 ;clear PCC field of CSR value

|| MVK S2 0x0040,B5 ;set cache enable mask
OR .L2x A5,B5,B5 ;set cache enable bit
MVC .S2 B5,CSR ;update CSR to enable cache
NOP 4
NOP

2.2.2 Cache Architecture

The architecture of the cache is directly mapped. The 64K byte cache contains
2K fetch packets, thus, 2K frames. The width of the cache (the frame size) is
256 bits. Each frame in the cache is one fetch packet.

Internal Program Memory

2-5TMS320C6201/C6701 Program and Data Memory

2.2.2.1 Cache Usage of CPU Address

Figure 2–2 shows how the cache uses the fetch packet address from the CPU:

� 5-bit fetch packet alignment: The five LSBs of the address are assumed to
be 0 because all program fetch requests are aligned on fetch packet
boundaries (eight words or 32 bytes).

� 11-bit tag block offset: Because the cache is directly mapped, any external
address maps to only one of the 2K frames. Any two fetch packets that are
separated by an integer multiple of 64K bytes map to the same frame.
Thus, bits 15–5 of the CPU address create the 11-bit block offset that de-
termines which of the 2K frames any particular fetch packet maps to.

� 10-bit tag: The cache assumes a maximum external address space of
64M bytes (from 00000000h–03FFFFFFh). Thus, bits 25–16 of the ad-
dress correspond to the tag that determines the original location of the
fetch packet in external memory space. The cache also has a separate
2K × 11 tag RAM that holds all the tags. Each address location in this RAM
contains a 10-bit tag plus a valid bit that is used to record frame validity
information.

Figure 2–2. Logical Mapping of Cache Address

31 26 25 16 15 5 4 0

Outside external range.
assumed to be 0

Tag Block offset
Fetch packet alignment.

assumed 0

2.2.2.2 Cache Flush

A dedicated valid bit in each address location of the tag RAM indicates whether
the contents of the corresponding cache frame is valid data. During a cache
flush, all of the valid bits are cleared to indicate that no cache frames have valid
data. Cache flushes occur only at the transition of the internal program
memory from mapped mode to cache enabled mode. You initiate this transition
by setting the cache enable pattern in the PCC field of the CPU control and
status register.

2.2.2.3 Frame Replacement

A cache miss is detected when the tag corresponding to the block offset of
the fetch packet address requested by the CPU does not correspond to bits
25–16 of the fetch packet address or if the valid bit at the block offset location
is clear. If enabled, the cache loads the fetch packet into the corresponding
frame, sets the valid bit, sets the tag to bits 25–16 of the requested address,
and delivers this fetch packet to the CPU after all eight instructions are
available.

DMA Controller Access to Program Memory

 2-6

2.3 DMA Controller Access to Program Memory

The DMA controller can read and write to internal program memory when the
memory is configured in mapped mode. The CPU always has priority over the
DMA controller for access to internal program memory regardless of the value
of the PRI bit for that DMA channel. DMA controller accesses are postponed
until the CPU stops making requests. To avoid losing future requests that occur
after arbitration and while a DMA controller access is in progress, the CPU in-
curs one wait state per DMA controller access. The maximum throughput to the
DMA is one access every other cycle. In a cache mode, a DMA controller write
is ignored by the program memory controller, and a read returns an undefined
value. For both DMA reads and writes in cache modes, the DMA controller is
signaled that its request has finished. At reset, the program memory system is
in mapped mode, allowing the DMA controller to boot load code into the internal
program memory.

See Chapter 7, TMS320C6000 Boot Modes, for more information on bootload-
ing code.

Data Memory Controller

2-7TMS320C6201/C6701 Program and Data Memory

2.4 Data Memory Controller

As shown inFigure 2–3, the data memory controller connects:

� The CPU and direct memory access (DMA) controller to internal data
memory and performs the necessary arbitration.

� CPU to the external memory interface (EMIF).

� The CPU to the on chip peripherals through the peripheral bus controller.

The peripheral bus controller performs arbitration between the CPU and DMA
for the on-chip peripherals.

Figure 2–3. TMS320C6x Block Diagram

Program memory/cache

Program memory controller

EMIF

PLL

Host port DMA
controller

Peripheral
bus

controller

EMIF control
DMA control
HPI control

MCSPs
Interrupt selector

Timers
Data memory

Data memory
controller

CPU core

2
Data path

1
Data path

Instruction decode
Instruction dispatch

Program fetch

down
Power

Boot
Configuration

Data Memory Access

 2-8

2.5 Data Memory Access

The data memory controller services all CPU and DMA controller data re-
quests to internal data memory. Figure 2–4, Figure 2–5, and Figure 2–6 show
the directions of data flow and the master (requester) and slave (resource)
relationships between the modules:

� The CPU requests data reads and writes to:

� Internal data memory

� On-chip peripherals through the peripheral bus controller

� EMIF

� The DMA controller requests reads and writes to internal data memory.

� The CPU cannot access internal program memory through the data
memory controller.

The CPU sends requests to the data memory controller through the two address
buses (DA1 and DA2). Store data is transmitted through the CPU data store
buses (ST1 and ST2). Load data is received through the CPU data load buses
(LD1 and LD2). The CPU data requests are mapped, based on address, to
either the internal data memory, internal peripheral space (through the peripher-
al bus controller), or the external memory interface. The data memory controller
also connects the DMA controller to the internal data memory and performs ar-
bitration between the CPU and DMA controller.

Internal Data Memory Organization

2-9TMS320C6201/C6701 Program and Data Memory

2.6 Internal Data Memory Organization

The following sections describe the memory organization of each device in the
’C6x generation of DSPs ’C6201 and ’C6701 devices.

2.6.1 TMS320C6201 Revision 2

The 64K bytes of internal data RAM are organized as one block of 64K bytes lo-
cated from address 8000 0000h to 8000 FFFFh. This block is organized as four
8K banks of 16-bit halfwords. Both the CPU and the DMA controller can simulta-
neously access data that resides in different banks. This organization allows the
two CPU data ports, A and B, to simultaneously access neighboring 16-bit data
elements inside the block without a resource conflict.

Table 2–2. Data Memory Organization (TMS320C6201 Revision 2)

Bank 0 Bank 1 Bank 2 Bank 3

First address 80000000
80000008

�

�

�

8000FFF0

80000001
80000009

�

�

�

8000FFF1

80000002
8000000A

�

�

�

8000FFF2

80000003
8000000B

�

�

�

8000FFF3

80000004
8000000C

�

�

�

8000FFF4

80000005
8000000D

�

�

�

8000FFF5

80000006
8000000E

�

�

�

8000FFF6

80000007
8000000F

�

�

�

8000FFF7

Last address 8000FFF8 8000FFF9 8000FFFA 8000FFFB 8000FFFC 8000FFFD 8000FFFE 8000FFFF

Internal Data Memory Organization

 2-10

Figure 2–4. Data Memory Controller Interconnect to Other Banks
(TMS320C6201 Revision 2)

(DMEMC)
Data memory controller

DMA
controller

External
memory
interface

Peripheral
bus

controller

323232

Bank 0

Bank 1

Bank 2

Bank 3

64 K bytes

16

16

16

16

Side ASide B

’C6201 CPU

3232 32 32

C
on

tr
ol

D
A

2
ad

dr
es

s

S
T

2
st

or
e

da
ta

LD
2

lo
ad

 d
at

a

C
on

tr
ol

D
A

1
ad

dr
es

s

S
T

1
st

or
e

da
ta

LD
1

lo
ad

 d
at

a

0
 1

 2

3

 4

5
 6

7

8
 9

A

B

C

D

E

F

80
00

 0
00

0

80
00

 F
F

F
F

Internal Data Memory Organization

2-11TMS320C6201/C6701 Program and Data Memory

2.6.2 TMS320C6201 Revision 3

The 64K bytes of internal data RAM are organized as two blocks of 32K bytes
located from address 8000 0000h to 8000 7FFFh and 8000 8000h to
8000 FFFFh. The DMA controller or side A and side B of the CPU can simulta-
neously access any portion of the internal memory without conflict, when using
different blocks. Both blocks are organized as four 4K banks of 16-bit halfwords.
Therefore you do not have to consider the address within a block if simultaneous
accesses occur to different blocks. Accesses to different blocks never cause per-
formance penalties. Both CPU and DMA can still simultaneously access data that
resides in different banks within the same block without a performance penalty.
To avoid performance penalties, you have to pay attention to address LSBs
when the two accesses involve data in the same block. This organization also
allows the two CPU data ports, A and B, to simultaneously access neighboring
16-bit data elements inside the block without a resource conflict.

Table 2–3. Data Memory Organization (TMS320C6201 Revision 3)

Bank 0 Bank 1 Bank 2 Bank 3

First address
(Block 0)

80000000
80000008

�

�

�

80007FF0

80000001
80000009

�

�

�

80007FF1

80000002
8000000A

�

�

�

80007FF2

80000003
8000000B

�

�

�

80007FF3

80000004
8000000C

�

�

�

80007FF4

80000005
8000000D

�

�

�

80007FF5

80000006
8000000E

�

�

�

80007FF6

80000007
8000000F

�

�

�

80007FF7

Last address
(Block 0)

80007FF8 80007FF9 80007FFA 80007FFB 80007FFC 80007FFD 80007FFE 80007FFF

First address
(Block 1)

80008000
80008008

�

�

�

8000FFF0

80008001
80008009

�

�

�

8000FFF1

80008002
8000800A

�

�

�

8000FFF2

80008003
8000800B

�

�

�

8000FFF3

80008004
8000800C

�

�

�

8000FFF4

80008005
8000800D

�

�

�

8000FFF5

80008006
8000800E

�

�

�

8000FFF6

80008007
8000800F

�

�

�

8000FFF7

Last address
(Block 1)

8000FFF8 8000FFF9 8000FFFA 8000FFFB 8000FFFC 8000FFFD 8000FFFE 8000FFFF

Internal Data Memory Organization

 2-12

Figure 2–5. Data Memory Controller Interconnect to Other Banks
(TMS320C6201 Revision 3)

Block 0
(32K bytes)(32K bytes)

Block 1

Bank 3

Bank 2

Bank 1

Bank 0

Bank 3

Bank 2

Bank 1

Bank 0

DMA
controller

Peripheral
bus

controller

External
memory
interface

16

16

16

16

Data memory controller
(DMEMC)

323232

16

16

16

16

Side ASide B

’C6201 CPU

3232 32 32

C
on

tr
ol

D
A

2
ad

dr
es

s

S
T

2
st

or
e

da
ta

LD
2

lo
ad

 d
at

a

C
on

tr
ol

D
A

1
ad

dr
es

s

S
T

1
st

or
e

da
ta

LD
1

lo
ad

 d
at

a

80
00

 0
00

0

80
00

 7
F

F
F

80
00

 F
F

F
F

80
00

 8
00

0

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

Internal Data Memory Organization

2-13TMS320C6201/C6701 Program and Data Memory

2.6.3 TMS320C6701

The 64K bytes of internal data RAM are organized as two blocks of 32K bytes
located from address 8000 0000h to 8000 7FFFh and 8000 8000h to
8000 FFFFh. Side A and side B of the CPU or the DMA Controller can simulta-
neously access any portion of the internal data memory without conflict, when
using different blocks. Therefore, you do not have to consider the address
within a block if simultaneous accesses occur to different blocks. Accesses to
different blocks never cause performance penalties. You only have to pay
attention to the address when the two accesses occur in different blocks. Both
blocks are organized as eight 2K banks of 16-bit halfwords. Both the CPU and
DMA controller can still simultaneously access data that resides in different
banks within the same block without performance penalty. To avoid perfor-
mance penalties, you have to pay attention to address LSBs when two ac-
cesses involve data in the same block. This organization also allows the two
CPU data ports, A and B, to simultaneously access neighboring 16-bit data
elements inside the same block without a resource conflict.

Table 2–4. Data Memory Organization

Bank 0 Bank 1 Bank 2 Bank 3

First address
(Block 0)

80000000 80000001 80000002 80000003 80000004 80000005 80000006 80000007

Last address
(Block 0)

80007FF0 80007FF1 80007FF2 80007FF3 80007FF4 80007FF5 80007FF6 80007FF7

Bank 4 Bank 5 Bank 6 Bank 7

First address
(Block 0)

80000008 80000009 8000000A 8000000B 8000000C 8000000D 8000000E 8000000F

Last address
(Block 0)

80007FF8 80007FF9 80007FFA 80007FFB 80007FFC 80007FFD 80007FFE 80007FFF

Bank 0 Bank 1 Bank 2 Bank 3

First address
(Block 1)

80008000 80008001 80008002 80008003 80008004 80008005 80008006 80008007

Last address
(Block 1)

8000FFF0 8000FFF1 8000FFF2 8000FFF3 8000FFF4 8000FFF5 8000FFF6 8000FFF7

Bank 4 Bank 5 Bank 6 Bank 7

First address
(Block 1)

80008008 80008009 8000800A 8000800B 8000800C 8000800D 8000800E 8000800F

Last address
(Block 1)

8000FFF8 8000FFF9 8000FFFA 8000FFFB 8000FFFC 8000FFFD 8000FFFE 8000FFFF

Internal Data Memory Organization

 2-14

Figure 2–6. Data Memory Controller Interconnect to Other Blocks (TMS320C6701)

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 1

Bank 2

Bank 0

16

16

16

16

Bank 3

Bank 2

Bank 1

Bank 0

16

16

16

16

Block 0
(32K bytes)(32K bytes)

Block 1

Bank 7

Bank 6

Bank 5

Bank 4

DMA
controller

Peripheral
bus

controller

External
memory
interface

16

16

16

16

Data memory controller
(DMEMC)

323232

16

16

16

16

Side ASide B

’C6701CPU

32 64 6432

C
on

tr
ol

D
A

2
ad

dr
es

s

S
T

2
st

or
e

da
ta

LD
2

lo
ad

 d
at

a

C
on

tr
ol

D
A

1
ad

dr
es

s

S
T

1
st

or
e

da
ta

LD
1

lo
ad

 d
at

a

80
00

 F
F

F
F

80
00

 8
00

0

80
00

 0
00

0

80
00

 7
F

F
F

D
C

B
A

0
1

2
3

4
5

6
7

9
8

F
E

D
C

B
A

0
1

2
3

4
5

6
7

9
8

F
E

Internal Data Memory Organization

2-15TMS320C6201/C6701 Program and Data Memory

2.6.4 Data Alignment

The following data alignment restrictions apply:

Doublewords: (’C6701 only) Doublewords are aligned on even 8-byte (dou-
bleword) boundaries, and always start at a byte address where the three LSBs
are 0. Doublewords are used only on loads triggered by the LDDW instruction.
Store operations do not use doublewords.

Words: Words are aligned on even 4-byte (word) boundaries, and always start
at a byte address where the two LSBs are 0. A word access requires two adja-
cent 16-bit-wide banks.

Halfwords: Halfwords are aligned on even 2-byte (halfword) boundaries, and
always start at byte addresses where the LSB is 0. Halfword accesses require
the entire 16-bit-wide bank.

Bytes: There are no alignment restrictions on byte accesses.

2.6.5 Dual CPU Accesses to Internal Memory

Both the CPU and DMA can read and write 8-bit bytes, 16-bit halfwords, and
32-bit words. The data memory controller performs arbitration individually for
each 16-bit bank. Although arbitration is performed on 16-bit-wide banks, the
banks have byte enables to support byte-wide accesses. However, a byte ac-
cess prevents the entire 16 bits containing the byte from simultaneously being
used by another access.

As long as multiple requesters access data in separate banks, all accesses are
performed simultaneously with no penalty. Also, when two memory accesses
involve separate 32K byte memory blocks, there are no memory conflicts, re-
gardless of the address. For multiple data accesses within the same block, the
memory organization also allows simultaneous multiple memory accesses as
long as they involve different banks. In one CPU cycle, two simultaneous ac-
cesses to two different internal memory banks occur without wait states. Two
simultaneous accesses to the same internal memory bank stall the entire CPU
pipeline for one CPU clock, providing two accesses in two CPU clocks. These
rules apply regardless of whether the accesses are loads or stores.

Internal Data Memory Organization

 2-16

Loads and stores from the same execute packet are seen by the data memory
controller during the same CPU cycle. Loads and stores from future or pre-
vious CPU cycles do not cause wait states for the internal data memory ac-
cesses in the current cycle. Thus, internal data memory access causes a wait
state only when a conflict occurs between instructions in the same fetch packet
accessing the same 16-bit wide bank. This conflict is an internal memory con-
flict. The data memory controller stalls the CPU for one CPU clock, serializes
the accesses, and performs each access separately. In prioritizing the two ac-
cesses, any load occurs before any store access. A load in parallel with a store
always has priority over the store. If both the load and the store access the
same resource (for example, the EMIF, or peripheral bus, internal memory
block), the load always occurs before the store. If both accesses are stores,
the access from DA1 takes precedence over the access from DA2. If both ac-
cesses are loads, the access from DA2 takes precedence over the access
from DA1. Figure 3–3 shows what access conditions cause internal memory
conflicts when the CPU makes two data accesses (on DA1 and DA2).

Figure 2–7. Conflicting Internal Memory Accesses to the Same Block
(TMS320C6201 Revisions 2 and 3)

DA1 Byte Halfword Word

DA2 2:0 000 001 010 011 100 101 110 111 000 010 100 110 000 100

Byte 000

001

010

011

100

101

110

111

Halfword 000

010

100

110

Word 000

100

Note: Conflicts shown in shaded areas.

Internal Data Memory Organization

2-17TMS320C6201/C6701 Program and Data Memory

Figure 2–8. Conflicting Internal Memory Accesses to the Same Block (TMS320C6701)

DA1 Byte Halfword Word
Double
-word

D
A
2 3–0

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

0
0
0
0

0
0
1
0

0
1
0
0

0
1
1
0

1
0
0
0

1
0
1
0

1
1
0
0

1
1
1
0

0
0
0
0

0
1
0
0

1
0
0
0

1
1
0
0

0
0
0
0

1
0
0
0

0000

0001

0010

0011

0100

0101

B
0110

B
y 0111y
t
e

1000
e

1001

1010

1011

1100

1101

1110

1111

0000

H

0010

H
a 0100a
l
f

0110
f
w
o

1000
o
r
d

1010
d

1100

1110

W
0000

W
o 0100

r
d 1000d

1100

D
W

0000
W

1000

Note: Conflicts shown in shaded areas.

Internal Data Memory Organization

 2-18

2.6.6 DMA Accesses to Internal Memory

The DMA controller can accesss any portion of one block of internal data
memory while the CPU is simultaneously accessing any portion of another
block. If both the CPU and the DMA controller are accessing the same block,
and portions of both accesses are to the same 16-bit bank, the DMA operation
can take place first or last, depending on the CPU/DMA priority settings. You
can use Figure 3–3 to determine DMA versus CPU conflicts. Assume that one
axis represents the DMA access and the other represents the CPU access
from one CPU data port. Then, perform this analysis again for the other data
port. If both comparisons yield no conflict, then there is no CPU/DMA internal
memory conflict. If either comparison yields a conflict, then there is a CPU/
DMA internal memory conflict. In this case, the priority is resolved by the PRI
bit of the DMA channel as described in Chapter 4, TMS320C6211 Two-Level
Internal Memory. If the DMA channel is configured as higher priority than the
CPU (PRI = 1), any CPU accesses are postponed until the DMA accesses fin-
ish and the CPU incurs a 1-CPU-clock wait state. If both CPU ports and the
DMA access the same memory block, the number of wait states increases to
two. If the DMA has multiple consecutive requests to the block required by the
CPU, the CPU is held off until all DMA accesses to the necessary blocks finish.
In contrast, if the CPU has higher priority (PRI = 0), then the DMA access is
postponed until the both CPU data ports stop accessing that bank. In this con-
figuration, a DMA access request never causes a wait state.

2.6.7 Data Endianness

Two standards for data ordering in byte-addressable microprocessors exist:

� Little-endian ordering, in which bytes are ordered from right to left, the
most significant byte having the highest address

� Big-endian ordering, in which bytes are ordered from left to right, the most
significant byte having the lowest address

Both the CPU and the DMA controller support a programmable endianness.
This endianness is selected by the LENDIAN pin on the device.
LENDIAN = 1 selects little endian, and LENDIAN big. Byte ordering within word
and half word data resident in memory is identical for little-endian and big-en-
dian data. Table 2–5 shows which bits of a data word in memory are loaded
into which bits of a destination register for all possible CPU data loads from big-
or little-endian data. The data in memory is assumed to be the same data that
is in the register results from the LDW instruction in the first row. Table 2–7 and
Table 2–8 show which bits of a register are stored in which bits of a destination
memory word for all possible CPU data stores from big- and little-endian data.
The data in the source register is assumed to be the same data that is in the
memory results from the STW instruction in the first row.

Internal Data Memory Organization

2-19TMS320C6201/C6701 Program and Data Memory

Table 2–5. Register Contents After Little-Endian or Big-Endian Data Loads
(TMS320C6201 and TMS320C6701)

Instruction
Address Bits

(1:0)
Big-Endian
Register Result

Little-Endian
Register Result

LDW 00 BA987654h BA987654h

LDH 00 FFFFBA98h 00007654h

LDHU 00 0000BA98h 00007654h

LDH 10 00007654h FFFFBA98h

LDHU 10 00007654h 0000BA98h

LDB 00 FFFFFFBAh 00000054h

LDBU 00 000000BAh 00000054h

LDB 01 FFFFFF98h 00000076h

LDBU 01 00000098h 00000076h

LDB 10 00000076h FFFFFF98h

LDBU 10 00000076h 00000098h

LDB 11 00000054h FFFFFFBAh

LDBU 11 00000054h 000000BAh

Note: The contents of the word in data memory at location xxxx xx00 is BA987654h.

Internal Data Memory Organization

 2-20

Table 2–6. Register Contents After Little-Endian or Big-Endian Data Loads
(TMS320C6701 only)

Instruction Address Bits (2:0)
Big-Endian
Memory Result

Little-Endian
Memory Result

LDDW
(’C6701 only)

000 FEDC BA98 7654 3210h FEDC BA98 7654 3210h

LDW 000 FEDC BA98h 7654 3210h

LDW 100 7654 3210h FEDC BA98h

Note: The contents of the doubleword in data memory at location xxxx x000 before the ST instruction
executes is FEDC BA98 7654 3210h.

Table 2–7. Memory Contents After Little-Endian or Big-Endian Data Stores
(TMS320C6201/C6701)

Instruction Address Bits (1:0)
Big-Endian
Memory Result

Little-Endian
Memory Result

STW 00 BA98 7654h BA98 7654h

STH 00 7654 1970h 0112 7654h

STH 10 0112 7654h 7654 1970h

STB 00 5412 1970h 0112 1954h

STB 01 0154 1970h 0112 5470h

STB 10 0112 5470h 0154 1970h

STB 11 0112 1954h 5412 1970h

Note: The contents of the word in data memory at location xxxx xx00 before the ST instruction
executes is 01121970h. The contents of the source register is BA987654h.

Peripheral Bus

2-21TMS320C6201/C6701 Program and Data Memory

2.7 Peripheral Bus

The peripherals are controlled by the CPU and the DMA controller through ac-
cesses of control registers. The CPU and the DMA controller access these reg-
isters through the peripheral data bus. The DMA controller directly accesses
the peripheral bus controller, whereas the CPU accesses it through the data
memory controller.

2.7.1 Byte and Halfword Access

The peripheral bus controller converts all peripheral bus accesses to word
accesses. However, on read accesses both the CPU and the DMA controller
can extract the correct portions of the word to perform byte and halfword ac-
cesses properly. Any side-effects caused by a peripheral control register read
occur regardless of which bytes are read. In contrast, for byte or halfword
writes, the values the CPU and the DMA controller only provide correct values
in the enabled bytes. The values that are always correct are shown in
Table 2–8. Undefined results are written to the nonenabled bytes. If you are
not concerned about the values in the disabled bytes, this is acceptable. Other-
wise, access the peripheral registers only via word accesses.

Table 2–8. Memory Contents After Little-Endian or Big-Endian Data Stores

Access
Type

Address Bits
(1:0)

Big-Endian
Register

Little-Endian
Memory Result

Word 00 XXXXXXXX XXXXXXXX

Halfword 00 XXXX???? ????XXXX

Halfword 10 ????XXXX XXXX????

Byte 00 XX?????? ??????XX

Byte 01 ??XX???? ????XX??

Byte 10 ????XX?? ??XX????

Byte 11 ??????XX XX??????

Note: X indicates nybbles correctly written, ? indicates nybbles with undefined value after
write

Peripheral Bus

 2-22

2.7.2 CPU Wait States

Isolated peripheral bus controller accesses from the CPU causes six CPU wait
states. These wait states are inserted to allow pipeline registers to break up
the paths between traversing the on-chip distances between the CPU and
peripherals as well as for arbitration time.

2.7.3 Arbitration Between the CPU and the DMA Controller

As shown in Figure 2–5 and Figure 2–6, the peripheral bus controller performs
arbitration between the CPU and the DMA controller for the peripheral bus.
Like internal data access, the PRI bits in the DMA controller determine the
priority between the CPU and the DMA controller. If a conflict occurs between
the CPU (via the data memory controller) the lower priority requester is held
off until the higher priority requester completes all accesses to the peripheral
bus controller. The peripheral bus is arbitrated as a single resource, so the low-
er priority resource is blocked from accessing all peripherals, not just the one
accessed by the higher priority requester.

3-1

TMS320C6202 Program and Data Memory

This chapter describes the TMS320C6202 program memory and data
memory controller. Program memory modes including cache operation and
bootload operation are discussed.

Topic Page

3.1 TMS320C6202 Program Memory Controller 3-2.

3.2 Memory Mapped Operation 3-4.

3.3 Cache Operation 3-5.

3.4 Bootload Operation 3-6.

3.5 TMS320C6202 Data Memory Controller 3-7.

Chapter 3

TMS320C6202 Program Memory Controller

 3-2

3.1 TMS320C6202 Program Memory Controller

The TMS320C6202 program memory controller (PMEMC) provides all of the
functionality available in the TMS320C6201 revision 3. The PMEMC operates
as either a 128K byte memory or direct-mapped cache. In addition to the
memory/cache, the C6202 provides 128K bytes of memory that operates as
a memory-mapped block. To achieve this functionality, the block of program
memory has been expanded to 128K bytes. A second 128K byte block of pro-
gram memory has been added. These two blocks can be accessed indepen-
dently, allowing for program fetch from one block by the CPU to occur in paral-
lel and without interfering with a DMA transfer with the other block of program
memory. Table 3–1 and Table 3–2 compare the internal memory and cache
configurations available on the current TMS320C6000 devices. Figure 3–1
shows a block diagram of the connections between the C6202 CPU, PMEMC,
and memory blocks. The addresses shown in Figure 3–1 are for operation in
memory map mode 1.

Table 3–1. TMS320C6201/C6701/C6202 Internal Memory Configurations

Device CPU

Internal
Memory
Architecture

Total Memory
(Bytes)

Program Memory
(Bytes)

Data Memory
(Bytes)

’C6201 6200 Harvard 128K 64K (map/cache) 64K (map)

’C6701 6700 Harvard 128K 64K (map/cache) 64K (map)

’C6202 6200 Harvard 384K 128K (map)
128K (map/cache)

128K (map)

Table 3–2. TMS320C6201/C6701/C6202 Cache Architectures

Cache Space Size (Bytes) Associativity Line Size (Bytes)

’C6201 program 64K Direct mapped 32

’C6701 program 64K Direct mapped 32

’C6202 program 128K Direct mapped 32

TMS320C6202 Program Memory Controller

3-3TMS320C6202 Program and Data Memory

Figure 3–1. TMS320C6202 Program Memory Controller Block Diagram

P
rogram

 D
ata

P
rogram

 A
ddress

C
ontrol

256

Program memory
controller
(PMEMC)

C62x CPU

Program fetch

DMA
bus

controller

External
memory
interface

256256mapped

0000 0000h

0001 FFFFh

Block 0
(128K bytes)

cached or
mapped

Block 1
(128K bytes)

0002 0000h

0003 FFFFh

Memory Mapped Operation

 3-4

3.2 Memory Mapped Operation

When the PCC field of the CPU control status register is programmed for
Mapped mode, both blocks of internal program RAM are mapped into internal
program space. Table 3–3 shows the address space for both blocks of RAM
for the map mode selected at device reset.

Table 3–3. Internal Program RAM Address Mapping in Memory Mapped Mode
Map 0 Map 1

Block 0 0140 0000h – 0141 FFFFh 0000 0000h – 0x0001 FFFFh

Block 1 0142 0000h – 0143 FFFFh 0002 0000h – 0x0003 FFFFh

In mapped mode, both the CPU and the DMA can access all locations in both
blocks of RAM. Any access outside of the address space that the internal RAM
is mapped to is forwarded to the EMIF. The DMA can only access one of the
two blocks of RAM at a time. The CPU and DMA can access the internal RAM
without interference as long as each accesses a different block. If the CPU and
DMA attempt to access the same block of RAM at the same time, then the DMA
is stalled until the CPU completes its accesses to that block. After the CPU ac-
cess is complete, the DMA is allowed to access the RAM. The DMA cannot
cross between Block 0 and Block 1 in a single transfer. You must use separate
DMA transfers to cross block boundaries.

Cache Operation

3-5TMS320C6202 Program and Data Memory

3.3 Cache Operation

When the PCC field of the CPU Control Status Register is programmed for one
of the Cache modes, block 1 operates as a cache while block 0 remains
mapped into internal program space. Table 3–4 shows the addresses occu-
pied by the RAM that is not used for cache, for each Map Mode.

Table 3–4. Internal Program RAM Address Mapping in Cache Mode

Map 0 Map 1

Block 0 0140 0000h – 0141 FFFFh 0000 0000h – 0001 FFFFh

The cache on the C6202 operates identically to the C6201 cache. Any CPU
or DMA access to the memory range that was occupied by the cache RAM
returns undefined results. As in mapped mode, simultaneous accesses to
block 0 by the CPU and DMA stalls the DMA until the CPU has completed its
access. A DMA access to block 0 while the cache is flushed continues without
stalling. The CPU is halted during a cache flush. You must ensure that all DMA
accesses to block 1 have completed before the cache is enabled.

Note:

If you change the operation mode of the PMEMC, you should use the follow-
ing assembly routine to ensure correct operation of the PMEMC. This routine
enables the cache. To change the PMEMC operation mode to a state other
than cache enable, you should modify line four of the routine to correspond
the the value of PCC that you want moved into B5. For example, to put the
cache into mapped mode 0000h should be moved into B5. The CPU regis-
ters used in this example have no significance. Any of the registers A0–A15
or B0–B15 can be used in the program.

.align 32
MVC .S2 CSR,B5 ;copy control status register

|| MVK .S1 0xff1f,A5
AND .L1x A5,B5,A5 ;clear PCC field of CSR value

|| MVK S2 0x0040,B5 ;set cache enable mask
OR .L2x A5,B5,B5 ;set cache enable bit
MVC .S2 B5,CSR ;update CSR to enable cache
NOP 4
NOP

Bootload Operation

 3-6

3.4 Bootload Operation

The ’C6202 bootload operates identically to the C6201 revision 3. During ROM
bootload, a 64K byte block of data is transferred from the beginning of CE1 to
memory at address 0. During HPI bootload, the host can read or write any in-
ternal or external memory location, including the entire internal program
space.

TMS320C6202 Data Memory Controller

3-7TMS320C6202 Program and Data Memory

3.5 TMS320C6202 Data Memory Controller

The TMS320C6202 data memory controller (DMEMC) provides all of the func-
tionality available in the TMS320C6201 revision 3. The C6202 DMEMC con-
tains 128K bytes of RAM organized in two blocks of four banks each. Each
bank is 16 bits wide. The DMEMC for the C6202 operates identically to the
C6201 DMEMC, the DMA controller or side A or side B of the CPU can simulta-
neously access two different banks without conflict. Figure 3–2 shows a block
diagram of the connections between the C6202 CPU, DMEMC, and memory
blocks. Table 3–5 shows the memory range occupied by each block of internal
data RAM.

Figure 3–2. TMS320C6202 Data Memory Controller Block Diagram

Block 1
(64K bytes)(64K bytes)

Block 0

Bank 3

Bank 2

Bank 1

Bank 0

Bank 3

Bank 2

Bank 1

Bank 0

controller
DMA bus

controller
bus

Peripheral

interface
memory
External

16

16

16

16

(DMEMC)
Data memory controller

323232

16

16

16

16

Data path AData path B

C62x CPU

3232 32 32

C
on

tr
ol

D
A

2
ad

dr
es

s

S
T

2
st

or
e

da
ta

LD
2

lo
ad

 d
at

a

C
on

tr
ol

D
A

1
ad

dr
es

s

S
T

1
st

or
e

da
ta

LD
1

lo
ad

 d
at

a

80
01

 0
00

0h

80
01

 F
F

F
F

h

80
00

 F
F

F
F

h

80
00

 0
00

0h

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

Table 3–5. Internal Data RAM Address Mapping
Block 0 8000 0000h – 8000 FFFFh
Block 1 8001 0000h – 8001 FFFFh

4-1

TMS320C6211/C6711
Two-Level Internal Memory

The TMS320C6211/C6711 provides a two level memory architecture for the
internal program and data busses. The first level memory for both the internal
program and data bus is a 4K byte cache, designated L1P for the program
cache and L1D for the data cache. The second level memory is a 64K byte
memory block that is shared by both the program and data memory buses,
designated L2.

Topic Page

4.1 Overview 4-2.

4.2 Internal Memory Control Registers 4-5.

4.3 L1P Description 4-6.

4.4 L1D Description 4-9.

4.5 L2 Description 4-13.

Chapter 4

Overview

 4-2

4.1 Overview

Figure 4–1 illustrates how the L1P, L1D, and L2 are arranged in the
TMS320C6211/C6711. Figure 4–2 illustrates the bus connections between
the CPU, internal memories, and the enhanced DMA for the ’C6211, and.

Figure 4–1. TMS320C6211/C6711 Block Diagram

L1P cache
direct mapped

4K bytes

L2 memory
4 banks

64K bytes

L1D cache
2-way set
associative

4K bytes
Timer 0Timer 1

Enhanced
DMA

controller

Power down logic

External
memory
interface
(EMIF)

Multichannel
buffered

serial port 1
(McBSP 1)

Host port
interface

(HPI)

C6200B CPU

Data path 2
B register file

L2S2M2D2

Data path 1
A register file

L1 S1 M1 D1

Instruction fetch

Instruction dispatch

Instruction decode

Control
registers
In-circuit
emulation

In
te

rr
up

t c
on

tr
ol

Multichannel
buffered

serial port 0
(McBSP 0)

Table 4–1. TMS320C6211/C6711 Internal Memory Configurations

Device CPU

Internal
Memory
Architecture

Total Memory
(Bytes)

Program Memory
(Bytes)

Data Memory
(Bytes)

Unified Memory
(Bytes)

’C6211/
C6711

6200 Harvard (L1)
Unified (L2)

72K 4K (cache) 4K (cache) 64K (map/cache)

Table 4–2. TMS320C6211/C6711 Cache Architectures

Cache Space Size (Bytes) Associativity Line Size (Bytes)

L1P 4K Direct mapped 64

L1D 4K 2-way 32

L2 64K 1- to 4-way 128

Overview

4-3TMS320C6211/C6711 Two-Level Internal Memory

Figure 4–2. TMS320C6211 Internal Memory Block Diagram

256

128

LD
1 load data

S
T

1 store data

D
A

1 address

LD
2 load data

S
T

2 store data

D
A

2 address

pr
og

ra
m

 a
dd

re
ss

pr
og

ra
m

 d
at

a

256

128128

C62x CPU

Program fetch

Data path A Data path B

L2 cache
controller

RAM
64K Bytes

64

64 EDMA

32 32 32 32

64

64

data

address

data

snoop address

L1 data cache
controller

Cache RAM
4K bytes

256data

address

256 L1 program cache
controller

Cache RAM
4K Bytes

snoop address

Overview

 4-4

Figure 4–3. TMS320C6711 Internal Memory Block Diagram

256

128

LD
1 load data

S
T

1 store data

D
A

1 address

LD
2 load data

S
T

2 store data

D
A

2 address

pr
og

ra
m

 a
dd

re
ss

pr
og

ra
m

 d
at

a

256

128128

C67x CPU

Program fetch

Data path A Data path B

L2 cache
controller

RAM
64K bytes

64

64 EDMA

32 64 32 64

64

64

data

address

data

snoop address

L1 data cache
controller

Cache RAM
4K bytes

256data

address

256 L1 program cache
controller

Cache RAM
4K bytes

snoop address

Internal Memory Control Registers

4-5TMS320C6211/C6711 Two-Level Internal Memory

4.2 Internal Memory Control Registers

The L1P, L1D, and L2 are controlled by a set of memory configuration regis-
ters. The CPU can read and write to the internal memory control registers. The
EDMA (and thus the HPI) can only read these registers. Table 4–3 lists these
control registers and their associated addresses. You should initialize a
memory attribute register by setting the appropriate MAR bits, and then read
that memory attribute register before continuing execution to insure proper
operation.

Table 4–3. Internal Memory Control Register Addresses

Register Address
(byte)

Register
Mnemonic

Register Name

0184 0000h CCFG Cache configuration register

0184 4000h L2FBAR L2 flush base address register

0184 4004h L2FWC L2 flush word count register

0184 4010h L2CBAR L2 clean base address register

0184 4014h L2CWC L2 clean word count register

0184 4020h L1PFBAR L1P flush base address register

0184 4024h L1PFWC L1P flush word count register

0184 4030h L1DFBAR L1D flush base address register

0184 4034h L1DFWC L1D flush word count register

0184 5000h L2FLUSH L2 flush register

0184 5004h L2CLEAN L2 clean register

0184 8200h MAR0 Memory attribute register – Region 0

0184 8204h MAR1 Memory attribute register – Region 1

0184 8208h MAR2 Memory attribute register – Region 2

0184 820Ch MAR3 Memory attribute register – Region 3

0184 8240h MAR4 Memory attribute register – Region 4

0184 8244h MAR5 Memory attribute register – Region 5

0184 8248h MAR6 Memory attribute register – Region 6

0184 824Ch MAR7 Memory attribute register – Region 7

0184 8280h MAR8 Memory attribute register – Region 8

0184 8284h MAR9 Memory attribute register – Region 9

0184 8288h MAR10 Memory attribute register – Region 10

0184 828Ch MAR11 Memory attribute register – Region 11

0184 82C0h MAR12 Memory attribute register – Region 12

0184 82C4h MAR13 Memory attribute register – Region 13

0184 82C8h MAR14 Memory attribute register – Region 14

0184 82CCh MAR15 Memory attribute register – Region 15

L1P Description

 4-6

4.3 L1P Description

The L1P is organized as a 64 line direct mapped cache with a 64 byte (2 fetch
packet) line size. The L1P data request size is one line, thus the six least
significant bits of a requested address are ignored. The next six bits of the ad-
dress are used to reference the set within the cache that the addressed data
maps to. The remaining bits of the address are used as a unique tag for the
requested data. Figure 4–4 illustrates how a 32 bit address is allocated to pro-
vide the set index and tag data for the L1P.

Figure 4–4. L1P Address Allocation

31 12 11 6 5 0

Tag Set Offset

A cache hit returns data to the CPU in a single cycle. Unlike the
TMS320C6201, the L1P only operates as a cache and cannot be memory
mapped. The L1P does not support freeze or bypass modes. The only values
allowed for the program cache control (PCC) field in the CPU control and sta-
tus register (CSR) are 000b and 010b. All other values for PCC are reserved,
as shown in Table 4–4.

Table 4–4. Level 1 Program Cache Mode Settings

Cache Mode PCC value Description

Cache enable 010b Direct mapped cache

Cache enable 000b Direct mapped cache

other Reserved

Any initial program fetch of an address causes a cache miss to occur. The data
is requested from the L2 and stored in the internal cache memory. Any subse-
quent read from a cached address causes a cache hit and that data is loaded
from the L1P memory. Figure 4–5 illustrates the organization of a direct
mapped cache.

L1P Description

4-7TMS320C6211/C6711 Two-Level Internal Memory

Figure 4–5. L1P Direct Mapped Cache Diagram

= 1 0

Program
data

L2
data

Tag Set Offset

Tag RAM

Address

Data out

Cache data

Address

Data out

There are two methods for user-controlled invalidation of data in the L1P. Writ-
ing a 1 to the IP bit of the cache configuration register (CCFG) invalidates all
of the cache tags in the L1P tag RAM. This is a write-only bit, a read of this
bit will always return a 0. Any CPU access to the L1P while invalidation is being
processed stalls the CPU until the invalidation has completed and the CPU re-
quest has been fetched. Figure 4–12 shows the format for the CCFG register.
Table 4–6 describes the operation of this register.

L1P Description

 4-8

The second method for invalidating the L1P requires the L1PFBAR and
L1PFWC registers. This is useful for invalidating a block of data in the L1P.
You must first write a word–aligned address into the L1PFBAR. This value is
the starting address for the invalidation. The number of words to be invali-
dated will be equal to the value written into the L1PFWC register. The L1P
searches for and invalidates all lines whose external memory address falls
within the range from L1PFBAR to L1PFBAR+L1PFWC–4. If L1PFBAR or
L1PFWC are not aligned to the L1P line size (16 words), all lines which contain
any address in the specified range are invalidated. Using this block invalida-
tion will not stall any pending CPU accesses. The block invalidation begins
when the L1PFWC is written, therefore you should take care to ensure that the
L1PFBAR register is set up correctly prior to writing the L1PFWC. Figure 4–6
and Figure 4–7 show the format for the L1PFBAR and L1PFWC.

Figure 4–6. L1P Flush Base Address Register Fields (L1PFBAR)

31 0

L1P flush base address

RW,+x

Figure 4–7. L1P Flush Word Count Register Fields (L1PFWC)

31 16 15 0

rsvd L1P flush word count

R,+x RW,+x

L1D Description

4-9TMS320C6211/C6711 Two-Level Internal Memory

4.4 L1D Description

The L1D is organized as a 64 set 2–way set associative cache with a 32 byte
line size. The two least significant bits of a requested address are ignored by
the L1D since the smallest access size is for a word. The next bit of the address
is used to address the correct word. Bits four and three select one of the four
8 byte sublines in the addressed set. The next six bits select the set within the
cache that the addressed data maps to. The remaining bits of the address are
used as a unique tag for the requested data. Figure 4–8 illustrates how a 32
bit address is allocated to provide the word index, subline index, set index and
tag data for the L1D.

Figure 4–8. L1D Address Allocation

31 11 10 5 4 3 2 1 0

Tag Set Subline Word Offset

A cache hit returns data to the CPU in a single cycle. Operation on a cache
miss depends on the direction of the access. On a read miss, the L1D sends
a read request to the L2 to fetch the data. When the data is returned from the
L2, the L1D analyzes the set that the addressed data maps to in each way.
The L1D controller stores the new data into the set that was least recently used
(LRU). If the data in that set has been modified but the corresponding address
has not be updated (the cache line is dirty), that data is written out to the L2.
In this way, cached data that has been modified will not be discarded before
it is updated in its original address. If two read misses occur in the same cycle,
they are serialized by the L1D so that only one request is presented to the L2
at a time. On a write miss, the L1D sends the write request to the L2. The data
is not stored in the L1D. Write requests from the L1D to the L2 are buffered.
If a write request is still pending from the L1D when a read miss occurs, this
buffer is allowed to empty before the read request is sent to the L2.

The L1D only operates as a cache and cannot be memory mapped. The L1D
does not support freeze or bypass modes. The only values allowed for the data
cache control (DCC) field in the CPU control and status register (CSR) are
000b and 010b. All other values for DCC are reserved, as shown in Table 4–5.

L1D Description

 4-10

Table 4–5. Level 1 Data Cache Mode Settings

Cache Mode DCC value Description

Cache enable 000b 2-way cache

Cache enable 010b 2-way cache

Other Reserved

Any initial load of an address causes a cache miss to occur. The data is loaded
and stored in the internal cache memory. Any subsequent read from a cached
address will cause a cache hit and that data will be loaded from the internal
cache memory. Figure 4–9 illustrates the organization for a 2-way set associa-
tive cache.

L1D Description

4-11TMS320C6211/C6711 Two-Level Internal Memory

Figure 4–9. L1D 2–Way Set Associative Cache Diagram.

Tag Set OffsetWordSubline

L2
Data

Data

1 0

32

64

256

0 1

=

Way 1

Tag RAM

Address

Data out

Cache
data

Address

Data out

=

Way 0

Tag RAM

Address

Data out

Cache
data

Address

Data out

L1D Description

 4-12

There are two methods for user-controlled invalidation of data in the L1D. Writ-
ing a 1 to the ID bit of the cache configuration register (CCFG) invalidates all
the cache tags in the L1D tag RAM. This is a write-only bit, a read of this bit
returns a 0. Any CPU access to the L1D while invalidation is being processed
stalls until the invalidation has completed and the CPU request has been
fetched.

The second method for invalidating the L1D requires the L1DFBAR and
L1DFWC registers. This is useful for invalidating a block of data in the L1D.
You must first write a word-aligned address into the L1DFBAR. This value is
used as the starting address for the invalidation. The number of words invali-
dated equals the value written into the L1DFWC register. The L1D searches
for and invalidate all lines whose external memory address falls within the
range from L1DFBAR to L1DFBAR+L1DFWC–4. The data in these lines is
sent to the L2 to be stored in the original memory location. In this way, the L2
and external memory will remain coherent with the data that is invalidated.
If L1DFBAR or L1DFWC are not aligned to the L1D line size (8 words) all lines
which contain data in the address range specified are invalidated. However
only those words that are contained in the range from L1DFBAR to
L1DFBAR+L1DFWC–4 will be saved to the L2. This block invalidation will oc-
cur in the background and not stall any pending CPU accesses. The block in-
validation begins when the L1DFWC is written, therefore you should take care
to ensure that the L1DFBAR register is set up correctly prior to writing the
L1DFWC. This is the preferred method for writing data that has been cached
in the L1D to the external memory space. Figure 4–10 and Figure 4–11 show
the format for the L1DFBAR and L1DFWC.

Figure 4–10. L1D Flush Base Address Register Fields (L1DFBAR)

31 0

L1D flush base address

RW,+x

Figure 4–11. L1D Flush Word Count Register Fields (L1DFWC)

31 16 15 0

rsvd L1D flush word count

R,+x RW,+x

L2 Description

4-13TMS320C6211/C6711 Two-Level Internal Memory

4.5 L2 Description

The L2 is accessible from both the L1P and the L1D. On a cache miss from
the L1P or L1D, the request is first sent to the L2 to be serviced. How the L2
services the request depends on the selected operation mode of the L2.
Table 4–6 shows the supported operation modes for the L2. Figure 4–13 illus-
trates the division of the L2 memory space according to the L2 Mode.

Writing to the L2MODE field of the cache configuration register (CCFG) sets
the L2 mode. Figure 4–12 shows the format for the CCFG register. Table 4–6
describes the operation of this register.

Figure 4–12. Cache Configuration Register Fields (CCFG)

31 30 10 9 8 7 3 2 0

P rsvd IP ID rsvd L2MODE

RW,+0 R,+x W,+0 W,+0 R,+0 0000 RW,+000

Table 4–6. Cache Configuration Register Field Description

Field Description

L2MODE L2 Operation Mode
L2MODE = 000b: 64K bytes SRAM
L2MODE = 001b: 16K bytes 1-way cache / 48 Kbytes mapped RAM
L2MODE = 010b: 32K bytes 2-way cache / 32 Kbytes mapped RAM
L2MODE = 011b: 48K bytes 3-way cache / 16 Kbytes mapped RAM
L2MODE = 111b: 64K bytes 4-way cache
L2MODE = other: Reserved

ID Invalidate L1D
ID = 0: Normal L1D operation
ID = 1: All L1D lines invalidated

IP Invalidate LIP
IP = 0: Normal L1P operation
IP = 1: All L1P lines invalidated

P L2 Requestor Priority
P = 0: CPU accesses prioritized over enhanced DMA accesses
P = 1: Enhanced DMA accesses prioritized over CPU accesses

L2 Description

 4-14

The reset value of the L2MODE field is 000b, thus the L2 RAM is configured
as 64K bytes of mapped memory at reset to support bootloading. Any L2 RAM
that is configured as cache is no longer in the memory map. For example, in
L2 Mode 010b, the address space from 0000 8000h to 0000 FFFFh is no
longer mapped. The associativity of the L2 cache RAM is a function of the L2
Mode. Each 16K byte block of RAM included in the cache adds one way to
the associativity. The line size for the L2 cache is 128 bytes. Figure 4–13
shows the cache associativity for each L2 Mode.

Figure 4–13. L2 Memory Configuration

16K bytes

16K bytes

16K bytes

ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ

16K bytes

0000 0000h

0000 C000h

0000 8000h

0000 4000h

Block base addressL2 mode

000 011010001 111

L2 memory

A
ll

S
R

A
M

1-
w

ay
 c

ac
he

3/
4

S
R

A
M

1/
2

S
R

A
M

2-
w

ay
 c

ac
he

1/
4

S
R

A
M

3-
w

ay
 c

ac
he 4-

w
ay

 c
ac

he

L2 Description

4-15TMS320C6211/C6711 Two-Level Internal Memory

4.5.1 L2 Interfaces

The L2 Controller services requests from three different requestors – the L1P,
the L1D, and the Enhanced DMA. Since the L1P only sends read requests,
a single 256 bit wide data bus transfers data from the L2 to the L1P. The L1D
to L2 interface consists of a 128 bit read bus from the L2 to the L1D and a 128
bit write bus from the L1D to the L2. The L2 transfers data to and from the
EDMA through a 64 bit read and a 64 bit write bus.

4.5.2 L2 Operation

Each L1D access to the L2 memories takes two cycles. Since the line size of
L1D cache is twice the width of the bus between the cache and the L2, a miss
to the L2 requires two accesses. Therefore, a miss from L1D to the L2 takes
four cycles to complete if the data is available in the L2. A miss from the L1P
to the L2 completes in five cycles.

The L2 memories are organized as four 64 bit wide banks. Two accesses can
be serviced at the same time if the two accesses do not use the same bank.
Since the L1P data bus is 256 bits wide, any L1P request that occurs at the
same time as an L1D or EDMA request will cause a bank collision and there-
fore a stall. Concurrent accesses between the L1D and EDMA busses to differ-
ent banks can be serviced without stalling.

The priority bit (P) in the Cache Configuration Register (CCFG) determines the
priority when a bank collision occurs between requestors. If the P bit is set to
0, CPU accesses (L1P and L1D) are given priority over an EDMA request.
Thus, any pending CPU request will complete before the EDMA request is ser-
viced. If this bit is set to 1, EDMA requests are prioritized over CPU accesses.
When an L1P and L1D access collide, the L1P request is always given priority.

When an L2 location is operating as mapped RAM, an access to that location
operates like a standard RAM. A read request reads the value stored in that
location and a write request updates that location with the new data. When
an L2 location is enabled as a cache, the operation is similar to the L1D cache.
If a read request is made to the L2, the tag RAM for each of the cached blocks
is searched for that address. If a tag hit occurs, that data is sent to the request-
or. If the data is not in the L2 the requestor is stalled and the data is requested
from the Enhanced DMA. To fulfill an L1P request, the L2 controller must make
eight 64 bit requests to the EDMA. Similarly, four requests to the EDMA are
required to service an L1D request.

L2 Description

 4-16

The L2 uses a least recently used (LRU) replacement strategy to replace old
cached data with new data. To determine which cache lines to replace, the
address for the new data is used to calculate the set which that address maps
to. Each external address maps to one set in each cache way. Then, that set
in each way is interrogated to determine which way contains the least recently
used (LRU) data. The new data is stored at that location. If the cache location
to be replaced contains valid data, the previous data is evicted. An eviction
occurs as follows. The L2 first polls the L1D to determine if the evicted address
is also cached in the L1D. This is referred to as snooping the L1D. If data is
returned from the L1D, it is written out to the EDMA. Then, both the L1D and
L2 lines are invalidated. If the L1D does not cache the evicted address, the
data in the L2 to written out to the EDMA. In this case, only the L2 line is
invalidated. Finally, the requested data is stored in the L2 and sent to the re-
questor. This mechanism ensures that the CPU does not access stale data
and that no data is lost. Figure 4–14 diagrams the decision process used by
the L2 controller to service a data request from the CPU when the L2 is operat-
ing as a cache. The L2 performs evictions for read and write requests.

L2 Description

4-17TMS320C6211/C6711 Two-Level Internal Memory

Figure 4–14. L2 Cache Data Request Flow Chart

Is data in L2?
Fetch data
from EDMA

YesNo
Fetch data

from L2

Determine LRU
location

Is replaced
data in L1D?

Write replaced
data from L2

to EDMA

No

Write replaced
data from L1D

to EDMA

Invalidate
L1D line

Invalidate
L2 line

Yes

Store data to L2 Send data to CPU

Done

CPU requests
data

Is valid
data in LRU

location?

No

Yes

L2 Description

 4-18

The memory attribute registers (MARs) can be programmed to turn on caching
of each of the external chip enable (CE) spaces. In this way, you can perform
single word reads to external mapped devices. Without this feature any
external read would always read an entire L2 line of data. Each of the four CE
spaces is divided into four ranges, each of which maps the least significant bit
of an MAR register. If an MAR register is set, the corresponding address range
is cached by the L2. At reset, the MAR registers are set to 0. To begin caching
data in the L2, you must initialize the appropriate MAR register to 1. The MAR
registers define cacheability for the EMIF only. Addresses accessed by the
EMIF which are not defined by the MAR registers are always cacheable.
Figure 4–15 shows the format for the MARs. Table 4–3 illustrates which ad-
dress range each MAR bit enables for caching.

Figure 4–15. L2 CE Space Allocation Register Fields

MAR0

31 1 0

rsvd CE 0.0

R,+x RW,+0

MAR1

31 1 0

rsvd CE 0.1

R,+x RW,+0

MAR2

31 1 0

rsvd CE 0.2

R,+x RW,+0

MAR3

31 1 0

rsvd CE 0.3

R,+x RW,+0

MAR4

31 1 0

rsvd CE 1.0

R,+x RW,+0

MAR5

31 1 0

rsvd CE 1.1

R,+x RW,+0

L2 Description

4-19TMS320C6211/C6711 Two-Level Internal Memory

Figure 4–15.L2 CE Space Allocation Register Fields (Continued)

MAR6

31 1 0

rsvd CE 1.2

R,+x RW,+0

MAR7

31 1 0

rsvd CE 1.3

R,+x RW,+0

MAR8

31 1 0

rsvd CE 2.0

R,+x RW,+0

MAR9

31 1 0

rsvd CE 2.1

R,+x RW,+0

MAR10

31 1 0

rsvd CE 2.2

R,+x RW,+0

MAR11

31 1 0

rsvd CE 2.3

R,+x RW,+0

MAR12

31 1 0

rsvd CE 3.0

R,+x RW,+0

MAR12

31 1 0

rsvd CE 3.1

R,+x RW,+0

L2 Description

 4-20

Figure 4–15.L2 CE Space Allocation Register Fields (Continued)

MAR14

31 1 0

rsvd CE 3.2

R,+x RW,+0

MAR15

31 1 0

rsvd CE 3.3

R,+x RW,+0

Table 4–7. Memory Attribute Register Functions

MAR Address Range Enabled CE Space

15 B300 0000h – B3FF FFFFh CE3

14 B200 0000h – B2FF FFFFh CE3

13 B100 0000h – B1FF FFFFh CE3

12 B000 0000h – B0FF FFFFh CE3

11 A300 0000h – A3FF FFFFh CE2

10 A200 0000h – A2FF FFFFh CE2

9 A100 0000h – A1FF FFFFh CE2

8 A000 0000h – A0FF FFFFh CE2

7 9300 0000h – 93FF FFFFh CE1

6 9200 0000h – 92FF FFFFh CE1

5 9100 0000h – 91FF FFFFh CE1

4 9000 0000h – 90FF FFFFh CE1

3 8300 0000h – 83FF FFFFh CE0

2 8200 0000h – 82FF FFFFh CE0

1 8100 0000h – 81FF FFFFh CE0

0 8000 0000h – 80FF FFFFh CE0

L2 Description

4-21TMS320C6211/C6711 Two-Level Internal Memory

4.5.3 L2 EDMA Service

EDMA accesses are only allowed to L2 space that is configured as mapped
RAM. When the EDMA makes a read request to the L2, the L2 snoops the data
from the L1D and stalls the EDMA until a response is returned. If data that
must be updated is returned, that data is placed in the L2 and the EDMA re-
quest proceeds. In this case, the L1D line is invalidated to maintain coherency.
If the L1D does not return data to the L2 then the data is read from the L2. The
L2 does not snoop the L1P for data when a EDMA read request is received
because the CPU cannot modify data in L1P so it’s data will not be incoherent.

When the EDMA makes a write request to the L2, both the L1P and the L1D
are snooped for the data. Both the L1P and the L1D must be notified of the
write because the L2 has no knowledge of the type of data being written by the
EDMA, whether program or data. If the L1P responds that it is caching the ad-
dressed data, then that line is invalidated and the data is written into L2. Simi-
larly, if the L1D is caching that address, then that line in the L1D is invalidated
and the data is written to L2. By invalidating the lines in the L1P or the L1D,
the correct data will be fetched from the L2 on the next CPU request of that
data.

4.5.4 L2 Invalidation

The method for user controlled invalidation of data in the L2 is similar to those
for the L1P and the L1D. For the L2, however, there are two types of invalida-
tion. The first type of invalidation is an L2 flush. During a flush, the contents
of the L2 are copied out through the enhanced DMA. Like an EDMA read or
L2 data eviction, the L1D is snooped for any modified (dirty) data that is being
copied out by the flush. The second type of L2 invalidation is a clean. The
clean operation copies data from the L2 through the EDMA to the external
memory space and snoops data from the L1D. In addition, the clean operation
invalidates any line in the L1P, L1D, or L2 that caches data that is copied to the
external memory space.

To initiate an L2 flush of the entire L2 cache space, write a 1 to the F bit of the
L2FLUSH register. This bit remains set to 1 until the flush is complete at which
time the register is cleared to 0 by the L2 controller. Figure 4–16 shows the
fields of the L2FLUSH register. Table 4–8 describes the operation of the
L2FLUSH register. Similarly, to initiate an L2 clean of the entire L2 cache
space set the C bit of the L2CLEAN register to 1. This bit remains set to 1 until
the clean is complete at which time the register is cleared to 0. Figure 4–17
shows the fields of the L2CLEAN register. Table 4–9 describes the operation
of the L2CLEAN register.

L2 Description

 4-22

Figure 4–16. L2 Flush Register Fields (L2FLUSH)

31 1 0

rsvd F

R,+x RW,+0

Table 4–8. L2 Flush Register Fields Description

Field Description

F Flush L2
F = 0: Normal L2 operation
F = 1: All L2 lines flushed

Figure 4–17. L2 Clean Register Fields (L2CLEAN)

31 1 0

rsvd C

R,+x RW,+0

Table 4–9. L2 Clean Register Fields Description

Field Description

C Clean L2
C = 0: Normal L2 operation
C = 1: All L2 lines cleaned

It is also possible to flush and clean a range of addresses from the L2. To flush
a range of address from the L2, write the word–aligned address for the start
of the flush into the L2FBAR. The number of words to be flushed is equal to
the value written into the L2FWC register. The L2 controller then searches all
L2 cache blocks for all lines whose external memory address falls within the
range from L2FBAR to L2FBAR+L2FWC–4 and copies that data through the
EDMA to the external memory space. The L1D is snooped to ensure that the
correct data is stored in the original memory location. The L2 flush occurs in
the background and does not stall any pending CPU accesses. The flush be-
gins when the L2FWC is written, therefore you should take care to ensure that
the L2FBAR register is set up correctly prior to writing the L2FWC. Figure 4–18
shows the fields in the L2FBAR register. Figure 4–19 shows the fields in the
L2FWC register.

Figure 4–18. L2 Flush Base Address Register Fields (L2FBAR)

31 0

L2 Flush Base Address

RW,+x

L2 Description

4-23TMS320C6211/C6711 Two-Level Internal Memory

Figure 4–19. L2 Flush Word Count Register Fields (L2FWC)

31 16 15 0

rsvd L2 Flush Word Count

R,+x R,+x

To clean a range of address from the L2, write the word-aligned address for
the start of the clean into the L2CBAR. The number of words to clean is equal
to the value written into the L2CWC register. The L2 controller then searches
all L2 cache blocks for all lines whose external memory address falls within the
range from L2CBAR to L2CBAR+L2CWC–4 and copies that data through the
EDMA to external memory space. The L1D is snooped to ensure that the
correct data is stored in the original memory location. In addition to snooping
data from the L1D, any L1P or L1D lines that cache a cleaned address are
invalidated. The L2 clean occurs in the background and does not stall any
pending CPU accesses. The clean begins when the L2CWC is written,
therefore you should take care to ensure that the L2CBAR register is set up
correctly prior to writing the L2CWC. If L2CBAR or L2CWC are not aligned to
the L2 line size (32 words), all lines which contain the words specified are inval-
idated. However only those words that are contained in the range from
L2CBAR to L2CBAR + L2CWC–4 are saved to the external memory space.
Figure 4–20 shows the fields in the L2CBAR register. Figure 4–21 shows the
fields in the L2CWC register.

Figure 4–20. L2 Clean Base Address Register Fields (L2CBAR)

31 0

L2 Clean Base Address

RW,+x

Figure 4–21. L2 Clean Word Count Register Fields (L2CWC)

31 16 15 0

rsvd L2 Clean Word Count

R,+x R,+x

If more than one block invalidation, block flush, or block clean is requested at
one time, the CPU is stalled until all are completed. For example, if an L1P
invalidate is being processed and you set up an L2 clean by writing to the
L2CWC register, the CPU is stalled until both the L1P invalidate and L2 clean
are complete.

5-1

Direct Memory Access (DMA) Controller

This chapter describes the direct memory access channels and registers
available for the TMS320C6201/C6202/C6701 devices.

Topic Page

5.1 Overview 5-2.

5.2 DMA Registers 5-5.

5.3 Memory Map 5-12.

5.4 Initiating a Block Transfer 5-13.

5.5 Transfer Counting 5-16.

5.6 Synchronization: Triggering DMA Transfers 5-17.

5.7 Address Generation 5-22.

5.8 Split-Channel Operation 5-28.

5.9 Resource Arbitration and Priority Configuration 5-30.

5.10 DMA Channel Condition Determination 5-33.

5.11 DMA Controller Structure 5-35.

5.12 DMA Action Complete Pins 5-38.

5.13 Emulation 5-38.

Chapter 5

Overview

 5-2

5.1 Overview

The direct memory access (DMA) controller transfers data between regions
in the memory map without intervention by the CPU. The DMA controller al-
lows movement of data to and from internal memory, internal peripherals, or
external devices to occur in the background of CPU operation. The DMA con-
troller has four independent programmable channels, allowing four different
contexts for DMA operation. In addition, a fifth (auxiliary) channel allows the
DMA controller to service requests from the host port interface (HPI). In dis-
cussing DMA operations, several terms are important:

� Read transfer: The DMA controller reads a data element from a source
location in memory.

� Write transfer: The DMA controller writes the data element that was read
during a read transfer to its destination in memory.

� Element transfer: This form refers to the combined read and write transfer
for a single data element.

� Frame transfer: Each DMA channel has an independently programmable
number of elements per frame. In completing a frame transfer, the DMA
controller moves all elements in a single frame.

� Block transfer: Each DMA channel also has an independently program-
mable number of frames per block. In completing a block transfer, the
DMA controller moves all frames that it has been programmed to move.

� Transmit element transfer: In split mode, data elements are read from the
source address, and writing it to the split destination address. See section
5.8 for details.

� Receive element transfer: In split mode, data elements are read from the
split source address, and writing it to the destination address. See section
5.8 for details.

The DMA controller has the following features:

� Background operation: The DMA controller operates independently of the
CPU.

� High throughput: Elements can be transferred at the CPU clock rate. See
section 5.11, Structure, on page 5-35 for more information.

� Four channels: The DMA controller can keep track of the contexts of four
independent block transfers. See section 5.2, DMA Registers, on page
5-5 for more information about saving the contents of multiple block
transfers.

Overview

5-3Direct Memory Access (DMA) Controller

� Auxiliary channel: This channel allows the host port to make requests into
the CPU’s memory space. The auxiliary channel requests may be priori-
tized relative to other channels and the CPU.

� Split-channel operation: A single channel can be used to perform both the
receive and transmit element transfers from or to a peripheral simulta-
neously, effectively acting like two DMA channels. See section 5.8 on page
5-28 for more information.

� Multiframe transfer: Each block transfer can consist of multiple frames of
a programmable size. See Section 5.5, Transfer Counting.

� Programmable priority: Each channel has independently programmable
priorities versus the CPU.

� Programmable address generation: Each channel’s source and destination
address registers can have configurable indexes for each read and write
transfer. The address can remain constant, increment, decrement, or be
adjusted by a programmable value. The programmable value allows an in-
dex for the last transfer in a frame distinct from that used for the preceding
transfers. See section 5.7.1 on page 5-22 for more information.

� Full 32-bit address range: The DMA controller can access any region in
the memory map:

� On-chip data memory

� On-chip program memory when it is mapped into memory space
rather than being used as cache

� On-chip peripherals

� External memory via the EMIF

� Expansion memory via the expansion bus

� Programmable width transfers: Each channel can be independently con-
figured to transfer either bytes, 16-bit halfwords, or 32-bit words. See sec-
tion 5.7.3 on page 5-23 for more information.

� Autoinitialization: Once a block transfer is complete, a DMA channel can
automatically reinitialize itself for the next block transfer. See section 5.4.1
on page 5-13 for more information.

� Event synchronization: Each read, write, or frame transfer may be initiated
by selected events. See Section 5.6 on page 5-17 for more information.

� Interrupt generation: On completion of each frame transfer or block transfer,
as well as on various error conditions, each DMA channel can send an inter-
rupt to the CPU. See section 5.10 on page 5-33 for more information.

Overview

 5-4

Figure 5–1 shows the ’C6000 block diagram with the DMA-related compo-
nents shaded.

Figure 5–1. DMA Controller Interconnect to TMS320C6201/C6202/C6701
Memory-Mapped Modules

DMA control

Program memory/cache

Program memory controller

EMIF

PLL

Host port/ DMA
controller

Peripheral
bus

controller

EMIF control

HPI control
McBSPs

Interrupt selector
Timers

Data memory

Data memory
controller

CPU core

2
Data path

1
Data path

Instruction decode
Instruction dispatch

Program fetch

down
Power

Boot
configuration

Expansion bus

DMA Registers

5-5Direct Memory Access (DMA) Controller

5.2 DMA Registers

The DMA registers configure the operation of the DMA controller. Table 5–1
and Table 5–2 show how the DMA control registers are mapped in memory.
These registers include the DMA global data, count reload, index, and address
registers, as well as independent control registers for each channel.

DMA Registers

 5-6

Table 5–1. DMA Control Registers by Address

Hex Byte
Address Name

Described
in Section

0184 0000 DMA channel 0 primary control 5.2.1

0184 0004 DMA channel 2 primary control 5.2.1

0184 0008 DMA channel 0 secondary control 5.10

0184 000C DMA channel 2 secondary control 5.10

0184 0010 DMA channel 0 source address 5.7

0184 0014 DMA channel 2 source address 5.7

0184 0018 DMA channel 0 destination address 5.7

0184 001C DMA channel 2 destination address 5.7

0184 0020 DMA channel 0 transfer counter 5.5

0184 0024 DMA channel 2 transfer counter 5.5

0184 0028 DMA global count reload register A 5.5

0184 002C DMA global count reload register B 5.5

0184 0030 DMA global index register A 5.7.2

0184 0034 DMA global index register B 5.7.2

0184 0038 DMA global address register A 5.8

0184 003C DMA global address register B 5.8

0184 0040 DMA channel 1 primary control 5.2.1

0184 0044 DMA channel 3 primary control 5.2.1

0184 0048 DMA channel 1 secondary control 5.10

0184 004C DMA channel 3 secondary control 5.10

0184 0050 DMA channel 1 source address 5.7

0184 0054 DMA channel 3 source address 5.7

0184 0058 DMA channel 1 destination address 5.7

0184 005C DMA channel 3 destination address 5.7

0184 0060 DMA channel 1 transfer counter 5.5

0184 0064 DMA channel 3 transfer counter 5.5

0184 0068 DMA global address register C 5.8

0184 006C DMA global address register D 5.8

0184 0070 DMA auxiliary control register 5.9.1

DMA Registers

5-7Direct Memory Access (DMA) Controller

Table 5–2. DMA Control Registers by Register Name

Name
Hex Byte
Address

Described
in Section

DMA auxiliary control register 0184 0070 5.9.1

DMA channel 0 destination address 0184 0018 5.7

DMA channel 0 primary control 0184 0000 5.2.1

DMA channel 0 secondary control 0184 0008 5.10

DMA channel 0 source address 0184 0010 5.7

DMA channel 0 transfer counter 0184 0020 5.5

DMA channel 1 destination address 0184 0058 5.7

DMA channel 1 primary control 0184 0040 5.2.1

DMA channel 1 secondary control 0184 0048 5.10

DMA channel 1 source address 0184 0050 5.7

DMA channel 1 transfer counter 0184 0060 5.5

DMA channel 2 destination address 0184 001C 5.7

DMA channel 2 primary control 0184 0004 5.2.1

DMA channel 2 secondary control 0184 000C 5.10

DMA channel 2 source address 01840014 5.7

DMA channel 2 transfer counter 0184 0024 5.5

DMA channel 3 destination address 0184 005C 5.7

DMA channel 3 primary control 0184 0044 5.2.1

DMA channel 3 secondary control 0184 004C 5.10

DMA channel 3 source address 0184 0054 5.7

DMA channel 3 transfer counter 0184 0064 5.5

DMA global address register A 0184 0038 5.8

DMA global address register B 0184 003C 5.8

DMA global address register C 0184 0068 5.8

DMA global address register D 0184 006C 5.8

DMA global count reload register A 0184 0028 5.5

DMA global count reload register B 0184 002C 5.5

DMA global index register A 0184 0030 5.7.2

DMA global index register B 0184 0034 5.7.2

DMA Registers

 5-8

5.2.1 DMA Channel Control Registers

The DMA channel primary and secondary control registers (Figure 5–2 and
Figure 5–3) contain-fields that control each DMA channel independently. These
fields are summarized in Table 5–3 and Table 5–4.

Figure 5–2. DMA Channel Primary Control Register

31 30 29 28 27 26 25 24 23 19 18 16

DST RELOAD SRC RELOAD EMOD FS TCINT PRI WSYNC RSYNC

RW, +0 RW, +0 RW,+0 RW,+0 RW, +0 RW, +0 RW, +0 RW, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSYNC INDEX
CNT

RELOAD SPLIT ESIZE DST DIR SRC DIR STATUS START

RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 R, +0 RW, +0

Table 5–3. DMA Channel Primary Control Register Field Descriptions

Field Description Section

DST RELOAD,
SRC RELOAD

Source/destination address reload for autoinitialization

SRC/DST RELOAD = 00b: do not reload during autoinitialization
SRC/DST RELOAD = 01b: use DMA global address register B as reload
SRC/DST RELOAD = 10b: use DMA global address register C as reload
SRC/DST RELOAD = 11b: use DMA global address register D as reload

5.4.1.1

EMOD Emulation mode

EMOD = 0: DMA channel keeps running during an emulation halt
EMOD = 1: DMA channel pauses during an emulation halt

5.13

FS Frame synchronization

FS = 0: disable
FS = 1: RSYNC event used to synchronize entire frame

5.6

TCINT Transfer controller interrupt

TCINT = 0: interrupt disabled
TCINT = 1: interrupt enabled

5.10

PRI Priority mode: DMA versus CPU

PRI = 0: CPU priority
PRI = 1: DMA priority

5.9

WSYNC,
RSYNC

Read transfer/write transfer synchronization

(R/W)SYNC = 00000b: no synchronization
(R/W)SYNC = other: sets synchronization event

5.6

DMA Registers

5-9Direct Memory Access (DMA) Controller

Table 5–3. DMA Channel Primary Control Register Field Descriptions (Continued)

Field SectionDescription

INDEX Selects the DMA global data register to use as a programmable index

INDEX = 0: use DMA global index register A
INDEX = 1: use DMA global index register B

5.7.2

CNT RELOAD Transfer counter reload for autoinitialization and multiframe transfers

CNT RELOAD = 0: reload with DMA global count reload register A
CNT RELOAD = 1: reload with DMA global count reload register B

5.4.1.1

SPLIT Split channel mode

SPLIT = 00b: split-channel mode disabled
SPLIT = 01b: split-channel mode enabled; use DMA global address register A as

split address
SPLIT = 10b: split-channel mode enabled; use DMA global address register B as

split address
SPLIT = 11b: split-channel mode enabled; use DMA global address register C as

split address

5.8

ESIZE Element size

ESIZE = 00b: 32-bit
ESIZE = 01b: 16-bit
ESIZE = 10b: 8-bit
ESIZE = 11b: reserved

5.7.3

DST DIR,
SRC DIR

Source/destination address modification after element transfers

SRC/DST DIR = 00b: no modification
SRC/DST DIR = 01b: increment by element size in bytes
SRC/DST DIR = 10b: decrement by element size in bytes
SRC/DST DIR = 11b: adjust using DMA global index register selected by INDEX

5.7.1,
5.7.2

STATUS STATUS = 00b: stopped
STATUS = 01b: running without autoinitialization
STATUS = 10b: paused
STATUS = 11b: running with autoinitialization

5.4

START START = 00b: stop
START = 01b: start without autoinitialization
START = 10b: pause
START = 11b: start with autoinitialization

5.4

DMA Registers

 5-10

Figure 5–3. DMA Channel Secondary Control Register

31 19 18 16

Reserved DMAC EN

R, +0000 0000 0000 0 RW, +000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WSYNC
CLR

WSYNC
STAT

RSYNC
CLR

RSYNC
STAT

WDROP
IE

WDROP
COND

RDROP
IE

RDROP
COND

BLOCK
IE

BLOCK
COND

LAST
IE

LAST
COND

FRAME
IE

FRAME
COND

SX
IE

SX
COND

RW,
+0

RW,
+0

RW,
+0

RW,
+0

RW,
+0

RW,
+0

RW,
+0

RW,
+0

RW,
+1

RW,
+0

RW,
+0

RW,
+0

RW,
+0

RW,
+0

RW,
+0

RW,
+0

Table 5–4. DMA Channel Secondary Control Register Field Descriptions

Field Description Section

SX COND
FRAME COND
LAST COND
BLOCK COND
RDROP COND
WDROP COND

DMA condition. Each bit indicates a separate condition.

A0 value indicates that the condition is not detected.
A1 value indicates that the condition is detected.

5.10

SX IE
FRAME IE
LAST IE
BLOCK IE
RDROP IE
WDROP IE

DMA condition interrupt enable

IE = 0: associated condition does not enable DMA channel interrupt
IE = 1: associated condition enables DMA channel interrupt

5.10.1

RSYNC STAT
WSYNC STAT

Read or write synchronization status

STAT = 0: synchronization is not received
STAT = 1: synchronization is received

5.6.1

DMAC EN DMAC pin control

DMAC EN = 000b: DMAC pin is held low.
DMAC EN = 001b: DMAC pin is held high.
DMAC EN = 010b: DMAC reflects RSYNC STAT.
DMAC EN = 011b: DMAC reflects WSYNC STAT.
DMAC EN = 100b: DMAC reflects FRAME COND.
DMAC EN = 101b: DMAC reflects BLOCK COND.
DMAC EN = other: reserved

5.12

RSYNC CLR
WSYNC CLR

Read or write synchronization status clear
Read as 0 write 1 to clear associated status

5.6.1

DMA Registers

5-11Direct Memory Access (DMA) Controller

The DMA channel secondary control register of the ‘C6202 has been expand-
ed to include three new fields: WSPOL, RSPOL, and FSIG. This field is used
to add control to a frame-synchronized data transfer. The ‘C6202 secondary
control register is shown in Figure 5–4; the new field is shown in gray.
Table 5–5 describes the possible configurations of the new field.

Figure 5–4. TMS320C6202 Secondary Control Register

31 22 21 20 19 18 16

Reserved WSPOL RSPOL FSIG DMAC

R, +0 RW, +0 RW, +0 RW, +0 RW, +000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WSYNC
CLR

WSYNC
STAT

RSYNC
CLR

RSYNC
STAT

WDROP
IE

WDROP
COND

RDROP
IE

RDROP
COND

BLOCK
IE

BLOCK
COND

LAST
IE

LAST
COND

FRAME
IE

FRAME
COND

SX
IE

SX
COND

RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +1 RW, +0 RW,+0 RW,+0 RW, +0 RW, +0 RW,+0 RW,+0

Table 5–5. Synchronization Configuration Options

Field Description Section

WSPOL/
RSPOL

Synchronization event polarity.

Selects the polarity of an external sync event:
1 = active low, 0 = active high
This field is valid only if EXT_INTx is selected.

5.6.3

FSIG Frame sync ignore.

Setting FSIG = 1 causes the DMA channel to
ignore any event transitions during a current
burst. Synchronization is level triggered instead
of edge triggered.

5.6.3

Memory Map

 5-12

5.3 Memory Map

The DMA controller assumes the device memory map shown in Chapter 10, Boot
Configuration, Reset, and Memory Maps. Requests are sent to one of five re-
sources:

� Expansion bus
� External memory interface
� Internal program memory
� Internal peripheral bus
� Internal data memory

The source address is assumed to point to one of these four spaces throughout
a block transfer. This constraint also applies to the destination address.

Initiating a Block Transfer

5-13Direct Memory Access (DMA) Controller

5.4 Initiating a Block Transfer

Each DMA channel can be started independently, either manually through
direct CPU access or automatically through autoinitialization. Each DMA
channel can be stopped or paused independently through direct CPU access.
The status of a DMA channel can be observed by reading the STATUS field in
the DMA channel’s primary control register.

Manual start operation: To start DMA operation for a particular channel, once
the desired values are written to all other DMA control registers, the desired val-
ue should be written to the DMA control register with START = 01b. Writing this
value to a DMA channel that has already been started has no effect. Once
started, the value on STATUS is 01b.

Pause operation: Once started, a DMA channel can be paused by writing
START = 10b. When paused, the DMA channel completes any write transfers
whose read transfer requests have completed. Also, if the DMA channel has all
of the necessary read synchronizations, one additional element transfer is al-
lowed to finish. Once paused, the value on STATUS becomes 10b after the
DMA has completed all pending write transfers.

Stop operation: The DMA controller can be stopped by writing START = 00b.
Stop operation is identical to pause operation. Once a DMA transfer is com-
pleted, unless autoinitialization is enabled, the DMA channel returns to the
stopped state and STATUS becomes 00b after the DMA has completed all
pending write transfers.

5.4.1 DMA Autoinitialization

The DMA controller can automatically reinitialize itself after completion of a block
transfer. Some of the DMA control registers can be preloaded for the next block
transfer through selected DMA global data registers. Using this capability, some
of the parameters of the DMA channel can be set well in advance of the next block
transfer. Autoinitialization allows:

Continuous operation: The CPU is given a long slack time during which it can
reconfigure the DMA controller for a subsequent transfer. Normally, the CPU
would have to reinitialize the DMA controller immediately after completion of the
last write transfer in the current block transfer and before the first read synchro-
nization for the next block transfer. With the reload registers, it can reinitialize
these values for the next block transfer anytime after the current block transfer
begins.

Initiating a Block Transfer

 5-14

Repetitive operation: This operation is a special case of continuous opera-
tion. Once a block transfer finishes, the DMA controller repeats the previous
block transfer. In this case, the CPU does not preload the reload registers with
new values for each block transfer. Instead, the CPU loads the registers only
before the first block transfer.

Enabling autoinitialization: By writing START = 11b in the channel’s primary
control register, you enable autoinitialization. In this case, after completion of
a block transfer, the selected DMA channel registers are reloaded and the
DMA channel is restarted . If you are restarting after a pause, START must be
rewritten as 11b for autoinitialization to be enabled.

5.4.1.1 DMA Channel Reload Registers

For autoinitialization, the successive block transfers are assumed to be similar.
Thus, the reload values are selectable only for those registers that are modified
during a block transfer: the transfer counter and address registers. Thus, the
DMA channel transfer counter as well as the DMA channel source and destina-
tion address registers have associated reload registers, as selected by the asso-
ciated RELOAD fields in the DMA channel primary control register (see
Figure 5–2).

It is possible to not reload the source or destination address register in autoin-
itialization mode. This capability allows a register to maintain its value during
a block transfer. Thus, you do not have to dedicate a DMA global data register
to a value that was static during a block transfer. A single channel can use the
same value for multiple channel registers. For example, in split-channel mode,
the source and destination address can be the same. On the other hand, multi-
ple channels can use the same reload registers. For example, two channels
can have the same transfer count reload register.

Upon completion of a block transfer, the channel registers are reloaded with
the value from the associated reload register value. In the case of the DMA
channel transfer counter register, reload occurs after the end of each frame
transfer, not just after the end of the entire block transfer. The reload value for
the DMA channel transfer counter is necessary whenever multiframe transfers
are configured, not just when autoinitialization is enabled.

As discussed in section 5.11.2, the DMA controller can allow read transfers to
get ahead of write transfers, and it provides the necessary buffering to facilitate
this capability. To support this, the reload that’s necessary at the end of blocks
and frames occurs independently for the read (source) and write (destination)
portions of the DMA channel. Similarly, in the case of split-channel operation de-
scribed in section 5.8, the source and destination addresses are independently
reloaded when the associated transmit or receive element transfers are com-
pleted.

Initiating a Block Transfer

5-15Direct Memory Access (DMA) Controller

You can rewrite the DMA channel transfer counter reload only after the next-to-
last frame in the current block transfer it completed. Otherwise, the new reload
values would affect subsequent frame boundaries in the current block transfer.
However, if the frame size is the same for the current and next block transfers,
this restriction is not relevant. See section 5.5 for more explanation of the DMA
channel transfer counter.

Transfer Counting

 5-16

5.5 Transfer Counting

The DMA channel transfer counter register, shown in Figure 5–5 contains
fields that represent the number of frames and the number of elements per
frame to be transferred. Figure 5–6 shows the DMA global count reload regis-
ter.

FRAME COUNT: The 16-bit unsigned value in this field sets the total number
of frames in the block transfer. The maximum number of frames per block trans-
fer is 65535. This counter is decremented upon the completion of the last read
transfer in a frame transfer. Once the last frame is transferred, the entire counter
is reloaded with the DMA controller global count reload register selected by the
CNT RELOAD field in the DMA channel primary control register (see section
5.4.1.1). Initial values of 0 and 1 in FRAME COUNT have the same effect of
transferring a single frame.

ELEMENT COUNT: The 16-bit unsigned value in this field sets the number of
elements per frame. This counter is decremented after the read transfer of
each element. The maximum number of elements per frame transfer is 65535.
Once the last element in each frame is reached, ELEMENT COUNT is re-
loaded with the 16 LSBs of the DMA controller global count reload register se-
lected by the CNT RELOAD field in the DMA controller channel primary control
register. This reloading is unaffected by autoinitialization mode. Before a block
transfer begins, the counter and selected DMA controller global count reload reg-
ister must be loaded with the same 16 LSBs to assure that the first and remaining
frames have the same number of elements per frame. In any multiframe transfer,
a reload value must always be specified, not just when autoinitialization is en-
abled. If the element count is initialized as 0, operation is undefined.

Figure 5–5. DMA Channel Transfer Counter Register

31 16 15 0

FRAME COUNT ELEMENT COUNT

RW, +0 RW, +0

Figure 5–6. DMA Global Count Reload Register Used As Transfer Counter Reload

31 16 15 0

FRAME COUNT RELOAD ELEMENT COUNT RELOAD

RW, +0 RW, +0

Synchronization: Triggering DMA Transfers

5-17Direct Memory Access (DMA) Controller

5.6 Synchronization: Triggering DMA Transfers

Synchronization allows DMA transfers to be triggered by events such as inter-
rupts from internal peripherals or external pins. Three types of synchronization
can be enabled for each channel:

� Read synchronization: Each read transfer waits for the selected event to
occur before proceeding.

� Write synchronization: Each write transfer waits for the selected event to
occur before proceeding.

� Frame synchronization: Each frame transfer waits for the selected event
to occur before proceeding.

Selection of Synchronization Events: The events are selected by the RSYNC
and WSYNC fields in the DMA channel primary control register. If FS = 1 in this
register, then the event selected by RSYNC enables an entire frame, and
WSNYC must be set to 00000b. If a channel is set up to operate in split mode
(SPLIT � 00b), RSYNC and WSYNC must be set to non-zero values. Up to 31
events are available. If the value of these fields is set to 00000b, no synchroniza-
tion is necessary. In this case, the read, write, or frame transfers occur as soon
as the resource is available to that channel. The association between values in
these fields and events is shown in Table 5–6. This is similar to the fields in the
interrupt selector (see section 13.4, Configuring the Interrupt Selector). The dif-
ferences are that the McBSP generates separate interrupts and DMA synchro-
nization events and that the DSPINT is located differently in the encoding.

Table 5–6. Synchronization Events

Event Number
(Binary) Event Acronym Event Description

00000 None No synchronization

00001 TINT0 Timer 0 interrupt

00010 TINT1 Timer 1 interrupt

00011 SD_INT EMIF SDRAM timer interrupt

00100 EXT_INT4 External interrupt pin 4

00101 EXT_INT5 External interrupt pin 5

00110 EXT_INT6 External interrupt pin 6

00111 EXT_INT7 External interrupt pin 7

01000 DMA_INT0 DMA channel 0 interrupt

01001 DMA_INT1 DMA channel 1 interrupt

Synchronization: Triggering DMA Transfers

 5-18

Table 5–6. Synchronization Events (Continued)

Event Number
(Binary) Event Acronym Event Description

01010 DMA_INT2 DMA channel 2 interrupt

01011 DMA_INT3 DMA channel 3 interrupt

01100 XEVT0 McBSP 0 transmit event

01101 REVT0 McBSP 0 receive event

01110 XEVT1 McBSP 1 transmit event

01111 REVT1 McBSP 1 receive event

10000 DSPINT Host processor to DSP interrupt

10001 XEVT2 McBSP 2 transmit event

10010 REVT2 McBSP 2 receive event

Other Reserved

5.6.1 Latching of DMA Channel Event Flags

The DMA channel secondary control register (described in Table 5–4) con-
tains STAT and CLR fields for read and write synchronization (RSYNC and
WSYNC) events.

Latching of DMA Synchronization Events: A low-to-high transition (or high-to-
low transition when selected by WSPOL or RSPOL) of the selected event is
latched by each DMA channel. The occurrence of this transition causes the asso-
ciated STAT field to be set in the DMA channel secondary control register. If no
synchronization is selected, the STAT bit is always read as 1. A single event can
trigger multiple actions.

User Clearing and Setting of Events: By clearing pending events before
starting a block transfer, you can force the DMA channel to wait for the next
event. Conversely, by setting events before starting a block transfer, you can
force the synchronization events necessary for the first element transfer. You
can clear or set events (and thus the related STAT bit) by writing 1 to the corre-
sponding CLR or STAT field, respectively. Writing a 0 to either of these bits has
no effect. Also, the CLR bits are always read as 0 and have no associated stor-
age. Separate bits for setting or clearing are provided to allow clearing of some
bits without setting others and vice versa. Your user manipulation of events
has priority over any simultaneous automated setting or clearing of events.

Synchronization: Triggering DMA Transfers

5-19Direct Memory Access (DMA) Controller

5.6.2 Automated Event Clearing

The latched STAT for each synchronizing event is automatically cleared only
when any action associated with that event is completed. Events are cleared
as quickly as possible to reduce the minimum time between synchronizing
events. This capability effectively increases the rate at which events can be
recognized. This is described for each type of synchronization:

� Clearing read synchronization condition: The latched condition for read
synchronization is cleared when the DMA completes the request for the
associated read transfer.

� Clearing write synchronization condition: The latched condition for write
synchronization is cleared when the DMA completes the request for the
associated write transfer.

� Clearing frame synchronization condition: Frame synchronization clears
the RSYNC STAT field when the DMA completes the request for the first
read transfer in the new frame.

5.6.3 Synchronization Control

The DMA of the ’C6202 allows for more flexible control over how external
synchronization events are recognized. The polarity of external events can be
inverted to an active-low by setting WSPOL and/or RSPOL to 1. WSPOL
affects write-synchronized transfers, while RSPOL affects read- and
frame-synchronized transfers.

During a frame-synchronized transfer, the DMA channel may be configured
(by setting FSIG = 1) to not recognize an external interrupt as a synchroniza-
tion event while performing a burst. The channel will internally monitor its burst
status, and will latch its synchronization event only when a frame transfer is
not in progress.

Synchronization: Triggering DMA Transfers

 5-20

Figure 5–7 shows the scenario to produce the desired synchronizing event.
The figure illustrates both active-high and active-low operation, but the
following explanation pertains to active-low operation.

1) The transition of EXT_INTx from high-to-low while a burst is not in prog-
ress triggers a synchronizing event.

2) The synchronizing event triggers a frame transfer, which gates off the
DMA sync event. During the sync event, transitions on EXT_INTx are ig-
nored.

3) Same as 1

4) Same as 2

5) If EXT_INTx is still active after the burst, then the high-to-low transition on
the internal frame-in-progress signal causes a DMA sync event.

6) The new DMA sync event triggers another burst.

Figure 5–7. Synchronization Flags

Read burst

531

642

EXT_INTx (active low)

EXT_INTx (active high)

DMA frame In progress

DMA sync event

The new synchronization modes are available to better interface to an external
FIFO that is serving as a data buffer. Since a synchronization event is often
triggered off of a flag indicating the amount of data currently inside the FIFO,
there is a high likelihood that a race-condition could occur. If the DMA were to
read from the FIFO (clearing the flag that generated the synchronization
event), and a new element were written to the FIFO immediately after, then the
flag could be reset and a new frame would be synchronized to start
immediately following the current burst. By setting the DMA to ignore events
during a current burst, this situation is avoided.

Synchronization: Triggering DMA Transfers

5-21Direct Memory Access (DMA) Controller

Another feature of this is that if the synchronization event stays active through-
out a burst, then it will be latched again following the burst. This, too, was done
for a more robust FIFO interface. This is due to the fact that the transition from
active to inactive of the FLAG can only occur during a burst. For example, if
the ‘C6202 is the reader from a FIFO, the only way for the FIFO to go from half-
full (/HF active) to less than half-full (/HF inactive) is by reading from the FIFO.
If the flag were to stay active throughout the burst, then it is known that the data
source was able to provide another set of data to the FIFO before the ‘C6202
was able to read the frame.

These new features are only used by the DMA when WSPOL, RSPOL, or
FSIG are properly configured. If all fields are left as 0 (default) the ‘C6202 DMA
functions identically to the ‘C6201 DMA.

Address Generation

 5-22

5.7 Address Generation

For each channel, the DMA controller performs address computation for each
read transfer and write transfer. The DMA controller allows creation of a variety
of data structures. For example, the DMA controller can traverse an array incre-
menting through every nth element. Also, you can program it to effectively treat
the various elements in a frame as coming from separate sources and group
each source’s data together.

The DMA channel source address and destination address registers (shown
in Figure 5–8 and Figure 5–9, respectively) hold the addresses for the next
read transfer and write transfer, respectively.

Figure 5–8. DMA Channel Source Address Register

31 0

SOURCE ADDRESS

RW, +x

Figure 5–9. DMA Channel Destination Address Register

31 0

DESTINATION ADDRESS

RW, +x

5.7.1 Basic Address Adjustment

As indicated in Table 5–3, the SRC DIR and DST DIR fields can set the index
to increment by element size, decrement by element size, use a global index
value, or not affect the DMA channel source and destination address registers,
respectively. By default, these values are set to 00b to disable address modifi-
cation. If incrementing or decrementing is selected, the amount of the address
adjustment is determined by the size of the element size in bytes. For example,
if the source address is set to increment and 16-bit halfwords are being trans-
ferred, then the address is incremented by 2 after each read transfer.

Address Generation

5-23Direct Memory Access (DMA) Controller

5.7.2 Address Adjustment With the Global Index Registers

The particular DMA global index register shown in Figure 5–10 is selected via
the INDEX field in the DMA channel primary control register. Unlike basic
address adjustment, this mode allows different adjustment amounts depend-
ing on whether the element transfer is the last in the current frame. The normal
adjustment value (ELEMENT INDEX) is contained in the 16 LSBs of the
selected DMA global index register. The adjustment value for the end of the
frame (FRAME INDEX) is determined by the 16 MSBs of the selected DMA
global index register. Both of these fields contain signed 16-bit values. Thus,
the index amounts can range from –32768 to 32767.

Figure 5–10. DMA Global Index Register

31 16 15 0

FRAME INDEX ELEMENT INDEX

RW, +0 RW, +0

These fields affect address adjustment as follows.

� ELEMENT INDEX: For element transfers except the last one in a frame,
ELEMENT INDEX determines the amount to be added to the DMA
channel source or the destination address register as selected by the
SRC DIR or DST DIR field after each read or write transfer, respectively.

� FRAME INDEX: If the read or write transfer is the last in a frame, FRAME
INDEX (and not ELEMENT INDEX) is used for address adjustment. This
adjustment occurs in both single frame and multiframe transfers, including
transfers after the last frame in a block.

5.7.3 Element Size, Alignment, and Endianness

By using the ESIZE field in the DMA channel primary control register, you can
configure the DMA to transfer 8-bit bytes, 16-bit halfwords, or 32-bit words on
each transfer. The following registers and fields must be loaded with properly
aligned values:

� DMA channel source and destination address registers and any associat-
ed reload registers

� ELEMENT INDEX

� FRAME INDEX

Address Generation

 5-24

In the case of word transfers, these registers must contain values that are multi-
ples of 4 and thus aligned on a word address. In the case of halfword transfers,
the values must be multiples of 2 and thus aligned on a halfword address. If un-
aligned values are loaded, operation is undefined. There is no alignment restric-
tion for byte transfers. All accesses to program memory must be 32 bits in width.
Also, you must be aware of the endianness when trying to read a particular 8-bit
or 16-bit field within a 32-bit register. For example, in little endian mode, an ad-
dress ending in 00b selects the least significant byte, whereas 11b selects the
least significant byte in big-endian mode.

Address Generation

5-25Direct Memory Access (DMA) Controller

5.7.4 Using a Frame Index to Reload Addresses

In an autoinitialized, single-frame block transfer, the FRAME INDEX can be
used in place of a reload register to recompute the next address. If the follow-
ing fields contain the values listed, a single frame transfer moves the ten bytes
from a static external address to alternating locations (skipping one byte be-
tween each two bytes):

� SRC DIR = 00b, the static source address

� DST DIR = 11b, the programmable index value

� ELEMENT INDEX = 10b, the 2-byte destination stride

� FRAME INDEX = –(9 × 2) = –18 = FFEEh, restart destination for the trans-
fer at the same location by moving 18 bytes.

5.7.5 Transferring a Large Single Block

ELEMENT COUNT can be used in conjunction with FRAME COUNT to allow
single-frame block transfers of more than 65535 bytes. The product of ELE-
MENT COUNT and FRAME COUNT can form a larger effective element
count. The following must be performed:

� If the address is to be adjusted using a programmable value (DIR = 11b),
FRAME INDEX must equal ELEMENT INDEX if the address adjustment is
determined by a DMA global index register. This applies to both source and
destination addresses. If the address is not to be adjusted by a program-
mable value, this constraint does not apply, because the same address ad-
justment occurs by default at element and frame boundaries.

� Frame synchronization must be disabled (that is, FS must be set to 0 in the
DMA channel primary control register). This prevents requirements for syn-
chronization in the middle of the large block.

� The number of elements in the first frame is Ei. The number of elements
in successive frames is ((F – 1) × Er). The effective element count is
((F – 1) × Er) + Ei

where:

F = Initial value of FRAME COUNT
Er = ELEMENT COUNT reload value
Ei = Initial value of ELEMENT COUNT

Thus, to transfer 128K + 1 elements, you could set F to 5, Er to 32K, and
Ei to 1.

Address Generation

 5-26

5.7.6 Sorting

The following procedure is used to locate transfers in memory by ordinal loca-
tion within a frame (i.e., the first transfer of the first frame followed by the first
transfer of the second frame):

� ELEMENT INDEX is set to F × S.
� FRAME INDEX is set to –(((E – 1) × F) – 1) × S

where:

E = Initial value of ELEMENT COUNT (the number of elements
per frame) initial value of the ELEMENT COUNT RELOAD

F = Initial value of FRAME COUNT (the total number of frames)

S = Element size in bytes

Consider a transfer with three frames (F = 3) of four halfword elements
each (E = 4, S = 2). This corresponds to ELEMENT INDEX = 3 × 2 = 6 and
FRAME INDEX = –(((4 – 1) × 3) – 1) × 2 = FFF0h. Assume that the source
address is not modified and the destination increments starting at
8000 0000h. Table 5–7 shows the data in the order in which it is trans-
ferred, and Table 5–8 shows how the data appears in memory after trans-
fers are finished.

Table 5–7. Sorting Example in Order of DMA Transfers

Frame Element Address (Hex) Postadjustment

0 0 8000 0000 +6

0 1 8000 0006 +6

0 2 8000 000C +6

0 3 8000 0012 –16

1 0 8000 0002 +6

1 1 8000 0008 +6

1 2 8000 000E +6

1 3 8000 0014 –16

2 0 8000 0004 +6

2 1 8000 000A +6

2 2 8000 0010 +6

2 3 8000 0016 –16

Address Generation

5-27Direct Memory Access (DMA) Controller

Table 5–8. Sorting in Order of First by Address

Address (Hex) Frame Element

8000 0000 0 0

8000 0002 1 0

8000 0004 2 0

8000 0006 0 1

8000 0008 1 1

8000 000A 2 1

8000 000C 0 2

8000 000E 1 2

8000 0010 2 2

8000 0012 0 3

8000 0014 1 3

8000 0016 2 3

Split-Channel Operation

 5-28

5.8 Split-Channel Operation

Split-channel operation allows a single DMA channel to service both the input
(receive) and output (transmit) streams from an external or internal peripheral
with a fixed address.

5.8.1 Split DMA Operation

Split-channel operation consists of transmit element transfers and receive ele-
ment transfers. In turn, these transfers each consist of a read and a write trans-
fer:

� Transmit element transfer

� Transmit read transfer: Data is read from the DMA channel source ad-
dress. The source address is then adjusted as configured. The transfer
count is then decremented. This event is not synchronized.

� Transmit write transfer: Data from the transmit read transfer is written to
the split destination address. This event is synchronized as indicated by
the WSYNC field. The DMA channel keeps track internally of the num-
ber of pending receive transfers.

� Receive element transfer

� Receive read transfer: Data is read from the split source address. This
event is synchronized as indicated by the RSYNC field.

� Receive write transfer: Data from the receive read transfer is written to
the destination address. The destination address is then adjusted as
configured. This event is not synchronized.

Because only a single element count and frame count exists per channel, the
element count and the frame count are the same for both the received and the
transmitted data. For split-channel operation to work properly, both the
RSYNC and WSYNC fields must be set to non-zero synchronization events.
Also, frame synchronization must be disabled in split-channel operation.

Split-Channel Operation

5-29Direct Memory Access (DMA) Controller

The above sequence is maintained for all transfers. However, the transmit
transfers do not have to wait for all previous receive element transfers to finish
before proceeding. Therefore, it is possible for the transmit stream to get
ahead of the receive stream. The DMA channel transfer counter decrements
(or reinitialize) after the associated transmit transfer finishes. However, re-
initialization of the source address register occurs after all transmit element
transfers finish. This configuration works as long as transmit transfers do not
eight or more transfers ahead of the receive transfers. If the transmit transfers
do get ahead of the receive transfers, transmit element transfers are stopped,
possibly causing synchronization events to be missed. For cases in which
receive or transmit element transfers are within seven or less transfers of the
other, the DMA channel maintains this information as internal status.

5.8.2 Split Address Generation

The DMA global address register selected by the SPLIT field in the DMA pri-
mary control register determines the address of the peripheral that is to be ac-
cessed for split transfer:

� Split source address: This address is the source for the input stream to the
’C6000. The selected DMA global address register contains this split
source address.

� Split destination address: This address is the destination for the output
data stream from the ’C6000. The split destination address is assumed to
be one word address (four byte addresses) greater than the split source
address.

Figure 5–11.DMA Global Address Register Used for Split Address

31 3 2 0

SPLIT ADDRESS Reserved

RW, +0 R, +0

The two LSBs are fixed at 0 to force alignment at a word address. The third LSB
is 0 because the split source address is assumed to be on an even word bound-
ary. Thus, the split destination address is assumed to be on an odd word bound-
ary. These relationships hold regardless of the width of the transfer. For external
peripherals, you must design address decoding appropriately to adhere to this
convention.

Resource Arbitration and Priority Configuration

 5-30

5.9 Resource Arbitration and Priority Configuration

Priority decides which of competing requesters have control of a resource with
multiple requests. The requesters include:

� The DMA channels
� The CPU’s program and data accesses

The resources include:

� Internal data memory

� Internal program memory

� The internal peripheral registers, which are accessed through the peripher-
al bus

� External memory, accessed through the external memory interface
(EMIF)

� Expansion memory, accessed through the expansion bus

Two aspects of priority are programmable:

� DMA versus CPU priority: Each DMA channel can be independently config-
ured in high-priority mode by setting the PRI bit in the associated DMA channel
primary control register. The AUXPRI field in the DMA auxiliary control register
allows the same feature for the auxiliary channel. When in high-priority mode,
the associated channel’s requests are sent to the appropriate resource with
a signal indicating the high priority status. By default, all these fields are 0, dis-
abling the high-priority mode. Each resource can use this signal in its own
priority scheme for resolving conflicts. See to resource specific documentation
for information how a particular resource uses this signal.

� Priority between DMA channels: The DMA controller has a fixed priority
scheme, with channel 0 having highest priority and channel 3 having lowest
priority. The auxiliary channel can be given a priority anywhere within this hier-
archy.

5.9.1 DMA Auxiliary Control Register and Priority Between Channels

The fields in the DMA auxiliary control register affect the auxiliary channel. The
fields in this register are shown in Figure 5–12 and are summarized Table 5–9.

Resource Arbitration and Priority Configuration

5-31Direct Memory Access (DMA) Controller

Figure 5–12. DMA Auxiliary Control Register

31 5 4 3 0

Reserved AUXPRI CH PRI

R, +0 RW, +0 RW, +0

Table 5–9. DMA Auxiliary Control Register Field Descriptions

Field Description

CH PRI DMA channel priority

CH PRI = 0000b: fixed channel priority mode auxiliary channel highest priority
CH PRI = 0001b: fixed channel priority mode auxiliary channel 2nd-highest priority
CH PRI = 0010b: fixed channel priority mode auxiliary channel 3rd-highest priority
CH PRI = 0011b: fixed channel priority mode auxiliary channel 4th-highest priority
CH PRI = 0100b: fixed channel priority mode auxiliary channel lowest priority
CH PRI = other, reserved

AUXPRI Auxiliary channel priority mode

AUXPRI = 0: CPU priority
AUXPRI = 1: DMA priority

The priority assigned to the DMA channels determines which DMA channel per-
forms a read or write transfer first, given that two or more channels are ready to
perform transfers.

The priority of the auxiliary channel is configurable by programming the CH PRI
field in the DMA auxiliary control register. By default, CH PRI contains the value
0000b at reset. This value sets the auxiliary channel as highest priority, followed
by channel 0, followed by channel 1, followed by channel 2, with channel 3 having
lowest priority.

Arbitration between channels occurs independently every CPU clock cycle for
read and write transfers. Any channel that is in the process of waiting for syn-
chronization of any kind can lose control of the DMA controller to a lower priority
channel. Once that synchronization is received, that channel can regain control
of the DMA controller from a lower priority channel. This rule is applied indepen-
dently to the transmit and receive portions of a split mode transfer. The transmit
portion has higher priority than the receive portion.

If multiple DMA channels and the CPU are contending for the same resource,
the arbitration between DMA channels occurs first. Then, arbitration between
the highest priority DMA channel and the CPU occurs. Normally, if a channel
has lower priority than the CPU, all lower priority channels should also are low-
er priority than the CPU. Similarly, if a channel has a higher priority than the
CPU, all higher priority channels should also be higher priority than the CPU.

Resource Arbitration and Priority Configuration

 5-32

The arbitration between the DMA controller and the CPU is performed by the
resource for which they are contending. For more information, see resource-
specific documentation. Note that a channel’s PRI field should be modified
only when that channel is paused or stopped.

5.9.2 Switching Channels

A higher priority channel gains control of the DMA controller from a lower priority
channel once it has received the necessary read synchronization. In switching
channels, the current channel allows all data from requested reads to be com-
pleted. The DMA controller determines which higher priority channel gains control
of the DMA controller read operation. That channel then starts its read operation.
Simultaneously, write transfers from the previous channel are allowed to finish.

DMA Channel Condition Determination

5-33Direct Memory Access (DMA) Controller

5.10 DMA Channel Condition Determination
Several condition status flags are available to inform you of significant events
or potential problems in DMA channel operation. These flags reside in the
DMA channel secondary control register.

These registers also provide the means to enable the DMA channels to inter-
rupt the CPU through their corresponding interrupt enable (IE) fields. If a con-
dition flag and its corresponding IE bit are set, that condition is enabled to con-
tribute to the status of the interrupt signal from the associated DMA channel
to the CPU. If the TCINT bit in the DMA channel x primary control register is
set, the logical OR of all enabled conditions forms the DMA_INTx signal.
Otherwise, the DMA_INTx remains inactive. This logic is shown in
Figure 5–13. If selected by the interrupt selector, a low-to-high transition on
that DMA_INT causes an interrupt condition to be latched by the CPU.

The SX COND, WDROP COND, and RDROP COND bits in the DMA channel
secondary control register are treated as warning conditions. If these conditions
are enabled and active, they move the DMA channel from the running to the
pause state, regardless of the value of the TCINT bit.

If a condition bit’s associated IE bit is set, that condition bit can be cleared only
by you writing a 0 to it. Otherwise, that condition bit can be cleared automatical-
ly. Writing a 1 to a COND bit has no effect. Thus, you cannot manually force
one of the conditions.

Most bits in this register are cleared at reset. The exception is the interrupt enable
for the block transfer complete event (BLOCK IE), which is set at reset. Thus, by
default, the block transfer complete condition is the only condition that can con-
tribute to the CPU interrupt. Other conditions can be enabled by setting the asso-
ciated IE bit.

Figure 5–13. Generation of DMA Interrupt for Channel x From Conditions

DMA_INTx

TCINT

RDROP COND

RDROP IE

BLOCK COND

BLOCK IE

LAST COND

LAST IE

FRAME COND

FRAME IE

SX COND

SX IE

ÁÁ
ÁÁÁ

Á
ÁÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

WDROP COND

WDROP IE

DMA Channel Condition Determination

 5-34

5.10.1 Definition of Channel Conditions

Table 5–10 describes each of the condition flags in the DMA channel second-
ary control register.

Depending on the system application, these conditions can represent errors.
The last frame condition can be used to change the reload register values for
autoinitialization. The frame index and element count reload are used every
frame. Thus, you must wait to change these values until all but the last frame
transfer in a block transfer finishes. Otherwise, the current block transfer is af-
fected.

Table 5–10. DMA Channel Condition Descriptions

COND Cleared By

Bitfield Event Occurs if … If IE Enabled Otherwise

SX Split transmit overrun
receive

The split operation is enabled
and transmit element transfers
get seven or more element
transfers ahead of receive ele-
ment transfers

A user write of 0 to COND

FRAME Frame complete After the last write transfer in
each frame is written to
memory

A user write of 0
to COND

Two CPU clocks
later

LAST Last frame After all counter adjustments
for the next-to-last frame in a
block transfer finish

A user write of 0
to COND

Two CPU clocks
later

WDROP

RDROP

Dropped read/write
synchronization

A subsequent synchronization
event occurs before the last
one is cleared

A user write of 0 to COND

BLOCK Block transfer
finished

After the last write transfer in
a block transfer is written to
memory

A user write of 0
to COND

Two CPU clocks
later

DMA Controller Structure

5-35Direct Memory Access (DMA) Controller

5.11 DMA Controller Structure

Figure 5–14 shows the internal data movement paths of the DMA controller,
including data buses and internal holding registers.

Figure 5–14. DMA Controller Data Bus Block Diagram

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DMA read buses

Peripheral bus write
Program memory write
Data memory write
EMIF write

Auxiliary read
Auxiliary write

Peripheral bus read
Program memory read

Data memory read

ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ

ÁEMIF read

Á
ÁÁ

Á
Á

Burst FIFO

Á

Á

ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ

Á

AUX

Á
Á

Á

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á

CH2 holding

Á
Á

Á

CH3 holding

Á
CH1 holding

Á

Á

ÁÁ
ÁÁ
Á

ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á

Á

CH0 holding

5.11.1 Read and Write Buses

Each DMA channel can independently select one of four sources and destinations:

� EMIF
� Internal program memory
� Internal data memory
� Internal peripheral bus

Read and write buses from each source interface to the DMA controller.

The auxiliary channel also has read and write buses. However, since the auxiliary
channel provides address generation for the DMA, the naming convention of its
buses differs. For example, data writes from the auxiliary channel through the
DMA controller are performed through the auxiliary write bus. Similarly, data
reads from the auxiliary channel through the DMA controller are performed
through the auxiliary read bus.

DMA Controller Structure

 5-36

5.11.2 DMA FIFO

A 9-level DMA FIFO holding path facilitates bursting to high-performance memo-
ries, such as internal program and data memory, as well as external synchronous
DRAM (SDRAM) or synchronous burst SRAM (SBSRAM). When combined with
a channel’s holding registers this path effectively becomes an 11-level FIFO. Only
one channel controls the FIFO at any given time. For a channel to gain control
of the FIFO, all of the following conditions must be met:

� The channel does not have read or write synchronization enabled. Since
split-channel mode requires read and write synchronization, the FIFO is
not used by a channel in that mode. If only frame synchronization is en-
abled, the FIFO can still be used by that channel.

� The channel is running.

� The FIFO is void of data from any other channel.

� The channel is the highest priority channel of those that meet the preced-
ing three conditions.

The third restriction minimizes head-of-line blocking. Head-of-line blocking oc-
curs when a DMA request of higher priority waits for a series of lower priority
requests to come in before issuing its first request. If a higher priority channel
requests control of the DMA controller from a lower priority channel, only the
last request of the previous channel must finish. After that, the higher priority
channel completes its requests through its holding registers. The holding regis-
ters do not allow as high of a throughput through the DMA controller. The lower
priority channel begins no more read transfers but flushes the FIFO by completing
its write transfers in the gaps. Because the higher priority channel is not yet in con-
trol of the FIFO, there are gaps in its access where the lower priority channel can
drain its transfer from the FIFO. Once the FIFO is clear, if the higher priority chan-
nel has not stopped, it gains control of the FIFO.

The DMA FIFO has two purposes:

� Increasing performance
� Decreasing arbitration latency

For increased performance the FIFO allows read transfers to get ahead of write
transfers. This feature minimizes penalties for variations in available transfer
bandwidth at either end of the element transfer. Thus, the DMA can capitalize on
separate windows of opportunity at the read and write portion of an element trans-
fer. If the requesting DMA channel is using the FIFO, the resources are capable
of sustaining read or write accesses at the CPU clock cycle rate. However, there
may be some latency in performing the first access. The handshaking between

DMA Controller Structure

5-37Direct Memory Access (DMA) Controller

a resource and the DMA controller controls the rate of consecutive requests and
the latency of received read transfer data.

The other function of the DMA FIFO is capturing read data from any pending
requests for a particular resource. For example, consider the situation in which
the DMA controller is reading data from pipelined external memory such as
SDRAM or SBSRAM into internal data memory. Assume that the CPU is given
higher priority over the DMA channel making requests and that it makes a com-
peting program fetch request to the EMIF. Assume that simultaneously the
CPU is accessing all banks of internal memory, blocking out the DMA controller.
In this case, the FIFO allows the pending DMAs to finish and the program fetch
to proceed. Due to the pipelined request structure of the DMA controller, at any
time the DMA controller can have pending read transfer requests whose data has
not yet arrived. Once enough requests to fill the empty spots in the FIFO are out-
standing, the DMA controller stops making further read transfer requests.

5.11.3 Internal Holding Registers

Each channel has dedicated internal holding registers. If a DMA channel is
transferring data through its holding registers rather than the internal FIFO,
read transfers are issued consecutively. Depending on whether the DMA con-
troller is in split mode or not, additional restrictions can apply:

In split mode, the two registers serve as separate transmit and receive data
stream holding registers for split mode. For both the transmit and receive read
transfer, no subsequent read transfer request is issued until the associated
write transfer request completes.

In nonsplit mode, once the data arrives a subsequent read transfer can be is-
sued without waiting for the associated write transfer to finish. However, be-
cause there are two holding registers, read transfers can get only one transfer
ahead of write transfers.

DMA Action Complete Pins

 5-38

5.11.4 DMA Performance

The DMA controller can perform element transfers with single-cycle
throughput if it accesses separate resources for the read transfer and write
transfer and both these resources have single-cycle throughput. An example
is an unsynchronized block transfer from single-cycle external SBSRAM to
internal data memory without any competition from any other channels or the
CPU. The DMA controller performance can be limited by:

� The throughput and latency of the resources it requests
� Waiting for read, write, or frame synchronization
� Interruptions by higher priority channels
� Contention with the CPU for resources

5.12 DMA Action Complete Pins

The DMA action complete pins (DMAC0–DMAC3) provide a method of feed-
back to external logic by generating an event for each channel. If it is specified
by the DMAC EN field in the DMA channel secondary control register, the DMAC
pin can reflect the status of RSYNC STAT, WSYNC STAT, BLOCK COND, or
FRAME COND or be treated as a high or low general purpose output. If the
DMAC pin reflects RSYNC STAT or WSYNC STAT externally, then once a syn-
chronization event has been recognized, DMAC transitions from low-to-high.
Once that event has been serviced as indicated by the status bit being cleared,
DMAC changes from high-to-low. Before being sent off chip, the DMAC signals
are synchronized by CLKOUT1. The active period of these signals is a minimum
of two CLKOUT1 periods wide.

5.13 Emulation

When you are using the emulator for debugging, you can halt the CPU on an exe-
cute packet boundary for single-stepping, benchmarking, profiling, or other de-
bugging purposes. You can configure the DMA controller pause during this time
or to continue running. This configuration is accompanied by setting the EMOD
bit in the DMA primary control register to 0 or 1. If the DMA controller is paused,
the STATUS field reflects the paused state of the channel. The auxiliary channel
continues running during an emulation halt. This emulation closely simulates
single-stepping DMA transfers. DMA channels with EMOD = 1 can couple
multiple transfers between single steps; a successful step can require multiple
outstanding transfers to finish first.

DMA Controller Structure / DMA Action Complete Pins / Emulation

6-1

EDMA Controller

This chapter describes the new enhanced DMA controller for the
TMS320C6211/C6711. EDMA transfer parameters, types and performance
are discussed. This chapter also describes the new quick DMA for fast data
requests.

Topic Page

6.1 Overview 6-2.

6.2 EDMA Terminology 6-5.

6.3 Event Processing and EDMA Control Registers 6-6.

6.4 Event Encoder 6-8.

6.5 Parameter RAM (PaRAM) 6-9.

6.6 EDMA Transfer Parameters 6-13.

6.7 Initiating an EDMA Transfer 6-17.

6.8 Types of EDMA Transfers 6-20.

6.9 Linking EDMA Transfers 6-25.

6.10 Element Size and Alignment 6-27.

6.11 Element and Frame/Array Count Updates 6-28.

6.12 Src/Dst Address Updates 6-29.

6.13 EDMA Interrupt Generation 6-32.

6.14 Resource Arbitration and Priority Processing 6-36.

6.15 EDMA Performance 6-37.

6.16 Quick DMA (QDMA) 6-38.

Chapter 6

Overview

 6-2

6.1 Overview

The TMS320C6211/C6711 device performs data transfers between on-chip
and/or off-chip locations using either the CPU or the enhanced direct memory
access (EDMA) controller. Typically, block data transfers and transfer re-
quests from peripherals are performed by the EDMA thus relieving the CPU
to do performance-intensive operations.

The EDMA controller in the ’C6211/C6711 is different in architecture to the
previous TMS320C6000 devices. The EDMA includes several enhancements
to the ‘C6201/’C6701 DMA in that it provides 16 channels with programmable
priority, and the ability to link data transfers. The EDMA allows movement of
data to/from internal memory (L2 SRAM), peripherals, and between external
memory spaces.

Figure 6–1. TMS320C6211/C6711 Block Diagram

Data path 2

External
memory
interface
(EMIF)

Multi-channel
buffered

serial port 1
(McBSP 1)

Multi-channel
buffered

serial port 0
(McBSP 0)

Host port
interface

(HPI)

Power down logic

Enhanced
DMA

controller

Timer 1 Timer 0

L1P
controller

L1P cache direct mapped
4K bytes

L1 S1 M1 D1 D2 M2 S2 L2

A register file

Data path 1

B register file

In
te

rr
up

t c
on

tr
ol

CPU core

Instruction fetch

Instruction dispatch

Instruction decode In-circuit emulation

Control registers

L2
 m

em
or

y
4

ba
nk

s
64

K
 b

yt
es

L1D
controller

L1D cache
2-way set

associative
4K bytes

TMS320C6211/C6711 Digital Signal Processor

Overview

6-3EDMA Controller

The EDMA controller comprises:

� Event and interrupt processing registers
� Event encoder
� Parameter RAM, and
� Address generation hardware

A block diagram of the EDMA controller is shown in Figure 6–2.

Figure 6–2. EDMA Controller

encoder
Event

 to EMIF/peripherals

FSM

Address
Generation

(scratch area)
Unused

params
Reload channel 15

params
Reload channel 1

params
Reload channel 0

Channel 15 params

Channel 1 params

Channel 0 params

E
ve

nt
s

(s
er

ia
l p

or
ts

, F
IF

O
A

F
/A

E
, e

xt
er

na
l d

ev
ic

es
)

EDMA parameter RAM

Overview

 6-4

EDMA events are captured in the event register. An event is a synchronization
signal that triggers an EDMA channel to start a transfer. If events occur
simultaneously, they are resolved by way of the event encoder. The transfer
parameters corresponding to this event which is stored in the EDMA
parameter RAM, are passed onto the address generation hardware, which
address the EMIF and/or peripherals to perform the necessary read and write
transactions.

The quick DMA (QDMA) is a new feature in the ’C6211/C6711 device that pro-
vides a fast and efficient way to transfer data. QDMA functions similarly to the
EDMA. QDMA is best suited for applications that require quick data transfers,
such as data requests in a tight loop algorithm. See section 6.16 for more de-
tails.

EDMA Terminology

6-5EDMA Controller

6.2 EDMA Terminology

The following definitions help in understanding some of the terms used in this
chapter:

� Element transfer: The transfer of a single data element from source to
destination. Each element can be transferred based on a sync event if
required.

� Frame: A group of elements comprise a frame. The elements in a frame
can be staggered or can be contiguous. A frame can be transferred with
or without a synchronizing event. The term ‘frame’ is used in context with
non-2D transfer. Non-2D transfer is defined below.

� Array: A group of contiguous elements comprise an array. Therefore, the
elements in an array cannot be spaced by an element index. An array can
be transferred with or without a synchronizing event. The term ‘array’ is
used in context with 2-Dimensional transfers. 2D transfer is defined below.

� Block: A group of arrays or frames form a block. Synchronized and unsyn-
chronized block transfers are supported.

� 2-dimensional (2D) transfer: A group of arrays comprise a 2D block
transfer. The first dimension is the contiguous elements in an array, and
the second dimension is the number of such arrays. The number of arrays
(frame/array count, FC) in a block can range from 1 to 65536
(corresponding to an FC value range of 0 to 65535).

� Non-2D transfer: A group of frames comprise a non-2D block transfer.
The number of frames (frame/array count, FC) in a block can be between
1 and 65536 (corresponding to an FC value range of 0 to 65535).

Event Processing and EDMA Control Registers

 6-6

6.3 Event Processing and EDMA Control Registers

Each of the 16 channels in the EDMA have specific events associated with
them. These events trigger the data transfer associated with that channel. The
list of control registers that perform various processing of events is shown in
Table 6–1.

An event is signaled to the EDMA controller by way of a low-to-high transition
on one of its 16 event inputs. All events are captured in the event register (ER),
even when the events are disabled. The 32-bit ER shown in Figure 6–3 con-
tains one bit for each event, or a total of 16 bits. Section 6.7.1 describes the
type of synchronization events and the EDMA channels associated with each
of them.

Table 6–1. EDMA Control Registers

Byte
Address Acronym Register Name Section

01A0 FFE0h PQSR Priority queue status register 6.14

01A0 FFE4h CIPR Channel interrupt pending register 6.13

01A0 FFE8h CIER Channel interrupt enable register 6.13

01A0 FFECh CCER Channel chain enable register 6.13.2

01A0 FFF0h ER Event register 6.3

01A0 FFF4h EER Event enable register 6.3

01A0 FFF8h ECR Event clear register 6.3

01A0 FFFCh ESR Event set register 6.3

In addition to the event register, the EDMA controller also provides the user
the option of enabling/disabling events. Any of the 16 event bits in the 32-bit
event enable register (EER) shown in Figure 6–4 can be set to ‘1’ to enable
that event. Note that all events that are captured by the EDMA are latched in
the ER even if that event is disabled. This is analogous to an interrupt enable
and interrupt-pending register for interrupt processing. This ensures that no
events are dropped by the EDMA. Thus, re-enabling an event with a pending
event signaled in the ER forces the EDMA controller to process that event ac-
cording to its priority. Writing a ‘0’ to the corresponding bit in the EER disables
an event.

Event Processing and EDMA Control Registers

6-7EDMA Controller

Once an event has been posted in the ER, the event can be cleared in two
ways. If the event is enabled in the event enable register (EER), the corre-
sponding event bit in the ER is cleared as soon as the EDMA submits a transfer
request for that event. Alternatively, if the event is disabled in the EER, the CPU
can clear the event by way of the event clear register (ECR), shown in
Figure 6–5. Writing a ‘1’ to any of the bits clears the corresponding event; writ-
ing a ’0’ has no effect. This feature allows the CPU to release a lock-up or error
condition. Therefore, once an event bit is set in the ER, it remains set until the
EDMA submits a transfer request for that event or the CPU clears the event
by setting the relevant bit in the ECR.

The CPU can also set events by way of the event set register (ESR) shown in
Figure 6–6. Writing a ‘1’ to one of the 16 event bits causes the corresponding
bit to be set in the event register. The event does not have to be enabled in this
case. This provides a good debugging tool and also allows the CPU to submit
EDMA requests in the system. Note that such CPU-initiated EDMA transfers
are basically unsynchronized transfers. In other words, an EDMA transfer oc-
curs when the relevant ER bit is set and is not triggered by any event as such.

Figure 6–3. Event Register (ER)

31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EVT15 EVT14 EVT13 EVT12 EVT11 EVT10 EVT9 EVT8 EVT7 EVT6 EVT5 EVT4 EVT3 EVT2 EVT1 EVT0

R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0

Figure 6–4. Event Enable Register (EER)

31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EE15 EE14 EE13 EE12 EE11 EE10 EE9 EE8 EE7 EE6 EE5 EE4 EE3 EE2 EE1 EE0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Event Encoder

 6-8

Figure 6–5. Event Clear Register (ECR)

31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EC15 EC14 EC13 EC12 EC11 EC10 EC9 EC8 EC7 EC6 EC5 EC4 EC3 EC2 EC1 EC0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Figure 6–6. Event Set Register (ESR)

31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ES15 ES14 ES13 ES12 ES11 ES10 ES9 ES8 ES7 ES6 ES5 ES4 ES3 ES2 ES1 ES0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

6.4 Event Encoder

Up to 16 events can be captured by the EDMA controller’s event register. Hence,
it is quite possible that events occur simultaneously on the EDMA event inputs.
For such cases, the order of processing is resolved by the event encoder. This
mechanism only sorts simultaneous events and has nothing to do with the actual
priority of the event. The actual priority of the event is determined by its EDMA
parameters stored in the parameter RAM of the EDMA controller. Parameter
RAM is discussed in the next section.

Event Processing and EDMA Control Register / Event Encoder

Parameter RAM (PaRAM)

6-9EDMA Controller

6.5 Parameter RAM (PaRAM)

Unlike the existing ‘C6201 DMA controller which is a register-based architec-
ture, the enhanced DMA controller is a RAM-based architecture. The parame-
ter RAM as the name indicates is used to store the parameters that define a
particular EDMA transfer. The 2K byte parameter RAM holds transfer parame-
ters (or entries) for all the 16 events. Parameter entries can also be linked to
one another to provide for processing of complex streams, circular buffering,
and sorting functions. The link entries are also specified in the parameter RAM.

Once an event is captured, its parameters are read from one of the top 16 en-
tries in the PaRAM as shown in Table 6–2. These parameters are then sent
to the address generation hardware.

The contents of the 2K byte parameter RAM shown in Table 6–2 comprises:

� 16 transfer parameter entries for the 16 EDMA events. Each entry is six
words or 24 bytes totaling 384 bytes. Address range is 01A0 0000h to
01A0 017Fh.

� 69 transfer parameter sets that can be used for linking events. Each set
or entry is 24 bytes totaling 1656 bytes. Address range is 01A0 0180h to
01A0 07F7h.

� 8 bytes of unused RAM that can be used as scratch pad area. Address
range is 01A0 07F8h to 01A0 07FFh. Note that a part or entire EDMA RAM
can be used as a scratch pad RAM provided this area corresponding to
an event(s) is disabled. It is the user’s responsibility to provide the transfer
parameters when the event is eventually enabled.

Parameter RAM (PaRAM)

 6-10

Table 6–2. EDMA Parameter RAM Contents

Address Event Parameters

01A0 0000h Event 0, options

01A0 0004h Event 0, SRC address

01A0 0008h Event 0, array/frame count Event 0, element count

01A0 000Ch Event 0, DST address

01A0 0010h Event array/frame index 0, Event 0, element index
01A0 0014h Event 0, element count reload Event 0, link address

01A0 0018h to
01A0 002Fh

Parameters for event 1 (6 words)

01A0 0030h to
01A0 0047h

Parameters for event 2 (6 words)

01A0 0048h to
01A0 005Fh

Parameters for event 3 (6 words)

01A0 0060h to
01A0 0077h

Parameters for event 4 (6 words)

01A0 0078h to
01A0 008Fh

Parameters for event 5 (6 words)

01A0 0090h to
01A0 00A7h

Parameters for event 6 (6 words)

01A0 00A8h to
01A0 00BFh

Parameters for event 7 (6 words)

01A0 00C0h to
01A0 00D7h

Parameters for event 8 (6 words)

01A0 00D8h to
01A0 00EFh

Parameters for event 9 (6 words)

01A0 00F0h to
01A0 0107h

Parameters for event 10 (6 words)

01A0 0108h to
01A0 011Fh

Parameters for event 11 (6 words)

Parameter RAM (PaRAM)

6-11EDMA Controller

Table 6–2. EDMA Parameter RAM Contents (Continued)

Address Event Parameters

01A0 0120h to
01A0 0134h

Parameters for event 12 (6 words)

01A0 0138h to
01A0 014Ch

Parameters for event 13 (6 words)

01A0 0150h to
01A0 0164h

Parameters for event 14 (6 words)

01A0 0168h to
01A0 017Ch

Parameters for event 15 (6 words)

Address Reload/Link Parameters

01A0 0180h Event N, options

01A0 0184h Event N, SRC address

01A0 0188h Event N, array/frame count Event N, element count

01A0 018Ch Event N, DST address

01A0 0190h Event N, array/frame index Event N, element index

01A0 0194h Event N, element count reload Event N, link address

… …

… …

01A0 07E0h

to 01A0 07F7h

Reload parameters for event Z (6 words)

Unused RAM

01A0 07F8h

to 01A0 07FFh

Scratch pad area (2 words)

Parameter RAM (PaRAM)

 6-12

6.5.1 EDMA Transfer Parameter Entry

Each parameter entry of an EDMA event is organized in six 32-bit words or 192
bits as shown in Figure 6–7. Access to the EDMA parameter RAM is provided
only via the 32-bit peripheral bus.

Figure 6–7. Parameter Storage for an EDMA Event

31 16 15 0

Options Word 0

SRC Address Word 1

Array/frame
count (FC)

Element
count (EC)

Word 2

DST address Word 3

Array/frame
index (FIX)

Element
index (EIX)

Word 4

Element
count
reload

(ECRLD)

Link
address

Word 5

EDMA Transfer Parameters

6-13EDMA Controller

6.6 EDMA Transfer Parameters

Depending on the parameter options associated with a transfer, the
source/destination address, element/array/frame count can be updated by the
EDMA. The following sections describe the various parameters shown in
Table 6–3.

6.6.1 Options Parameter

The options parameter in the EDMA channel/event entry is a 32-bit field as
shown in Figure 6–8.

Figure 6–8. Options Bit-Fields

31 29 28 27 26 25 24 23 22 21 20 19 16 15 2 1 0

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC rsvd LINK FS

RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 R,+0 RW,+0 RW,+0

Table 6–3. EDMA Channel Options Field Description

Field Description Section

FS Frame synchronization

FS=0; Frame sync is not needed to start a frame
transfer.

FS=1; Frame synchronization enabled. The relevant
event for a given EDMA channel is used to synchronize
a frame.

6.7

LINK Linking events

LINK=0; Linking of event parameters disabled

LINK=1; Linking of event parameters enabled. Allows
reloading of event parameters from the parameter
RAM. Link address must be aligned on a 24-byte
boundary.

6.6.7 and
6.9

TCC Transfer complete code

TCC=0000b to 1111b; 4-bit code is used to set the
relevant bit in CIPR (i.e. CIPR[TCC] bit) provided
TCINT=1.

6.13

EDMA Transfer Parameters

 6-14

Table 6–3. EDMA Channel Options Field Description (Continued)

Field Description Section

TCINT Transfer complete interrupt

TCINT=0; Transfer complete indication disabled. CIPR
bits are not set upon completion of a transfer.

TCINT=1; The relevant CIPR bit is set on channel
transfer completion. The bit (position) set in the CIPR is
the TCC value specified.

6.13

2DD/2DS 2-dimensional destination or source transfer

2DD/2DS = 0; Not a 2-D transfer.

2DD/2DS = 1; 2-Dimensional transfer enabled.

6.8 and
6.12

DUM/SUM Destination/source (address) update mode

DUM/SUM = 00b; No address modification

DUM/SUM = 01b; Address increment depends on
2DD/2DS, and FS bit-fields

DUM/SUM = 10b; Address decrement depends on
2DD/2DS, and FS bit-fields

DUM/SUM = 11b; Address modified by the element
index/frame index depending on 2DD/2DS, and FS bits.

6.12

ESIZE Element size

ESIZE=00b; 32-bit word

ESIZE=01b; 16-bit half-word

ESIZE=10b; 8-bit byte

ESIZE=11b; reserved

6.10

PRI Priority levels for EDMA events

PRI=000b; Reserved; Urgent priority level reserved
ONLY for L2 requests. Not valid for EDMA transfer
requests.

PRI=001b; High priority EDMA transfer

PRI=010b; Low priority EDMA transfer

PRI=011b to 111b; reserved

6.14

6.6.2 SRC/DST Address

The 32-bit source/destination address fields in the EDMA parameters speci-
fies the starting byte address of the source and destination. The src/dst ad-
dresses can be modified using the SUM/DUM field in the options parameter.
See details in section 6.12.

EDMA Transfer Parameters

6-15EDMA Controller

6.6.3 Element Count

Element count is a 16-bit unsigned value that specifies the number of elements
in a frame (non-2D) or an array (for 2D transfers). Valid values for the element
count can be anywhere between 1 and 65535. Therefore, the maximum num-
ber of elements in a frame is 65535. Operation is undefined if element count
is zero. Details in section 6.11.

6.6.4 Frame/Array Count

Frame count is also a 16-bit unsigned value and it specifies the number of
frames in a non-2D block transfer or number of arrays in a 2D block transfer.
The maximum number of frames in a block is 65536. Therefore a frame/array
count of 0 is actually one frame/array and frame count of 1 corresponds to 2
frames/arrays. Details in section 6.11.

6.6.5 Element/(Frame/Array) Index

The 16-bit signed value specified in the element and frame index fields are
used for address modification. These fields are used by the EDMA for address
updates depending on the type of transfer chosen (1D or 2D), FS, and SUM/
DUM fields. The src/dst address is modified by an index whose range is be-
tween –32768 and 32767.

Element index provides an address offset to the next element in a frame. Ele-
ment index is used only for non-2D transfers. This is because 2D transfers do
not allow spacing between elements, and hence the term ‘array’ is used to de-
fine a group of contiguous elements. Frame index provides an offset to the next
frame in a block.

6.6.6 Element Count Reload

The 16-bit unsigned element count reload value is used to reload the element
count field once the last element in a frame is transferred. This field is used only
for a non-2D read/write sync (FS=0) transfer since the EDMA has to keep track
of the next element address using the element count. This is necessary for
multi-frame EDMA transfers where frame count value is greater than 0. More
details in section 6.11.1.

EDMA Transfer Parameters

 6-16

6.6.7 Link Address

The EDMA controller provides a mechanism to link EDMA transfers. This is
analogous to the auto-initialization feature in the DMA. The 16-bit link address
specified in the EDMA parameter RAM specifies the lower 16-bit address in
the parameter RAM from which the EDMA loads/reloads the parameters of the
next event in the chain. Since the entire EDMA parameter RAM is located in
the 01A0 xxxxh area, only the lower 16-bit address matters.

The reload parameters are specified in the address range 01A0 0180h to
01A0 07F7h. It is the user’s responsibility to ensure that the link address is on
a 24-byte boundary. Operation is undefined if the rule is violated. This is dis-
cussed in section 6.9.

Initiating an EDMA Transfer

6-17EDMA Controller

6.7 Initiating an EDMA Transfer

There are two ways to initiate data transfer using the EDMA. One is CPU-initi-
ated EDMA and the other is an event-triggered EDMA. The latter is a more typi-
cal usage of the EDMA. Each EDMA channel can be started independently.
The CPU can also disable an EDMA channel by disabling the event associated
with that channel.

� CPU-initiated EDMA or unsynchronized EDMA: The CPU can write to
the event set register, ESR (described in section 6.3) in order to start an
EDMA transfer. Writing a ‘1’ to the corresponding event in the ESR triggers
an EDMA event. Just as with a normal event, the transfer parameters in
the EDMA parameter RAM corresponding to this event are passed to the
address generation hardware, which performs the requested access of
the EMIF, L2 memory or peripherals, as appropriate. CPU-initiated EDMA
transfers are unsynchronized data transfers. The event’s enable bit does
not have to be set in the EER for CPU-initiated EDMA transfers. This is
because a CPU write to the ESR is treated as a real-time event.

� Event-triggered EDMA: As the name suggests, an event that is latched
in the event register, ER, via the event encoder (see section 6.4) causes
its transfer parameters to be passed on to the address generation hard-
ware, which performs the requested accesses. Although the event causes
this transfer, it is very important that the event itself be enabled by the CPU.
Writing a ‘1’ to the corresponding bit in EER enables an event. Alternative-
ly, an event is still latched in the ER even if its corresponding enable bit in
EER is ‘0’ (disabled). The EDMA transfer related to this event occurs as
soon as it is enabled in EER.

6.7.1 Synchronization of EDMA Transfers

Synchronization allows EDMA transfers to be triggered by events either from
peripherals, interrupts from external devices, or an EDMA channel completion
event. The 16 EDMA channels can start a transfer depending on the type of
synchronization event associated with that channel. Table 6–4 shows the 16
events that initiate the 16 EDMA channels to start a transfer.

The association of an event to a channel is fixed. Unlike the existing
‘C6201-type DMA, each of the 16 EDMA channels have one specific type of
event associated with it. For example, if bit 4 (event 4) in EER is set, then an
external interrupt on EXT_INT4 pin initiates a transfer on EDMA channel 4.

Initiating an EDMA Transfer

 6-18

Events originate from a peripheral such as the McBSP (R/XEVT), or an exter-
nal device in the form of an external interrupt (say, EXT_INT4). The source of
these events is listed in Table 6–4. The event is specific to a channel, the prior-
ity of each event can be specified independently in the transfer parameters
stored in the EDMA parameter RAM.

Table 6–4. EDMA Channel Association with Sync Events

EDMA
Channel
Number Event Acronym Event Description

0 DSPINT Host port host to DSP interrupt

1 TINT0 Timer 0 interrupt

2 TINT1 Timer 1 interrupt

3 SD_INT EMIF SDRAM timer interrupt

4 EXT_INT4 External interrupt pin 4

5 EXT_INT5 External interrupt pin 5

6 EXT_INT6 External interrupt pin 6

7 EXT_INT7 External interrupt pin 7

8 EDMA_TCC8 EDMA transfer complete code 1000b interrupt

9 EDMA_TCC9 EDMA TCC 1001b interrupt

10 EDMA_TCC10 EDMA TCC 1010b interrupt

11 EDMA_TCC11 EDMA TCC 1011b interrupt

12 XEVT0 McBSP0 transmit event

13 REVT0 McBSP0 receive event

14 XEVT1 McBSP1 transmit event

15 REVT1 McBSP1 receive event

Initiating an EDMA Transfer

6-19EDMA Controller

There are two types of synchronization that can be used to synchronize trans-
fers on each channel. They are:

� Read/write synchronization (R/WSYNC, FS=0): For non-2D transfers,
each EDMA channel performs a source to destination element transfer
only after receiving a read/write sync event. A read/write sync event can
originate from a peripheral or an external interrupt which is specific for a
given EDMA channel. In the case of 2-D transfers, this EDMA channel
R/WSYNC event is used to transfer an array from the source to the
destination.

� Frame (block) synchronization (FS=1): Setting FS=1 in the options field
of an EDMA channel’s transfer parameters causes the channel’s frame
transfers to be synchronized as per the event shown in Table 6–4. For the
case of non-2D transfers, each frame is transferred when the sync event
is detected. For 2-D transfers, frame sync causes an entire block (group
of arrays) to be transferred. Each frame transfer waits for the selected
frame sync event to occur to start the transfer.

Types of EDMA Transfers

 6-20

6.8 Types of EDMA Transfers

The EDMA provides for two types of data transfers, namely non-2-dimensional
(non-2D) and 2-dimensional (2D) transfers. This is selected by setting the 2DD
and 2DS bits in the event’s options field. 2DD when set to 1 represents two-di-
mensional transfer on the destination. Similarly, a 2-D transfer on the source
is performed when 2DS is equal to1. Various combinations of 2DS and 2DD
are supported.

6.8.1 Non-2Dimensional Transfers

For non-2D transfers, a group of elements equal to element count constitute
a frame. Each element transfer in a frame can be driven by the R/WSYNC
event (FS=0). In addition, the elements can be contiguous or spaced by an ele-
ment index amount. Once a complete frame is transferred, the element count
reaches zero. Therefore for multi-frame transfers, the element count has to be
reloaded by the element count reload field in the transfer entry. Frame count
is the number of frames in a non-2D transfer. The start of a frame transfer can
be triggered by a frame sync (FS=1) wherein the channel-specific event is
used to synchronize the entire frame.

6.8.1.1 R/WSYNC Non-2D Transfer (FS=0)

Figure 6–9 shows the concept of a non-2D EDMA transfer with ‘n’ elements
in each frame and frame count is 2, for a total of three frames. Each element
in a frame is transferred from its source to destination address upon receiving
the channel-specific sync event. After the channel receives a sync event, it
sends off a transfer request for DMA service. The EDMA controller then
decrements the element count (EC) by 1 in the parameter RAM. When a
channel sync event occurs and EC = 1 (indicating the last element in a frame),
the EDMA controller first sends off the transfer request triggered by the event.
Afterward, element count reload occurs and frame count (FC) decrements by
1. User-specified element index (EIX) is used to compute the address of the
next element in a frame. Similarly, frame index (FIX) is added to the last
element address in a frame to derive the next frame start address. The
address modification and count modification depends on the type of update
modes chosen. They are mentioned here only for an understanding of a
non-2D transfer. Specific updates are described in sections 6.11 and 6.12.

If linking is enabled (LINK=1, see section 6.9), the complete transfer parame-
ters get reloaded (from the parameter reload space in EDMA parameter RAM)
after sending the last transfer request to the address generation hardware.
This sets up a new set of parameters in advance for the next occurrence of the
event.

Types of EDMA Transfers

6-21EDMA Controller

Figure 6–9. Non-2D R/W Sync EDMA Transfer Without Frame Sync

Frame 0

Frame 1

Frame 2

EC=1

+FIXR/WSYNC

E0 E1 E2 En

EC=1
ECRLD
+FIXR/WSYNC

E0 E1 E2 En

EC=1
FC=0R/WSYNC

E0 E1 E2 En

+EIX

+EIX

+EIX

ECRLD

6.8.1.2 Frame Synchronized Non-2D Transfer (FS=1)

Figure 6–10 shows the concept of a non-2D EDMA transfer with frame syn-
chronization. Here, the element transfer in each frame is not synchronized, but
instead each frame transfer is synchronized by the channel event. FS bit (in
options field) should be set to ‘1’ to enable frame-synchronized transfer. User-
specified element index (EIX) can be used to stagger elements in a frame.
Frame index (FIX) can be added to the start element address in a frame to de-
rive the next frame start address. The address modification and count modifi-
cation depends on the type of update modes chosen. They are mentioned
here only for an understanding of a non-2D transfer. Specific updates are de-
scribed in sections 6.11 and 6.12.

If linking is enabled (LINK=1, see section 6.9), the complete transfer parame-
ters get reloaded (from the parameter reload space in EDMA parameter RAM)
after sending the last transfer request to the address generation hardware.

Types of EDMA Transfers

 6-22

Figure 6–10. Non-2D EDMA Transfer With Frame Sync

Frame 0

Frame 1

Frame 2

EC=1

E0 E1 E2 En

E0 E1 E2 En

EC=1
FC=0

E0 E1 E2 En

+EIX

+EIX

FS=1

FS=1

FS=1

+
F

IX
+

F
IX

+EIX

EC=1

6.8.2 2-Dimensional Transfers

2-dimensional transfers are useful for imaging applications where contiguous
set of elements (referred to as array) has to be transferred on receiving a sync
event. This means there is no spacing or indexing between elements in an
array and hence, EIX is not used in 2D transfers. The number of elements in
an array makes up for the first dimension of the transfer. A group of arrays
forms the second dimension and is called a block.

6.8.2.1 R/WSYNC 2D Transfer (FS = 0)

A conceptual diagram in Figure 6–11 shows a 2-dimensional, read/write syn-
chronized transfer without frame synchronization. Since this 2-D transfer is not
frame synchronized, the R/WSYNC is the sync event on which every array or
contiguous group of elements is transferred. The example shows ‘n’ elements
in an array and number of arrays to be transferred as 3 (frame count = 2).
Frame count (FC) decrements after each array is transferred. Frame index is
added to an array’s start address to derive the next array’s start address
depending on the address update mode chosen (SUM/DUM).

When FC reaches zero and if linking is enabled (LINK = 1, see section 6.9),
the complete transfer parameters get reloaded (from the parameter reload
space in EDMA parameter RAM) after sending the last transfer request to the
address generation hardware.

Types of EDMA Transfers

6-23EDMA Controller

Figure 6–11.Read/Write Synchronized 2-D Transfer (No Frame Sync)

First dimension

Array 0

EC=1

E0 E2 E4 EnE1 E3 E5

S
ec

on
d

di
m

en
si

on

E0 E2 E4 EnE1 E3 E5
Array 1

EC=1

E0 E2 E4 EnE1 E3 E5
Array 2

EC=1
FC=0

R/WSYNC
(FS=0)

R/WSYNC
(FS=0)

R/WSYNC
(FS=0)

+
F

IX
+

F
IX

6.8.2.2 Frame Synchronized 2D Transfer (FS=1)

An example 2-dimensional block transfer with frame sync is shown in
Figure 6–12. Again, the contiguous group of elements (element index, EIX=0)
form an array and the group of arrays form a 2D-block (frame).

Figure 6–12. Frame Synchronized 2-D Transfer

First dimension

Array 0

R/WSYNC
(FS=1)

EC=1

+FIX

E0 E2 E4 EnE1 E3 E5
S

ec
on

d
di

m
en

si
on

E0 E2 E4 EnE1 E3 E5Array 1

EC=1

+FIX

E0 E2 E4 EnE1 E3 E5Array 2

EC=1
FC=0

Types of EDMA Transfers

 6-24

The complete block gets transferred when the channel’s event occurs and
FS=1. Note that the frame index (FIX) is added to the last element address in
an array to derive the next array start address. This address update is trans-
parent to the user and does not reflect in the parameter RAM.

If linking is enabled (LINK=1), the next EDMA block transfer in the link (as spe-
cified by the link address) is performed as soon as the next frame sync arrives.

Linking EDMA Transfers

6-25EDMA Controller

6.9 Linking EDMA Transfers

The EDMA controller provides a mechanism known as ‘linking’, which allows
multiple EDMA transfers to be linked. The completion of one transfer links the
next transfer in a link causing its event parameters to be loaded from a location
within the parameter RAM. This feature is especially useful for complex sort-
ing, circular buffering type of applications. The 16-bit link address field in the
EDMA parameter RAM and the LINK bit in the options field is used for this pur-
pose. The link address points to the next transfer entry location in the linked
list. The entire EDMA parameter RAM is located in the 01A0 xxxxh area.
Therefore the 16-bit link address, which corresponds to the lower 16-bit
physical address, is sufficient to specify the location of the next transfer entry.
The link address must be aligned on a 24-byte boundary. An example of a
linked EDMA transfer is shown in Figure 6–13.

Figure 6–13. Linked EDMA Transfer

Event N parameters

Reload parameters at
01A0 0180

Options (LINK=1)

Src address

Frame count
Element
count

Dst address

Frame index
Element

index

Elem. count
reload

Link address
 0180h

Options (LINK=1)

Src address

Frame count
Element
count

Dst address

Frame index
Element

Index

Elem. count
reload

Link address
 01B0h

Reload parameters at
01A0 01B0

Options (LINK=0)

Src address

Frame count
Element
count

Dst address

Frame index
Element

index

Elem. count
reload

Link address =
don’t care

Linking EDMA Transfers

 6-26

The link address is evaluated only if LINK is equal to 1 and only after the event
parameters have been exhausted. An event’s parameters are exhausted
when the EDMA controller has completed the transfer associated with the re-
quest. Table 6–5 shows the conditions when the linking of parameters is per-
formed. The link conditions for a 2-D transfer is different from a non-2D transfer
and it also depends on the type of synchronization chosen. Since the EDMA
parameter RAM is 2048 bytes, it allows up to 69 reload entries in addition to
the 16 EDMA event parameter entries (see section 6.5). There is virtually no
limit to the length of linked transfers. However, the last transfer parameter
entry should have its LINK = 0 so that the linked transfer stops after the last
transfer.

Table 6–5. Link Conditions

LINK = 1 Non-2D Transfers 2D Transfers

Read/write sync
(FS = 0)

Frame count == 0 &&
Element count == 1

Frame count == 0

Frame sync (FS = 1) Frame count == 0 Always

Once the link conditions are met for an event, the transfer parameters located
at the link address are loaded into one of the 16 EDMA channel/event parame-
ter space for the corresponding event. Now, the EDMA is ready to start the next
transfer. To eliminate possible timing windows posed during this parameter re-
load mechanism, the EDMA controller does not evaluate the event register
during this time. However, events are still captured in the ER, and will be
processed after the parameter reload is complete.

Element Size and Alignment

6-27EDMA Controller

6.10 Element Size and Alignment

The ESIZE field in the options of an event parameter entry allows the user to
specify the element size that the EDMA should use for a transfer. The EDMA
controller can transfer 32-bit words, 16-bit half-words, or 8-bit bytes in a trans-
fer.

The addresses must be aligned on the element size boundary. Word and half-
word accesses must be aligned on a word (multiple of 4) and half-word (multi-
ple of 2) boundary respectively. Unaligned values can result in undefined op-
eration.

Element and Frame/Array Count Updates

 6-28

6.11 Element and Frame/Array Count Updates

The EDMA parameter RAM has 16-bit unsigned values of element count (EC)
and frame count (FC) each. Additionally, it also holds 16-bit signed values
each for the element index (EIX) and frame index (FIX). The maximum number
of elements in a frame or an array (for 2D transfers) is 65535. The maximum
number of frames in a block is 65536.

The element count and frame count are updated in the corresponding event’s
transfer entry depending on the type of transfer (2D or non-2D) and the syn-
chronization type as shown in Table 6–6.

Table 6–6. EDMA Element and Frame/Array Count Updates

Synchronization Transfer Mode
Element Count
Update

Frame/Array
Count Update †

Read/write (FS=0) Non-2D;

(2DS&2DD=0)

–1
(reload if EC = 1)

See section
6.11.1

–1
(if element count = 1)

Read/write (FS=0) 2D;

(2DS|2DD=1)

None –1

Frame (FS=1) Non-2D;

(2DS&2DD=0)

None –1

Frame (FS=1) 2D;

(2DS|2DD=1)

None None

† No frame/array count update occurs if the frame/array count is zero (FC = 0).

6.11.1 Element Count Reload (ECRLD)

There is a special condition for reloading the element count for read/write syn-
chronized (FS = 0), non-2D transfers. In this case the address is updated by
element size or element/frame index depending on SUM/DUM fields. See the
first row in Table 6–7. Therefore, the EDMA controller keeps track of the ele-
ment count to update the address. When a read/write sync event occurs at the
end of a frame (EC = 1), the EDMA controller sends off the transfer request,
and reloads the EC from the element count reload field in the parameter RAM.
This element count reload occurs when element count is one, and the frame
count is non-zero. For all other types of transfers, the 16-bit element count re-
load field is not used because the address generation hardware tracks the ad-
dress directly.

Src/Dst Address Updates

6-29EDMA Controller

6.12 Src/Dst Address Updates

Depending on the SUM/DUM fields in the options word of EDMA transfer pa-
rameters, the source and/or destination addresses can be modified. The
EDMA controller performs the necessary address computation. The various
address update modes listed in Table 6–3 provide for a variety of data struc-
tures that can be created. The source and/or destination address is updated
depending on whether frame sync is enabled or not, or 2D transfer is selected
or not. All address updates should occur after the current transfer request is
sent. Therefore, these updates are used to set the EMDA parameters for the
next event.

The update of the source or destination address depends on the transfer type
chosen for both the source and destination. For example, a transfer from
non-2D source to a 2D destination requires that the source be updated on a
frame basis (not on element basis) to provide 2D type data to the destination.
Table 6–7 shows the amount by which the source address is modified for each
of the combinations of FS, 2DD/2DS, and SUM parameters. Table 6–8 shows
the destination address updates that are possible.

Note that when either the source or the destination is a 2D transfer and the
transfer is frame synchronized, it means that the complete block of data is
transferred on a frame sync event. Therefore, address updates are not
applicable in this case. If LINK = 1 and the link conditions outlined in Table 6–5
are met, no address updates occur. Instead, the link parameters are copied
directly to the event parameter.

Src/Dst Address Updates

 6-30

Table 6–7. EDMA SRC Address Parameter Updates

Source Update Mode (SUM)

Frame
Sync

Transfer-
Type
(2DS:2DD) 00 01 10 11

FS = 0 00 None +ESIZE;

Increment by element size

–ESIZE;

Decrement by
element size

+EIX or +FIX if EC=1;

Add signed EIX to
each element in a
frame except the last.
Add signed FIX to the
last element in a
frame when EC = 1.

01 None +(EC x ESIZE bytes);

Add EC scaled by element
size to the start address of
previous frame

–(EC x ESIZE bytes);

Subtract EC scaled
by element size from
the start address of
previous frame

Reserved

10 None +FIX;

Add signed FIX to the first
element in a frame. Element
addresses in a frame are in
increasing order.

+FIX;

Add signed FIX to the
first element in a
frame. Element
addresses in a frame
are in decreasing
order.

Reserved

11 None +FIX;

Add signed FIX to the first
element in a frame. Element
addresses in a frame are in
increasing order.

+FIX;

Add signed FIX to the
first element in a
frame. Element
addresses in a frame
are in decreasing
order.

Reserved

FS = 1 00 None +(EC x ESIZE bytes);

Add EC scaled by element
size to the start address of
previous frame

–(EC x ESIZE bytes);

Subtract EC scaled
by element size from
the start address of
previous frame

+FIX;

Add signed FIX to the
first element in a
frame. Element
addresses in a frame
spaced by EIX.

01 None None None None

10 None None None None

11 None None None None

Note: EC: Element count
EIX: 16-bit signed element index value
FC: Frame/array count
FIX: 16-bit signed frame index value

Src/Dst Address Updates

6-31EDMA Controller

Table 6–8. EDMA DST Address Parameter Updates

Destination Update Mode (DUM)

Frame
Sync

Transfer Type
(2DS:2DD)

00 01 10 11

FS = 0 00 None +ESIZE;

Increment by element
size.

–ESIZE;

Decrement by element
size.

+EIX or +FIX if EC = 1

Add signed EIX to each
element in a frame
except the last. Add
signed FIX to the last
element in a frame
when EC = 1.

01 None +FIX;

Add signed FIX to the
first element in a frame.
Element addresses in
a frame are in
increasing order.

+FIX;

Add signed FIX to the
first element in a frame.
Element addresses in
a frame are in
decreasing order.

Reserved

10 None +(EC x ESIZE bytes);

Add EC scaled by
element size to the
start address of
previous frame

–(EC x ESIZE bytes);

Subtract EC scaled by
element size from the
start address of
previous frame

Reserved

11 None +FIX;

Add signed FIX to the
first element in a frame.
Element addresses in
a frame are in
increasing order.

+FIX;

Add signed FIX to the
first element in a frame.
Element addresses in
a frame are in
decreasing order.

Reserved

FS = 1 00 None +(EC x ESIZE bytes);

Add EC scaled by
element size to the
start address of
previous frame

–(EC x ESIZE bytes);

Subtract EC scaled by
element size from the
start address of
previous frame

+FIX;

Add signed FIX to the
first element in a frame.
Element addresses in
a frame spaced by EIX.

01 None None None None

10 None None None None

11 None None None None

Note: EC: Element count
EIX: 16-bit signed element index value
FC: Frame/array count
FIX: 16-bit signed frame index value

EDMA Interrupt Generation

 6-32

6.13 EDMA Interrupt Generation

The EDMA controller is responsible for generating channel-complete
interrupts to the CPU. Unlike the ’C6201 DMA controller which has individual
interrupts for each DMA channel, the EDMA generates a single interrupt
(EDMA_INT) to the CPU on behalf of all 16 channels. The various control reg-
isters and bit fields facilitate EDMA interrupt generation.

When TCINT bit in options entry is set to ‘1’ for a EDMA channel and a specific
transfer complete code (TCC) is provided, the EDMA controller sets a bit in the
channel interrupt pending register (CIPR) shown in Figure 6–14. The CIPR bit
number that gets set is dictated by the TCC value programmed. Lastly, the im-
portant action is to generate the EDMA_INT to the CPU. To do this, the corre-
sponding interrupt enable bit should be set in the channel interrupt enable reg-
ister (CIER) shown in Figure 6–15.

Therefore for a channel completion event to generate an interrupt to the CPU,
the TCINT and the relevant CIER bit should be enabled. CIPR is equivalent
to an interrupt pending register whose sources are the transfer complete
codes and CIER is similar to an interrupt enable register. Note that if the CIER
bit is disabled, the channel completion event is still registered in the CIPR if its
TCINT=1. Once the CIER bit is enabled, the corresponding channel interrupt
is sent to the CPU. If the CPU interrupt (defaults to CPU_INT8) is enabled, its
ISR is executed.

Figure 6–14. Channel Interrupt Pending Register (CIPR)
31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CIP15 CIP14 CIP13 CIP12 CIP11 CIP10 CIP9 CIP8 CIP7 CIP6 CIP5 CIP4 CIP3 CIP2 CIP1 CIP0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Figure 6–15. Channel Interrupt Enable Register (CIER)
31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CIE15 CIE14 CIE13 CIE12 CIE11 CIE10 CIE9 CIE8 CIE7 CIE6 CIE5 CIE4 CIE3 CIE2 CIE1 CIE0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

EDMA Interrupt Generation

6-33EDMA Controller

The TCC field can have values between 0000b to 1111b. These are directly
mapped to the CIPR bits as shown in Table 6–9. For example, if TCC = 1100b,
CIPR[12] is set to 1 after the transfer is complete, and this generates a CPU
interrupt only if CIER[12] = 1. The user can program the TCC value to be any-
thing between 0000b to 1111b for any EDMA channel. In other words, there
need not necessarily be a direct relation between the channel number and the
TCC value. This allows multiple channels having the same TCC value to cause
the CPU to execute the same ISR (for different channels).

Table 6–9. Transfer Complete Code (TCC) to DMA Interrupt Mapping

TCC in Options
(TCINT=1)

CIPR[15:0] Bits
Set

0000b CIPR[0]

0001b CIPR[1]

0010b CIPR[2]

0011b CIPR[3]

0100b CIPR[4]

0101b CIPR[5]

0110b CIPR[6]

0111b CIPR[7]

1000b CIPR[8]

1001b CIPR[9]

1010b CIPR[10]

1011b CIPR[11]

1100b CIPR[12]

1101b CIPR[13]

1110b CIPR[14]

1111b CIPR[15]

EDMA Interrupt Generation

 6-34

6.13.1 EDMA Interrupt Servicing by the CPU

Since the EDMA controller is aware when the EDMA channel transfer is com-
plete, it sets the appropriate bit in the CIPR as per the TCC specified by the
user. The CPU ISR should read the CIPR and determine what, if any events/
channels have completed and perform the operations necessary. The ISR
should clear the bit in CIPR upon servicing the interrupt, therefore enabling
recognition of further interrupts. Writing a ‘1’ to the relevant bit can clear CIPR
bits, writing a ‘0’ has no effect.

By the time one interrupt is serviced, many others could have occurred and
relevant bits set in CIPR. Each of these bits in CIPR would probably need dif-
ferent types of service, and therefore the ISR continues until all the posted in-
terrupts are serviced.

6.13.2 Chaining EDMA Channels by an Event

Four of the user-specified 4-bit transfer complete codes (TCC values 8, 9, 10,
and 11) can be used to trigger another EDMA channel transfer. The purpose
of these events triggering an EDMA transfer is to provide the user the ability
to chain several EDMA channels from one event that is driven by a peripheral
or external device (see Table 6–4).

To enable the EDMA controller to chain channels by way of a single event, the
TCINT bit must be set to ‘1’. Additionally, the relevant bit in the channel chain
enable register (CCER) in Figure 6–16 should be set to trigger off the next
channel transfer specified by TCC. Since events 8 to 11 are the only EDMA
channels that support chaining, only these bits are implemented in CCER.
Reading unused bits returns a ‘0’ and writing to them has no effect. Therefore,
one can still specify a TCC value between 8 and 11, and need not necessarily
initiate the transfer on channels 8-11. However, the event is still captured in the
ER[11:8] even if the corresponding bit in CCER is disabled. This allows selec-
tive enabling and disabling of these 4 specific events.

EDMA Interrupt Generation

6-35EDMA Controller

Figure 6–16. Channel Chain Enable Register (CCER)

31 12 11 10 9 8 7 0

rsvd CCE11 CCE10 CCE9 CCE8 rsvd

R, +0 RW, +0 RW, +0 RW, +0 RW, +0 R, +0

For example, if TCC = 1000b and CCER[8] = 1 is specified for EDMA channel
4, an external interrupt on EXT_INT4 initiates the EDMA transfer. Once
channel 4 transfer is complete, the EDMA controller initiates (TCINT = 1) the
next transfer specified by EDMA channel 8. This is because TCC = 1000b
(channel 4 transfer completion code) is the sync event for EDMA channel 8.
The corresponding CIPR bit 8 is set after channel 4 completes and generates
an EDMA_INT (provided CIER[8] = 1) to the CPU. If the CPU interrupt is not
desired, the corresponding interrupt enable bit, CIER[8] must be set to ‘0’. If
channel 8 transfer is not desired, CCER[8] must be set to ‘0’.

Resource Arbitration and Priority Processing

 6-36

6.14 Resource Arbitration and Priority Processing

The 16 EDMA channels can have programmable priority in the two lower
levels. The PRI bit in options specifies the two priority levels: level1 (high prior-
ity, PRI = 001b) and level 2 (low priority, PRI = 010b). The highest priority avail-
able in the system is level 0 or the urgent priority, which is dedicated to L2 re-
quests. L2 requests comprise of data and program requests from the CPU, L1
and L2 controllers. The EDMA controller and the host port interface (HPI) can
submit requests with either of the two lower priority levels.

Table 6–10. Programmable Priority Levels for Data Requests

PRI(31:29) Priority Level Requesters

000b Level0; urgent priority L2 controller

001b Level1; high priority EDMA and/or HPI

010b Level2; low priority EDMA and/or HPI

011b – 111b Reserved Reserved

The user should take care in not over-burdening the system by not submitting
all requests in high priority. Oversubscribing requests in one priority level can
cause EDMA stalls. This can be alleviated by balanced bandwidth distribution
in the two levels of priority.

The requesters in the ‘C6211/C6711 device include the L2 controller, the
EDMA, and the HPI. The HPI and L2 controller have direct ties to the address
generation hardware, so no EDMA parameter RAM is required for access re-
quests from these sources. The resources for the various requesters include
the L2 SRAM space, the various peripheral registers, and the external memory
space managed by the EMIF. Due to the number of requesters and resources,
there are situations where one or more requesters contend for the same re-
source. An example would be the EDMA and CPU requesting data from the
same bank in L2 SRAM. The L2 controller resolves this contention by examin-
ing the user-specified ‘P’ bit in L2CFG register (see Section 4.5 in
TMS320C6211/C6711 Internal Memory). The L2 controller prioritizes and seri-
alizes the requests from these modules. If P is equal to 1, the EDMA request
gets priority over the CPU.

EDMA Performance

6-37EDMA Controller

The priority queue status register (PQSR) shown in Figure 6–17 indicates if
the transfer request queue is empty on the three priority levels (0 – urgent,
1 – high, and 2 – low). EDMA transfers can be submitted only with priority level
one or two. The urgent priority level ’0’ is reserved for L2 requests. Status bits
PQ[2:0] in the PQSR provide the status of the three queues. The three LSBs
in this register, PQ[2:0], if set to ’1’ indicate that there are no requests pending
in the respective priority level. If PQSR[0] is ’1’, this means all L2 requests for
data movement have been completed and there are no requests pending.

Figure 6–17. Priority Queue Status Register(PQSR)

31 3 2 1 0

rsvd PQ2 PQ1 PQ0

R, +0 R, +1 R, +1 R, +1

The three priority queue bits are mainly used for emulation, context switching
for multitasking applications, and submitting requests with a higher priority –
when possible. For the emulation case, the PQ0 bit is used to ensure that all
cache requests via L2 are completed before updating any memory windows
for the emulation halt. Another use is to determine the right time to do a task
switch. For example, allocating L2 SRAM to a new task after ensuring that
there are no EDMA transfer requests in progress which might write to L2
SRAM. Lastly, the PQ bits in PQSR can be used to allocate or submit requests
judiciously on the lower two priority levels (by the EDMA or HPI) depending on
which priority queue is empty. Therefore a low-priority request can be up-
graded to a high priority if required. This helps prevent all requests from being
queued under the same priority level which could lead to EDMA stalls.

6.15 EDMA Performance

The EDMA can perform element transfers with single cycle throughput
provided the source and destination are two different resources that provide
a single-cycle throughput. The performance can be limited by:

� EDMA stalls: When there are multiple transfer requests on the same prior-
ity level

� EDMA accesses to L2 SRAM with lower priority than CPU

Resource Arbitration and Priority Processing / EDMA Performance

Quick DMA (QDMA)

 6-38

6.16 Quick DMA (QDMA)

QDMA, or quick DMA, provides one of the most efficient ways to move data
around in the ’C6211 architecture. Quick DMA supports nearly all of the same
transfer modes of the EDMA. However, as the name implies, QDMA submits
transfer requests more quickly than the EDMA. In a typical system, the user
will use the EDMA for periodic real-time peripheral servicing, such as providing
the McBSP with transmit data at a regular rate. For some applications, howev-
er, data must be moved in blocks under direct control of the code running on
the CPU. For these applications, the QDMA is ideally suited.

6.16.1 QDMA Registers

The QDMA is supported through two sets of memory-mapped registers. The
first set of five memory-mapped registers contains parameters that define a
QDMA transfer, similar to the EDMA transfer parameters. The second set of
five memory-mapped registers is a pseudo-mapping of the registers in the first
set. The pseudo-mapping registers optimize the QDMA performance.
Figure 6–18 shows the five memory mapped registers, and Figure 6–19
shows the five pseudo-mapping registers.

Figure 6–18. QDMA Memory-Mapped Registers

31 0

QDMA_OPT QDMA options 0200 0000h

31 0

QDMA_SRC SRC address 0200 0004h

31 16 15 0

QDMA_CNT Arrary/frame count Element count 0200 0008h

31 0

QDMA_DST DST address 0200 000ch

31 16 15 0

QDMA_IDX Arrary/frame index Element index 0200 0010h

Quick DMA (QDMA)

6-39EDMA Controller

Figure 6–19. QDMA Pseudo Registers

31 0

QDMA_S_OPT QDMA options 0200 0020h

31 0

QDMA_S_SRC SRC address 0200 0024h

31 16 15 0

QDMA_S_CNT Arrary/frame count Element count 0200 0028h

31 0

QDMA_S_DST DST address 0200 002Ch

31 16 15 0

QDMA_S_IDX Arrary/frame index Element index 0200 0030h

The QDMA options register shown in Figure 6–20 is similar to the options
parameter in the EDMA parameter RAM, which is shown in Figure 6–8 and
described in Table 6–3. All fields in the registers function identically to the
corresponding EDMA transfer parameters. Refer to section 6.6 and the
corresponding sections for details. However, the QDMA does not support
parameter updates (e.g. element count reload), or transfer event linking. Since
the QDMA does not support transfer event linking, bit 1 of the QDMA_OPT
register is reserved, as opposed to the LINK bit-field in the EDMA options
parameter.

Figure 6–20. QDMA Options Register (QDMA_OPT, QDMA_S_OPT)

31 29 28 27 26 25 24 23 22 21 20 19 16 15 1 0

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC Reserved FS

RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 R,+0 RW,+0

Although the QDMA mechanism does not support event linking, it supports
completion interrupts, as well as QDMA chaining with EDMA events. The
QDMA_OPT and the QDMA_S_OPT registers include the same TCINT and
TCC fields as the EDMA options parameter. QDMA completion interrupts are
enabled and set in the same way as EDMA completion interrupts. To set a
QDMA completion interrupt, the user needs to set TCINT to ’1’ and program
the transfer completion code field (TCC) to specify the interrupt desired. The

Quick DMA (QDMA)

 6-40

TCC field can have values between 0000b to 1111b, just as the TCC field in
the EDMA options parameter. Please refer to section 6.13 for detail. Similar
to the EDMA, the QDMA completion event is captured in the EDMA channel
interrupt pending register (CIPR). If the corresponding interrupt bit (specified
by the TCC field) in the EDMA channel interrupt enable register (CIER) is set,
the QDMA completion event will generate an interrupt to the CPU via the
EDMA interrupt signal, EDMA_INT. If you specify a TCC value in the
QDMA_OPT register to be between 8 and 11, chaining of the QDMA transfer
to an EDMA channel transfer is possible, provided the relevant bit in the chan-
nel chain enable register (CCER) is set. Refer to section 6.16.3 for detail.

6.16.2 QDMA Register Access

Each of the QDMA registers is considered write only. Reads of the QDMA reg-
isters will return invalid data. Access to each of the above registers is limited
to 32-bits only. Halfword and byte writes to the QDMA registers will write the
entire register, and thus should be avoided.

6.16.3 Pseudo Mappings

The five physical QDMA registers are shadowed by five pseudo-mappings of
the same registers. The pseudo-mappings serve as the mechanism for actual-
ly submitting the transfer request for DMA service. Writes to the physical
QDMA registers (i.e. addresses 0200 0000h – 0200 0010h) are performed as
normal store operations. A write to any one of the pseudo-registers will per-
form a write to the corresponding physical register, and also submit a transfer
request for DMA service using the values stored in the physical registers.
Thus, a typical submission sequence might look like the following:

QDMA_SRC = SOME_SRC_ADDRESS;
QDMA_DST = SOME_DST_ADDRESS;
QDMA_CNT = LINE_CNT<<16 | NUM_ELEMENTS & 0xFFFF;// Array Frame Count
QDMA_IDX = 0x00000000; // no indexing specified
QDMA_S_OPT = 0x21B80001; // frame synchronized 1D–SRC to 2D-DST,send

// completion code 8 when finished
// and submit transfer

6.16.4 QDMA Performance

The QDMA mechanism is extremely efficient at submitting DMA requests.
Stores to the QDMA registers are passed to L2 cache as regular writes rather
than peripheral writes. Because the QDMA registers are decoded to a special
address region (0200 xxxxh), a fast decode is performed and writes may pro-
ceed to the QDMA registers on every cycle. Consequently, it is physically pos-

Quick DMA (QDMA)

6-41EDMA Controller

sible to submit the first QDMA request in as little as five cycles (one cycle write
for each of the five QDMA registers), as opposed to 36 cycles for the first
EDMA transfer request (6-cycle store for each of the six EDMA transfer param-
eters). Therefore, the QDMA registers can be used within the context of tight
loop algorithms if desired.

Furthermore, the QDMA registers retain their value even after submitting the
DMA transfer request. Hence, all five of the registers need not be programmed
for each DMA submitted, provided that other application code has not modified
these registers since the last DMA transfer request. As a result, subsequent
QDMA requests can be processed in as little as one cycle per request-where
the user only modifies the ONE corresponding pseudo-mapping register.

6.16.5 QDMA Stalls and Priority

The QDMA has several stalling conditions. Once a write has been performed
to one of the pseudo-registers (resulting in a pending QDMA transfer request),
future writes to the QDMA registers are stalled until the transfer request is sent.
Normally this will occur for 2 cycles, as this is how long it takes to submit a
transfer. The L2 controller includes a four-entry write buffer, so that stalls are
not generally seen by the CPU.

Because the QDMA and the L2 cache controller share the same transfer re-
quest node, cache activity requiring the use of this transfer request node may
delay submission of the QDMA transfer request. The L2 controller is given
priority during this sort of arbitration, as in general it is assumed the cache re-
quests have a greater likelihood of eventually stalling the CPU. The L2 write
buffer typically keeps the CPU from being affected by this stall condition.

Similar to the EDMA channels, QDMA can have programmable priority in the
two lower levels as described in section 6.14. The PRI bit-field in the
QDMA_OPT register specifies the priority level of the QDMA. Once again, lev-
el 0 (urgent priority) is reserved for L2 cache accesses. QDMA request priority
needs to be set to either level 1 (PRI = 001b) or level 2 (PRI = 010b). QDMA
requests with any other level not equal to 1 or 2 will be discarded.

In the case when an EDMA request and a QDMA request happen simulta-
neously, the QDMA request will get submitted first. However, this only applies
to the order of request submission. The PRI field determines the actual priority
of the request. An EDMA request with level 1 priority has higher priority than
a QDMA request with level 2 priority, even if the two events happen simulta-
neously and the QDMA request gets submitted first. Therefore, it is very impor-
tant that the user programs the PRI field to specify the priority of an EDMA/
QDMA request, rather than relying on the order of the requests.

7-1

Host-Port Interface

This chapter describes the host-port interface that external processors use to
access the memory space. The host port control registers and signals are de-
scribed.

Topic Page

7.1 Overview 7-2.

7.2 HPI Signal Descriptions 7-7.

7.3 HPI Registers 7-16.

7.4 Host Access Sequences 7-19.

7.5 Memory Access Through the HPI During Reset 7-27.

Chapter 7

PRELIMINARY

PRELIMINARY

Overview

 7-2

7.1 Overview

The host-port interface (HPI) is a 16-bit-wide parallel port through which a host
processor can directly access the CPU’s memory space. The host device func-
tions as a master to the interface, which increases ease of access. The host
and CPU can exchange information via internal or external memory. The host
also has direct access to memory-mapped peripherals. Connectivity to the
CPU’s memory space is provided through the DMA controller. Dedicated
address and data registers not accessible to the CPU connect the HPI to the
DMA auxiliary channel, which connects the HPI to the CPU’s memory space.
Both the host and the CPU can access the HPI control register (HPIC). The
host can access the HPI address register (HPIA), the HPI data register (HPID),
and the HPIC by using the external data and interface control signals.

Figure 7–1 shows the host-port components in the block diagram of the on-
chip peripherals.

Figure 7–1. TMS320C6201/C6701 Block Diagram

Program memory/cache

Program memory controller

EMIF

PLL

Host port interface DMA

controller
bus

Peripheral

EMIF control
DMA control
HPI control

McBSPs
Interrupt selector

Timers
Data memory

controller
Data memory

CPU core

2
Data path

1
Data path

Instruction decode
Instruction dispatch

Program fetch

down
Power

Boot
configuration

controller

Overview

7-3Host-Port Interface

As with the ‘C6201/’C6701 HPI, the ’C6211/C6711 HPI allows an external host
processor to perform read and write accesses from/to the ‘C6211/C6711 ad-
dress space. Unlike the ‘C6201 HPI interface which uses the DMA auxiliary
channel to perform accesses, the ’C6211/C6711 the HPI ties directly into inter-
nal address generation hardware. No specific EDMA channel is used for per-
forming ’C6211/C6711 HPI accesses. Instead, the internal address generation
hardware handles the read/write requests and accesses.

Figure 7–2. TMS320C6211/C6711 Block Diagram

Data path 2

External
memory
interface
(EMIF)

Multichannel
buffered

serial port 1
(McBSP 1)

Multichannel
buffered

serial port 0
(McBSP 0)

Host port
interface

(HPI)

Power down logic

Enhanced
DMA

controller

Timer 1 Timer 0

L1P
controller L1P cache direct mapped

4K bytes

L1 S1 M1 D1 D2 M2 S2 L2

A register file

Data path 1

B register file

In
te

rr
up

t c
on

tr
ol

CPU core

Instruction fetch

Instruction dispatch

Instruction decode In-circuit emulation

Control registers

L2
 m

em
or

y
4

ba
nk

s
64

 K
by

te
s

L1D
controller

L1D cache
2-way set

associative
4K bytes

’C6211/C6711 Digital Signal Processor

Overview

 7-4

Figure 7–3 is a simplified diagram of the ’C6201/’C6701 HPI.

The HPI provides 32-bit data to the CPU with an economical 16-bit external
interface by automatically combining successive 16-bit transfers. When the
host device transfers data through HPID, the DMA auxiliary channel accesses
the CPU’s address space.

The 16-bit data bus, HD[15:0], exchanges information with the host. Because of
the 32-bit-word structure of the chip architecture, all transfers with a host consist
of two consecutive 16-bit halfwords. On HPI data (HPID) write accesses, the
HBE[1:0] byte enables select the bytes to be written. For HPIA, HPIC, and HPID
read accesses, the byte enables are not used. The dedicated HHWIL pin indi-
cates whether the first or second halfword is being transferred. An internal control
register bit determines whether the first or second halfword is placed into the most
significant halfword of a word. For a full word access, the host must not break the
first halfword/second halfword (HHWIL low/high) sequence of an ongoing HPI ac-
cess.

Figure 7–3. HPI Block Diagram

INTERRUPT

Ready

BE
(if used)

ALE

Host

DATASTROBE

Data[15:0]

Address

HINT

HRDY

HBE[1:0]

HAS

HCS

HDS2

HDS1

HD[15:0]

HR/W

HHWIL

HCNTL[1:0]

bus
peripheral
controller
memory

Data

(HPIC)
register
control

HPI

latches
Data

latches
address

HPIA

’C6201/’C6701

channel
auxiliary

DMAR/W

Overview

7-5Host-Port Interface

The pin interface is similar to the ‘C6201 HPI interface as shown in Figure 7–4
except for the byte enables (/HBE[1:0] in ’C6201/’C6701) which are not sup-
ported. All accesses through the 16-bit data bus HD[15:0] have to be in pairs.

Figure 7–4. HPI Block Diagram of TMS320C6211/C6711

HCNTRL[1:0]
Address

Address
generation
hardware

Host

R/W

’C6211/C6711

HHWIL
HR/W
HD[15:0]Data[15:0]
HDS1

DATASTROBE

HCS
HDS2

ALE (if used) HAS
HRDYReady
HINTINTERRUPT

HPIA
address
latches

HPI
control
register
(HPIC)

Data
latches

L2
controller
peripheral

bus

The two data strobes (HDS1 and HDS2), the read/write select (HR/W), and the
address strobe (HAS) enable the HPI to interface to a variety of industry-standard
host devices with little or no additional logic. The HPI can easily interface to hosts
with a multiplexed or dedicated address/data bus, a data strobe and a read/write
strobe, or two separate strobes for read and write.

The HCNTL[1:0] control inputs indicate which HPI register is accessed. Using
these inputs, the host can specify an access to the HPIA (which serves as the
pointer into the source or destination space), HPIC, or HPID. These inputs,
along with HHWIL, are commonly driven directly by host address bus bits or
a function of these bits. The host can interrupt the CPU by writing to the HPIC;
the CPU can activate the HINT output to interrupt the host.

The host can access HPID with an optional automatic address increment of
HPIA. This feature facilitates reading and writing to sequential word locations. In
addition, during an HPID read with autoincrement, data is prefetched from the au-
toincremented address to reduce latency on the subsequent host read request.

Overview

 7-6

The HPI ready pin (HRDY) allows insertion of host wait states. Wait states may
be necessary, depending on latency to the point in the memory map accessed
via the HPI, as well as on the rate of host access. The rate of host access can
force not-ready conditions if the host attempts to access the host port before any
previous HPID write access or prefetched HPID read access finishes. In this
case, the HPI simply holds off the host via HRDY. HRDY provides a convenient
way to automatically adjust the host access rate to the rate of data delivery from
the DMA auxiliary channel (no software handshake is needed). In the cases of
hardware systems that cannot take advantage of the HRDY pin, an HRDY bit
in the HPIC is available for use as a software handshake.

HPI Signal Descriptions

7-7Host-Port Interface

7.2 HPI Signal Descriptions

The external HPI interface signals implement a flexible interface to a variety
of host devices. Table 7–1 lists the HPI pins and their functions. The remainder
of this section discusses the pins in detail.

Table 7–1. HPI External Interface Signals

Signal
Name Signal Type �

Signal
Count Host Connection Signal Function

HD[15:0] I/O/Z 16 Data bus

HCNTL[1:0] I 2 Address or control lines HPI access type control

HHWIL I 1 Address or control lines Halfword identification input

HAS I 1 Address latch enable (ALE),
address strobe, or unused
(tied high)

Differentiation between address
2nd data values on multiplexed ad-
dress/data host

HBE[1:0] I 2 Byte enables Data write byte enables

HR/W I 1 Read/write strobe, address
line, or multiplexed address/
data

Read/write select

HCS I 1 Address or control lines Data strobe inputs

HDS[1:2] I 1

1

Read strobe and write
strobe or data strobe

Data strobe inputs

HRDY O 1 Asynchronous ready Ready status of current HPI access

HINT O 1 Host interrupt input Interrupt signal to host

��I = input, O = output, Z = high impedance

7.2.1 Data Bus: HD[15:0]

HD[15:0] is a parallel, bidirectional, 3-state data bus. HD is placed in the high-
impedance state when it is not performing an HPI read access.

7.2.2 Access Control Select: HCNTL[1:0]

HCNTL[1:0] indicate which internal HPI register is being accessed. The states
of these two pins select access to the HPI address (HPIA), HPI data (HPID), or
HPI control (HPIC) registers. Additionally, the HPID register can be accessed
with an optional automatic address increment. Table 7–2 describes the
HCNTL[1:0] bit functions.

HPI Signal Descriptions

 7-8

Table 7–2. HPI Input Control Signals Function Selection Descriptions

HCNTL1 HCNTL0 Description

0 0 Host reads from or writes to the HPI control register (HPIC).

0 1 Host reads from or writes to the HPI address register (HPIA).

1 0 Host reads or writes to the HPI data register (HPID). The HPI
address register (HPIA) is postincremented by a word ad-
dress (four byte addresses).

1 1 Host reads or writes to the HPI data register (HPID). HPI ad-
dress register (HPIA) is not affected.

7.2.3 Halfword Identification Select: HHWIL

HHWIL identifies the first or second halfword of a transfer, but not the most sig-
nificant or least significant halfword. The status of the HWOB bit of the HPIC
register, described later in this chapter, determines which halfword is least sig-
nificant or most significant. HHWIL is low for the first halfword and high for the
second halfword.

Since byte enable pins are removed from the ’C6211/C6711 HPI, HHWIL in
combination with HWOB specify the half-word position in the data register,
HPID. This is shown in Table 7–3 along with the LSB address bits depending
on endianness.

Table 7–3. HPI Data Write Access

Data-Type
Little-Endian (LE)/
Big-Endian (BE) HWOB

First Write
(HHWIL=0) /
Logical LSB
Address Bits

Second Write
(HHWIL=1) /
Logical LSB
Address Bits

Half-word:
Little endian (LE)
Big endian (BE)

0 MS half-word
LE = 10
BE = 00

LS half-word
LE = 00
BE = 10

Half-word:
Little endian (LE)
Big endian (BE)

1 LS half-word
LE = 00
BE = 10

MS half-word
LE = 10
BE = 00

Word:
Little endian (LE)
Big endian (BE)

0 MS half-word
LE = 00
BE = 00

LS half-word
LE = 00
BE = 00

Word:
Little endian (LE)
Big endian (BE)

1 LS half-word
LE = 00
BE = 00

MS half-word
LE = 00
BE = 00

HPI Signal Descriptions

7-9Host-Port Interface

7.2.4 Byte Enables: HBE[1:0]

On HPID writes, the value of HBE[1:0] indicates which bytes of the 32-bit word
are written. The value of HBE[1:0] is not important on HPIA or HPIC accesses
or on HPID reads. On HPID writes, HBE0 enables the least significant byte in
the halfword and HBE1 enables the most significant byte in the halfword.
Table 7–4 lists the valid combinations of byte enables. For byte writes, only one
HBE in either of the halfword accesses can be enabled. For halfword data
writes, both the HBEs must be held active(low) in either (but not both) halfword
access. For word accesses, both HBEs must be held active (low) in both half-
word accesses. No other combinations are valid. The selection of byte enables
and the endianness of the CPU (selected via the LENDIAN pin) determine the
logical address implied by the access.

HPI Signal Descriptions

 7-10

Table 7–4. Byte Enables for HPI Data Write Access

HBE[1:0]

HWOB = 0
First Write
HHWIL = 0

Second Write
HHWIL = 1

Effective Logical Address
LSBs (Binary)

Data Write
Type HWOB = 1

Second Write
HHWIL = 1

First Write
HHWIL = 0 Little Endian Big Endian

Byte 11 10 00 11

Byte 11 01 01 10

Byte 10 11 10 01

Byte 01 11 11 00

Halfword 11 00 00 10

Halfword 00 11 10 00

Word 00 00 00 00

7.2.5 Read/Write Select: HR/W

HR/W is the host read/write select input. The host must drive HR/W high to
read and low to write HPI. A host without either a read/write select output or
a read or write strobe can use an address line for this function.

7.2.6 Ready: HRDY

When active (low), HRDY indicates that the HPI is ready for a transfer to be
performed. When inactive, HRDY indicates that the HPI is busy completing the
internal portion of a current read access or a previous HPID read prefetch or
write access. HCS enables HRDY; HRDY is always low when HCS is high.

7.2.7 Strobes: HCS , HDS1, HDS2

HCS, HDS1, and HDS2 allow connection to a host that has either:

� A single strobe output with read/write select

� Separate read and write strobe outputs. In this case, read or write select
can be done by using different addresses.

HPI Signal Descriptions

7-11Host-Port Interface

Figure 7–5 shows the equivalent circuit of the HCS, HDS1, and HDS2 inputs.

Figure 7–5. Select Input Logic

HSTROBE (internal signal)HDS2

HDS1 ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

HCS

Used together, HCS, HDS1, and HDS2 generate an active (low) internal
HSTROBE signal. HSTROBE is active (low) only when both HCS is active and
either (but not both) HDS1 or HDS2 is active. The falling edge of HSTROBE
when HAS is tied inactive (high) samples HCNTL[1:0], HHWIL, and HR/W.
Therefore, the latest of HDS1 , HDS2, or HCS controls the sampling time. HCS
serves as the enable input for the HPI and must be low during an access. How-
ever, because the HSTROBE signal determines the actual boundaries be-
tween accesses, HCS can stay low between successive accesses as long as
both HDS1 and HDS2 transition appropriately.

Hosts with separate read and write strobes connect these strobes to either
HDS1 or HDS2. Hosts with a single data strobe connect it to either HDS1 or
a HDS2, tying the unused pin high. Regardless of HDS1 and HDS2 connec-
tions, HR/W is required to determine the direction of transfer. Because HDS1
and HDS2 are internally exclusive-NORed, hosts with a high true data strobe
can connect this strobe to either HDS1 or HDS2 with the other signal tied low.

HSTROBE is used for four purposes:

� On a read, the falling edge of HSTROBE initiates HPI read accesses for
all access types.

� On a write, the rising edge of HSTROBE initiates HPI write accesses for
all access types.

� The falling edge latches the HPI control inputs, including HHWIL, HR/W,
and HCNTL[1:0]. HAS also affects latching of control inputs. See section
7.2.8 for a description of HAS.

� The rising edge of HSTROBE latches the HBE[1:0] input as well as the
data to be written.

HCS gates the HRDY output. In other words, a not-ready condition is indicated
by the HRDY pin being driven high only if HCS is active (low). Otherwise HRDY
is active (low).

HPI Signal Descriptions

 7-12

7.2.8 Address Strobe Input: HAS

HAS allows HCNTL[1:0], HR/W, and HHWIL to be removed earlier in an ac-
cess cycle, which allows more time to switch bus states from address to data
information. This feature facilitates interface to multiplexed address and data
buses. In this type of system, an address latch enable (ALE) signal is often pro-
vided and is normally the signal connected to HAS.

Hosts with a multiplexed address and data bus connect HAS to their ALE pin
or an equivalent pin. HHWIL, HCNTL[1:0], and HR/W are latched on the falling
edge of HAS. When used, HAS must precede the latest of HCS, HDS1, or
HDS2. Hosts with separate address and data buses can tie HAS high. In this
case, HHWIL, HCNTL[1:0], and HR/W are latched by the latest falling edge of
HDS1, HDS2, or HCS while HAS stays inactive (high).

7.2.9 Interrupt to Host: HINT

HINT is the host interrupt output that is controlled by the HINT bit in the HPIC. This
bit is set to 0 when the chip is being reset. This signal is described in more detail
in section 7.3.4. Thus, the HINT pin is high at reset.

7.2.10 HPI Bus Access

Figure 7–6 and Figure 7–8 show HPI access timing for cases in which HAS is
not used. Figure 7–7 and Figure 7–9 show HPI access timing for cases in which
HAS is used. HSTROBE represents the internally generated strobe described
in Figure 7–5. Control signals: HCNTL[1:0], HR/W, HHWIL, and HBE[1:0] are
typically driven by the host. HCNTL[1:0] and HR/W should have the same val-
ues for both halfword accesses. HHWIL is shown separately to indicate that it
must be low for the first halfword transfer and high for the second. If HAS is not
used (if it is tied high as shown in Figure 7–6), the falling edge of HSTROBE
latches these signals. If HAS is used as shown in Figure 7–7 and Figure 7–9,
the falling edge of HAS latches these values. In this case, the falling edge of
HAS must precede the falling edge of HSTROBE. On a read, data is valid at
some time after the falling edge of HSTROBE. If valid data is not already present
in the HPID, the data is set up at the falling edge of HRDY and held until the rising
edge of HSTROBE. On a write, the host must set up data and HBE[1:0] on the
rising edge of HSTROBE. The HPI provides 32-bit data to the CPU through a
16-bit external interface. This is accomplished by automatically combining two
successive halfword transfers.

HPI Signal Descriptions

7-13Host-Port Interface

When low, HRDY indicates that the HPI is ready for a transfer to be performed.
HCS enables HRDY, and HRDY is always low when HCS is high. Case 1 in
Figure 7–6 and Figure 7–7, where HRDY goes high when HCS falls, indicates
that the HPI is busy completing a previous HPID write or read with autoincre-
ment.

When the host performs a read access from HPID without autoincrement, the
HPI sends the read request to the DMA auxiliary channel, and HRDY becomes
high. This event occurs with the first falling edge of HSTROBE. HRDY remains
high until the DMA auxiliary channel loads the requested data into HPID. At the
beginning of the second read access, the data is already present in HPID (the
DMA auxiliary channel performs word reads). Thus, the second halfword HPID
read never encounters a not-ready condition, and HRDY remains low.

In the case of HPID read access with autoincrement, the data pointed to by the
next address is fetched immediately after the completion of the current read.
Therefore, after the second halfword transfer of the current read (with the sec-
ond rising edge of HSTROBE), HRDY becomes high again, indicating that HPI
is busy pre–fetching data. During an HPID write access, two halfword portions
of the HPID are transferred from the host. At the end of this write access, HRDY
becomes high (with the second rising edge of HSTROBE), and the contents of
HPID are transferred as a 32-bit word to the address specified by HPIA. Read-
ing or writing to HPIC or HPIA does not affect the HRDY signal.

HPI Signal Descriptions

 7-14

Figure 7–6. HPI Read Timing (HAS Not Used, Tied High)

HAS

HCNTL[1:0]

HR/W

HHWIL

HSTROBE

HCS

1st halfword

HD[15:0] (output)

HRDY (case 1)

HRDY (case 2)

2nd halfword

Figure 7–7. HPI Read Timing (HAS Used)

HAS

HCNTL[1:0]

HR/W

HHWIL

HSTROBE

1st halfword

HCS

HD[15:0] (output)

HRDY (case 1)

HRDY (case 2)

2nd halfword

HPI Signal Descriptions

7-15Host-Port Interface

Figure 7–8. HPI Write Timing (HAS Not Used, Tied High)

HAS

HCNTL[1:0]

HR/W

HHWIL

HSTROBE

HCS

HBE[1:0]

1st halfword

HRDY

2nd halfword

HD[15:0]

Figure 7–9. HPI Write Timing (HAS Used)

HAS

HCNTL[1:0]

HR/W

HBE[1:0]

HHWIL

1st halfword

HRDY

2nd halfword

HD[15:0]

HSTROBE

HPI Registers

 7-16

7.3 HPI Registers

Table 7–5 summarizes the three registers that the HPI uses for communication
between the host device and the CPU. HPID contains the data that was read from
the memory accessed by the HPI if the current access is a read or the data that
is written to the memory if the current access is a write. HPIA contains the address
of the memory accessed by the HPI at which the current access occurs. This
address as a 30-bit-word address, so the two LSBs are unaffected by HPIA
writes and are always read as 0.

Table 7–5. HPI Registers

Register
Abbreviation

Register
Name

Host
Read/Write

Access

CPU
Read/Write

Access
CPU Read/Write

(Hex Byte Address)

HPID HPI data RW – –

HPIA HPI address RW – –

HPIC HPI control RW RW 0188 0000h

7.3.1 HPI Control Register (HPIC)

The HPIC, shown in Figure 7–10 and summarized in Table 7–6, is normally the
first register accessed to set configuration bits and initialize the interface. The
HPIC is organized as a 32-bit register whose high halfword and low halfword con-
tents are the same. On a host write, both halfwords must be identical. The low
halfword and the high halfword are actually the same storage locations. No stor-
age is allocated for the read-only reserved values. Only CPU writes to the lower
halfword affect HPIC values and HPI operation.

HPI Registers

7-17Host-Port Interface

Figure 7–10. HPIC Register

31 21 20 19 18 17 16

rsvd HRDY HINT DSPINT HWOB

HR,CR,+0 HRW,CR,+0 HR,CR,+0 HRW,CR,+0 HRW,CR,+0 HRW,CR,+0

15 5 4 3 2 1 0

rsvd FETCH HRDY HINT DSPINT HWOB

HR,CR,+0 HRW,CR,+0 HR,CR,+1 HRW,CRW,+0 HRW,CRW,+0 HRW,CR,+0

Table 7–6. HPI Control Register (HPIC) Bit Descriptions

Bit Description Section

HWOB Halfword ordering bit

If HWOB = 1, the first halfword is least significant. If HWOB = 0, the first halfword
is most significant. HWOB affects both data and address transfers. Only the host
can modify this bit. HWOB must be initialized before the first data or address reg-
ister access.

7.4

DSPINT The host processor-to-CPU/DMA interrupt 7.3.3

HINT DSP-to-host interrupt. The inverted value of this bit determines the state of the
CPU HINT output.

7.3.4

HRDY Ready signal to host. Not masked by HCS (as the HRDY pin is).

If HRDY = 0, the internal bus is waiting for an HPI data access request to finish.

7.3.2

FETCH Host fetch request

The value read by the host or CPU from this register field is always 0.

The host writes a 1 to this bit to request a fetch into HPID of the word at the
address pointed to by HPIA. The 1 is never actually written to this bit, however.

7.3.2

7.3.2 Software Handshaking Using HRDY and FETCH

As described previously, the HRDY pin can indicate to a host that an HPID
access has not finished. For example, the current HPID access can be waiting
for a previous HPID access write to finish or for a previous HPID prefetched read
to finish. Also, the current HPID read access can be waiting for its requested
data to arrive. The HRDY and FETCH bits in the HPIC register allow for a soft-
ware handshake that allows an HPI connection in systems in which a hardware
ready control is not desired. The FETCH and HRDY bits can be used to perform
a read transfer as follows:

HPI Registers

 7-18

1) The host polls the HPIC register for HRDY = 1.

2) The host writes the desired HPIA value. This step is skipped if HPIA is
already set to the desired value.

3) The host writes a 1 to the FETCH bit.

4) The host polls again for HRDY = 1.

5) The host performs an HPID read operation. In this case, the HPI is already
in the ready state (HRDY = 1).

6) If this was a read with postincrement, go to step 4. For a read from the
same location, go to step 3.For a read to a different address, go to step
2.

The HRDY bit can be used alone for write operations as follows:

1) The host polls for HRDY = 1.

2) The host writes the desired HPIA value. (This step is skipped if HPIA is
already set to the desired value.)

3) The host performs an HPID write operation. For another write operation,
go to step 1.

7.3.3 Host Device Using DSPINT to Interrupt the CPU

The host can interrupt the CPU by writing to the DSPINT bits in the HPIC. The
DSPINT bit is tied directly to the internal DSPINT signal. By writing
DSPINT = 1 when DSPINT = 0, the host causes a low-to-high transition on the
DSPINT signal. If you program the selection of the DSPINT interrupt with inter-
rupt selector, the transition of DSPINT is detected as an interrupt condition by
the CPU. The CPU can clear the DSPINT bits by writing a 1 to DSPINT. Neither
a host nor a CPU HPIC write with DSPINT = 0 affects the DSPINT bit or signal.

7.3.4 CPU Using HINT to Interrupt the Host

The CPU can send an active interrupt condition on the HINT signal by writing
to the HINT bit in the HPIC. The HINT bit is inverted and tied directly to the HINT
pin. The CPU can set HINT active by writing HINT = 1. The host can clear the
HINT to inactive by writing a 1 to HINT. Neither a host nor a CPU write to HPIC
with HINT = 0 affects either the HINT bit or the HINT signal.

The HINT bit is read twice on the host interface side. The first and second half-
word reads by the host can yield different data if the CPU changes the state of
this bit between the two read operations.

Host Access Sequences

7-19Host-Port Interface

7.4 Host Access Sequences
The host begins HPI accesses by performing the following tasks in the order
giving:

1) Initializing the HPIC register

2) Initializing the HPIA register

3) Writing data to or reading data from HPID register

Reading from or writing to HPID initiates an internal cycle that transfers the de-
sired data between the HPID register and the DMA auxiliary channel. Host ac-
cess of any HPI register requires two halfword accesses on the HPI bus: the
first with HHWIL low and the second with HHWIL high. Typically, the host does
not break the first halfword/second halfword (HHWIL low/high) sequence. If
this sequence is broken, data can be lost, and undesired operation can result.
The first halfword access may have to wait for a previous HPI request to finish.
Previous requests include HPID writes and prefetched HPID reads. Thus, the
HPI deasserts HRDY (drives HRDY high) until the HPI can begin this request.
The second halfword access always has HRDY active because all previous
accesses have been completed for the first halfword access.

7.4.1 Host Initialization of HPIC and HPIA

Before accessing data, the host must first initialize the HWOB bit of the HPIC
register and then HPIA (in this order, because HWOB affects the HPIA access).
After initializing HWOB, the host can write to HPIA with the correct halfword
alignment. Table 7–7 and Table 7–8 summarize the initialization sequence for
HWOB = 1 and HWOB = 0, respectively. In these examples, HPIA is set to
80001234h. In all these accesses, the HRDY bits in the HPIC register are set.
A question mark in these tables indicates that the value is unknown.

Table 7–7. Initialization of HWOB = 1 and HPIA

Value During Access Value After Access

Event HD HBE[1:0] HR/W HCNTL[1:0] HHWIL HPIC HPIA HPID

Host writes HPIC
1st halfword

0001 xx 0 00 0 00090009 ???????? ????????

Host writes HPIC
2nd halfword

0001 xx 0 00 1 00090009 ???????? ????????

Host writes HPIA
1st halfword

1234 xx 0 01 0 00090009 ????1234 ????????

Host writes HPIA
2nd halfword

8000 xx 0 01 1 00090009 80001234 ????????

Note: A ? in this table indicates the value is unknown.

Host Access Sequences

 7-20

Table 7–8. Initialization of HWOB = 0 and HPIA

Value During Access Value After Access

Event HD HBE[1:0] HR/W HCNTL[1:0] HHWIL HPIC HPIA HPID

Host writes HPIC
1st halfword

0000 xx 0 00 0 00080008 ???????? ????????

Host writes HPIC
2nd halfword

0000 xx 0 00 1 00080008 ???????? ????????

Host writes HPIA
1st halfword

8000 xx 0 01 0 00080008 8000???? ????????

Host writes HPIA
2nd halfword

1234 xx 0 01 1 00080008 80001234 ????????

Note: A ? in this table indicates the value is unknown.

7.4.2 HPID Read Access Without Autoincrement

Assume that once the HPI is initialized, the host wishes to perform a read ac-
cess to an address without an autoincrement. Assume that the host wants to
read the word at address 80001234h and that the word value at that location
is 789ABCDEh. Table 7–9 and Table 7–10 summarize this access for HWOB
= 1 and HWOB = 0, respectively. On the first halfword access, the HPI waits
for any previous requests to finish. During this time, HRDY pin is held high.
Then, the HPI sends the read request to the DMA auxiliary channel. If no pre-
vious requests are pending, this read request occurs on the falling edge of
HSTROBE. HRDY pin remains high until the DMA auxiliary channel loads the
requested data into HPID. Because all DMA auxiliary channel reads are word
reads, at the beginning of the second read access, the data is already present
in HPID. Thus, the second halfword HPID read never encounters a not-ready
condition, and HRDY pin remains active. The byte enables are not important
in this instance, because the HPI performs only word reads.

Host Access Sequences

7-21Host-Port Interface

Table 7–9. Data Read Access to HPI Without Autoincrement: HWOB = 1

Value During Access Value After Access

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID

Host reads HPID
1st halfword

Data not ready

???? xx 1 11 1 0 00010001 80001234 ????????

Host reads HPID
1st halfword

Data ready

BCDE xx 1 11 0 0 00090009 80001234 789ABCDE

Host reads
2nd halfword

789A xx 1 11 0 1 00090009 80001234 789ABCDE

Note: A ? in this table indicates the value is unknown.

Table 7–10. Data Read Access to HPI Without Autoincrement: HWOB = 0

Value During Access Value After Access

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID

Host reads
HPID1st halfword

Data not ready

???? xx 1 11 1 0 00000000 80001234 ????????

Host reads HPID
1st halfword

Data ready

789A xx 1 11 0 0 00080008 80001234 789ABCDE

Host reads HPID
2nd halfword

BCDE xx 1 11 0 1 00080008 80001234 789ABCDE

Note: A ? in this table indicates the value is unknown.

Host Access Sequences

 7-22

7.4.3 HPID Read Access With Autoincrement

The autoincrement feature results in efficient sequential host accesses. For
both HPID read and write accesses, this removes the need for the host to load
incremented addresses into HPIA. For read accesses, the data pointed to by
the next address is fetched immediately after the completion of the current
read. Because the intervals between successive reads are used to prefetch
data, the latency for the next access is reduced. Prefetching also occurs after
a host write of FETCH = 1 to the HPIC register. If the next HPI access is an
HPID read, then the data is not refetched and the prefetched data is sent to
the host. Otherwise, the HPI must wait for the prefetch to finish.

Table 7–11 summarizes a read access with autoincrement. After the first half-
word access is complete (with the rising edge of the first HSTROBE), the ad-
dress increments to the next word, or 80001238h in this example. Assume that
the data at that location is 87654321h. This data is prefetched and loaded into
HPID. Prefetching begins on the rising edge of HSTROBE in the second half-
word read.

Table 7–11. Read Access to HPI With Autoincrement: HWOB = 1

Value During Access Value After Access

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID

Host reads HPID
1st halfword

Data not ready

???? xx 1 10 1 0 00010001 80001234 ????????

Host reads HPID
1st halfword

Data ready

BCDE xx 1 10 0 0 00090009 80001234 789ABCDE

Host reads HPID
2nd halfword

789A xx 1 10 0 1 00090009 80001234 789ABCDE

Prefetch

Data not
ready

???? xx x xx 1 x 00010001 80001238 789ABCDE

Prefetch

Data ready

???? xx x xx 0 x 00090009 80001238 87654321

Note: A ? in this table indicates the value is unknown.

Host Access Sequences

7-23Host-Port Interface

Table 7–12. Read Access to HPI With Autoincrement: HWOB = 0

Value During Access Value After Access

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID

Host reads
1st halfword

Data not
ready

???? xx 1 10 1 0 00000000 80001234 ????????

Host reads
1st halfword

Data ready

789A xx 1 10 0 0 00080008 80001234 789ABCDE

Host reads
2nd halfword

BCDE xx 1 10 0 1 00080008 80001234 789ABCDE

Prefetch

Data not
ready

???? xx x xx 1 x 00000000 80001238 789ABCDE

Prefetch

Data ready

???? xx x xx 0 x 00080008 80001238 87654321

Note: A ? in this table indicates the value is unknown.

7.4.4 Host Data Write Access Without Autoincrement

During a write access to the HPI, the first halfword portion of HPID (the least
significant halfword or most significant halfword, as selected by HWOB) is over-
written by the data coming from the host, and the first HBE[1:0] pair is latched
while the HHWIL pin is low. The second halfword portion of HPID is overwritten
by the data coming from the host, and the second HBE[1:0] pair is latched on the
rising edge of HSTROBE while the HHWIL pin is high. At the end of this write ac-
cess (with the second rising edge of HSTROBE), HPID is transferred as a 32-bit
word to the address specified by HPIA with the four related byte enables.

Table 7–13 and Table 7–14 summarize an HPID write access with HWOB = 1
and HWOB = 0, respectively. The host writes 5566h to the 16 LSBs of location
80001234h, which is already pointed to by HPIA. This location is assumed to
start with the value 0. The HPI delays the host until any previous transfers are
completed by setting HRDY high. If there are no pending writes waiting in HPID,
then write accesses normally proceed without a not-ready time. The HBE[1:0]
pair is enabled only for the transfer of the 16 LSBs.

Host Access Sequences

 7-24

Table 7–13. Data Write Access to HPI Without Autoincrement: HWOB = 1�

Value During Access Value After Access
Location

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID
Location
80001234

Host writes HPID
1st halfword

Waiting for previous
access to complete

5566 00 0 11 1 0 00010001 80001234 ???????? 00000000

Host writes HPID
1st halfword

5566 00 0 11 0 0 00090009 80001234 ????5566 00000000

Host writes HPID
2nd halfword

wxyz 11 0 11 0 1 00090009 80001234 wxyz5566 00000000

Waiting for access
to complete

???? ?? ? ?? 1 ? 00010001 80001234 wxyz5566 00005566

Note: A ? in this table indicates the value is unknown.

Table 7–14. Data Write Access to HPI Without Autoincrement: HWOB = 0�

Value During Access Value After Access
Location

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID
Location
80001234

Host writes HPID
1st halfword

Waiting for previous
access to complete

wxyz 11 0 11 1 0 00000000 80001234 ???????? 00000000

Host writes HPID
1st halfword

wxyz 11 0 11 0 0 00080008 80001234 wxyz???? 00000000

Host writes HPID
2nd halfword

5566 00 0 11 0 1 00080008 80001234 wxyz5566 00000000

Waiting for access
to complete

???? ?? ? ?? 1 ? 00080008 80001234 wxyz5566 00005566

† wxyz represents a don’t care value on the HD pins.

Note: A ? in this table indicates the value is unknown.

Host Access Sequences

7-25Host-Port Interface

7.4.5 HPID Write Access With Autoincrement

Table 7–15 and Table 7–16 summarize a host data write with autoincrement
for HWOB = 1 and HWOB = 0, respectively. These examples are identical to
the ones in section 7.4.4, except for the HCNTL[1:0] value and a subsequent
write of 33h to the most significant byte of the word at address 8000 1238h.
The increment occurs on the rising edge of HSTROBE on the next HPID write
access. If the next access is an HPIA or HPIC access or an HPID read, the
autoincrement does not occur.

Table 7–15. Write Access to HPI With Autoincrement: HWOB = 1�

Value During Access Value After Access

Event HD
HBE
[1:0] HR/W

HCNTL
[1:0] HRDY HHWIL HPIC HPIA HPID

Location
80001234

Location
80001238

Host writes HPID
1st halfword

Waiting for
previous access
to complete

5566 00 0 10 1 0 00010001 80001234 ???????? 00000000 00000000

Host writes HPID
1st halfword

Ready

5566 00 0 10 0 0 00090009 80001234 ????5566 00000000 00000000

Host writes HPID
2nd halfword

wxyz 11 0 10 0 1 00090009 80001234 wxyz5566 00000000 00000000

Host writes HPID
1st halfword

Waiting for
previous access to
complete

nopq 11 0 10 1 0 00010001 80001234 wxyz5566 00005566 00000000

Host writes HPID
1st halfword

nopq 11 0 10 0 0 00090009 80001238 wxyznopq 00005566 00000000

Host writes HPID
2nd halfword

33rs 01 0 10 0 1 00090009 80001238 33rsnopq 00005566 00000000

Waiting for
access to
complete

???? ?? ? ?? 1 ? 00010001 80001238 33rsnopq 00005566 33000000

† wxyz, rs, and nopq represent don’t care values on HPID.

Note: A ? in this table indicates the value is unknown.

Host Access Sequences

 7-26

Table 7–16. Write Access to HPI With Autoincrement: HWOB = 0�

Value During Access Value After Access

Event HD
HBE
[1:0] HR/W

HCNTL
[1:0] HRDY HHWIL HPIC HPIA HPID

Location
80001234

Location
80001238

Host writes
HPID
1st halfword

Waiting for
previous access
to complete

wxyz 11 0 10 1 0 00000000 80001234 ???????? 00000000 00000000

Host writes HPID
1st halfword

Ready

wxyz 11 0 10 0 0 00080008 80001234 wxyz??? 00000000 00000000

Host writes HPID
2nd halfword

5566 00 0 10 0 1 00080008 80001234 wxyz5566 00000000 00000000

Host writes HPID
1st halfword

Waiting for
previous access
to complete

33rs 01 0 10 1 0 00000000 80001234 wxyz5566 00005566 00000000

Host writes HPID
1st halfword

33rs 01 0 10 0 0 00080008 80001238 33rs5566 00005566 00000000

Host writes HPID
2nd halfword

nopq 11 0 10 0 1 00080008 80001238 33rsnopq 00005566 00000000

Waiting for
access to
complete

???? ?? ? ?? 1 ? 00000000 80001238 33rsnopq 00005566 33000000

† wxyz, rs, and nopq represent don’t care values on HPID.

Note: A ? in this table indicates the value is unknown.

7.4.6 Single Halfword Cycles

In normal operation, every transfer must consist of two halfword accesses.
However, to speed operation you can perform single halfword accesses.
These can be useful in performing the following tasks:

� Writes to and reads from HPIC: In Table 7–7, the entire HPIC was written
to correctly after the first write. When writing the HPIC, the host does not
have to be concerned about HHWIL, nor does it have to perform two con-
secutive writes to both halfwords. Similarly, the host can choose to read
the HPIC only once, because both halves contain the same value.

Memory Access Through the HPI During Reset

7-27Host-Port Interface

� Writes to and reads from HPIA: In Table 7–7, the portion of HPIA accesses
selected by HHWIL and HWOB is updated automatically after each half-
word access. Thus, to change either the upper or the lower 16 bits of HPIA,
the host must select the half to modify through a combination of the HHWIL
and HWOB bits. The host can also choose to read only half of HPIA.

� HPID read accesses: Read accesses are actually triggered by the first
halfword access (HHWIL low). Thus, if on reads the host is interested only
in the first halfword (the least or most significant halfword, as selected by
HWOB), the host does not need to request the second address. However,
prefetching does not occur unless the second halfword is also read. A sub-
sequent read of the first halfword (HHWIL low) or a write of a new value
to HPIA overrides any previous prefetch request. On the other hand, a
read of just the second halfword (HHWIL high) is not allowed and results
in undefined operation.

� Write accesses: Write accesses are triggered by the second halfword access
(HHWIL word high). Thus, if the host desires to change only the portion of
HPID selected by HHWIL high (and the associated byte enables) during con-
secutive write accesses, only a single cycle is needed. This technique’s pri-
mary use is for memory fills: the host writes both halfwords of the first write
access with HBE[1:0] = 00. On subsequent write accesses, the host writes
the same value to the portion of HPID selected by HHWIL as the first write
access did. In this case, the host performs autoincrementing writes
(HCNTL[1:0] = 10) on all write accesses.

7.5 Memory Access Through the HPI During Reset

During reset, when HCS is active low, HRDY is inactive high, and when HCS is
inactive, HRDY is active. The HPI cannot be used while the chip is in reset. How-
ever, certain boot modes can allow the host to write to the CPU’s memory space
(including configuring EMIF configuration registers to define external memory be-
fore accessing it). Although the device is not in reset during these boot modes,
the CPU itself is in reset until the boot completes. See Chapter 10, Boot Configu-
ration, Reset, and Memory Maps, for more details.

Host Access Sequences / Memory Access Through the HPI During Reset

8-1

Expansion Bus

This section describes the expansion bus used by CPU to access off-chip
peripherals, FIFOs and PCI interface chips.

Topic Page

8.1 Overview 8-2.

8.2 Expansion Bus Signals 8-5.

8.3 Expansion Bus Registers 8-6.

8.4 Expansion Bus I/O Port Operation 8-10.

8.5 Expansion Bus Host Port Operation 8-22.

8.6 Expansion Bus Arbitration 8-44.

8.7 Boot Configuration Control via Expansion Bus 8-49.

Chapter 8

Overview

 8-2

8.1 Overview

The expansion bus is a 32-bit wide bus that supports interfaces to a variety of
asynchronous peripherals, asynchronous or synchronous FIFOs, PCI bridge
chips, and other external masters.

The expansion bus offers a flexible bus arbitration scheme, implemented with
two signals, XHOLD and XHOLDA. The expansion bus can operate with the
Internal arbiter enabled, in which case any external hosts must request the bus
from the DSP. For increased flexibility, the internal arbiter can be disabled, and
the DSP requests the bus from an external arbiter.

The expansion bus has two major sub blocks—the I/O port and host port inter-
face. A block diagram of the expansion bus is shown in Figure 8–1.

Figure 8–1. Expansion Bus Block Diagram

Expansion bus

XCLKIN

Expansion bus host channel

XFCLK

XD[31:0]
XCE[3:0]
XBE[3:0]/XA[5:2]

XOE
XRE

XWE/XWAIT

XCS

XAS
XCNTL
XW/R
XRDY
XBLAST
XBOFF

XHOLD
XHOLDA

Shared signals

I/O Port:
asynchronous
peripheral/
FIFO interface

Host port interface

Bus arbitration signals

DMA controller

Overview

8-3Expansion Bus

The I/O port has two modes of operation, which can coexist in a single system:
asynchronous I/O mode and synchronous FIFO mode. These modes are
selectable for each of expansion bus’s four XCE spaces. The first mode
(asynchronous I/O mode) provides output strobes, which are highly
programmable like the asynchronous signals of the external memory interface
(EMIF). The expansion bus interface provides four output address signals in
this mode, with external decode this provides for up to 16 devices per XCE
space. The FIFO mode provides a glueless interface to a single synchronous
read FIFO, or up to four synchronous write FIFOs. With a minimal amount of
glue, this can be extended to up to 16 read and 16 write FIFOs per XCE space.
Connectivity of the expansion bus I/O port and DSP memory is provided
through the DMA controller.

The second sub-block of the expansion bus consists of the host port interface.
This interface can operate in one of two modes: synchronous and asynchro-
nous. The synchronous mode offers master and slave functionality, and has
multiplexed address and data signals. The asynchronous mode is slave only,
and is similar to the HPI on the ’C6201/C6211/C6701/C6711, but is extended
to a 32-bit data path. The asynchronous host port mode is used to interface
to microprocessors which utilize an asynchronous bus.

Connectivity of the expansion bus host port interface and the DSP memory
space is provided by the DMA auxiliary port. Dedicated address and data reg-
isters connect the host port interface to the expansion bus host channel. An
external master accesses these registers using external data and interface
control signals. Through a dedicated port the DMA provides connectivity be-
tween the processor and the expansion bus I/O port. To initiate transfers via
the synchronous host port interface, the CPU has to configure a set of regis-
ters. Figure 8–2 shows a chip-level block diagram.

Overview

 8-4

Figure 8–2. The Expansion Bus Interface in the TMS320C6202 Block Diagram

Interrupt control

Control registers

Data path B

External
memory
interface
(EMIF)

Multi-channel
buffered

serial port 0
(McBSP 0)

Multi-channel
buffered

serial port 1
(McBSP 1)

Expansion
bus Direct memory access

controller (DMA)

Timer 0

Timer 1

Program
access/
cache

controller

Internal program memory
1 block program/cache 1
block mapped program

(128k bytes each)
(256k bytes total)

.L1 .S1 .M1 .D1 .D2 .M2 .S2 .L2

A register file

Data path A

B register file

C6200B CPU

Instruction fetch

Instruction dispatch

Instruction decode In-circuit emulation

Data access
controller

Internal data
memory

(128k bytes)
2 blocks
4 blocks

each

C6202 digital signal processor

Power down
logic

D
M

A
 b

us
es

Program bus

D
at

a
bu

s

1 2

Expansion Bus Signals

8-5Expansion Bus

8.2 Expansion Bus Signals

Table 8–1 lists the expansion bus signals and their functionality in each mode.

Table 8–1. Expansion Bus Signals

I/O Port Mode
(Non-Exclusive)

Mutually Exclusive
Host Port Modes

Expansion
BusSignal (I/O/Z)

Async
Signal (I/O/Z)

Sync FIFO
Signal (I/O/Z)

Sync
Mode (I/O/Z) Async Mode

XD[31:0] I/O/Z D[31:0] I/O/Z D[31:0] I/O/Z D[31:0] I/O/Z D[31:0]

XFCLK O XFCLK

XCLKIN I CLK

XCE0 O CS O RE/WE/CS

XCE1 O CS O RE/WE/CS

XCE2 O CS O RE/WE/CS

XCE3 O CS O RE/WE/CS

XBE0/XA2 O/Z XA2 O/Z XA2 I/O/Z BE0 I BE0

XBE1/XA3 O/Z XA3 O/Z XA3 I/O/Z BE1 I BE1

XBE2/XA4 O/Z XA4 O/Z XA4 I/O/Z BE2 I BE2

XBE3/XA5 O/Z XA5 O/Z XA5 I/O/Z BE3 I BE3

XOE O OE O OE

XRE O RE O RE

XWE O WE O WE O WAIT

XAS I/O/Z AS

XRDY I XRDY I/O/Z READY O/Z READY

XW/R I/O/Z W/R I W/R

XBLAST I/O/Z BLAST

XHOLD I/O/Z HOLD I/O/Z HOLD I/O/Z HOLD I/O/Z HOLD

XHOLDA I/O/Z HOLDA I/O/Z HOLDA I/O/Z HOLDA I/O/Z HOLDA

XCNTL I CNTL I CNTL

XBOFF I BOFF

XCS I CS I CS

Expansion Bus Registers

 8-6

8.3 Expansion Bus Registers

Control of the expansion bus and the peripheral interfaces is maintained
through memory-mapped registers within the expansion bus. The memory-
mapped registers are shown in Table 8–2.

Table 8–2. Expansion Bus Memory Mapped Registers

Byte Address Name

0188 0000 h Expansion Bus Global Control (XBGC) Register

0188 0004 h XCE1 Space Control Register

0188 0008 h XCE0 Space Control Register

0188 000c h Expansion Bus Host Port Interface Control (XBHC) Register

0188 0010 h XCE2 Space Control Register

0188 0014 h XCE3 Space Control Register

0188 0018 h Reserved

0188 001c h Reserved

0188 0020 h Expansion Bus Internal Master Address (XBIMA) Register

0188 0024 h Expansion Bus External Address (XBEA) Register

Expansion Bus Registers

8-7Expansion Bus

8.3.1 Expansion Bus Host Port Registers

The external master on the expansion bus uses the XCNTL signal to select
which internal register is being accessed. The state of this pin selects whether
access is made to the expansion bus internal slave address (XBISA) register
or, expansion bus data (XBD) register. In addition to that, the external master
has access to the entire memory map of the DSP, including memory-mapped
registers.

Table 8–3 summarizes the registers that the expansion bus host port uses for
communication between the host device and the CPU.

Table 8–3. Expansion Bus Host Port Registers

Register
Abbreviation

Register
Name

Host Read/
Write Access

‘C6202 Read/
Write Access

Memory
Mapped
Address

XBHC Expansion
Bus Host
Port Control

— RW 0x0188 000C

XBEA Expansion
Bus External
Address

— RW 0x0188 0024

XBIMA Expansion
Bus Internal
Master
Address

— RW 0x0188 0020

XBISA Expansion
Bus Internal
Slave Address

RW —

XBD Expansion
Bus Data

RW —

Expansion Bus Registers

 8-8

8.3.2 Expansion Bus Global Control Register

The expansion bus global control register (shown in Figure 8–3, and de-
scribed in Table 8–4) configures parameters of the expansion bus common to
all interfaces.

Figure 8–3. Expansion Bus Global Control Register

31 16 15 14 13 12 11 10 0

Reserved FMOD XFCEN XFRAT XARB Reserved

R, +0 R,+x RW,+0 RW,+00 R,+x RW,+x

Table 8–4. Expansion Bus Global Control Register Field Description

Field Description

FMOD FIFO mode set by boot-mode selection.

FMOD = 0: Glue is used for FIFO read interface in all XCE spaces operating in FIFO mode

FMOD = 1: Glueless read FIFO interface. If XCE3 is selected for FIFO mode, then XOE acts
as FIFO output enable and XCE3 acts as FIFO read enable. XOE is disabled in all other XCE
spaces regardless of MType setting.

XFCEN FIFO clock enable

XFCEN = 0: XFCLK held high

XFCEN = 1: XFCLK enabled to clock.

The FIFO clock enable cannot be changed while a DMA request to XCE space is active.

XFRAT FIFO clock rate

XFRAT = 00: XFCLK = 1/8 CPU clock rate

XFRAT = 01: XFCLK = 1/6 CPU clock rate

XFRAT = 10: XFCLK = 1/4 CPU clock rate

XFRAT = 11: XFCLK = 1/2 CPU clock rate

The FIFO clock setting cannot be changed while a DMA request to XCE space is active.

XARB Arbitration mode, set by boot-mode selection

XARB=0: internal arbiter disabled

XARB=1: internal arbiter enabled

Expansion Bus Registers

8-9Expansion Bus

8.3.3 XCE Space Control Registers

The four XCE space control registers (shown in Figure 8–4 and described in
Table 8–5) correspond to the four XCE memory spaces supported by the ex-
pansion bus.

Figure 8–4. Expansion Bus XCE(0/1/2/3) Space Control Register Diagram

31 28 27 22 21 20 19 16 15 14 13 8 7 6 4 3 2 1 0

WRITE
SETUP

WRITE
STROBE

WRITE HOLD
READ

SETUP
rsvd

READ
STROBE

rsvd MTYPE rsvd READ HOLD

RW, +1111 RW, +111111 RW, +11 RW, +1111 R, +00 RW, +111111 R, +0 R,+xx R, +00 RW, +11

Table 8–5. Expansion Bus XCE(0/1/2/3) Space Control Register Field Description

Field Description

MTYPE

Others

Memory type is configured during boot using pullup or pulldown
resistors on the expansion bus.

MTYPE=010b: 32-bit wide asynchronous interface.

MTYPE=101b: 32-bit wide FIFO interface.

Reserved

The remaining fields are defined in detail in chapter 6, external memory inter-
face in the TMS320C6201/6701 Peripheral Reference Guide (SPRU190B).
These fields are specific to the asynchronous interface and are functionally
equivalent to the fields in the EMIF CE space control registers.

Expansion Bus I/O Port Operation

 8-10

8.4 Expansion Bus I/O Port Operation

For external IO port accesses on the expansion bus, the XBE signals act as
address signals XA[5:2]. You can use the address signals to address as many
as 16 different R/W peripherals or 32 FIFOs in each XCE space. For the FIFO
interface, 32 devices are possible since a separate Read and Write FIFO can
be located at each address.

Access to the expansion bus I/O port can only be done through the DMA
channels 0 through 3. The DMEMC does not have direct access to the
expansion bus. Therefore, load and store (LD/ST) commands to the memory
spaces of the expansion bus I/O port via the CPU are not allowed, and result
in undefined operation. A DMA transfer cannot occur from one XCE space to
another XCE space. Also, a host port transaction cannot access any of the
XCE spaces.

For reads, care must be taken to ensure that contention on the data bus does
not occur when switching from one peripheral to the next in the same XCE
space. The DMA can accomplish this since inactive cycles occur when the
DMA switches from one frame to the next. The DMA can be set up to read (or
write) a frame from each of the peripherals or FIFOs in turn. For example, the
element index can be set to 0 and the frame index can be set to a multiple of
4 (ensure word strides), thus incrementing to a different location after each
frame has completed.

Although the expansion bus does not explicitly support memory widths of less
than 32 bits, the DMA can be used to read/write to 8-bit or 16-bit peripherals
or FIFOs by controlling the byte/half-word logical addressing. For example, if
an 8-bit-wide FIFO is in XCE2, then the DMA ESIZE bit-field can specify 8-bit
transfers. The lower two address bits in the DMA source or destination address
register determines the byte lane used for accessing the I/O port. If the bottom
two bits are 00b (word aligned), then only XD[7:0] is used for valid data. If
A[1:0] = 01b, then XD[15:8] is used (see Figure 8–5 and Table 8–6).

Alternatively, if 16-bit (or 8-bit) peripherals are used, the DMA element index
can be set up such that the stride value causes a read from alternating byte
lanes during each read transfer. For example, the first access can be to ad-
dress A[5:0] = xxxx00b, causing the lower half of the data bus to be driven by
the peripheral. If the next address is A[5:0] = xxxx10b, the top half of the data
bus is driven by the other peripheral (or FIFO) and no bus contention occurs.
The only address signals which are externally provided are A[5:2]. If address
decoding is required to address a specific peripheral or FIFO, these should be
modified as necessary by the DMA to ensure that peripherals are only ad-
dressed when appropriate (see Figure 8–6 and Table 8–7).

Expansion Bus I/O Port Operation

8-11Expansion Bus

Figure 8–5 illustrates how to interface four 8-bit FIFOs to the I/O port (memory
map for this case is described in Table 8–7). Figure 8–6 is an example of inter-
face between two 16-bit FIFOs and the I/O port.

Figure 8–5. Example of the Expansion Bus Interface to Four 8-Bit FIFOs

Decoder

XD[31:24]

XD[23:16]

XD[15:8]

XD[7:0]

XA[3]

WENCLK

FIFO #3

D[7:0]
OE REN

FIFO #2

WEN
REN

CLK
OE
D[7:0]

XA[2]

XRE
XCE

XD[31:0]

XOE

XFCLK

CLK

D[7:0]
OE

FIFO #4

REN
WEN

XD[31:0]

FIFO #1

REN
WEN

D[7:0]
OE
CLK

Table 8–6. Addressing Scheme – Case When Expansion Bus is Interfaced to
Four 8-Bit FIFOs

Logical Address A[31:6] A5 A4 A3 A2 A1 A0

FIFO #1 Address X X X 0 0 0 0

FIFO #2 Address X X X 0 1 0 1

FIFO #3 Address X X X 1 0 1 0

FIFO #4 Address X X X 1 1 1 1

Physical Address XA5 XA4 XA3 XA2

Expansion Bus I/O Port Operation

 8-12

Figure 8–6. Example of the Expansion Bus Interface to Two 16-Bit FIFOs

XA[2]

XRE
XCE

XD[31:0]

XOE
XFCLK

CLK

D[15:0]
OE

FIFO #2

REN
WEN

XD[31:0]

XD[31:16]

XD[15:0]

FIFO #1

REN
WEN

D[15:0]
OE
CLK

Table 8–7. Addressing Scheme – Case When the Expansion Bus is Interfaced to Two
16-Bit FIFOs

Logical Address A[31:6] A5 A4 A3 A2 A1 A0

FIFO #1 Address X X X X 0 0 0

FIFO #2 Address X X X X 1 1 0

Physical Address XA5 XA4 XA3 XA2

8.4.1 Asynchronous Mode

The asynchronous cycles of the expansion bus are identical to the
asynchronous cycles provided by the EMIF. During asynchronous peripheral
accesses, XRDY acts as an active-high ready input and XBE[3:0]/XA[5:2]
operate as address signals XA[5:2]. The remaining asynchronous peripheral
signals operate exactly like their EMIF counterpart. For a complete
description, see the External Memory Interface section. The following
minimum values apply to the asynchronous parameters:

� SETUP + STROBE + HOLD ≥ 3
� SETUP ≥ 1
� STROBE ≥ 1

� If XRDY used to extend STROBE then HOLD ≥ 2.

Expansion Bus I/O Port Operation

8-13Expansion Bus

Notes:

1) XRDY is active (low) during host-port accesses.

2) XBE[3:0]/XA[5:2] operate as XBE[3:0] during host-port accesses.

8.4.2 Synch FIFO Modes

The synchronous FIFO mode of the expansion bus offers a glueless and/or low
glue interface to standard synchronous FIFOs.

The expansion bus can interface up to four write FIFOs without using glue logic
(one per XCE space) or three write FIFOs and a single read FIFO (in XCE3
only). However, with a minimal amount of glue, up to 16 read and write FIFOs
can be used per XCE space.

The XOE, XRE, XWE, and XCEn signals are not tri-stated while the DSP re-
leases control of the expansion bus.

Expansion Bus I/O Port Operation

 8-14

Table 8–8. Synch FIFO Pin Description

Signal
Signal Function

Signal
Name (I/O/Z) Signal Purpose R/W Mode Read Mode

XFCLK O FIFO clock output Programmable to either 1/2, 1/4, 1/6, or 1/8 of the CPU clock
frequency. If CPU clock = 250 MHz, then XFCLK = 125, 62.5, 41.7 or
31.25 MHz. The XFCLK continues to clock even when the DSP
releases ownership of the XBUS.

XD[31:0] I/O/Z Data Data lines

XCEx O FIFO read
enable/write
enable/chip Select

Active for both read and write
transactions. They should be
logically OR-ed with output control
signals externally to create
dedicated controls for a FIFO. Also
can be used directly as FIFO write
enable signal for a single write FIFO
per XCE space.

Acts as read enable
signal(XCE3 only)

XWE O FIFO write enable Write-enable signal for FIFO. Must
be logically OR-ed with
corresponding XCE signal to
ensure that only one FIFO is
addressed at a time.

XRE O FIFO read enable Read-enable signal for FIFO. Must
be logically OR-ed with
corresponding XCE signal to
ensure that only one FIFO is
addressed at a time.

XOE O FIFO output
enable

Shared output enable signal. Must
be logically OR-ed with
corresponding XCE signal to
ensure that only one FIFO is
addressed at a time.

Dedicated output enable signal
in XCE3 if FIFO read mode is
selected. If selected, this signal
is disabled for all other modes.

XBE[3:0]/
XA[5:2]

O/Z Expansion bus
address

Operate as XA[5:2]. Can be de-
coded to specify up to 16 different
addresses, enabling interface with
glue to 16 Read FIFOs and 16 Write
FIFOs in a single XCE space.

Expansion Bus I/O Port Operation

8-15Expansion Bus

8.4.2.1 Write Interface

During write accesses to a memory space configured for read/write FIFO
mode, the XCE signal and XWE signal are both active for a single rising edge
of XFCLK. So, depending on the specific system environment, the write
interface can be accomplished either with glue or without glue.

The glueless interface can be used if only a single write FIFO is used in a given
XCE space (see Figure 8–7), since the XCE signal is used as the write enable
signal. If this is true, the XCE signal is tied directly to the write enable input of
the FIFO. If a read FIFO is also used in the same XCE space, glue must be
used, since the XCE signal also goes low for reads from the read FIFO.

Figure 8–8 shows an interface to a read FIFO and a write FIFO in the same
XCE space. For this example, the XCE signal is used to gate the appropriate
read/write strobes to the FIFOs. The FIFO write timing diagram for this
interface is shown in Figure 8–9.

Several FIFOs can be accessed in a single XCE space if address decode logic
is used to access each FIFO separately.

Figure 8–7. Glueless Write FIFO Interface

OE

Q[31:0]

REN
RCLK

FIFO
Synchronous

D[31:0]
HF
FF
EF

WEN
WCLK

bus
Expansion

XD[31:0]

EXT_INTx
XRE
XWE

XCEn
XFCLK

Expansion Bus I/O Port Operation

 8-16

Figure 8–8. Read and Write FIFO Interface With Glue

OE

RCLK
REN

WCLK
WEN

FIFO
Synchronous

Q[31:0]

FF
EF

HF
Q[31:0]

EXT_INTy
D[31:0]

WEN
WCLK

FIFO
Synchronous

Q[31:0]
HF
FF
EF

OE
REN
RCLK

bus
Expansion

XD[31:0]

EXT_INTx

XWE
XOE

XRE
XCEx

XFCLK

Figure 8–9. FIFO Write Cycles

XA2 XA3 XA4 XA5

D2 D3 D4 D5

XFCLK

XCEx

XBE[3:0] / XA[5:2]

XWE

WEN = XCEx + XWE

XD[31:0]

Expansion Bus I/O Port Operation

8-17Expansion Bus

8.4.2.2 Read FIFO Interface

The read FIFO interface can be accomplished gluelessly in XCE3 space or
with a small amount of glue in any XCE space. If a glueless read FIFO interface
is used (specified by boot configuration selection), the XOE signal is only en-
abled in XCE3 space, and is dedicated to use for the FIFO interface. If this
mode is selected at boot, the XOE signal is disabled in all other XCE spaces.
In this mode, XCE3 is used as the read enable signal and XOE is used as the
output enable signal of the FIFO. Figure 8–10 shows this interface
(Figure 8–11 shows the timing diagram for this interface). If the glueless read
FIFO mode is not chosen, then a minimal amount of glue can be used in any
XCE space specified as a FIFO interface. Figure 8–8 shows the required glue.
Figure 8–12 shows the timing diagram for the case when glue logic is used to
read from FIFO.

Figure 8–10. Glueless Read FIFO Interface

D[31:0]

WEN
WCLK

FIFO
Synchronous

Q[31:0]
HF
FF
EF

OE
REN
RCLK

bus
Expansion

XD[31:0]

EXT_INTx
XRE
XWE
XOE

XCE3
XFCLK

Figure 8–11.FIFO Read Mode – Read Timing (glueless case)

D5D4D3D2D1XD[31:0]

XOE

XCE3

XFCLK

Sample5
Sample4

Sample3
Sample2

’C6000 sample1

Expansion Bus I/O Port Operation

 8-18

Figure 8–12. FIFO Read Mode – With Glue

XA1 XA2 XA3 XA4

D1 D2 D3 D4

XFCLK

XCEx

XBE[3:0], XA[5:2]

XWE

XRE

XOE

REN = XCEx + XRE

OE = XCEx + XOE

XD[31:0]

8.4.2.3 Programming Offset Register

The programmable offset registers of the FIFO are used to hold the offset val-
ues for the flags that indicate the condition of the FIFO contents.

The programmable offset registers of the FIFO must be programmed in con-
secutive cycles and read in consecutive cycles. In addition, the reader cannot
read from the FIFO until the writer has programmed the offset registers. This
should not be a problem, since the FIFO is not read until it has been written
to. The writer should not write to the FIFO until the offset registers have been
programmed.

For programming (or reading) the offset registers, back-to-back accesses
must be done. For example, the first XFCLK edge with the program input to
the FIFO low programs the PAE register, and then the second XFCLK edge
programs the PAF register. Also, for 9-bit or large 18-bit FIFOs, it is common
to require two or three write cycles to fully program each register. The first write
programs the LSB, the second write programs the middle bits and the third
write programs the high bits.

A general-purpose output (DMACx or TOUTx) can be used to control whether
FIFO reads/writes are done to the FIFO memory or to the programmable offset
register of the memory. Or the XA[5:2] signals can be decoded to control when
the FIFO offset register is accessed.

Expansion Bus I/O Port Operation

8-19Expansion Bus

8.4.2.4 Flag Monitoring

To efficiently control bursts to and from the dedicated FIFO interfaces, the in-
terrupt signals EXT_INT4, EXT_INT5, EXT_INT6, and EXT_INT7 are used as
flags to control DMA transfers. The flag polarity used to start transfer can be
programmed in the DMA secondary control register. The CPU EXT_INT and
DMA EXT_INT polarity are controlled separately. For more details see the
DMA section.

Expansion Bus I/O Port Operation

 8-20

8.4.3 DMA Transfer Examples

8.4.3.1 Example 1 (single frame transfer)

Peripherals located on the I/O port of the expansion bus are accessible only
via DMA transactions. This section gives a very simple example used to trans-
fer a single frame of 256 words from a FIFO located in XCE0 into internal data
memory at 8000 0000h. This example simply sets up the source and destina-
tion registers, and starts the DMA with incrementing destination address and
a non-changing source address. The source address does not change, since
the FIFO is located in a fixed memory location. The content of relevant regis-
ters and DMA channel primary control register are shown in Table 8–9 and
Table 8–10.

Table 8–9. Content of Relevant Registers (single frame transfer)

Register Contents

DMA primary control register 0000 0041h

DMA source 4000 0000h

DMA destination 8000 0000h

Transfer counter register 0000 0100h

Table 8–10. Content of DMA Channel Primary Control Register Fields

DST
reload

SRC
reload EMOD FS TCINT PRI WSYNC RSYNC INDEX

CNT
reload SPLIT ESZISE

DST
DIR

SRC
DIR STATUS START

00 00 0 0 0 0 00000 00000 0 0 00 00 01 00 00 01

Expansion Bus I/O Port Operation

8-21Expansion Bus

8.4.3.2 Example 2 (transfer with frame synchronization)

In this example ten frames of 256 words from a FIFO located in XCE0 are
transferred into internal data memory at 8000 0000h. This example simply
sets up the source and destination registers, and starts the DMA with incre-
menting destination address and a non-changing source address. The source
address does not change, since the FIFO is located in a fixed memory location.
Active(high) EXT_INT4 is used for frame synchronization. The content of the
relevant registers, and the content of the DMA channel primary and secondary
control register fields are shown in Table 8–11, Table 8–12, and Table 8–13.

Table 8–11. Content of Relevant Registers (multiple frame transfer)

Register Content

DMA Primary Control Register 0401 0041h

DMA Secondary Control Register 0008 0000h

DMA Source 4000 0000h

DMA Destination 8000 0000h

Transfer Counter Register 000A 0100h

Global Counter Reload Register A 0000 0100h

Table 8–12. Content of TMS320C6202 DMA Primary Control Register

DST
reload

SRC
reload EMOD FS TCINT PRI WSYNC RSYNC INDEX

CNT
reload SPLIT ESZISE

DST
DIR

SRC
DIR STATUS START

00 00 0 1 0 0 00000 00100 0 0 00 00 01 00 00 01

Table 8–13. Content of TMS320C6202 DMA Secondary Control Register

Reserved
SYNC
CNTL DMAC EN

WSYNC CLR/WSYNC STAT/RSYNC CLR/RSYNC STAT/WDROP IE/WDROP COND/WDROP COND/
RDROP IE/RDROP COND/BLOCK IE/BLOCK COND/LAST IE/LAST COND/FRAME IE

0000 0000 00 001 0 00 0000 0000 0000 0000

Expansion Bus Host Port Operation

 8-22

8.5 Expansion Bus Host Port Operation

The expansion bus host port has two modes, which enable interfaces to exter-
nal processors, PCI bridge chips, or other external peripherals. These are the
synchronous host port mode and the asynchronous host port mode. The syn-
chronous host port mode can interface with minimum glue to PCI bridge chips
and many common microprocessors. The asynchronous host port mode en-
ables interfacing to genuine asynchronous devices.

The expansion bus host port block diagram is shown is Figure 8–13.

Figure 8–13. Expansion Bus Host Port Interface Block Diagram

XCS
XCNTL
XBOFF

XBLAST
XW/R

XAS
XRDY

XBE[3:0]

XD[31:0]

XHOLDA

XHOLD

’C6202

block
Control

arbitration
Bus

MUX

(XBGC, XBHC)
registers
control

host port
Expansion bus

bus
peripheral
controller
memory

Data

latches
address
XBEA

XBD data
latches

latches
address
XBISA

channel
auxiliary

DMA
Enhanced

XWAIT

Using pull-up/down resistors on the data bus during reset sets the host port
operational mode, the DSP bootmode, and endianness.

Expansion Bus Host Port Operation

8-23Expansion Bus

8.5.1 Expansion Bus Host Port Registers Description

8.5.1.1 Expansion Bus Data Register

The expansion bus data (XBD) register, shown in Figure 8–14, contains the
data that was read from the memory accessed by the expansion bus host port
if the current access is a read, or the data that is written to the memory if the
current access is a write.

This register is used when expansion host port operates either in synchronous
or asynchronous mode.

Figure 8–14. Expansion Bus Data Register

31 0

XBD

HRW,+0000 0000 0000 0000 0000 0000 0000 0000

8.5.1.2 Expansion Bus Internal Slave Address Register

The expansion bus internal slave address (XBISA) register is used when the
external expansion bus master initiates data transfer. This register controls the
memory location in the DSP memory map being accessed by the external
mastering data transactions. This address is a 30-bit word address. The two
LSB bits in this register are used by the host to enable or disable autoincrement
of XBISA register, and to trigger the interrupt (by setting the DSPINT bit).The
XBISA register is shown in Figure 8–15 and described in Table 8–14.

Figure 8–15. Expansion Bus Internal Slave Address Register (XBISA)

31 2 1 0

XBSA AINC DSPINT

HRW,+0000 0000 0000 0000 0000 0000 0000 00 HRW, +0 HRW, +0

Table 8–14. XBISA Register Description

Field Description

DSPINT The external master to DSP interrupt. Used to wake up the DSP
from reset. This bit is cleared by corresponding bit in the XBHC.

AINC Enable autoincrement. (Asynchronous mode only)
AINC = 0: XBD register is accessed with autoincrement of XBSA

field.
AINC = 1: XBD register is accessed without autoincrement of

XBSA field.

XBSA 30-bit word address. The XBSA bit-field controls memory location
in the DSP memory map being accessed by the host.

Expansion Bus Host Port Operation

 8-24

This register is used when the host port operates either in synchronous or
asynchronous mode. The ’C6202 does not have access to the XBISA register
content. Burst transfers in the synchronous host-port mode are always
expected to occur with autoincrement (AINC bit should be set to zero).

8.5.1.3 Expansion Bus Internal Master Address Register

The expansion bus internal master address (XBIMA) register, shown in
Figure 8–16, specifies the source or destination address in the DSP memory
map where the transaction starts. This register is set by the ‘C6202 when the
DSP wants to initiate transfer on the expansion bus. Since all tranfers have a
width of one word, the XBIMA register is incremented by four after each trans-
fer.

This register is used when the host port operates in synchronous mode.

Figure 8–16. Expansion Bus Internal Master Address Register

31 0

XBIMA

RW,+0000 0000 0000 0000 0000 0000 0000 0000

8.5.1.4 Expansion Bus External Address Register

This register is set by the ‘C6202 when the DSP wants to initiate transfer on
the expansion bus. The content of the XBEA register, shown in Figure 8–17,
appears on the XD[31:0] lines during an address phase of the transfer initiated
by the DSP. The expansion bus external address (XBEA) specifies where in
the external slave memory map the data is accessed. Since all tranfers have
a width of one word, the XBEA register is incremented by four after each trans-
fer.

This register is used when the host port operates in synchronous mode.

Figure 8–17. Expansion Bus External Address Register

31 0

XBEA

RW,+0000 0000 0000 0000 0000 0000 0000 0000

8.5.1.5 Expansion Bus Host Port Interface Control Register

The expansion bus host port interface control (XBHC) register (shown in
Figure 8–18 and described in Table 8–15) configures expansion bus host port
parameters.

Expansion Bus Host Port Operation

8-25Expansion Bus

The START bit field in the XBHC register is not cleared to zero after a transfer
is completed. Writing ’00’ to the the START field, when a transfer in progress
is stalled by XRDY high, aborts the transfer. When a transfer is aborted the
XBIMA and XBEA registers and the XFRCT transfer counter reflect the state
of the aborted transfer. Using this state information, the transfer can be re-
started. Writing other values than ’00’ to the START field is not recommended.

Figure 8–18. Expansion Bus Host Port Interface Control (XBHC) Register

31 16

XFRCT

RW,+0000 0000 0000 0000

15 6 5 4 3 2 1 0

Reserved INTSRC START Reserved DSPINT Reserved

R,+0000 0000 00 RW, +0 RW, +00 RW, +0

Note: R = Read, W = Write, +0 =Reset value

Table 8–15. XBHC Register Description

Field Description

DSPINT The external master to DSP interrupt (used to wake up the DSP
from reset) is cleared when this bit is set.

START[1:0] Start bus master transaction

Start = 01: starts a write burst transaction from address
pointed by XBIMA to address pointed by XBEA

Start = 10: starts a read burst transaction from address
 pointed by XBEA to address pointed by XBIMA

Writing ’00’ to the the START field, while an active transfer is
stalled by XRDY high, aborts the transfer. When a transfer is
aborted the expansion bus registers reflect the state of the
aborted transfer. Using this state information, you can restart
the transfer.

INTSRC The expansion bus host port interrupt can be caused either by
DSPINT bit or by XFRCT counter. The INTSRC selects
interrupt source between DSPINT and XFRCT counter.

INTSRC=0: interrupt source is DSPINT bit

INTSRC=1: interrupt is generated at the completion of the
master transfer initiated by writing to the START bit-field.

XFRCT Transfer counter controls the number of elements transferred
between the expansion bus and an external slave when the
CPU is mastering the bus (range of up to 64k).

Expansion Bus Host Port Operation

 8-26

8.5.2 Synchronous Host Port Mode

In this mode host port has address and data signals multiplexed and is i960Jx
compatible. This allows a minimum glue interface to the PCI bus, since major
PCI interface chip manufacturers adopted the i960 bus for local bus on their
chips.

The synchronous host port can also easily interface to many other common
processors, and essentially act in a slave only mode. This is done by simply
not initiating transactions on the expansion bus.

The ‘C6202 expansion bus has the capability to initiate and receive burst trans-
fers.

Table 8–16 lists pin function in the expansion bus synchronous host port
mode:

Table 8–16. Expansion Bus Pin Description (Synchronous Host Port Mode)

Signal
Symbol

Signal
Type

Signal
Count

Signal
Name Signal Function

XCLKIN I 1 Clock
Input

Expansion bus clock (maximum clock speed is 1/4 of the
CPU clock speed.

XCS I 1 Chip
Select

Selects the ‘C6202 as a target of an external master.

XHOLD I/O/Z 1 Hold
Request

Case 1 (Internal bus arbiter enabled)
XHOLD is asserted by external device to request use of the
expansion bus. The ‘C6202 asserts XHOLDA when control
is granted.

Case 2 (Internal bus arbiter disabled)

The ‘C6202 wakes up from reset as slave on the bus.

XHOLD is asserted by ‘C6202 to request use of the
expansion bus. The expansion bus arbiter asserts
XHOLDA when control is granted.

XHOLDA I/O/Z 1 Hold
acknowledge

Case 1 (Internal bus arbiter disabled)

The ‘C6202 wakes up from reset as slave on the bus.

The expansion bus arbiter asserts XHOLDA when control
is granted in response to XHOLD. The bus should not be
granted to ‘C6202 unless requested by XHOLD.

Case 2 (Internal bus arbiter enabled)

The ‘C6202 wakes up from reset as master of the bus.

XHOLDA is asserted by the ‘C6202 when control is granted
in response to XHOLD.

Expansion Bus Host Port Operation

8-27Expansion Bus

Table 8–16. Expansion Bus Pin Description (Synchronous Host Port Mode) (Continued)

Signal
Symbol Signal Function

Signal
Name

Signal
Count

Signal
Type

XD[31:0] I/O/Z 32 Address/
data bus

Data

XBLAST I/O/Z 1 Burst last Signal driven by the current expansion bus master to
indicate the last transfer in a bus access. Input polarity
selected at boot. Output polarity is always active low.

XAS I/O/Z 1 Address
Strobe

Indicates a valid address and the start of a new bus access.
Asserted for the first clock of a bus access.

XCNTL I 1 Control
signal

This signal selects between XBD and XBISA register.

XCNTL=0: access is made to the XBD register

XCNTL=1: access is made to the XBISA register

XBE[3:0]/
XA[5:2]

I/O/Z 4 Byte
enables

During host-port accesses these signals operate as
XBE[3:0].

BE3 byte enable 3: XD[31:24]

BE2 byte enable 2: XD[23:16]

BE1 byte enable 1: XD[15:8]

BE0 byte enable 0: XD[7:0]

XW/R I/O/Z 1 Read/write Write/read enable

Polarity of this signal is configured during boot.

XRDY I/O/Z 1 Ready out
Ready in

Active(low) during host-port access. XRDY is an input when
the ’C6202 owns the bus. When the ’C6202 does not own
the bus, XRDY is not driven until a request is made to the
’C6202.

XBOFF I 1 Bus
Back-Off

When asserted, suspends the current access and the
’C6202 releases ownership of the expansion bus.

XWAIT O 1 Wait Ready output for master accesses

Expansion Bus Host Port Operation

 8-28

8.5.2.1 TMS320C6202 Master on the Expansion Bus

When the ‘C6202 is the master of the expansion bus, it can initiate a burst read
or write to a peripheral on the bus.

When the DSP controls the bus, data flow is controlled in a manner similar to
a DMA transfer; however, the expansion bus host channel controls the actual
data transfer. The event flow is as follows:

1) The DSP must initialize the XBEA, which dictates where in the external
slave memory map that data is accessed.

2) The XBIMA must be set to specify the source or destination address in the
DSP memory map where the transaction starts.

3) The XFRCNT field of the expansion bus host port control (XBHC) register
field is set to control the number of elements being transferred.

4) The start field is written,controlling whether the external access is a read
or write burst.

An interrupt is generated at the completion of the transfer if specified by the
INTSRC bit in the XBHC register.

Figure 8–19 and Figure 8–20 show examples of timing diagrams for a burst
read and write when the ‘C6202 is mastering the bus. In this case internal bus
arbiter is disabled (XHOLD is output and XHOLDA is input) and ‘C6202 wakes
up from reset as slave on the expansion bus.

The XWAIT signal prevents data overflow/underflow when the DSP is a master
on the expansion bus. The XWAIT signal, which is multiplexed with the XWE
signal, can be thought of as a ready output when the ’C6202 initiates transfers
on the expansion bus. By asserting the XWAIT signal low, the ’C6202 (the
’C6202 initiated a transaction) indicates that it is not ready to deliver/receive
new data.

Expansion Bus Host Port Operation

8-29Expansion Bus

Burst Read Transfer

The timing presented in Table 8–16 can be referenced for a visual description
of the steps required to complete a burst read initiated by the ’C6202 and
throttled by the XWAIT and XRDY signals.

Figure 8–19. Read Transfer Initiated by the TMS320C6202 and Throttled by
XWAIT and XRDY (Internal Bus Arbiter Disabled)

XCLKIN (input)

XHOLD (output)

XHOLDA (input)

XAS (output)

XW/R (output)

XBLAST (output)

XBE[3:0] (output)

XD[31:0] (i/o)

XRDY (input)

XWAIT (output)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

BE

D1 D2 D3 D4 D5 D6 D7 D8AD

The step by step description of the events marked above the waveforms in
Figure 8–19 follows:

1) The ’C6202 requests the expansion bus by asserting XHOLD output.

2) The DSP waits for the expansion bus.

3) The external bus arbiter asserts the XHOLDA signal, and the ’C6202
starts driving the bus. The XAS, XW/R, XBLAST, XBE[3:0] signals
become outputs, and the XRDY signal becomes an input.

4) Address phase: During this phase, XAS is asserted and the address is
presented on the expansion bus.

Expansion Bus Host Port Operation

 8-30

5) Data phase: The external device is not ready to deliver data, as indicated
by XRDY high.

6) Same as 5.

7) Same as 5.

8) Same as 5.

9) The external device presents requested data (D1), and asserts XRDY.

10) The external device is not ready to deliver next data. The XRDY is ne-
gated.

11) Same as 10

12) Same as 10

13) The external device presents next data (D2), and asserts XRDY.

14) The external device presents next data (D3), and XRDY stays asserted.

15) The external device presents next data (D4), and XRDY stays asserted.

16) The external device presents next data (D5), and XRDY stays asserted.
The DSP can not accept the new data (D5), and asserts XWAIT.

17) The external device recognizes XWAIT, and keeps the D5 on the expan-
sion bus. The XRDY is asserted and indicates that the external device is
ready waiting for the DSP to accept the data.

18) The DSP deasserts XWAIT,, and accepts D5.

19) The external device presents next data (D6), and XRDY stays asserted.

20) The external device presents next data (D7), and XRDY stays asserted.

21) The external device presents the last data (D8), and the ’C6202 asserts
the XBLAST.

22) The recovery cycle.

23) The DSP negates the expansion bus request (XHOLD), and turns off the
outputs.

Expansion Bus Host Port Operation

8-31Expansion Bus

Burst Write Transfer

The timing presented in Figure 8–20 can be referenced for a visual description
of the steps required to complete a burst write initiated by the C6202 and
throttled by the XWAIT and XRDY signals.

Figure 8–20. Write Transfer Initiated by the TMS320C6202 and Throttled by
 XWAIT and XRDY (Internal Bus Arbiter Disabled)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

XCLKIN (input)

XHOLD (output)

XHOLDA (input)

XAS (output)

XW/R (output)

XBLAST (output)

XBE[3:0] (output)

XD[31:0] (i/o)

XRDY (input)

XWAIT (output)

BE

AD D1 D2 D3 D4 D5 D6 D7 D8

The step by step description of the events marked above the waveforms in
Figure 8–20 follows:

1) The DSP requests the expansion bus (XHOLD asserted).

2) The DSP waits for the XHOLDA signal to be asserted by the external arbi-
ter.

3) The external bus arbiter asserts the XHOLDA signal, the XAS, XW/R,
XBLAST, and XBE[3:0] signals become outputs, and the XRDY signal be-
comes an input.

4) Address phase: During this phase, the XAS is asserted and the address
is presented on the expansion bus.

Expansion Bus Host Port Operation

 8-32

5) Data phase: During this phase, data (D1) is presented by the DSP and the
external device is ready to accept the data, which is indicated by XRDY
being active.

6) The DSP presents next data (D2). The external device indicates not ready
condition, which is indicated by XRDY being inactive.

7) The ’C6202 is holding data D2 on the expansion bus since the external
device is still not ready.

8) External device finally accepts the D2.

9) The DSP presents next data (D3). The external device is ready to take D3.

10) The DSP presents next data (D4). The external device is ready to take D4.

11) The DSP presents next data (D5). The external device is ready to take D5.

12) The DSP is not ready to present D6 and asserts XWAIT. The external de-
vice is waiting for the DSP to present new data.

13) Same as 12.

14) Same as 12.

15) The DSP presents next data (D6), and negates XWAIT. The external de-
vice is ready to take D6.

16) The DSP presents next data (D7). The external device is ready to take D7.

17) The DSP presents the last data (D8), and asserts XBLAST. The external
device is ready to take D8.

18) Recovery cycle

19) The DSP removes the bus request (XHOLD), and is turns off the outputs.

To prevent contention on the expansion bus, one recovery state between the
last data transfer and next address cycle is inserted.

Expansion Bus Host Port Operation

8-33Expansion Bus

Preventing Deadlocks with Backoff

To prevent deadlocks while the ’C6202 is performing a master transfer, the ex-
pansion bus has the XBOFF signal. When asserted, XBOFF suspends the
current access and causes the ‘C6202 to release ownership of the expansion
bus. Figure 8–21 is timing diagram for the XBOFF signal.

The backoff is only recognized during active master transfers when XRDY
indicates a not ready status and:

1) The external device is requesting the expansion bus (XHOLD = 1), when
the internal bus arbiter is enabled (XARB = 1)

or

2) The DSP is the expansion bus master (XHOLD = 1 and XHOLDA = 1), and
the internal bus arbiter is disabled (XARB = 0).

The backoff request is not serviced until all current master transfers are
completed internally. This allows read data to be flushed out of the pipeline.
The XBOFF signal is not recognized during I/O port transfers.

Figure 8–21. External Device Requests the Bus From the TMS320C6202 Using XBOFF

XCLKIN

XHOLD (output)

XHOLDA (input)

XHOLD (input)

XHOLDA (output)

XAS (output)

XW/R (output)

XBLAST (output)

XD[31:0]

XRDY

XBOFF (input)

1 2 3 4 5 6 7 8

AD AD D0 D1 D2 D3

In
te

rn
al

B
us

A
rb

ite
r

D
is

ab
le

d

In
te

rn
al

B
us

A
rb

ite
r

E
na

bl
ed

Expansion Bus Host Port Operation

 8-34

The timing diagram shown in Figure 8–21 can be referenced for a visual
description of the steps involved in release of the expansion bus ownership as
initiated by the XBOFF signal. The diagram illustrates the backoff condition for
both internal bus arbiter enabled and internal bus arbiter disabled . The step
by step description of the events in Figure 8–21 follows:

1) The ‘C6202 is expansion bus master and initiates address phase of a read
transaction. The XAS signal is active and valid address is presented.

2) The XRDY signal is high indicating that the external device is not ready to
perform the transaction. Also, the external device drives XHOLD active,
indicating a bus request.

3) The ‘C6202 is still holding the expansion bus waiting for XRDY to become
low.

4) The external device asserts XBOFF, indicating a potential deadlock condi-
tion.

5) The DSP responds by releasing the expansion bus. When the internal bus
arbiter is enabled, the DSP asserts XHOLDA. When the internal bus arbi-
ter is disabled the DSP deasserts XHOLD. It can take a several clock
cycles before ‘C6202 responds to XBOFF. Figure 8–21 shows the fastest
response time, one cycle.

6) The expansion bus ownership changes. The new master drives the ex-
pansion bus. XBOFF is deasserted.

7) The external device releases the bus after performing the desired transac-
tions.

8) The XHOLDA is removed, and the DSP resumes the expansion bus own-
ership.

9) The DSP performs a burst read of four words.

The DSP automatically tries to restart the transfer interrupted by a backoff from
the point where the interruption took place. The transfer restart is completely
transparent to the user.

Expansion Bus Host Port Operation

8-35Expansion Bus

8.5.2.2 TMS320C6202 Slave on the Expansion Bus

The external host can access the different expansion bus host port registers
by driving the XCNTL signal as follows:

� XCNTL = 0
Reads or writes the expansion bus data (XBD) register.

� XCNTL = 1
Reads or writes the expansion bus internal slave address (XBISA)
register.

Every transaction initiated by the host on the expansion bus is a two step
process. First, the host has to set the XBISA register, and then transfer the data
to/from the address pointed by XBISA register. The data transfer can take
place with or without auto-incrementing the internal ‘C6202 memory address
register (XBISA). Whether the XBISA gets autoincremented is determined by
the AINC bit-field of the XBISA register.

To read/write from the ‘C6202 memory space, the host must follow the
following sequence:

1) The host writes the transfer source/destination address to the XBISA reg-
ister, and sets AINC accordingly (in bit one of the XBISA register).

2) The host reads/writes to/from the address specified by XBISA. Read or
write is dictated by the XW/R signal. The XBISA register is
auto-incremented or not depending on what is written to the AINC bit dur-
ing step 1.

3) If the transfer is a burst, dictated by the BLAST signal, data is continuously
read or written.

Expansion Bus Host Port Operation

 8-36

Cycle Description

Each access initiated by the external host can be broken up into distinct cate-
gories:

� Address phase (Ta): During the address phase, the ’C6x is selected with
the XCS input and the address phase is started with a low pulse on the
XAS signal. During this phase, the ’C6x determines if the external master
is doing a read or write cycle (XW/R input) and which expansion bus regis-
ter is being accessed (via the XCNTL input).

� Wait/data phase (Tw/Td): Immediately after the address phase, the
transaction enters either the wait phase or data phase. For a read cycle,
there is at least one wait phase before the ’C6x presents the data to the
external host. This is controlled via the XRDY output of the ’C6x. If the
XRDY signal is high, this indicates to the external host that the ’C6x is not
ready to receive data for a write, or is not ready to present data for a read,
and is in the wait phase. The data phase is entered when the ’C6x asserts
XRDY signal, indicating that read data should be latched by the external
host or that write data has been latched by the ’C6x.

� Recovery phase (Tr): The recovery phase is entered after final data
phase of a burst access or after the data phase of a single access. When
the ’C6x is a slave, if the external master has a multiplexed address/data
bus, it is recommended that the external master insert at least one recov-
ery phase between a read data phase and a subsequent address phase
in order to avoid potential bus contention.

Expansion Bus Host Port Operation

8-37Expansion Bus

Burst Write Transfer

The timing diagram shown in Figure 8–22 can be referenced for a visual
description of the steps required to complete a burst write initiated by an
external host and throttled by the XRDY signal.

Figure 8–22. The Expansion Bus Master Writes a Burst of Data to the TMS320C6202

9

D4

Wait

8765

Ready

43

Wait

21

C6202 latches CNTL

D3D2D1

XCLKIN

XCS (input)

XCNTL (input)

XW/R (input)

XBE[3:0] (input)

XBLAST (input)

XAS (input)

XD[31:0]

XRDY (output)

Write

0000 = Word

Internal src/dst addr

0 = XBD1 = XBISA

Write

The boot configuration for XBLAST and XW/R: BLPOL = 0 and RWPOL = 0.
See Table 8–16 for more details.

Expansion Bus Host Port Operation

 8-38

The step by step description of the events marked above the waveforms in
Figure 8–22 follows:

1) The XCS, XAS and XCNTL signals are low, low, and high respectively, in-
dicating XBISA register as the destination for the following transaction.
The XW/R is high specifying that a write access is taking place.

2) The ’C6202 begins driving the XRDY output in response to a transfer initi-
ated by the external host. A high XRDY indicates that the ’C6202 is not
ready.

3) The data is written to the XBISA register when the ’C202 asserts the XRDY
output low.

4) The XAS and XCNTL signals are both low (and XCS is low), indicating
XBD register as the destination for the following transaction. The XW/R is
high specifying that a write access is taking place.

5) The expansion bus master presents the valid data. The data is written to
the XBD register on the rising edge of the XCLKIN when XRDY is active-
low.

6) Same as 5.
7) The ‘C6202 is not ready to accept next data, which is indicated by XRDY

high.
8) Same as 5.
9) The expansion bus master indicates that the last write transaction is taking

place by asserting the XBLAST signal. The data is written to the XBD
register on the rising edge of the XCLKIN.

Expansion Bus Host Port Operation

8-39Expansion Bus

Burst Read Transfer

The timing diagram shown in Figure 8–23 can be referenced for a visual
description of the steps required to complete a burst read initiated by an
external host and throttled by the XRDY signal.

Figure 8–23. The Bus Master Reads a Burst of Data From the TMS320C6202

9

D4

Wait

8765

Ready

43

Wait

21

C6202 latches CNTL

D3D2D1

XCLKIN

XCS (input)

XCNTL (input)

XW/R (input)

XBE[3:0] (input)

XBLAST (input)

XAS (input)

XD

XRDY (output)

0000 = Word

Internal src/dst

0 = XBD1 = XBISA

Write Read

The boot configuration for XBLAST and XRW: BLPOL = 0 and RWPOL = 0.
See Table 8–16 for more details.

Expansion Bus Host Port Operation

 8-40

The step by step description of the events marked above the waveforms in
Figure 8–23 follows:

1) The XCS, XAS and XCNTL signals are low, low and high respectively,
indicating XBISA register as the destination for the following transaction.
The XW/R is high specifying that a write access is taking place.

2) The ’C6202 begins driving the XRDY output in response to a transfer
initiated by the external host. A high XRDY indicates that the ’C6202 is not
ready.

3) The data is written to the XBISA register when the ’C6202 asserts the
XRDY output low.

4) The XAS and XCNTL signals are both low (and XCS is low), indicating
XBD register as the destination for the following transaction. The XW/R is
low specifying that a read access is taking place.

5) The ‘C6202 presents the valid data, and drives XRDY low.
6) Same as 5.
7) The ‘C6202 is not ready to present the next data, which is indicated by

XRDY high.
8) Same as 5.
9) The expansion bus master indicates that the last read transaction is taking

place by asserting the XBLAST signal.

Expansion Bus Host Port Operation

8-41Expansion Bus

8.5.3 Asynchronous Host Port Mode

This mode is slave only, it uses a 32-bit data path, and it is similar to the HPI
on the ‘C6201. The asynchronous host port mode is used to interface to asyn-
chronous microprocessor buses.

A list of the signals when the expansion bus operates in the asynchronous host
port mode is given in Table 8–17.

Table 8–17. Expansion Bus Pin Description (Asynchronous Host Port Mode)

Signal
Symbol

Signal
Type

Signal
Count Signal Name Signal Function

XCS I 1 Chip Select Selects the ‘C6202 as a target of an external master.

XD[31:0] I/O/Z 32 Data Bus

XBE[3:0] I 4 Byte Enables Functionality of these signals is the same as on the
‘C6201 HPI (during a read XBE do not matter). During
a write:

BE3 byte enable 3– XD[31:24]

BE2 byte enable 2– XD[23:16]

BE1 byte enable 1– XD[15:8]

BE0 byte enable 0– XD[7:0]

XCNTL I 1 Control Signal This signal selects between XBD and XBISA register.

XCNTL=0, access is made to the XBD register

XCNTL=1, access is made to the XBISA register

XW/R I 1 Read/Write Polarity of this signal is configured during boot.

XRDY O/Z 1 Ready Out Ready signal indicates normally not ready condition.
This signal is always driven in asynch host mode when
the ’C6202 does not own the bus.

The XCNTL signal selects which internal register the host is accessing. The
state of this pin selects if access is made to the expansion bus internal slave
address (XBISA) register or, expansion bus data (XBD) register.

Expansion Bus Host Port Operation

 8-42

If the expansion bus host port operates in the asynchronous mode, every
transaction initiated by the host on the expansion bus is a two step process.
The host first has to set the XBISA register, and then transfer the data to/from
the address pointed to by the XBISA register. The data transfer can take place
with or without auto-incrementing the XBISA register. Whether or not the XBI-
SA gets auto-incremented is determined by AINC bit-field in bit one of the XBI-
SA register.

In order to read/write from the ‘C6202 memory spaces, the host must follow
the following sequence:

1) Host writes address to the XBISA register, and sets AINC accordingly in
bit one of XBISA.

2) Host reads/writes to/from the address specified by the XBISA register.
Read or write is dictated by the XW/R signal. The XBISA register is auto-in-
cremented or not depending on what is written to the AINC bit during step
1.

If the expansion bus host port is configured to operate in asynchronous mode
the XCS signal is used for four purposes:

3) To select the expansion bus host port as a target of an external master.
4) On a read, the falling edge of XCS initiates read accesses.
5) On a write, the rising edge of XCS initiates write accesses.
6) The XCS falling edge latches expansion bus host port control inputs in-

cluding: XW/R and XCNTL.

The XRDY signal of the ’C6202 functions differently than the ‘C6201 HPI
READY signal. The XRDY signal indicates normally not ready condition (ac-
tive low READY signal is internally OR-ed with XCS signal in order to obtain
XRDY).

Read and write timing diagrams for asynchronous the expansion bus host port
operation in the asynchronous mode are shown in Figure 8–24.

Expansion Bus Host Port Operation

8-43Expansion Bus

Figure 8–24. Timing Diagrams for Asynchronous Host Port Mode of the Expansion Bus

XCNTL (input)

word

word

XR/W (input)

XCS (input)

XRDY (output)

XCNTL (input)

XD[31:0]

XBE[3:0] (input)

XR/W (input)

XCS (input)

XRDY (output)

XD[31:0]

XBE[3:0] (input)

Asynchronous Host Port Write Timing

Asynchronous Host Port Read Timing

Expansion Bus Arbitration

 8-44

8.6 Expansion Bus Arbitration

Two signals, XHOLD and XHOLDA, are provided for bus arbitration. The
internal bus arbiter is disabled or enabled depending on the value on the
expansion data bus during reset.

The XARB bit in the expansion bus global control register indicates if the inter-
nal bus arbiter is enabled or disabled. This is shown in Table 8–18.

Table 8–18. XARB Bit Value and XHOLD/XHOLDA Signal Functionality

XARB Bit (Read Only) XHOLD XHOLDA

0 (Indicates disabled internal bus arbiter) Output Input

1 (Indicates enabled internal bus arbiter) Input Output

If the internal bus arbiter is enabled, the ‘C6202 wakes up from reset as the
bus master. If internal bus arbiter is disabled, the ‘C6202 wakes up from reset
as the bus slave. The DMA controller releases the expansion bus between
frames if a DMA block transfer is in progress. When the ’C6202 releases the
expansion bus, the host port signals become tristated, except for the I/O port
signals (XWE/XWAIT, XOE, XRE, XCE[3:0], and XFCLK) which are not af-
fected.

8.6.1 Internal Bus Arbiter Enabled

In this mode the ‘C6202 owns the expansion bus by default. The ‘C6202 wakes
up from reset as the master of the expansion bus, and all other devices must
request the bus from ‘C6202. This mode is preferred when connecting one
‘C6202 to a PCI interface chip.

When the TMS320C6202 owns the expansion bus, both XHOLD (input) and
XHOLDA (output) are low. XHOLD is asserted by an external device to request
use of the expansion bus. The ‘C6202 asserts XHOLDA when bus request is
granted. The expansion bus is not granted unless requested by XHOLD.

Figure 8–25 illustrates XHOLD and XHOLDA functionality when the internal
bus arbiter is enabled. In this mode the DSP grants the expansion bus to the
requester only if no internal transfer requests to the expansion bus are
pending.

Expansion Bus Arbitration

8-45Expansion Bus

Figure 8–25. Timing Diagrams for Bus Arbitration–XHOLD/XHOLDA
(Internal Bus Arbiter Enabled).

OUTPUTS

XHOLD(input)

XHOLDA(output)

External Device Mastering the Bus

8.6.2 Internal Bus Arbiter Disabled

In this mode, the ‘C6202 acts as slave on the expansion bus by default. This
mode is preferred if the ‘C6202 is interfacing to an external host, or if multiple
‘C6202 are connected to a PCI interface chip.

When the ’C6202 owns the expansion bus, both XHOLD (output) and
XHOLDA (input) are high. To request the expansion bus (for example to
access a FIFO) the ‘C6202 asserts XHOLD. The external expansion bus
arbiter asserts XHOLDA when control is granted. The expansion bus should
not be granted to the ’C6202 unless requested by XHOLD.

Figure 8–26 illustrates XHOLD and XHOLDA functionality in this mode.

Figure 8–26. Timing Diagrams for Bus Arbitration XHOLD/XHOLDA
(Internal Bus Arbiter Disabled)

OUTPUTS

XHOLD(output)

XHOLDA(input)

The ’C6202 is Master of the Bus

When the internal bus arbiter is disabled (XARB = ’0’) and the expansion bus
master transfer is initiated by writing to the start bit field of the XBHC register,
the DSP asserts its XHOLD request. If the host initiates a transfer to the DSP
instead of granting the DSP access to the expansion bus, the DSP drops its
XHOLD request, as shown in Figure 8–27.

The DSP drops the bus request only if the pending request is for a transfer to
the expansion bus host port. The DSP will reassert the bus request for pending
master transfers after the host completes its transfer (see Figure 8–27). For
more detail see Table 8–19.

Expansion Bus Arbitration

 8-46

Figure 8–27. XHOLD Timing When the External Host Starts a Transfer to DSP Instead of
Granting the DSP Access to the Expansion Bus(Internal Bus Arbiter Disabled)

XHOLDA (input)

XAS (input)

XBLAST (input)

XCS (input)

XHOLD (output)

Table 8–19 shows possible scenarios that can happen when the internal bus
arbiter is disabled (XARB =0).

Table 8–19. Possible Expansion Bus Arbitration Scenarios
(Internal Bus Arbiter Disabled)

XARB = ’0’

XBOFF
asserted

Current
External Host
Activity Current DSP state Actions

DMA request to ex-
pansion bus IO port
pending

� If the DMA request comes before or at the same time
when the host started the transfer, the DSP asserts
the XHOLD and keep it asserted during the host
transfer.

� If the DMA request came after the host started the
transfer, the DSP waits for the host transfer to com-
plete and then asserts XHOLD.

N/A

Host transfer
to the
expansion bus
in progress

DMA request to ex-
pansion bus IO port,
and aux. DMA re-
quests are pending

After the DSP gets the expansion bus the pending aux-
iliary DMA request is executed first (since for the ex-
pansion bus, the aux. DMA channel always has priority
over the other DMA channels). After the auxiliary DMA
transfer is completed, the DSP starts the DMA transfer
and does not drop the XHOLD between these two
transfers.

Aux. DMA request
pending

� If the auxiliary DMA request comes prior to the host
starting the transfer, the DSP asserts the XHOLD and
keeps it asserted until the host starts the transfer.
Once the host starts the transfer, the DSP drops the
request (see Figure 8–24). The DSP re-asserts the
XHOLD after the host completes the transfer.

� If the auxiliary DMA request comes after the host is
started the transfer, the DSP waits for the host trans-
fer to complete and asserts the XHOLD.

Expansion Bus Arbitration

8-47Expansion Bus

Table 8–19. Possible Expansion Bus Arbitration Scenarios
(Internal Bus Arbiter Disabled)

XARB = ’0’

Actions
XBOFF

asserted ActionsCurrent DSP state

Current
External Host
Activity

DMA request to ex-
pansion Bus IO port
pending

The DSP asserts the XHOLD, and once it gets the ex-
pansion bus the transfer starts.

NO NONE
DMA request to ex-
pansion bus IO port,
and auxiliary DMA re-
quests are pending

After the DSP gets the expansion bus the pending
auxiliary DMA request is executed first (since for the
expansion bus, the auxiliary DMA channel always has
priority over the rest of the DMA channels). After the
auxiliary DMA transfer is completed, the DSP will start
the DMA transfer and does not drop the XHOLD be
tween these two transfers.

Aux. DMA request
pending

The DSP asserts the XHOLD, and once it gets the ex-
pansion bus the transfer starts.

DMA transfer to ex-
pansion bus IO port
in progress

XBOFF is ignored if a DMA transfer to the expansion
bus IO port is in progress.

YES N/A

Aux. DMA transfer in
progress

The DSP releases ownership of the expansion bus as
soon as possible. After that, the DSP requests the ex-
pansion bus to complete the transfer interrupted by the
XBOFF.

YES N/A

Aux. DMA transfer in
progress, and DMA
request to expansion
bus IO port pending

The DSP stops the current auxiliary DMA transfer in
progress, and starts executing the pending DMA trans-
fer to the expansion bus IO port. After the pending DMA
transfer is completed, the DSP releases the expansion
bus to the external device. Some time afterwards, the
DSP requests the expansion bus to complete the trans-
fer interrupted by the XBOFF.

Expansion Bus Arbitration

 8-48

8.6.3 Expansion Bus Requestor Priority

For the expansion bus of the ‘C6202, the auxiliary DMA channel is always
given the highest priority, followed by the standard DMA priority (DMA0 high-
est).

Priority Description

Highest Auxiliary channel

DMA0

DMA1

DMA2

Lowest DMA3

In many situations the priority between the auxiliary channel and the standard
DMA channels is first come first serve, because the auxiliary channel cannot
preempt the standard DMA channels during a frame transfer and the standard
DMA channels cannot preempt the auxiliary channel. The standard DMA
channels can preempt each other.

The auxiliary channel can only acquire the bus between DMA frames or if no
other DMA activity is occurring. For example, if an unsynchronized DMA trans-
fer is set up to perform 4 frames of 32 elements each, and an auxiliary transfer
becomes pending, either by an external host asserting the XHOLD request
signal if the internal arbiter is enabled or by the ’C6202 attempting to begin a
master transfer by writing to the start bits of the XBHC register(internal arbiter
enabled or disabled), the auxiliary request will be ignored during the frame
transfer to the expansion memory. After the first frame, however, the auxiliary
request is recognized and the DMA transfer to the expansion memory stops
to allow the host transfer to begin.

To allow host transfers sufficient access to the expansion bus, DMA transac-
tions should be set up so that the frame length is as short as possible. The size
of frame transfers to the expansion bus I/O port define the longest amount of
time that host transactions can be blocked from accessing the expansion
buses.

Boot Configuration Control via Expansion Bus

8-49Expansion Bus

8.7 Boot Configuration Control via Expansion Bus

The polarity of read/write XW/R and XBLAST control signals on the expansion
bus is determined during boot using pull up/pull down resistors on the XD[31:0]
pins of the expansion bus. Pull up/pull down resistors on the expansion bus
are used for boot mode selection and to enable/disable internal bus arbiter, to
define expansion bus host port mode to define memory type used in each
expansion bus memory space and to define FIFO mode. All expansion data
pins, XD[31:0], should be configured by pull-up/pull-down resistors. Reserved
fields should be pulled-down. Detailed description of boot configuration is
shown in Figure 8–28 and Table 8–20.

Figure 8–28. Expansion Bus Boot Configuration via Pull Up/Pull Down Resistors on
XD[31:0]

31 30 29 28 27 26 25 24 23 22 20 19 18 16

rsvd MTYPE XCE3 rsvd MTYPE XCE2 rsvd MTYPE XCE1 rsvd MTYPE XCE0

15 14 13 12 11 10 9 8 7 5 4 0

Reserved BLPOL RWPOL HMOD XARB FMOD LEND Reserved BOOTMODE

Boot Configuration Control via Expansion Bus

 8-50

Table 8–20. Description of Expansion Bus Boot Configuration via Pull Up/Pull Down
Resistors on XD[31:0]

Field Description

MTYPE0/1/2/3 Memory type

MTYPE=010b: 32-bit wide asynchronous interface

MTYPE=101b: 32-bit wide FIFO interface

MTYPE=other: reserved

BLPOL Determines polarity of the XBLAST signal when the DSP is a slave on the expansion
bus.

BLPOL=0: XBLAST is active low.

BLPOL=1: XBLAST is active high.

When the DSP initiates a transfer on the expansion bus XBLAST is always active low.

RWPOL Determines polarity of expansion bus read/write signal.

RWPOL=0: XR/W. Write is active-high.

RWPOL=1, XR/W. Read is active-high.

HMOD Host mode (status in XB HPIC)

HMOD = 0: external host interface operates in asynchronous slave mode.

HMOD = 1: external host interface is in synchronous master/slave mode.

XARB Expansion bus arbiter (status in XBGC)

XARB = 0: Internal expansion bus arbiter is disabled

XARB = 1: Internal expansion bus arbiter is enabled.

FMOD FIFO mode (status in XBGC)

FMOD = 0: Glue is used for FIFO read interface in all XCE spaces operating in FIFO
mode. XOE can be used in all XCE spaces

FMOD = 1: XOE is reserved for use only in XCE3 for FIFO read mode. XOE is disabled
in all other XCE spaces.

LEND Little endian mode

LEND = 0: system operates in big endian mode

LEND = 1: system operates in little endian mode

BOOTMODE[4:0] Dictates the boot-mode of the device, including host port boot, ROM boot, memory map
selection. For a complete list of boot-modes, see Section 10, TMS320C6000 Boot
Modes.

9-1

External Memory Interface

This chapter describes the external memory interface used by the CPU to
access off-chip memory. This chapter also describes the EMIF control
registers and their fields, and it explains how to reset the EMIF. Various
memory interfaces are described, along with diagrams showing the
connections between the EMIF and each supported memory type.

Topic Page

9.1 Overview 9-2.

9.2 Resetting the EMIF 9-8.

9.3 EMIF Registers 9-9.

9.4 SDRAM Interface 9-20.

9.5 SBSRAM Interface 9-43.

9.6 Asynchronous Interface 9-49.

9.7 Hold Interface 9-60.

9.8 Memory Request Priority 9-61.

9.9 Boundary Conditions When Writing to EMIF Registers 9-63.

9.10 Clock Output Enabling 9-64.

9.11 Emulation Halt Operation 9-64.

9.12 Power Down 9-64.

Chapter 9

Overview

 9-2

9.1 Overview

The external memory interfaces (EMIFs) of the TMS320C6000 devices
support a glueless interface to a variety of external devices, including:

� Synchronous-burst SRAM (SBSRAM)
� Synchronous DRAM (SDRAM)
� Asynchronous devices, including SRAM, ROM, and FIFOs
� An external shared-memory device

The TMS320C6201/C6202/C6701 EMIF services requests of the external bus
from four requesters:

� The on-chip program memory controller that services CPU program
fetches

� The on-chip data memory controller that services CPU data fetches
� The on-chip DMA controller
� An external shared-memory device controller

If multiple requests arrive simultaneously, the EMIF prioritizes them and performs
the necessary number of operations. A block diagram of the
TMS320C6201/C6202/C6701 is shown in Figure 9–1, and the signals shown
there are summarized in Table 9–1.

The ’C6211/C6711 services requests of the external bus from two requestors:

� An enhanced direct-memory access (EMDA) controller
� An external shared-memory device controller

A block diagram of the TMS320C6201/C6202/C6701 is shown Figure 9–2.

Overview

9-3External Memory Interface

Figure 9–1. External Memory Interface in the TMS320C6201/C6202/C6701BlockDiagram

TMS320C6000

Program memory/cache

Program memory controller

EMIF

PLL

Host port DMA
controller

controller
bus

Peripheral

EMIF control
DMA control
HPI control

McBSPs
Interrupt selector

Timers
Data memory

controller
Data memory

CPU core

2
Data path

1
Data path

Instruction decode
Instruction dispatch

Program fetch

down
Power

Boot
configuration

Figure 9–2. External Memory Interface in the TMS320C6211/C6711BlockDiagram

L1P cache
direct mapped

4K bytes

L2 memory
4 banks

64K bytes

L1D cache
2–way set
associative

4K bytes
Timer 0Timer 1

Enhanced
DMA

controller

Power down logic

External
memory
interface
(EMIF)

Multichannel
buffered

serial port 1
(McBSP 1)

Host port
interface

(HPI)

CPU core

Data path 2
B register file

L2S2M2D2

Data path 1
A register file

L1 S1 M1 D1

Instruction fetch

Instruction dispatch

Instruction decode

Control
registers
In–circuit
emulation

In
te

rr
up

t c
on

tr
ol

Multichannel
buffered

serial port 0
(McBSP 0)

Overview

 9-4

Figure 9–3. TMS320C6201/C6701 External Memory Interface

interface
Bus hold

interface
SDRAM

interface
SBSRAM

interface
Asynchronous

interfaces
all external
Shared by

Program
memory

controller

Data
memory

controller

controller
DMA

(EMIF)
interface
memory
External

HOLDA

HOLD

SDCLK

SDA10

SDWE

SDCAS

SDRAS

SSCLK

SSWE

SSOE

SSADS

ARE

AWE

AOE

ARDY

BE[3:0]

CE[3:0]

EA[21:2]

ED[31:0]

CLKOUT2

CLKOUT1

Internal peripheral bus

Control
registers

Overview

9-5External Memory Interface

The EMIF signals of the ’C6202 are shown in Figure 9–4. The ’C6202 has
combined the SDRAM and SBSRAM signals, such that only one of these two
memory types can be used in a system. These memories run off CLKOUT2,
which is equal to 1/2x the CPU clock rate.

Figure 9–4. TMS320C6202 External Memory Interface

CLKOUT

ED[31:0]

CE[3:0]

BE[3:0]

ARDY

AOE

ARE

AWE

SDRAS/SSOE

SDCAS/SSADS

SDWE/SSWE

EA[21:2]

SDA10

Shared by
all external
interfaces

Asynchronous
interface

Synchronous
interface

External
memory
interface
(EMIF)

Control
registers

Internal
peripheral bus

Data
memory
controller

Program
memory
controller

DMA
controller

Overview

 9-6

The EMIF signals of the ’C6211/C6711 are shown in Figure 9–5. The
’C6211/C6711 has the following features:

� The ’C6211/C6711 EMIF requires that an external clock source (ECLKIN)
be provided by the system. The ECLKOUT signal is produced internally
(based on ECLKIN). All of the memories interfacing with the ’C6211/C6711
should operate off of ECLKOUT. If desired, the CLKOUT2 output can be
routed back to the ECLKIN input.

� The synchronized memory interfaces use a four-word burst length which
is optimized for the two-level cache architecture.

� The SDRAM interface is flexible, allowing interfaces to a wide range of
SDRAM configurations.

� The SDA10 pin has been removed. Address pin EA[12] serves the func-
tion of the SDA10 pin for the SDRAM memories.

Figure 9–5. TMS320C6211/C6711 External Memory Interface

ED[31:0]

CE[3:0]

BE[3:0]

ARDY

AOE/SDRAS/SSOE

ARE/SDCAS/SSADS

AWE/SDWE/SSWE

EA[21:2]

Internal
peripheral bus

External
memory
interface
(EMIF)

Control
registers

Shared by
all external
interfaces

Muxed
device
control

ECLKIN

Enhanced
data

memory
controller

HOLDA

HOLD

BUSREQ

ECLKOUT

Overview

9-7External Memory Interface

Table 9–1. EMIF Signal Descriptions

6
2
0
1

6
7
0
1

6
2
0
2

6
2
1
1 Pin (I/O/Z) Description

� � � � CLKOUT1 O Clock output. Runs at the CPU clock rate.

� � � � CLKOUT2 O Clock output. Runs at 1/2 the CPU clock rate. Used for synchronous memory
interface on ’C6202

� BUSREQ O Active high bus request signal

� ECLKOUT O EMIF clock output. All EMIF I/O are clocked relative to ECLKOUT.

� ECLKIN I EMIF clock input. Must be provided by system.

� � � � ED[31:0] I/O/Z Data I/O. 32-bit data input/output from external memories and peripherals

� � � � EA[21:2] O/Z External address output. Drives bits 21–2 of the byte address.

� � � � CE0 O/Z Active low chip select for memory space CE0

� � � � CE1 O/Z Active low chip select for memory space CE1

� � � � CE2 O/Z Active low chip select for memory space CE2

� � � � CE3 O/Z Active low chip select for memory space CE3

� � � � BE[3:0] O/Z Active low byte enables. Individual bytes and halfwords can be selected for both
read and write cycles. Decoded from two LSBs of the byte address.

� � � � ARDY I Ready. Active low asynchronous ready input used to insert wait states for
slow memories and peripherals.

� � � M AOE O/Z Active low output enable for asynchronous memory interface

� � � M AWE O/Z Active low write strobe for asynchronous memory interface

� � � M ARE O/Z Active low read strobe for asynchronous memory interface

� � M M SSADS O/Z Active low address strobe/enable for SBSRAM interface

� � M M SSOE O/Z Output buffer enable for SBSRAM interface

� � M M SSWE O/Z Active low write enable for SBSRAM interface

� � SSCLK O/Z SBSRAM interface clock. Programmable to either the CPU clock rate or half
of the CPU clock rate.

� � M M SDRAS O/Z Active low row strobe for SDRAM memory interface

� � M M SDCAS O/Z Active low column strobe for SDRAM memory interface

� � M M SDWE O/Z Active low write enable for SDRAM memory interface

� � � SDA10 O/Z SDRAM A10 address line. Address line/autoprecharge disable for SDRAM
memory.

� � SDCLK O/Z SDRAM interface clock. Runs at 1/2 the CPU clock rate. Equivalent to
CLKOUT2.

� � � � HOLD I Active low external bus hold (3-state) request

� � � � HOLDA O Active low external bus hold acknowledge
† ’M’ indicates a multiplexed output signal

Resetting the EMIF

 9-8

9.2 Resetting the EMIF

A hardware reset using the RESET pin on the device forces all register values
to their reset state. During reset, all outputs are driven to their inactive levels,
with the exception of the clock outputs (SDCLK, SSCLK, CLKOUT1, and
CLKOUT2). CLKOUT2, SSCLK, and SDCLK are driven high or low during ac-
tive RESET. CLKOUT1 continues clocking unless the values on the PLL con-
figuration pins are changed.On the ’C6211, ECLKIN should be provided during
reset in order to drive EMIF signals to the correct reset values. ECLKOUT will
continue to clock as long as ECLKIN is provided.

EMIF Registers

9-9External Memory Interface

9.3 EMIF Registers

Control of the EMIF and the memory interfaces it supports is maintained through
memory-mapped registers within the EMIF. The memory-mapped registers are
listed in Table 9–2.

Table 9–2. EMIF Memory-Mapped Registers

Byte Address Name

0180 0000h EMIF global control

0180 0004h EMIF CE1 space control

0180 0008h EMIF CE0 space control

0180 000Ch Reserved

0180 0010h EMIF CE2 space control

0180 0014h EMIF CE3 space control

0180 0018h EMIF SDRAM control

0180 001Ch EMIF SDRAM timing register

9.3.1 Global Control Register

The EMIF global control register (shown in Figure 9–6 and summarized in
Table 9–3) configures parameters common to all the CE spaces.

Figure 9–6. EMIF Global Control Register Diagram

31 16

Reserved

R, +0000 0000 0000 0000 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsv Rsv Rsv
BUS

REQ� ARDY HOLD HOLDA NOHOLD SDCEN‡ SSCEN‡ CLK1EN CLK2EN§ SSCRT§‡ RBTR8‡ MAP‡

R,+0 RW,+0 R,+11 R, +0 R, +x R, +x R, +0 RW, +0 RW, +1 RW, +1 RW, +1 RW, +1 RW, +0 RW, +0 R, +x

† Field exists only in ’C6211/C6711
‡ Fields do not exist in ’C6211/C6711
§ Fields do not exist in ’C6202.

EMIF Registers

 9-10

Table 9–3. EMIF Global Control Register Field Descriptions

Field Description

BUSREQ† BUSREQ = 0; BUSREQ ouput is low.
BUSREQ = 1; BUSREQ output is high.

ARDY ARDY = 0: ARDY input is low.
ARDY = 1: ARDY input is high.

HOLD HOLD = 0: HOLD input is low.
HOLD = 1: HOLD input is high.

HOLDA HOLDA = 0: HOLDA output is low.
HOLDA = 1: HOLDA output is high.

NOHOLD External HOLD disable
NOHOLD = 0: hold enabled
NOHOLD = 1: hold disabled

SDCEN‡ SDCLK enable
SDCEN = 0: SDCLK held high
SDCEN = 1: SDCLK enabled to clock

There is no SDCLK on the ’C6211/C6711. All external memories run
off the EMIF external clock, ECLKIN/ECLKOUT. SDCEN enables
CLKOUT2 on the ’C6202 if SDRAM is used in the system (specified
by the MTYPE field in in the CE space control register).

SSCEN‡ SSCLK enable
SSCEN = 0: SSCLK held high
SSCEN = 1: SSCLK enabled to clock

There is no SSCLK on the ’C6211/C6711. All external memories run
off of the EMIF external clock, ECLKIN/ECLKOUT. SSCEN enables
CLKOUT2 on the ’C6202 if SBSRAM is used in the system
(specified by the MTYPE field in in the CE space control register).

CLK1EN CLKOUT1 enable
CLK1EN = 0: CLKOUT1 held high
CLK1EN = 1: CLKOUT1 enabled to clock

CLK2EN§ CLKOUT2 enable
CLK2EN = 0: CLKOUT2 held high
CLK2EN = 1: CLKOUT2 enabled to clock

CLKOUT2 is enabled/disabled using SSCEN/SDCEN on the ’C6202

† Field exists only in ’C6211/C6711
‡ Fields do not exist in ’C6211/C6711
§ Fields do not exist in ’C6202.

EMIF Registers

9-11External Memory Interface

Table 9–3. EMIF Global Control Register Field Descriptions (Continued)

Field Description

SSCRT‡ SBSRAM clock rate select
SSCRT = 0: SSCLK runs at 1/2x CPU clock rate
SSCRT = 1: SSCLK runs at 1x CPU clock rate

There is no SSCLK on the ’C6202. CLKOUT2 is fixed at half the
CPU clock.

SBSRAM runs at the EMIF clock rate (ECLKIN) on the
’C6211/C6711.

RBTR8‡ Requester arbitration mode
RBTR8 = 0: The requester controls the EMIF until a high-priority
request occurs.
RBTR8 = 1: The requester controls the EMIF for a minimum of eight
accesses.

‡All arbitration is performed outside of the EMIF on
the ’C6211/C6711.

MAP‡ Map mode, contains the value of the memory map mode of the device
MAP = 0: internal memory is used at address 0
MAP = 1: external memory used at address 0

‡There is only one memory map available on the ’C6211/C6711.

† Field exists only in ’C6211/C6711
‡ Fields do not exist in ’C6211/C6711
§ Fields do not exist in ’C6202.

The ’C6202 EMIF registers are similar to those of the ’C6201. Due to the
combination of the SDRAM and SBSRAM signals, the user cannot include
both SDRAM and SBSRAM in the same system. The EMIF global control
register bitfields are modified slightly to reflect this change.

In order to support as many common programming practices as possible
between the ’C6201 and ’C6202, SSCEN and SDCEN are still used to enable
the memory interface clock, CLKOUT2. If SBSRAM is used in the system,
(specified with the MTYPE field in the CEn Control register) then SSCEN
enables and disables CLKOUT2. If SDRAM is used, then SDCEN enables and
disables CLKOUT2. This is possible since only one synchronous memory type
can exist in a given system.

The ’C6211/C6711 has similar EMIF registers to the ’C6201, with the excep-
tion that some of the bitfields of the global control register have been removed.
The ’C6211/C6711 EMIF global control register contains an additional field
BUSREQ.

EMIF Registers

 9-12

9.3.2 EMIF CE Space Control Registers

The four CE space control registers, CE0, CE1, CE2, and CE3, are shown in
Figure 9–7 and summarized in Table 9–4. These registers correspond to the four
CE memory spaces supported by the EMIF. The MTYPE field identifies the
memory type for the corresponding CE space. If MTYPE selects SDRAM or
SBSRAM, the remaining fields in the register do not have any effect. If an asynch-
ronous type is selected (ROM or asynchronous), the remaining fields specify the
shaping of the address and control signals for access to that space. These fea-
tures are discussed in Section 9.6.

The MTYPE field in the CE space control register should only be set once
during system initialization except when CE1 is used for ROM boot mode. In
this mode, the CE space can be configured to another asynchronous memory
type.

For the ’C6202, only one synchronous memory type is supported at a time. If
a CE space is set as a synchronous memory type (SBSRAM or SDRAM), all
synchronous memory spaces are changed to the new memory type. For
example, if CE2 is configured as SDRAM (MTYPE = 011b), setting CE3 as
SBSRAM (MTYPE = 100b) changes CE2 and CE3 to SBSRAM. Changing a
CE space memory type to asynchronous memory does not affect the memory
type of other CE spaces, and setting a memory space to a synchronous type
does not change the type of asynchronous memory spaces.

Figure 9–7. TMS320C6201/C6202/C6701 EMIF CE Space Control Register Diagram

31 28 27 22 21 20 19 16

Write setup Write strobe Write hold Read setup

RW, +1111 RW, +111111 RW, +11 RW, +1111

15 14 13 8 7 6 4 3 2 1 0

Reserved Read strobe Rsvd MTYPE Reserved Read hold

R, +00 RW, +111111 R, +0 RW, +010 R, +0 RW, +11

Figure 9–8. TMS320C6211/C6711 EMIF CE Space Control Register

31 28 27 22 21 20 19 16

Write setup Write strobe Write hold Read setup

RW, +1111 RW, +11111 RW, +11 RW, +1111

15 14 13 8 7 4 3 2 0

TA Read strobe MTYPE Write hold MSB Read hold

RW, +11 RW, +11111 RW, +0010 RW, +0 RW, +011

EMIF Registers

9-13External Memory Interface

Table 9–4. EMIF CE Space Control Registers Field Descriptions

Field Description

Read setup
Write setup

Setup width. Number of clock§ cycles of setup time for address (EA), chip enable (CE), and
byte enables (BE[0-3]) before read strobe or write strobe falls. For asynchronous read ac-
cesses, this is also the setup time of AOE before ARE falls.

Read strobe
Write strobe

Strobe width. The width of read strobe (ARE) and write strobe (AWE) in clock§ cycles

Read hold
Write hold

Hold width. Number of clock§ cycles that address (EA) and byte strobes (BE[0-3]) are held
after read strobe or write strobe rises. For asynchronous read accesses, this is also the hold
time of AOE after ARE rising.

MTYPE†

MTYPE‡

Memory type of the corresponding CE spaces for ’C6201/C6202/C6701

MTYPE = 000b: 8-bit-wide ROM (CE1 only)
MTYPE = 001b: 16-bit-wide ROM (CE1 only)
MTYPE = 010b: 32-bit-wide asynchronous interface
MTYPE = 011b: 32-bit-wide SDRAM (CE0, CE2, CE3 only)
MTYPE = 100b: 32-bit-wide SBSRAM

Memory type of the corresponding CE spaces for ’C6211/C6711

MTYPE = 0000b: 8-bit-wide asynchronous interface (previously ROM)
MTYPE = 0001b: 16-bit-wide asynchronous interface (previously ROM)
MTYPE = 0010b: 32-bit-wide asynchronous interface
MTYPE = 0011b: 32-bit-wide SDRAM
MTYPE = 0100b: 32-bit-wide SBSRAM
MTYPE = 1000b: 8-bit-wide SDRAM
MTYPE = 1001b: 16-bit-wide SDRAM
MTYPE = 1010b: 8-bit-wide SBSRAM
MTYPE = 1011b: 16-bit-wide SBSRAM
MTYPE = other: reserved

TA‡ Turn around time controls the number of ECLKOUT cycles between a read, and a write,
or between reads, to different CE spaces (asynchronous memory types only).‡

† Applies to TMS320C6201/C6202/C6701
‡ Applies to TMS320C6211/C6711
§ Clock cycles are in terms of CLKOUT1 for ’C6201/C6202/C6701, and ECLKOUT for the ’C6211/C6711

The ’C6211/C6711 has a modified version of the CE space control register, in
that the MTYPE, write hold, and read hold bit fields have been extended by one
bit each. The CE space control register for the ’C6211/C6711 is shown in
Figure 9–8. Programmed values refer to ECLKOUT clock cycles, not
CLKOUT1 cycles as in the ’C6201,’C6202, and ’C6701.

EMIF Registers

 9-14

The read hold and write hold fields have been increased by one bit, to allow
greater asynchronous configuration possibilities. The MTYPE field has been
increased by one bit to allow for 8-, 16-, and 32-bit interface options for all
memory types.

The ’C6211/C6711 EMIF supports memory widths of 8-, 16-, and 32-bits, in-
cluding reads and writes of both big and little endian devices. There is no dis-
tinction between ROM and asynchronous interface.

For all memory types, the address is internally shifted to compensate for
memory widths of less than 32 bits. The least-significant address bit is always
output on external address pin EA[2], regardless of the width of the device. Ac-
cesses to 8-bit memories have logical address bit 0 output on EA[2].

Packing and unpacking is automatically performed by the EMIF for word ac-
cesses to external memories of less than 32 bits. For a 32-bit write to an 8-bit
memory, the data is automatically unpacked into bytes such that the bytes are
written to byte address N, N+1, N+2, then N+3. Likewise for 32-bit reads from
a 16-bit memory, data is taken from halfword address N then N+1, packed into
a 32-bit word, then written to its destination. The byte lane used depends on
the endianness of the system as shown in Figure 9–9.

Figure 9–9. TMS320C6211/C6711 Byte Alignment by Endianness

little endian
device
8-bit

little endian
16-bit device

big endian
device
8-bit

big endian
16-bit device

32-bit device

ED[7:0]ED[15:8]ED[23:16]ED[31:24]
TMS320C6211/C6711

EMIF Registers

9-15External Memory Interface

9.3.3 EMIF SDRAM Control Register

The SDRAM control register (shown in Figure 9–10) controls SDRAM param-
eters for all CE spaces that specify an SDRAM memory type in the MTYPE
field of the associated CE space control register. Because the SDRAM control
register controls all SDRAM spaces, each space must contain SDRAM with
the same refresh, timing, and page characteristics. The fields in this register
are shown in Figure 9–10 and Figure 9–11, and described in Table 9–5. These
registers should not be modified while accessing SDRAM.

Figure 9–10. TMS320C6201/C6202/C6701 EMIF SDRAM Control Register

31 28 27 26 25 24 23 20 19 16

Reserved Rsv SDWID RFEN INIT TRCD TRP

RW, +000 R,+0 RW, +0 RW, +1 W, +1 RW, +1000 RW, +1000

15 12 11 0

TRC Reserved

RW, +1111 R, +0000 0000 0000

Figure 9–11.TMS320C6211/C6711 EMIF SDRAM Control Register
31 30 29 28 27 26 25 24 23 20 19 16

Rsv SDBSZ SDRSZ SDCSZ RFEN INIT TRCD TRP

R,+0 RW, +0 RW, +00 RW, +0 RW, +1 W, +1 RW, +0100 RW, +1000

15 12 11 0

TRC Reserved

RW, +1111 R, +0000 0000 0000

EMIF Registers

 9-16

Table 9–5. EMIFtoSDRAMControlRegisterFieldDescription

Field Description

TRC Specifies the tRC value of the SDRAM
TRC = tRC / p§ – 1

TRP Specifies the tRP value of the SDRAM in CLKOUT2 cycles
TRP = tRP / p§ – 1

TRCD Specifies the tRCD value of the SDRAM in CLKOUT2 cycles
TRCD = tRCD / p§ – 1

INIT Forces initialization of all SDRAM present

INIT = 0: no effect
INIT = 1: initialize SDRAM in each CE space configured for SDRAM

RFEN Refresh enable

RFEN = 0: SDRAM refresh disabled
RFEN = 1: SDRAM refresh enabled

SDWID† †SDRAM width select

SDWID = 0: Each external SDRAM space consists of four 8-bit SDRAMs
SDWID = 1: Each external SDRAM space consists of two 16-bit SDRAMs

SDCSZ‡ ‡SDRAM column size

SDCSZ = 00: 9 column address pins
SDCSZ = 01: 8 column address pins
SDCSZ = 10: 10 column address pins
SDCSZ = 11: reserved

SDRSZ‡ ‡SDRAM column size

SDCSZ = 00: 11 row address pins
SDCSZ = 01: 12 row address pins
SDCSZ = 10: 13 row address pins
SDCSZ = 11: reserved

SDBSZ‡ ‡SDRAM bank size

SDBSZ = 0: two banks
SDBSZ = 1: four banks

† Applies to ’C6201/C6202/C6701
‡ Applies to ’C6211/C6711
§ p – refers to the EMIF clock period, which is equal to CLKOUT2 period for the

’C6201/C6202/C6701, or ECLKOUT period for the ’C6211/C6711

EMIF Registers

9-17External Memory Interface

9.3.4 EMIF SDRAM Timing Register

The SDRAM timing register controls the refresh period in terms of CLKOUT2
cycles for the ’C6201/C6202/C6701 (half of the CPU clock rate), or in terms
of ECLKOUT cycles for the ’C6211/C6711. Optionally, the period field can
send an interrupt to the CPU. Thus, this counter can be used as a general-
purpose timer if SDRAM is not used by the system. The counter field can be
read by the CPU. When the counter reaches 0, it is automatically reloaded with
the period and an interrupt (SDINT) is sent to the interrupt selector. See section
9.4.3 for more information on SDRAM refresh.

Figure 9–12 and Table 9–6 describe the fields of the SDRAM timing register.

The ’C6211/C6711 can control the number of refreshes performed when the
refresh counter expires via the XRFR field. Up to four refreshes can be per-
formed when the refresh counter expires.

Figure 9–12. EMIF SDRAM Timing Register

31 26 25 24 23 12 11 0

Reserved XRFR‡ COUNTER PERIOD

R, +0000 00
R, +0†

RW,+00‡
R, +0000 1000 0000†

R, +0101 1101 1100‡
RW, +0000 1000 0000†

RW, +0101 1101 1100‡
† Applies to TMS320C6201/C6202/C6701
‡ Applies to TMS320C6211/C6711 only

Table 9–6. EMIFSDRAM Timing Register Field Descriptions

Field Description

PERIOD †Refresh period in CLKOUT2 cycles

‡Refresh period in ECLKOUT cycles

COUNTER Current value of the refresh counter

XRFR‡ ‡Extra refreshes: controls the number of refreshes per-
formed to SDRAM when the refresh counter expires.

† Applies to TMS320C6201/C6202/C6701
‡ Applies to TMS320C6211/C6711 only

EMIF Registers

 9-18

9.3.5 TMS320C6211/C6711 SDRAM Extension Register

The SDRAM extension register of the ’C6211/C6711 allows programming of
many parameters of SDRAM. The programmability offers two distinct advan-
tages. First, the ’C6211/C6711 can interface to a wide variety of SDRAMs and
is not limited to a few configurations or speed characteristics. Second, the
’C6211/C6711 can maintain seamless data transfer from external SDRAM due
to features like hidden precharge and multiple open banks. Figure 9–13 shows
the SDRAM extension register and Table 9–7 discusses these parameters.

Figure 9–13. TMS320C6211/C6711 SDRAM Extension Register

31 21 20 19 18 17 16 15 14 12 11 10 9 8 7 6 5 4 3 1 0

Rsvd WR2RD WR2DEAC WR2WR R2WDQM RD2WR RD2DEAC RD2RD THZP TWR TRRD TRAS TCL

R, +0 RW,+1 RW,+10 RW,+1 RW,+11 RW,+101 RW,+11 RW,+1 RW,+10 RW,+01 RW,+1 RW,+111 RW,+1

EMIF Registers

9-19External Memory Interface

Table 9–7. TMS320C6211/C6711 SDRAM Extension Register Field Descriptions

Field Description

TCL Specified Cas latency of the SDRAM in ECLKOUT cycles
TCL = 0: CAS latency = 2 ECLKOUT cycles
TCL = 1: CAS latency = 3 ECLKOUT cycles

TRAS Specifies tRAS value of the SDRAM in ECLKOUT cycles
TRAS = tRAS – 1

TRRD Specifies tRRD value of the SDRAM in ECLKOUT cycles
TRRD = 0, then TRRD = 2 ECLKOUT cycles
TRRD = 1, then TRRD = 3 ECLKOUT cycles

TWR Specifies tWR value of the SDRAM in ECLKOUT cycles
TWR = tWR – 1

THZP Specifies tHZP value of the SDRAM in ECLKOUT cycles
THZP = tHZP – 1

RD2RD Specifies number of cycles between READ to READ command (same CE space) of the
SDRAM in ECLKOUT cycles
RD2RD = 0: READ to READ = 1 ECLKOUT cycle
RD2RD = 1: READ to READ = 2 ECLKOUT cycle

RD2DEAC Specifies number of cycles between READ to DEAC/DCAB of the SDRAM in ECLKOUT cycles
RD2DEAC = (# of cycles READ to DEAC/DCAB) – 1

RD2WR Specifies number of cycles between READ to WRITE command of the SDRAM in ECLKOUT
cycles
RD2WR = (# of cycles READ to WRITE) – 1

R2WDQM Specifies number of of cycles that BEx signals must be high preceding a WRITE interrupting
a READ
R2WDQM = (# of cycles BEx high) – 1

WR2WR Specifies minimum number of cycles between WRITE to WRITE command of the SDRAM in
ECLKOUT cycles
WR2WR = (# of cycles WRITE to WRITE) – 1

WR2DEAC Specifies minimum number of cycles between WRITE to DEAC/DCAB command of the
SDRAM in ECLKOUT cycles
WR2DEAC = (# of cycles WRITE to DEAC/DCAB) – 1

WR2RD Specifies minimum number of cycles between WRITE to READ command of the SDRAM in
ECLKOUT cycles
WR2RD = (# of cycles WRITE to READ) – 1

SDRAM Interface

 9-20

9.4 SDRAM Interface

The TMS320C6201/C6202/C6701 EMIF supports 2-bank, 16M-bit SDRAM
and 4 bank, 64M-bit SDRAM, providing an interface to high-speed and high-
density memory. The EMIF supports the SDRAM commands shown in
Table 9–8. The 16M-bit and 64M-bit SDRAM interfaces are shown in
Figure 9–14 and Figure 9–16, respectively. Table 9–9 lists all of the possible
SDRAM configurations available via the TMS320C6201/C6202/C6701 EMIF.

The TMS320C6211/C6711 EMIF allows programming of the addressing char-
acteristics of the SDRAM, including the number of column address bits (page
size), the row address bits (pages per bank), and banks (maximum number of
pages which can be opened). Using this information, the ’C6211/C6711 is able
to open up to four pages of SDRAM simultaneously. The pages can all be in a
single CE space, or distributed across multiple CE spaces. Table 9–10 summa-
rizes the pin connection and related signals specific to SDRAM operation.

Table 9–8 does not apply to the ’C6211/C6711 because page characteristics
are programmable. The ’C6211/C6711 can interface to any SDRAM that has
8 to 10 column address pins, 11 to 13 row address pins, and two or four banks.

Table 9–8. TMS320C6201/C6202/C6701 EMIF SDRAM Commands

Command Function

DCAB Deactivate all banks

DEAC† Deactivate a single bank†

ACTV Activates the selected bank and select the row

READ Inputs the starting column address and begins the read operation

WRT Inputs the starting column address and begins the write operation

MRS Mode register set, configures SDRAM mode register

REFR Autorefresh cycle with internal address

† TMS320C6211/C6711 only

SDRAM Interface

9-21External Memory Interface

Figure 9–14. TMS320C6201/C6202/C6701 EMIF to 16M-Bit SDRAM Interface

VCC

16M-bit
SDRAM

D[31:0]

A[9:0]

A[10]

A[11]

DQM[3:0]

CKE

WE

CAS

RAS

CLK

CS

(EMIF)
interface
memory
External

ED[31:0]

EA[11:2]

SDA10

EA[13]

BE[3:0]

SDWE

SDCAS

SDRAS

Clock†

CEn

† Clock=SDCLK for ’C6201/C6701.
Clock=CLKOUT2 for ’C6202.

Figure 9–15. TMS320C6211/C6711 EMIF to 16M-Bit SDRAM Interface

VCC

16M-bit
SDRAM

D[31:0]

A[9:0]

A[10]

A[11]

DQM[3:0]

CKE

WE

CAS

RAS

CLK

CS

(EMIF)
interface
memory
External

ED[31:0]

EA[11:2]

EA[12]

EA[13]

BE[3:0]

SDWE

SDCAS

SDRAS

ECLKOUT

CEn

External clock

ECLKIN

SDRAM Interface

 9-22

Figure 9–16. TMS320C6201/C6202/C6701 EMIF to 64M-Bit SDRAM Interface

VCC

16M-bit
SDRAM

D[31:0]

A[9:0]

A[10]

A[11]

DQM[3:0]

CKE

WE

CAS

RAS

CLK

CS

(EMIF)
interface
memory
External

ED[31:0]

EA[11:2]

SDA10

EA[13]

BE[3:0]

SDWE

SDCAS

SDRAS

Clock†

CEn

† Clock=SDCLK for ’C6201/C6701.
Clock=CLKOUT2 for ’C6202.

Table 9–9. TMS320C6201/C6202/C6701 SDRAM Memory Population†

SDRAM
Size

SDRAM
Banks

SDRAM
Width

Devices
per CE Space

Memory Size
per CE Space

16M bit 2 16 bits 2 4M bytes

16M bit 2 8 bits 4 8M bytes

64M bit 4 16 bits 2 16M bytes

† The ’C6211/C6711 is not limited to these configurations because of larger possible CE spaces
and programmable address shift.

SDRAM Interface

9-23External Memory Interface

Table 9–10. SDRAM Control Pins

EMIF Signal
SDRAM
Signal SDRAM Function

SDA10 A10 Address line A10/autoprecharge disable. Serves as a row address bit during
ACTV commands and also disables the autoprecharging function of SDRAM.
(’C6201/C6202/C6701 only)

SDRAS RAS Row address strobe and command input. Latched by the rising edge of CLK to
determine current operation. Valid only if CS is active (low) during that clock
edge.

SDCAS CAS Column address strobe and command Input. Latched by the rising edge of CLK
to determine current operation. Valid only if CS is active (low) during that clock
edge.

SDWE WE Write strobe and command input. Latched by the rising edge of CLK to determine
current operation. Valid only if CS is active during that clock edge.

BE[3:0] DQM[3:0] Data/output mask. DQM is an input/output buffer control signal. When high,
disables writes and places outputs in the high impedance state during reads.
DQM has a 2-CLK-cycle latency on reads and a 0-CLK-cycle latency on writes.
DQM pins serve essentially as byte strobes and are connected to BE[3:0]
outputs.

CE3, CE2
or CE0

CS Chip select and command enable. CS must be active (low) for a command to be
clocked into the SDRAM. CS does not affect data input or output once a write
or read has begun. CE1 does not support SDRAM.

— CKE CKE clock enable. Tied high when interfaced to EMIF to enable clocking always.

CLKOUT2 CLK SDRAM clock input. Runs at 1/2 the CPU clock rate.Used for synchronous
memory interface on the ’C6202.

SDCLK CLK SDRAM clock input. Runs at 1/2 the CPU clock rate.Used for SDRAM interface
on ’C6201/C6701

The SDRAM interface on the ’C6202 is identical to that of the ’C6201, with the
exception that it has been combined with the SBSRAM interface. Only one of
these two synchronous memory types can be used on a ’C6202 system. Since
the ’C6202 performs background refreshes for SDRAM, SBSRAM accesses
could be corrupted during SDRAM refresh if both memory types were present.

The SDRAM interface signals on the ’C6211/C6711 are identical to those of
the ’C6201, with the exception that EA12 performs the function of the SDA10
pin. The SDRAM signals have been combined with the SBSRAM and asyn-
chronous memory interface. An external clock source must be provided to the
’C6211/C6711, which generates the ECLKOUT signal used in the SDRAM in-
terface. The ’C6211/C6711 also allows for 8-, 16-, and 32-bit SDRAM inter-

SDRAM Interface

 9-24

faces. Since the ’C6211/C6711 does not perform background refreshes, all
three memory types may be included in the same system.

SDRAM Interface

9-25External Memory Interface

9.4.1 SDRAM Initialization

The EMIF performs the necessary tasks to initialize SDRAM if any of the CE
spaces are configured for SDRAM. An SDRAM initialization is requested by
a write of 1 to the INIT bit in the EMIF SDRAM control register.

The steps of an initialization are as follows:

1) Send a DCAB command to all CE spaces configured as SDRAM.
2) Send three refresh commands.
3) Send an MRS command to all CE spaces configured as SDRAM.

The DCAB cycle is performed immediately after reset, provided the HOLD input
is not active (a host request). If HOLD is active, the DCAB command is not per-
formed until the hold condition is removed. In this case the external requester
should not attempt to access any SDRAM banks, unless it performs SDRAM
initialization and control itself.

9.4.2 Monitoring Page Boundaries

Because SDRAM is a paged memory type, the EMIF SDRAM controller monitors
the active row of SDRAM so that row boundaries are not crossed during the
course of an access. To accomplish this monitoring, the EMIF stores the address
of the open page and performs compares against that address for subsequent
accesses to the SDRAM bank. For the ’C6201/C6202/C6701, this storage and
comparison is performed independently for each CE space, so that a single page
can be open in each CE space.

The number of address bits compared is a function of the page size programmed
in the SDWID field in the EMIF SDRAM control register for the
’C6201/C6202/C6701. If SDWID = 0, the EMIF expects CE spaces configured
as SDRAM to have four 8-bit-wide SDRAMs that have page sizes of 512. Thus,
the logical byte address bits compared are 23–11. If SDWID = 1, the EMIF ex-
pects CE spaces with SDRAM to have two 16-bit-wide SDRAMs that have page
sizes of 256. Thus, the logical byte address bits compared are 23–10. The logical
address bits 25 to 24 determine their CE space. If a page boundary is crossed
during an access to the same CE space, the EMIF performs a DCAB com-
mand and starts a new row access.

SDRAM Interface

 9-26

For the ’C6211/C6711, up to four pages of SDRAM can be opened simulta-
neously. These pages can be within a single CE space, or spread over all CE
spaces. For example, two pages can be open in CE0 and CE2, or four pages
can be open in CE0. The combination of SDCSZ, SDRSZ, and SDBSZ control
which logical address bits are compared to determine if a page is open. For
example, a typical 2-bank × 512K × 16-bit SDRAM has settings of two
banks,eleven row address bits, and eight column address bits. A 32-bit-wide
SDRAM uses logical address bits A[9:2] (two-bit offset for word addressing)
to specify the column being accessed. Bits A[20:10] specify the row offset, and
bit A[21] specifies the bank. Logical address bites A[31:28] determines the CE
space used. If a page boundary is crossed during an access to the same CE
space, the ’C6211/C6711 performs a DEAC command and starts a new row
access.

Simply ending the current access is not a condition that forces the active
SDRAM row to be closed. The EMIF leaves the active row open until it becomes
necessary to close it. This feature decreases the deactivate-reactivate over-
head and allows the interface to capitalize fully on address locality of memory
accesses.

9.4.3 SDRAM Refresh

The RFEN bit in the SDRAM control register selects the SDRAM refresh mode
of the EMIF. A value of 0 in RFEN disables all EMIF refreshes, and you must
ensure that refreshes are implemented in an external device. A value of 1 in
RFEN enables the EMIF to perform refreshes of SDRAM.

Refresh commands (REFR) enable all CE signals for all CE spaces selected to
use SDRAM (with the MTYPE field of the CE space control register). REFR is
automatically preceded by a DCAB command. This ensures that all CE spaces
selected with SDRAM are deactivated. Following the DCAB command, the EMIF
begins performing trickle refreshes at a rate defined by the period value in the
EMIF SDRAM control register, provided no other SDRAM access is pending.

For the ’C6201/C6202/C6701, the SDRAM interface monitors the number of re-
fresh requests posted to it and performs the refreshes. Within the EMIF SDRAM
control block, a 2-bit counter monitors the backlog of refresh requests. The
counter increments once for each refresh request and decrements once for
each refresh cycle performed. The counter saturates at the values of 11 and 00.
At reset, the counter is automatically set to 11 to ensure that several refreshes
occur before accesses begin.

SDRAM Interface

9-27External Memory Interface

The ’C6201/C6202/C6701 EMIF SDRAM controller prioritizes SDRAM refresh
requests with other data access requests posted to it from the EMIF request-
ers. The following rules apply:

� A counter value of 11 invalidates the page information register, forcing the
controller to close the current SDRAM page. The value 11 indicates an ur-
gent refresh condition. Thus, following the DCAB command, the EMIF
SDRAM controller performs three REFR commands, thereby decrement-
ing the counter to 00 before proceeding with the remainder of the current
access. If SDRAM is present in multiple CE spaces, the DCAB-refresh
sequence occurs in all spaces containing SDRAM.

� During idle times on the SDRAM interface(s), if no request is pending from
the EMIF, the SDRAM interface performs REFR commands as long as the
counter value is nonzero. This feature reduces the likelihood of having to
perform urgent refreshes during actual SDRAM accesses. If SDRAM is
present in multiple CE spaces, this refresh occurs only if all interfaces are
idle with invalid page information.

Unlike the ’C6201/C6202/C6701 EMIF, the ’C6211/C6711 REFR requests are
considered high priority, and no distinction exists between urgent and trickle
refresh. Transfers in progress are allowed to complete. The ’C6211/C6711
SDRAM refresh period has an extra bitfield, XRFR, which controls the number
of refreshes performed when the counter reaches zero. This feature allows the
XRFR field to be set to perform up to four refreshes when the refresh counter
expires.

SDRAM Interface

 9-28

For all ’C6000 devices, the EMIF SDRAM interface performs CAS-before-
RAS refresh cycles for SDRAM. Some SDRAM manufacturers call this autore-
fresh. Prior to an REFR command, a DCAB command is performed to all CE
spaces specifying SDRAM to ensure that all active banks are closed. Page in-
formation is always invalid before and after a REFR command; thus, a refresh
cycle always forces a page miss. A deactivate cycle is required prior to the re-
fresh command. Figure 9–17 shows the timing diagram for an SDRAM re-
fresh.

Figure 9–17. SDRAM Refresh

Clock†

CEx

BE[3:0]

EA[15:2]

SDA10

SDRAS

SDCAS

SDWE

REFR

† Clock=SDCLK for ’C6201/C6701.
Clock=CLKOUT2 for ’C6202.
Clock=ECLKOUT for ’C6211/C6711.

9.4.4 Mode Register Set

The ’C6201/C6202/C6701 EMIF automatically performs a DCAB command
followed by an MRS command whenever the INIT field in the EMIF SDRAM
control register is set. INIT can be set by device reset or by a user write. Like
DCAB and REFR commands, MRS commands are performed to all CE
spaces configured as SDRAM through the MTYPE field. Following a hold, the
external requester should return the SDRAM MRS register’s original value be-
fore returning control of the bus to the EMIF. Alternatively, you could poll the
HOLD and HOLDA bits in the EMIF global control register and, upon detecting
completion of an external hold, reinitialize the EMIF by writing a 1 to the INIT bit
in the EMIF SDRAM control register.

The EMIF always uses a mode register value of 0030h during an MRS command.
Figure 9–18 shows the mapping between mode register bits, EMIF pins, and the

SDRAM Interface

9-29External Memory Interface

mode register value. Table 9–11 shows the JDEC standard SDRAM configura-
tion values selected by this mode register value. Figure 9–21 shows the timing
diagram during execution of the MRS command.

Figure 9–18. TMS320C6201/C6202/C6701 Mode Register Value

13 12 11 10 9 8 7

EA15 EA14 EA13 SDA10 EA11 EA10 EA9

Rsvd
Write burst

length
Rsvd

0000 0 00

6 5 4 3 2 1 0

EA8 EA7 EA6 EA5 EA4 EA3 EA2

Read latency S/I Burst length

0 1 1 0 000

Table 9–11. TMS320C6201/C6202/C6701 Implied SDRAM Configuration by MRS Value

Field Selection

Write burst length 1 word

Read latency 3 cycles

Serial/interleave burst type Serial

Burst length 1 word

SDRAM Interface

 9-30

The ’C6211/C6711 uses a mode register value of either 0032h or 0022h. The
register value and description are shown in Figure 9–19 and Figure 9–20.
Both values program a default burst length of four words for both reads and
writes. The value actually used depends on the CASL parameter defined in the
SDRAM extension register. If the CAS latency is three, 0032h is written. If the
CAS latency is two, 0022h is written during the MRS cycle. Table 9–12 sum-
marizes.

Figure 9–19. TMS320C6211/C6711 Mode Register Value (0032h)

13 12 11 10 9 8 7

EA15 EA14 EA13 SDA10 EA11 EA10 EA9

Rsvd
Write burst

length
Rsvd

0000 0 00

6 5 4 3 2 1 0

EA8 EA7 EA6 EA5 EA4 EA3 EA2

Read latency S/I Burst length

0 1 1 0 010

Figure 9–20. TMS320C6211/C6711 Mode Register Value (0022h)

13 12 11 10 9 8 7

EA15 EA14 EA13 SDA10 EA11 EA10 EA9

Rsvd
Write burst

length
Rsvd

0000 0 00

6 5 4 3 2 1 0

EA8 EA7 EA6 EA5 EA4 EA3 EA2

Read latency S/I Burst length

0 1 0 0 010

Table 9–12. TMS320C6211/C6711 Implied SDRAM Configuration by MRS

Field CASL = 0 CASL = 1

Write burst length 4 words 4 words

Read latency 2 cycles 3 cycles

Serial/interleave burst type Serial Serial

Burst length 4 words 4 words

SDRAM Interface

9-31External Memory Interface

Figure 9–21. SDRAM Mode Register Set: MRS Command

MRS value

Clock†

CEx

BE[3:0]

EA[15:2]

SDA10

SDRAS

SDCAS

SDWE

MRS

† Clock=SDCLK for ’C6201/C6701.
Clock=CLKOUT2 for ’C6202.
Clock=ECLKOUT for ’C6211/C6711.

SDRAM Interface

 9-32

9.4.5 Address Shift

Because the same EMIF pins determine the row and column address, the
EMIF interface appropriately shifts the address in row and column address
selection. Table 9–13 and shows the translation between bits of the byte ad-
dress and how they appear on the EA pins for row and column addresses.
SDRAMs use the address inputs for control as well as address.

The following factors apply to the address shifting process for the
’C6201/C6202/C6701:

� The address line that corresponds to the SDRAM’s bank select field (A11
on 16M-bit SDRAM; A13 and A12 on 64M-bit SDRAM) is latched internally
by the SDRAM controller. This ensures that the bank select remains correct
during READ and WRT commands. Thus, the EMIF maintains these values
as shown in both row and column addresses.

� The EMIF forces SDA10 to be low when RAS is not active and high during
DCAB commands at the end of a page of accesses. This prevents the au-
toprecharge from occurring following a READ or WRT command.

The following factors apply to the address shifting process for the
’C6211/C6711:

� The address shift is controlled completely by the column size field
(SDCSZ), and is unaffected by the bank and row size fields. The bank and
row size are used internally to determine whether a page is opened

� EA12 is connected directly to A10 signal, instead of using a dedicated pre-
charge pin SDA10.

Table 9–13. TMS320C6201/C6202/C6701 Byte Address to EA Mapping for
SDRAM RAS and CAS

EMIF
Pins

E
A

[21:17]

E
A
16

E
A
15

E
A
14

E
A
13

S
D
A
10

E
A
11

E
A
10

E
A
9

E
A
8

E
A
7

E
A
6

E
A
5

E
A
4

E
A
3

E
A
2

SDRAM
Pins

SDRAM
Width SDWID

DRAM
Cmd

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

Address
bit

x16 1 RAS 23 22 21 20 19 18 17 16 15 14 13 12 11 10
bit

CAS 23 22 21 20 19 18 9 8 7 6 5 4 3 2

Address
bit

x8 0 RAS 23 22 21 20 19 18 17 16 15 14 13 12 11
bit

CAS 23 22 21 20 10 9 8 7 6 5 4 3 2

Legend: Bit is internally latched during an ACTV command.

Reserved for future use. Undefined.

Note: The RAS and CAS values indicate the bit of the byte address present on the corresponding EA pin during a RAS or CAS
cycle.

SDRAM Interface

9-33External Memory Interface

Table 9–14 describes the addressing for a 32-bit wide ’C6211/C6711 SDRAM
interface. The address presented on the pins are shifted for 8-bit and 16-bit
interfaces.

Table 9–14. TMS320C6211/C6711 Byte Address to EA Mapping for 32-bit Interface

E
A

[21:17]

E
A
16

E
A
15

E
A
14

E
A
13

S
D
A
10

E
A
11

E
A
10

E
A
9

E
A
8

E
A
7

E
A
6

E
A
5

E
A
4

E
A
3

E
A
2

of column
address bits DRAM Cmd

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

8 RAS 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

CAS 24 23 22 21 20 19 18 9 8 7 6 5 4 3 2

9 RAS 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

CAS 25 24 23 22 21 20 10 9 8 7 6 5 4 3 2

10 RAS 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

CAS 26 25 24 23 22 11 10 9 8 7 6 5 4 3 2

Legend: Bit is internally latched during an ACTV command.

Reserved for future use. Undefined.

SDRAM Interface

 9-34

9.4.6 Timing Requirements

Table 9–15 shows five SDRAM timing parameters that decouple the EMIF from
SDRAM speed limitations. Three of these parameters are programmable via
the EMIF SDRAM control register; the remaining two are assumed to be static
values. The three programmable values ensure that EMIF control of SDRAM
obeys these minimum timing requirements. Consult the SDRAM data sheet
for information on the parameters that are appropriate for your particular
SDRAM.

Table 9–15. TMS320C6201/C6202/C6701 SDRAM Timing Parameters

Parameter Description
Value in CLKOUT2/
ECLKIN2 Cycles

tRC REFR command to ACTV, MRS, or subsequent REFR command TRC + 1

tRCD ACTV command to READ or WRT command TRCD + 1

tRP DCAB command to ACTV, MRS, or REFR command TRP +1

tRAS ACTV command to DEAC to DCAB command 7

tnEP Overlap between read data and a DCAB command 2

† CLKOUT2 cycles apply to the ’C6201/C6202/C6701, and ECLKOUT cycles apply to the ’C6211/C6711.

SDRAM Interface

9-35External Memory Interface

9.4.7 SDRAM Deactivation

The SDRAM deactivation (DCAB) is performed after a hardware reset or when
INIT = 1 in the EMIF SDRAM control register. This cycle is also required by the
SDRAMs prior to REFR and MRS. On the ’C6201/C6202/C6701, a DCAB is
issued when a page boundary is crossed. During the DCAB command, SDA10
is driven high to ensure that all SDRAM banks are deactivated. Figure 9–22
shows the timing diagram for SDRAM deactivation.

Figure 9–22. SDRAM DCAB — Deactivate all Banks

Clock†

CEx

BE[3:0]

EA[15:2]

SDA10/
EA12

SDRAS

SDCAS

SDWE

DCAB

† Clock=SDCLK for ’C6201/C6701.
Clock=CLKOUT2 for ’C6202.
Clock=ECLKOUT for ’C6211/C6711.

SDRAM Interface

 9-36

The ’C6211/C6711 also supports the DEAC command, whose operation is de-
picted in Figure 9–23, which closes a single page of SDRAM specified by the
bank select signals. When a page boundary is crossed, the DEAC command
is used to close the open page. The ’C6211/C6711 still supports the DCAB
command to close all pages prior to REFR and MRS commands.

Figure 9–23. TMS320C6211/C6711 SDRAM DEAC — Deactivate Single Bank

DEAC

Bank

ECLKOUT

CE

BE[3:0]

EA[21:13]

EA[11:2]

ED[31:0]

SDRAS

SDWE

SDCAS

EA12

SDRAM Interface

9-37External Memory Interface

9.4.8 SDRAM Read

9.4.8.1 TMS320C6201/C6202/C6701 SDRAM Read

During an SDRAM read, the selected bank is activated with the row address
during the ACTV command. Figure 9–24 shows the timing for the
’C6201/C6202/C6701 issuing three read commands performed at three different
column addresses. The EMIF uses a CAS latency of three and a burst length of
one. The three-cycle latency causes data to appear three cycles after the cor-
responding column address. Following the final read command of the
’C6201/C6202/C6701, an idle cycle is inserted to meet timing requirements. If
required, the bank is then deactivated with a DCAB command and the EMIF can
begin a new page access. If no new access is pending or an access is pending
to the same page, the DCAB command is not performed until the page informa-
tion becomes valid. The values on EA[15:13] during column accesses and execu-
tion of the DCAB command are the values latched during the ACTV command.

Figure 9–24. TMS3206201/C6202/C6701 SDRAM Read

D3D2D1

CA3CA2CA1

BE3BE2BE1

latched
D3

latched
D2

latched
D1

ReadReadRead

SDWE

SDCAS

SDRAS

SDA10

ED[31:0]

EA[15:2]

BE[3:0]

CEx

Clock†

Á
Á

ÁÁ
ÁÁ

CAS latency = 3

† Clock=SDCLK for ’C6201/C6701.
Clock=CLKOUT2 for ’C6202.

SDRAM Interface

 9-38

9.4.8.2 TMS320C6211/C6711 SDRAM Read

Figure 9–25 shows the ’C6211/C6711 performing a three word read burst from
SDRAM. The ’C6211/C6711 uses a burst length of four, and has a program-
mable CAS latency of either two or three cycles. The CAS latency is three cycles
in this example (CASL = 1). Since the default burst length is four words, the
SDRAM returns four pieces of data for every read command. If no additional ac-
cess are pending to the EMIF, as in Figure 9–25, the read burst completes and
the unneeded data is disregarded. If accesses are pending, the read burst can
be interrupted with a new command (READ,WRT,DEAC,DCAB), controlled by
the SDRAM extension register. If a new access is not pending, the DCAB/DEAC
command is not performed until the page information becomes invalid.

Figure 9–25. TMS320C6211 SDRAM Read

EA[11:2] Column

SDWE

SDRAS

ED[31:0]

EA12

SDCAS

ÁÁ
ÁÁ

Á
Á

D4D3D2D1

EA[21:13]

BE[3:0]

Bank

BE4BE3BE2BE1

D4
ignoredlatched

D3
latched
D2

latched
D1

Read

CEx

ECLKOUT

CAS latency = 3

SDRAM Interface

9-39External Memory Interface

9.4.9 SDRAM Write

9.4.9.1 TMS320C6201/C6202/C6701 SDRAM Write

All SDRAM writes have a burst length of one on the ’C6201/C6202/C6701 . The
bank is activated with the row address during the ACTV command. There is no
latency on writes, so data is output on the same cycle that the column address.
Writes to particular bytes are disabled via the appropriate DQM inputs; this fea-
ture allows for byte and halfword writes. Figure 9–26 shows the timing for a three-
word write on the ’C6201/C6202/C6701. Since the default write burst length is
one-word, a new write command is issued each cycle to perform the three word
burst. Following the final write command, the ’C6201/C6202/C6701 inserts an
idle cycle to meet SDRAM timing requirements. The bank is then deactivated
with a DCAB command, and the memory interface can begin a new page ac-
cess. If no new access is pending, the DCAB command is not performed until
the page information becomes invalid (see section 9.4.2). The values on
EA[15:13] during column accesses and the DCAB command are the values
latched during the ACTV command.

Figure 9–26. TMS320C6201/C6202/C6701 SDRAM Three Word Write
WriteWriteWrite

D3D2D1

CA3CA2CA1

BE3BE2BE1

SDWE

SDCAS

SDRAS

SDA10

ED[31:0]

EA[15:2]

BE[3:0]

CEx

Clock†

† Clock=SDCLK for ’C6201/C6701.
Clock=CLKOUT2 for ’C6202.

SDRAM Interface

 9-40

9.4.9.2 TMS320C6211/C6711 SDRAM Write

All SDRAM writes have a burst length of four on the ’C6211/C6711. The bank is
activated with the row address during the ACTV command. There is no latency
on writes, so data is output on the same cycle as the column address. Writes to
particular bytes are disabled via the appropriate DQM inputs; this feature allows
for byte and halfword writes. Figure 9–27 shows the timing for a three-word write
on the ’C6211/C6711. Since the default ’C6211/C6711 write-burst length is four
words, the last write is masked out via the byte enable signals. On the
’C6211/C6711, idle cycles are inserted as controlled by the parameters of the
SDRAM extension register fields (WR2RD, WR2DEAC, WR2WR, TWR). The
bank is then deactivated with a DEAC command for ’C6211/C6711, and the
memory interface can begin a new page access. If no new access is pending,
the DEAC command is not performed until the page information becomes inval-
id (see section 9.4.2). The values on EA[15:13] during column accesses and
the DEAC command are the values latched during the ACTV command.

Figure 9–27. TMS320C6211/C6711 SDRAM Three Word Write

SDWE

SDCAS

SDRAS

ED[31:0]

EA12

EA[11:2]

EA[21:13]

BE[3:0]

CEx

ECLKOUT

D3D2D1

Column

Bank

BE4BE3BE2BE1

Write

ÁÁ Á

SDRAM
latches
D1

SDRAM
latches
D2

SDRAM
latches
D3

D4
blocked by BEx high

SDRAM Interface

9-41External Memory Interface

9.4.10 TMS320C6211/C6711 Seamless Data Access

Since the ’C6211/C6711 performs data transfers to SDRAM in bursts of 4
words and can maintain up to 4 open pages in a single CE space, this device
is capable of sustaining seamless data transfer to and from multiple pages of
SDRAM. Figure 9–28 shows an example of the ’C6211/C6711 performing two
consecutive burst reads to different pages in a single CE space. The first page
is opened with an ACTV command and after a delay controlled by Trcd, the first
read burst begins to bank 0. Since a 4 word burst is done by default, the
’C6211/C6711 takes advantage of the extra cycles by issuing an ACTV com-
mand to open bank 1 while the first read burst takes place. When the first read
burst is scheduled to end, the read burst to bank 1 is issued such that the 3
cycle CAS latency forces data to continue uninterrupted.

Figure 9–28. Burst Reads to 2 Pages of SDRAM

m+1B1,mn+3n+2n+1B0,n

R

CmRCn

B1B0

BE4BE3BE2BE1BE4BE3BE2BE1

R

R

B0

SDWE

SDCAS

SDRAS

ED[31:0]

EA12

EA[11:2]

EA[21:13]

BE[3:0]

CEx

ECLKOUT

Á
Á

Á
Á

Read B1, CnACTV B1

Read B0, CnACTV B0

Tcl = 3Trcd = 3

B1

SDRAM Interface

 9-42

Seamless write transfers are accomplished in the same way. First, bank 0 is
opened and after Trcd cycles, the write burst can begin. During the first write
burst, a page in bank 1 can be opened. This allows the write to bank 1 to begin
immediately after the write burst to bank 0 ends, as shown in Figure 9–29.

Figure 9–29. Seamless SDRAM Write

R R

BE[3:0]

ACTV B0 Write B0,n ACTV B1 Write B1,m

ECLKOUT

CEx

EA[21:13]

EA[11:2]

EA12

ED[31:0]

SDRAS

SDCAS

B0

Trcd = 3

BE0

B0,n B1,m+1

SDWE

BE1 BE1 BE2 BE0 BE1 BE2

B0 B1 B1

R Cn R Cm

B0,n+1 B0,n+2 B0,n+3 B1,m B1,m+

SBSRAM Interface

9-43External Memory Interface

9.5 SBSRAM Interface

As shown in Figure 9–30 (’C6201/C6202/C6701) and Figure 9–31
(’C6211/C6711), the EMIF interfaces directly to industry-standard synchro-
nous burst SRAMs (SBSRAMS). This memory interface allows a high-speed
memory interface without some of the limitations of SDRAM. Most notably,
since SBSRAMs are SRAM devices, random accesses in the same direction
can occur in a single cycle. The SBSRAM interface can run at either the CPU
clock speed or at 1/2 of this rate for the ’C6201 and ’C6701. The selection is
made based on the setting of the SSCRT bit in the EMIF global control register.
For the ’C6202 the interface operates at the 1/2 rate only, and for the
’C6211/C6711, the SBSRAM runs off an externally provided clock.

The four SBSRAM control pins are latched by the SBSRAM on the rising SSCLK
edge to determine the current operation. These pins are listed in Table 9–17.
These signals are valid only if the chip select line for the SBSRAM is low.

For the ’C6201/6202/6701, the ADV signal of the SBSRAM is pulled high. This
disables the internal burst advance counter of the SBSRAM. This interface al-
lows bursting by strobing a new address into the SBSRAM on every cycle.

The ’C6211/C6711 interface takes advantage of the internal advance counter
of the SBSRAM. For this interface, the ADV signal is pulled low, so that every
access to the SBSRAM from the ’C6211/C6711 is assumed to be a four word
burst. If random addressing is required for a given access, the ’C6211/C6711
can perform this by overriding the burst feature of the SBSRAM and strobing
a new command into the SBSRAM on every cycle, as done by the other devi-
ces. Table 9–16 shows the 4 word burst sequencing of standard SBSRAMs in
linear burst mode. In order to avoid the SBSRAM wrapping around to an unin-
tended address (indicated in gray), the ’C6211/C6711 strobes a new address
into the SBSRAM. This is also done if random reads are done or if the burst
order should be non-incrementing or reverse order burst.

Table 9–16. SBSRAM in Linear Burst Mode

Case 1 Case 2 Case 3 Case 4

SBSRAM Address A[1:0] A[1:0] A[1:0] A[1:0]

EMIF Address EA[3:2] EA[3:2] EA[3:2] EA[3:2]

First address 00 01 10 11

01 10 11 00

10 11 00 01

Fourth Address 11 00 01 10

SBSRAM Interface

 9-44

The SBSRAM interface on the ’C6202 is identical to that of the ’C6201, with
the exception that it has been combined with the SDRAM interface. Only one
of these two synchronous memory types can be used on a ’C6202 system.

Figure 9–30. TMS320C6201/C6202/C6701 SBSRAM Interface

SBSRAM
SSRAM/

BE[3:0]BE[3:0]

VCC

D[31:0]

A[N:0]

WE

ADV

OE

ADSC

CLK

CS

(EMIF)
interface
memory
External

ED[31:0]

EA[N+2:2]

SSWE

SSOE

SSADS

Clock†

CEn

VCC ADSP

† Clock=SSCLK for ’C6201/C6701.
Clock=CLKOUT2 for ’C6202.

Figure 9–31. TMS320C6211/C6711 SBSRAM interface

SBSRAM
D[31:0]

A[N:0]

BE[3:0]

WE

OE

ADV

ADSC

CLK

CS

ED[31:0]

EA[N+2:2]

BE[3:0]

AOE/SDRAS/SSOE

ARE/SDCAS/SSADS

CEx

GND

AWE/SDWE/SSWE

External
clock

(EMIF)
interface
memory
External

ECLKOUT

ECLKIN

SBSRAM Interface

9-45External Memory Interface

Table 9–17. EMIF SBSRAM Pins

EMIF Signal SBSRAM Signal SBSRAM Function

SSADS ADSC Address strobe

SSOE OE Output enable

SSWE WE Write enable

SSCLK/CLKOUT2/ECLKOUT CLK SBSRAM clock

SBSRAMs are latent by their architecture, meaning that read data follows
address and control information. Consequently, the EMIF inserts cycles between
read and write commands to ensure that no conflict exists on the ED[31:0] bus.
The EMIF keeps this turnaround penalty to a minimum. The initial 2-cycle penalty
occurs when the direction changes on the bus. In general, the first access of a
burst sequence incurs a 2-cycle start-up penalty.

9.5.1 SBSRAM Reads

Figure 9–32 shows a four-word read of an SBSRAM for the ’C6201/C6202/
C6701. Every access strobes a new address into the SBSRAM, indicated by
the SSADS strobe low. The first access requires an initial start-up penalty of
two cycles; thereafter, all accesses occur in a single SSCLK cycle.

Figure 9–32. SBSRAM Four-Word Read

BE1 BE2 BE3 BE4

A1 A2 A3 A4

Q1 Q2 Q3 Q4

Clock†

CEx

BE[3:0]

EA[21:2]

ED[31:0]

SSADS

SSOE

SSWE

Read Read Read
D1
latched

Read
D2
latched

D3
latched

D4
latched

† Clock=SSCLK for ’C6201/C6701.
Clock=CLKOUT2 for ’C6202.

SBSRAM Interface

 9-46

Figure 9–33 shows the timing for ’C6211/C6711 six word read. The address
starts with EA[3:2] equal to 10b. A new address is strobed into the SBSRAM
on the third cycle to prevent the internal burst counter from rolling over to 000b.
The burst is terminated by deasserting the CEn signal while SSADS is strobed
low.

Figure 9–33. TMS320C6211/C6711 SBSRAM Six-Word Read

D5 D6D3 D4D2D1

EA[4:2]=100bEA[4:2]=010b

BE5 BE6BE3 BE4BE2BE1

SSWE

SSOE

SSADS

ED[31:0]

ECLKOUT

EA[21:2]

BE[3:0]

CE

Á
Á

Á
Á

D6
latched
D5

latched
D4

latched
D3

Read latchedlatched
D2
latched

Read/D1
latched

SBSRAM Interface

9-47External Memory Interface

9.5.2 SBSRAM Writes

Figure 9–34 shows a four-word write to an SBSRAM. Every access strobes a
new address into the SBSRAM. The first access requires an initial start-up pen-
alty of two cycles; thereafter, all accesses can occur in a single SSCLK cycle.

Figure 9–34. TMS320C6201/C6202/C6701 SBSRAM Four Word Write

D3 D4D2D1

A3 A4A2A1

Write WriteWrite

BE3 BE4BE2BE1

SSWE

SSOE

SSADS

ED[31:0]

Clock†

EA[21:2]

BE[3:0]

CEx

Write

† Clock=SSCLK for ’C6201/C6701.
Clock=CLKOUT2 for ’C6202.

SBSRAM Interface

 9-48

Figure 9–35 shows a ’C6211/C6711 six-word write to SBSRAM. The new ad-
dress is strobed into SBSRAM on the fifth cycle to prevent the internal burst
counter from rolling over to 000b.

Figure 9–35. TMS320C6211/C6711 SBSRAM Write

EA[4:2]=100bEA[4:2]=000b

D1 D2

BE1

D5 D6D4D3

Write

BE3 BE4BE2

SSWE

SSOE

SSADS

ED[31:0]

ECLKOUT

EA[21:2]

BE[3:0]

CEx

Write

BE5 BE6

Asynchronous Interface

9-49External Memory Interface

9.6 Asynchronous Interface

The asynchronous interface offers configurable memory cycle types to interface
to a variety of memory and peripheral types, including SRAM, EPROM, and flash
memory, as well as FPGA and ASIC designs.

Table 9–18 lists the asynchronous interface pins.

Figure 9–36 shows an interface to standard SRAM, and Figure 9–38,
Figure 9–39, and Figure 9–40 show interfaces to 8-, 16-, and 32-bit ROM for
the ’C6201/C6202/C6701 and for the ’C6211/C6711 in little-endian mode. Al-
though ROM can be interfaced at any of the CE spaces, it is often used at CE1
because that space can be configured for widths of less than 32 bits on the
’C6201/C6202/C6701. The ’C6211/C6711 allows 8/16 bit asynchronous mode
in any CE space. Figure 9–37 shows the ’C6211/C6711 interface to 16-bit
asynchronous SRAM in big endian mode. The only difference is that ED[31:16]
pins are used instead of ED[15:0]. The asynchronous interface signals on the
’C6211/C6711 are similar to the ’C6201, except that the signals have been
combined with the SDRAM and SBSRAM memory interface. It has also been
enhanced to allow for longer read hold and write hold times, and the 8- and
16-bit interface modes have been extended to include writable asynchronous
memories, instead of ROM devices. A programmable turnaround time (TA)
also allows the user to control the number of cycles between a read and a write
to avoid bus contention.

Table 9–18. EMIF Asynchronous Interface Pins

EMIF
Signal Function

AOE Output enable. Active (low) during the entire period of a read access.

AWE Write enable. Active (low) during a write transfer strobe period.

ARE Read enable. Active (low) during a read transfer strobe period.

ARDY Ready. Input used to insert wait states into the memory cycle.

Asynchronous Interface

 9-50

Figure 9–36. TMS6201/C6202/C6701 EMIF to 32-bit SRAM Interface

ARDY

ARE

SRAM

UB[1:0], LB[1:0]BE[3:0]

D[31:0]

A[N:0]

R/W

OE

CS

(EMIF)
interface
memory
External

ED[31:0]

EA[N+2:2]

AWE

AOE

CEn

VDD

Figure 9–37. TMS320C6211/C6711 EMIF to 16-bit SRAM (Big Endian)

ARDY

ARE

SRAM

B[1:0]BE[3:2]

D[15:0]

A[N:0]

R/W

OE

CS

(EMIF)
interface
memory
External

ED[31:16]

EA[N+2:2]

AWE

AOE

CEn

VDD

ECLKIN

External clock

Asynchronous Interface

9-51External Memory Interface

Figure 9–38. EMIF to 8-Bit ROM Interface

A[N:0] ROM

ARDY

D[7:0]

OE

CS

(EMIF)
interface
memory
External

ARE

ED[7:0]

EA[N+2:2]

AOE

CE1

VDD

Figure 9–39. EMIF to 16-Bit ROM Interface

A[N:0] ROM

ARDY

D[15:0]

OE

CS

(EMIF)
interface
memory
External

ARE

ED[15:0]

EA[N+2:2]

AOE

CE1

VDD

Figure 9–40. EMIF to 32-Bit ROM Interface

A[N:0] ROM

ARDY

D[31:0]

OE

CS

(EMIF)
interface
memory
External

ARE

ED[31:0]

EA[N+2:2]

AOE

CE1

VDD

Asynchronous Interface

 9-52

9.6.1 TMS320C6201/C6202/C6701 ROM Modes

The EMIF supports 8- and 16-bit-wide ROM access modes which are selected
by the MTYPE field in the EMIF CE space control registers. In reading data
from these narrow memory spaces, the EMIF packs multiple reads into one
32-bit-wide value. This mode is primarily intended for word accesses to 8-bit
and 16-bit ROM devices. The following restrictions apply:

� Read operations always read 32 bits, regardless of the access size or the
memory width.

� The address is shifted up appropriately to provide the correct address to
the narrow memory. The shift amount is 1 for 16-bit ROM and 2 for 8-bit
ROM. Thus, the high address bits are shifted out, and accesses wrap
around if the CE space spans the entire EA bus. Table 9–19 shows the ad-
dress bits on the EA bus during an access to CE1 space for all possible
asynchronous memory widths.

� The EMIF always reads the lower addresses first and packs these into the
LSbytes. It packs subsequent accesses into the higher order bytes. Thus,
the expected packing format in ROM is always little-endian, regardless of
the value of the LENDIAN bit.

Table 9–19. Byte Address to EA Mapping for Asynchronous Memory Widths

EA Line

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Width Logical Byte Address

�32 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

�16 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

�8 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

9.6.1.1 8-Bit ROM Mode

In 8-bit ROM mode, the address is left-shifted by 2 to create a byte address
on EA to access byte-wide ROM. The EMIF always packs four consecutive
bytes aligned on a 4-byte boundary (byte address = 4N) into a word access.
The bytes are fetched in the following address order: 4N, 4N + 1, 4N + 2,
4N + 3. Bytes are packed into the 32-bit word from MSByte to LSByte in the
following little endian order: 4N + 3, 4N + 2, 4N + 1, 4N.

Asynchronous Interface

9-53External Memory Interface

9.6.1.2 16-Bit ROM Mode

In 16-bit ROM mode, the address is left-shifted by 1 to create a half-word address
on EA to access 16-bit-wide ROM. The EMIF always packs two consecutive half-
words aligned on a 4-byte boundary (byte address = 4N) into a word access. The
halfwords are fetched in the following address order: 4N, 4N + 2. Halfwords are
packed into the 32-bit word from the most significant halfword to the least signifi-
cant halfword in the following little-endian order: 4N + 2, 4N.

9.6.2 Programmable ASRAM Parameters

The EMIF allows a high degree of programmability for shaping asynchronous
accesses. The programmable parameters that allow this are:

� Setup: The time between the beginning of a memory cycle (CE low, ad-
dress valid) and the activation of the read or write strobe

� Strobe: The time between the activation and deactivation of the read
(ARE) or write strobe (AWE)

� Hold: The time between the deactivation of the read or write strobe and the
end of the cycle (which can be either an address change or the deactivation
of the CE signal)

For the ’C6201/C6202/C6701 these parameters are programmable in terms
of CPU clock cycles via fields in the EMIF CE space control registers. For the
’C6211/C6711, these parameters are programmed in terms of ECLKOUT
cycles. Separate set-up, strobe, and hold timing parameters are available for
read and write accesses. Minimum values for ASRAM are as follows:

� SETUP ≥ 1 (0 treated as 1)
� STROBE ≥ 1 (0 treated as 1)
� HOLD ≥ 0
� On the ’C6201/C6202/C6701 first access in a set of consecutive accesses

or a single access, the setup period has a minimum count of 2.

Asynchronous Interface

 9-54

9.6.3 Asynchronous Reads

Figure 9–41 show an asynchronous read with the setup, strobe, and hold param-
eter programmed with the values 2,3, and 1, respectively. An asynchronous read
proceeds as follows:

� At the beginning of the setup period:

� CE becomes active.
� AOE becomes active.
� BE[3:0] becomes valid.
� EA becomes valid.

� At the beginning of a strobe period, ARE becomes active

� At the beginning of a hold period:

� ARE becomes inactive (high).

� Data is sampled on the CLKOUT1 on the ECLKOUT rising edge con-
current with the beginning of the hold period (the end of the strobe pe-
riod) and just prior to the ARE low-to-high transition.

� At the end of the hold period: AOE becomes inactive as long as another
read access to the same CE space is not scheduled for the next cycle.

� For the ’C6201/C6202/C6701, CE stays active for seven minus the value
of Read Hold cycles after the last access (DMA transfer or CPU access).
For example, if read HOLD = 1, then CE stays active for six more cycles.
This does not affect performance and merely reflects the EMIF’s over-
head.

� For the ’C6211/C6711, the CEn signal goes high just after the pro-
grammed hold period.

Asynchronous Interface

9-55External Memory Interface

Figure 9–41. Asynchronous Read Timing Example

Setup Strobe Hold CE Hold

CLKOUT1/
ECLKOUT

BE

Address

Read D

CE

CE†

BE[3:0]

EA[21:2]

ED[31:0]

AOE

ARE

AWE

ARDY

2 3 1 6

† On the ’C6211/C6711, CE goes high immediately after the programmed hold period.
‡ CLKOUT1 referenced for ’C6201/C6202/C6701, ECLKOUT reference for ’C6211/C6711

Asynchronous Interface

 9-56

9.6.4 Asynchronous Writes

Figure 9–42 shows two back-to-back asynchronous write cycles with the
ARDY signal pulled high (always ready). The SETUP, STROBE and HOLD are
programmed to 2,3,and 1.

� At the beginning of the setup period:

� CE becomes active.

� BE[3:0] becomes valid.

� EA becomes valid.

� ED becomes valid.

� For the first access, setup has a minimum value of 2. After the first ac-
cess, setup has a minimum value of 1.

� At the beginning of a strobe period, AWE becomes active.

� At the beginning of a hold period:

� AWE becomes inactive.

� At the end of the hold period:

� ED goes into the high-impedance state only if another write access to
the same CE space is not scheduled for the next cycle.

� CE becomes inactive only if another write access to the same CE
space is not scheduled for the next cycle.

� For the ’C6201/C6202/C6701, if no write accesses are scheduled for the
next cycle and write hold is set to 1 or greater, then CE stays active for 3
cycles after the value of the programmed hold period. If write hold is set
to 0, then CE stays active ffom four more cycles. This does not affect per-
formance and merely reflects the EMIF’s overhead.

� For the ’C6211/C6711, the CEn signal goes high immediately after the
programmed hold period.

Asynchronous Interface

9-57External Memory Interface

Figure 9–42. Asynchronous Write Timing Example

3
CE write holdHold

13
Strobe

2
SetupHoldStrobeSetup

132

D2

A2

BE2

D1

A1

BE1

ARDY

AWE

ARE

AOE

ED[31:0]

EA[21:2]

BE[3:0]

CE�

CE

CLKOUT1/
ECLKOUT

Á
Á

Á
Á

† On the ’C6211/C6711, CE goes high immediately after the programmed hold period.
‡ CLKOUT1 referenced for ’C6201/C6202/C6701, ECLKOUT reference for ’C6211/C6711

9.6.5 Ready Input

In addition to programmable access shaping, you can insert extra cycles into
the strobe period by deactivating the ARDY input. The ready input is internally
synchronized to the CPU clock. This synchronization allows an asynchronous
ARDY input while avoiding metastablility.

Asynchronous Interface

 9-58

� TMS320C6201/C6202/C6701 Operation: If ARDY is low on the third ris-
ing edge of CLKOUT1 before the end of the programmed strobe period,
then the strobe period is extended by one CLKOUT1 cycle. For each sub-
sequent CLKOUT1 rising edge that ARDY is sampled low, the strobe peri-
od is extended by one CLKOUT1 cycle. Thus to effectively use CE to gen-
erate ARDY inactive with external logic the minimum of SETUP and
STROBE should be four.

The read cycle in Figure 9–43 illustrates ready operation for the
’C6201/C6202/C6701.

Figure 9–43. TMS320C6201/C6202/C6701 Ready Operation

Address

BE

CE holdHoldextended
Strobe

Programmed strobeSetup
6125

Ready sampled

2

ARDY

AWE

ARE

AOE

ED[31:0]

EA[21:2]

BE[3:0]

CE

CLKOUT1
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

D

Data
latched

Asynchronous Interface

9-59External Memory Interface

� TMS320C6211/C6711 Operation: ARDY is sampled for the first time on
the ECLKOUT cycle at the end of the programmed strobe period. If
sampled low, the strobe period is extended and ARDY is sampled again
on the next ECLKOUT cycle. Read data is latched by the ’C6211 on the
cycle that ARDY is sampled high. The ARE signal goes high on the the
following cycle. Therefore, the strobe period is visibly extended by three
cycles in Figure 9–44, although data is latched by the ’C6211 after the sec-
ond cycle.

Figure 9–44. TMS320C6211/C6711 Ready Operation

latched
DataReady sampled

Hold
1

Strobe extended
3

Programmed strobe
4

Setup
2

D

Address

BE

ARDY

AWE

ARE

AOE

ED[31:0]

EA[21:2]

BE[3:0]

CE

ECLKOUT

ÁÁ

Hold Interface

 9-60

9.7 Hold Interface

The EMIF responds to hold requests for the external bus. The hold handshake
allows an external device and the EMIF to share the external bus. The hand-
shake mechanism uses two signals:

� HOLD: hold request input. HOLD is synchronized internally to the CPU
clock. This synchronization allows an asynchronous input while avoiding
metastability. The external device drives this pin low to request bus ac-
cess. HOLD is the highest priority request that the EMIF can receive dur-
ing active operation. When the hold is requested, the EMIF stops driving
the bus at the earliest possible moment, which may entail completion of
the current accesses, device deactivation, and SDRAM bank deactiva-
tion. The external device must continue to drive HOLD low for as long as
it wants to drive the bus. If any memory spaces are configured for SDRAM,
these memory spaces are deactivated and refreshed after HOLD is re-
leased by the external master.

� HOLDA: Hold acknowledge output. The EMIF asserts this signal active
after it has placed its signal outputs in the high-impedance state. The
external device can then drive the bus as required. The EMIF places all
outputs in the high-impedance state with the exception of the clock out-
puts: CLKOUT1, CLKOUT2, SDCLK, and/or SSCLK, depending on the
device. If any memory spaces are configured for SDRAM, these memory
spaces are deactivated and refreshed before HOLDA is asserted to the
external master.

� BUSREQ. Bus request output (’C6211/C6711 only). The EMIF asserts this
signal active when any request is either pending to the EMIF or is in pro-
gress. The BUSREQ signal is driven without regard to the state of the
HOLD/HOLDA signals or the type of access pending. This signal can be
used by an external master to release control of the bus if desired and may
be ignored in some systems.

Note:

There is no mechanism to ensure that the external device does not attempt
to drive the bus indefinitely. You should be aware of system-level issues,
such as refresh, that you may need to perform.

During host requests, the refresh counters within the EMIF continue to log re-
fresh requests; however, no refresh cycles can be performed until bus control
is again granted to the EMIF when the HOLD input returns to the inactive level.
You can prevent an external hold by setting the NOHOLD bit in the EMIF global
control register.

Memory Request Priority

9-61External Memory Interface

9.8 Memory Request Priority

9.8.1 TMS320C6201/C6202/C6701 Memory Request Priority

The ’C6201/C6202/C6701 EMIF has multiple requestors competing for the
interface. Table 9–20 summarizes the priority scheme that the EMIF uses in the
case of multiple pending requests. The priority scheme may change if the DMA
channel that is issuing a request through the DMA controller is of high priority.
This mode is set in the DMA controller by setting the PRI bit in the DMA channel
primary control register.

Once a requester (in this instance, the refresh controller is considered a
requester) is prioritized and chosen, no new requests are recognized until ei-
ther the chosen requester stops making requests or a subsequent higher priority
request occurs. In this case, all issued requests of the previous requester are
allowed to finish while the new requester starts making its requests.

If the arbitration bit of the EMIF global control register is set (RBTR8 = 1) and if
a higher priority requester needs the EMIF, the higher priority requester does not
gain control until the current controller relinquishes control or until eight word re-
quests have finished. If the arbitration bit is not set (RBTR8 = 0), a requester main-
tains control of the EMIF as long as it needs the EMIF or until a higher priority
requester requests the EMIF. When the RBTR8 is not set, the current controller
is interrupted by a higher priority requester regardless of the number of requests
that have occurred.

Table 9–20. TMS320C6201/C6202/C6701 EMIF Prioritization of Requests

Priority Requestor PRI = 1 Requestor PRI = 0

Highest External hold External hold

Mode register set Mode register set

Urgent refresh Urgent refresh

DMA controller DMC

DMC PMC

PMC DMA controller

Lowest Trickle refresh Trickle refresh

Memory Request Priority

 9-62

9.8.2 TMS320C6211/C6711 Memory Request Priority

The ’C6211/C6711 has fewer interface requestors because the data memory
controller (DMC), program memory controller (PMC), and EDMA transactions
are processed by the EDMA. Other requestors include the hold interface and
internal EMIF operations, including mode register set (MRS) and refresh
(REFR).

Table 9–21. TMS320C6211/C6711 EMIF Prioritization of Requests

Priority Requestor

Highest External hold

Mode register set

refresh

EDMA – DMC

EDMA – PMC

Lowest EDMA – DMA

Boundary Conditions When Writing to EMIF Registers

9-63External Memory Interface

9.9 Boundary Conditions When Writing to EMIF Registers

The EMIF has internal registers that change memory type, asynchronous
memory timing, SDRAM refresh, SDRAM initialization (MRS COMMAND),
clock speed, arbitration type, HOLD/NOHOLD condition, etc.

The following actions can cause improper data reads or writes:

� Writing to the CE0, CE1, CE2, or CE3 space control registers
while an external access to that CE space is active

� Changing the memory type (MTYPE) in the CE space control register
while any external operation is in progress (SDRAM type while
SDRAM initialization is active)

� Changing the state of NOHOLD in the configuration while HOLD is active
at the pin

� Changing the RBTR8 in the EMIF global control register while multiple
EMIF requests are pending

� Initiating an SDRAM INIT (MRS) while the HOLD input or the HOLDA out-
put is active

� The EMIF global control register can be read before the SDRAM INIT
bit is set to determine if the HOLD function is active, and it must
be read immediately after the SDRAM INIT bit is written to make sure
that the two events did not occur simultaneously.

� The EMIF global control register has status on the HOLD/HOLDA,
DMC/PMC/DMA active access and false access detection.

Clock Output Enabling

 9-64

9.10 Clock Output Enabling

To reduce electromagnetic interference (EMI) radiation, the EMIF allows the
disabling (holding high) of CLKOUT2, CLKOUT1, SSCLK, and SDCLK. This
disabling is performed by setting the CLK2EN, CLK1EN, SSCEN, and SDCEN
bits to 0 in the EMIF global control register, which is shown in Figure 9–6 on
page 9-9 and summarized in Table 9–3 on page 9-10.ECLKOUT cannot be
disabled using software.

9.11 Emulation Halt Operation

The EMIF continues operating during emulation halts. Emulator accesses
through the EMIF can work differently than the way the actual device works dur-
ing EMIF accesses. This discrepancy can cause start-up penalties after a halt
operation.

9.12 Power Down

In power-down 2 mode, refresh is enabled. SSCLK, CLKOUT1, and CLKOUT2
are held low during power-down 2 and power-down 3 modes. In power-down
3 mode, the EMIF acts as if it were in reset. See Chapter 14, Power-Down
Logic, for further details on power-down modes.

For the ’C6211/C6711, refreshes are issued to SDRAM if ECLKIN is provided.

 Clock Output Enabling / Emulation Halt Operation / Power Down

10-1

Boot Modes and Configuration

This chapter describes the boot modes and device configuration used by the
TMS320C6000 platform. It also describes the available boot processes and
explains how the device is reset.

Topic Page

10.1 Overview 10-2.

10.2 Device Reset 10-2.

10.3 Boot Configuration 10-3.

10.4 Device Configuration 10-10.

Chapter 10

Overview

 10-2

10.1 Overview

The TMS320C6000 platform uses a variety of boot configurations to deter-
mine what actions the devices are to perform after reset for proper device init-
ialization. Each ‘C6000 device has some or all of the following boot configura-
tion options:

� Selection of the memory map, which determines whether internal or exter-
nal memory is mapped at address 0

� Selection of the type of external memory mapped at address 0 if external
memory is mapped there

� Selection of the boot process used to initialize the memory at address 0
before the CPU is released from reset.

10.2 Device Reset

The external device reset uses an active (low) signal, RESET. While RESET is
low, the device is held in reset and is initialized to the prescribed reset state. All
3-state outputs are placed in the high-impedance state, and all other outputs are
returned to their default states. The rising edge of RESET starts the processor
running with the prescribed boot configuration. The RESET pulse may have to
be increased if the phase-locked loop (PLL) requires synchronization following
power up or when PLL configuration pins change during reset.

Boot Configuration

10-3Boot Modes and Configuration

10.3 Boot Configuration

External pins BOOTMODE[4:0] select the boot configuration. The values of
BOOTMODE[4:0] are latched during the low period of RESET. Table 10–1 lists
all the values for BOOTMODE[4:0] as well as the associated memory maps
and boot processes. For example, the value 00000b on BOOTMODE[4:0] se-
lects memory map 0 and indicates that the memory type at address 0 is syn-
chronous DRAM organized as four 8-bit-wide banks and that no boot process
is selected. SDWID is a bit in the EMIF SDRAM control register.

Table 10–1. Boot Configuration Summary

BOOTMODE [4:0]
Memory

Map Memory at Address 0 Boot Process

00000 MAP 0 SDRAM: four 8-bit devices (SDWID = 0) None

00001 MAP 0 SDRAM: two 16-bit devices (SDWID = 1) None

00010 MAP 0 32-bit asynchronous with default timing None

00011 MAP 0 1/2x rate SBSRAM None

00100 MAP 0 1x rate SBSRAM None

00101 MAP 1 Internal None

00110 MAP 0 External: default values HPI

00111 MAP 1 Internal HPI

01000 MAP 0 SDRAM: four 8-bit devices (SDWID = 0) 8-bit ROM with default timings

01001 MAP 0 SDRAM: two16-bit devices (SDWID = 1) 8-bit ROM with default timings

01010 MAP 0 32-bit asynchronous with default timing 8-bit ROM with default timings

01011 MAP 0 1/2x rate SBSRAM 8-bit ROM with default timings

01100 MAP 0 1x rate SBSRAM 8-bit ROM with default timings

01101 MAP 1 Internal 8-bit ROM with default timings

01110 Reserved

01111 Reserved

10000 MAP 0 SDRAM: four 8-bit devices(SDWID=0) 16-bit ROM with default timings

10001 MAP 0 SDRAM: two 16-bit devices (SDWID = 1) 16-bit ROM with default timings

Boot Configuration

 10-4

Table 10–1. Boot Configuration Summary (Continued)

BOOTMODE [4:0] Boot ProcessMemory at Address 0
Memory

Map

10010 MAP 0 32-bit asynchronous with default timing 16-bit ROM with default timings

10011 MAP 0 1/2x rate SBSRAM 16-bit ROM with default timings

10100 MAP 0 1x rate SBSRAM 16-bit ROM with default timings

10101 MAP 1 Internal 16-bit ROM with default timings

10110 Reserved

10111 Reserved

11000 MAP 0 SDRAM: four 8-bit devices (SDWID = 0) 32-bit ROM with default timings

11001 MAP 0 SDRAM: two 16-bit devices (SDWID = 1) 32-bit ROM with default timings

11010 MAP 0 32-bit asynchronous with default timing 32-bit ROM with default timings

11011 MAP 0 1/2x rate SBSRAM 32-bit ROM with default timings

11100 MAP 0 1x rate SBSRAM 32-bit ROM with default timings

11101 MAP 1 Internal 32-bit ROM with default timings

11110 Reserved

11111 Reserved

The TMS320C6201 and ’C6701 devices latch their boot configuration setting
at reset from dedicated BOOTMODE pins.

The TMS3206202 latches its boot configuration from five data lines of the ex-
pansion bus, XD[4:0]. The XD[4:0] lines directly map to BOOTMODE[4:0], and
should be configured using external pull-up and pull-down resistors.

The TMS320C6211/C6711 latches its boot configuration from the host-port
data lines. Only two of the five BOOTMODE bits are required because the
’C6211/C6711 only has one memory map, which places internal memory at
address 0. The HD[4:3] pins map to the BOOTMODE[4:3] pins. The complete
boot configuration shown in Table 10–1 can be significantly reduced for the
’C6211/C6711 as shown in Table 10–2. External pull-down resistors should be
used on HD[4:3] to configure the boot mode.

Boot Configuration

10-5Boot Modes and Configuration

Table 10–2. TMS320C6211/C6711 Boot Configuration Summary

BOOTMODE[4:0] Boot Process

00xxx Host-port interface

01xxx 8-bit ROM with default timings

10xxx 16-bit ROM with default timings

11xxx 32-bit ROM with default timings

10.3.1 Memory Map

The two memory maps of the ’C6201 and ’C6701, MAP 0 and MAP 1, are sum-
marized in Table 10–3. They differ in that MAP 0 has external memory mapped
at address 0, and MAP 1 has internal memory mapped at address 0. Refer to
Chapter 2 and Chapter 3 for program and data memory descriptions.

Table 10–3. TMS320C6201/C6701 Memory Map Summary

Size
Description of Memory Block in ...

Address Range (Hex)
Size

 (Bytes) MAP 0 MAP 1

0000 0000 – 0000 FFFF 64K External memory interface CE 0 Internal program RAM

0001 0000 – 003F FFFF 4M–64K External memory interface CE 0 Reserved

0040 0000 – 00FF FFFF 12M External memory interface CE 0 External memory interface CE 0

0100 0000 – 013F FFFF 4M External memory interface CE 1 External memory interface CE 0

0140 0000 – 0140 FFFF 64K Internal program RAM External memory interface CE 1

0141 0000 – 017F FFFF 4M–64K Reserved External memory interface CE 1

0180 0000 – 0183 FFFF 256K Internal peripheral bus EMIF registers

0184 0000 – 0187 FFFF 256K Internal peripheral bus DMA controller registers

0188 0000 – 018B FFFF 256K Internal peripheral bus HPI register

018C 0000 – 018F FFFF 256K Internal peripheral bus McBSP 0 registers

0190 0000 – 0193 FFFF 256K Internal peripheral bus McBSP 1 registers

0194 0000 – 0197 FFFF 256K Internal peripheral bus Timer 0 registers

0198 0000 – 019B FFFF 256K Internal peripheral bus Timer 1 registers

019C 0000 – 019F FFFF 256K Internal peripheral bus interrupt selector registers

01A0 0000 – 01FF FFFF 6M Internal peripheral bus (reserved)

0200 0000 – 02FF FFFF 16M External memory interface CE 2

0300 0000 – 03FF FFFF 16M External memory interface CE 3

0400 0000 – 7FFF FFFF 2G–64M Reserved

8000 0000 – 803F FFFF 64K Internal data RAM

8040 0000 – FFFF FFFF 2G–64K Reserved

Boot Configuration

 10-6

The ’C6202 has two memory maps that are supersets of the ’C6201/’C6701
memory maps. All valid ’C6201/’C6701 address ranges are valid on the
’C6202. There are three primary differences: the ’C6202 has larger internal
memory spaces, four external memory locations for the expansion bus
(XCE[3:0]), and a third serial port. The memory maps for the ‘C6202 are shown
in Table 10–4.

Table 10–4. TMS320C6202 Memory Map Summary

Size
(Bytes) Description of Memory Block In …

Address Range (Hex) MAP 0 MAP 1

0000 0000–003F FFFF 256K External memory interface CE0 Internal program RAM

0004 0000–003F FFFF 4M–256K External memory interface CE0 Reserved

0040 0000–00FF FFFF 12M External memory interface CE0 External memory interface CE0

0100 0000–013F FFFF 4M External memory interface CE1 External memory interface CE0

0140 0000–0143 FFFF 256K Internal program RAM External memory interface CE1

0144 0000–017F FFFF 4M–256K Reserved External memory interface CE1

0180 0000–0183 FFFF 256K Internal peripheral bus EMIF registers

0184 0000–0187 FFFF 256K Internal peripheral bus DMA controller registers

0188 0000–018B FFFF 256K Internal peripheral bus expansion bus registers

018C 0000–018F FFFF 256K Internal peripheral bus McBSP 0 registers

0190 0000–0193 FFFF 256K Internal peripheral bus McBSP 1 registers

0194 0000–0197 FFFF 256K Internal peripheral bus timer 0 registers

0198 0000–019B FFFF 256K Internal peripheral bus timer 1 registers

019C 0000–019C 01FF 512 Internal peripheral bus interrupt selector registers

019C 0200–019C FFFF 256K–512 Internal peripheral bus power-down registers

01A0 0000–01A3 FFFF 256K Reserved

01A4 0000–01A7 FFFF 256K Internal peripheral bus McBSP2 registers

01A8 0000–01FF FFFF 5.5M Reserved

0200 0000–02FF FFFF 16M External memory interface CE2

0300 0000–03FF FFFF 16M External memory interface CE3

0400 0000–3FFF FFFF 1G–64M Reserved

4000 0000–4FFF FFFF 256M Expansion bus XCE0

5000 0000–5FFF FFFF 256M Expansion bus XCE1

6000 0000–6FFF FFFF 256M Expansion bus XCE2

7000 0000–7FFF FFFF 256M Expansion bus XCE3

8000 0000–8001 FFFF 128K Internal data RAM

8000 2000–FFFF FFFF 1G–128K Reserved

Boot Configuration

10-7Boot Modes and Configuration

The ‘C6211 and ’C6711 have only one memory map, which is shown in
Table 10–5. Internal memory is always located at address 0, but can be used
as both program and data memory. The configuration register for those periph-
erals common to the ’C6201, ’C6211, and ’C6711 are located at the same ad-
dresses in both processors. The external memory address ranges begin at
8000 0000h in the ’C6211/C6711, which is the location of internal data memory
in the ’C6201.

Table 10–5. TMS320C6211/C6711 Memory Map Summary

Address Range (Hex)
Size

(Bytes) Description of Memory Block

0000 0000–0000 FFFF 64K Internal RAM (L2)

0001 0000–017F FFFF 24M–64K Reserved

0180 0000–0183 FFFF 256K Internal configuration bus EMIF registers

0184 0000–0187 FFFF 256K Internal configuration bus L2 control registers

0188 0000–018B FFFF 256K Internal configuration bus HPI register

018C 0000–018F FFFF 256K Internal configuration bus McBSP 0 registers

0190 0000–0193 FFFF 256K Internal configuration bus McBSP 1 registers

0194 0000–0197 FFFF 256K Internal configuration bus timer 0 registers

0198 0000–019B FFFF 256K Internal configuration bus timer 1 registers

019C 0000–019F FFFF 256K Internal configuration bus interrupt selector registers

01A0 0000–01A3 FFFF 256K Internal configuration bus EDMA RAM and registers

01A4 0000–1FFF FFFF 1G–288M Reserved

3000 0000–2FFF FFFF 256M McBSP 0/1 data

4000 0000–3FFF FFFF 1G Reserved

8000 0000–8FFF FFFF 256M External memory interface CE0

9000 0000–9FFF FFFF 256M External memory interface CE1

A000 0000–AFFF FFFF 256M External memory interface CE2

B000 0000–BFFF FFFF 256M External memory interface CE3

C000 0000–FFFF FFFF 1G Reserved

Boot Configuration

 10-8

10.3.2 Memory at Reset Address

For ’C6000 processors with multiple memory maps, the boot configuration
determines the type of memory located at the reset address for processor
operation, address 0 as shown in Table 10–1. When the BOOTMODE [4:0]
pins select MAP 1, this memory is internal. When the device mode is in MAP
0, the memory is external. When external memory is selected, BOOTMODE
[4:0] also determine the type of memory at the reset address. These options
effectively provide alternative reset values to the appropriate EMIF control reg-
isters.

The ‘C6211/C6711 always has internal RAM at address 0, regardless of the
BOOTMODE[4:0] configuration.

10.3.3 Boot Processes

The boot process is determined by the BOOTMODE[4:0] pins, as shown in
Table 10–1. Up to three types of boot processes are available:

� No boot process: The CPU begins direct execution from the memory lo-
cated at address 0. If SDRAM is used in the system, the CPU is held until
SDRAM initialization is complete. This feature is not available on the
’C6211/C6711.

� ROM boot process: The program located in external ROM is copied to ad-
dress 0 by the DMA/EDMA controller. Although the boot process begins
when the device is released from external reset, this transfer occurs while
the CPU is internally held in reset. This boot process also lets you choose
the width of the ROM. In this case, the EMIF automatically assembles con-
secutive 8-bit bytes or 16-bit halfwords to form the 32-bit instruction words
to be moved. These values are expected to be stored in little endian format
in the external memory, typically a ROM device.

The transfer is automatically done by the DMA/EDMA as a single-frame
block transfer from the to ROM address 0.

After completion of the block transfer, the CPU is removed from reset and
allowed to run from address 0.

The ROM boot process differs slightly between specific ’C6000 devices.

� ’C6201,’C6202,’C6701: The DMA copies 32K bytes from CE1 to
address 0, using default ROM timings. After the transfer the CPU
begins executing from address 0.

� ’C6211, ’C6711: THE EDMA copies 1K bytes from the beginning of
CE1 to address 0, using default ROM timings. After the transfer the
CPU begins executing from address 0.

Boot Configuration

10-9Boot Modes and Configuration

� Host boot process: The CPU is held in reset while the remainder of the
device is released. During this period, an external host can initialize the
CPU’s memory space as necessary through the host interface, including
external memory configuration registers. Once the host is finished with all
necessary initialization, it must set the DSPINT to complete the boot pro-
cess. This transition causes the boot configuration logic to remove the
CPU from its reset state. The CPU then begins execution from address 0.
The DSPINT condition is not latched by the CPU, because it occurs while
the CPU is still in reset. Also, DSPINT wakes the CPU from internal reset
only if the HPI boot process is selected. All memory may be written to and
read by the host. This allows for the host to verify what it sends to the proc-
essor, if required.

Note:

The host interface used during host boot varies between different devices,
as follows:

� ’C6201, ’C6701, ’C6211, ’C6711: The HPI is used for the host boot. The
HPI is always a slave interface, and needs no special configuration.

� ’C6202: The expansion bus is used for the host boot. The type of host
interface is determined by a set of latched signals during rest.

Device Configuration

 10-10

10.4 Device Configuration

Several device settings are configured at reset to determine how the device
operates.

10.4.1 Input Clock Mode

The on-chip PLL frequency multiplier is configured through static CLKMODE
input pins. Different devices in the ’C6000 platform have different numbers of
CLKMODE pins. Only ×1(PLL bypass) and ×4(CLKIN × 4) are supported. The
DLL mode selection is shown in Table 10–6.

Table 10–6. DLL Multiplier Select

’C6201/C6701 ’C6202 ’C6211/C6711

PLL Mode CLKMODE[1:0] CLKMODE[2:0] CLKMODE0

×1 00b 000b 0b

×4 11b 001b 1b

Reserved other other

10.4.2 Endian Mode

Each ’C6000 device can be configured to operate in either big or little endian
mode. Set the LENDIAN flag to 1 to select little endian, and 0 to select big
endian. The selection method varies slightly among different devices. The
’C6201 and ’C6701 have a dedicated LENDIAN input pin. The ’C6211 and
’C6711 sample the ninth data line of the host-port interface, HD[8]. The ’C6202
samples the ninth data line of the expansion bus, XD[8]. The device pin should
be configured via a pull-up or pull-down resister.

For more details on endian mode refer to section 2.6.7, Data Endianness.

10.4.3 TMS320C6202 Expansion Bus

The expansion bus of the ’C6202 is configured through pull-up an pull-down
resistors on the remaining data lines of the expansion bus, XD[31:9] and
XD[7:5]. For more details on how to configure the expansion bus, see section
8.7, Boot Configuration Control via Expansion Bus.

11-1

Multichannel Buffered Serial Ports

This chapter describes the operation and hardware of the two multichannel
buffered serial ports (McBSPs). It also includes register definitions and timing
diagrams for the McBSPs.

Topic Page

11.1 Features 11-2.

11.2 McBSP Interface Signals and Registers 11-3.

11.3 Data Transmission and Reception 11-18.

11.4 µ-LAW/A-LAW Companding Hardware Operation 11-50.

11.5 Programmable Clock and Framing 11-53.

11.6 Multichannel Selection Operation 11-68.

11.7 SPI Protocol: CLKSTP 11-80.

11.8 McBSP Pins as General-Purpose I/O 11-87.

Chapter 11

Features

 11-2

11.1 Features

The multichannel buffered serial port (McBSP) is based on the standard serial port
interface on the TMS320C2x, ’C3x, ’C5x, and ’C54x devices. The McBSP pro-
vides:

� Full-duplex communication

� Double-buffered data registers, which allow a continuous data stream

� Independent framing and clocking for receive and transmit

� Direct interface to industry-standard codecs, analog interface chips (AICs),
and other serially connected A/D and D/A devices

� External shift clock or an internal, programmable frequency shift clock for
data transfer

� Autobuffering capability through the 5-channel DMA controller

In addition, the McBSP has the following capabilities:

� Direct interface to:

� T1/E1 framers

� MVIP switching compatible and ST-BUS compliant devices including:

� MVIP framers
� H.100 framers
� SCSA framers

� IOM-2 compliant devices

� AC97 compliant devices. (The necessary multi phase frame synchro-
nization capability is provided.)

� IIS compliant devices

� SPI� devices

� Multichannel transmit and receive of up to 128 channels

� A wide selection of data sizes, including 8, 12, 16, 20, 24, and 32 bits

� µ-Law and A-Law companding

� 8-bit data transfers with the option of LSB or MSB first

� Programmable polarity for both frame synchronization and data clocks

� Highly programmable internal clock and frame generation

McBSP Interface Signals and Registers

11-3Multichannel Buffered Serial Ports

11.2 McBSP Interface Signals and Registers

The multichannel buffered serial port (McBSP) consists of a data path and a
control path, which connect to external devices. Data is communicated to
these external devices via separate pins for transmission and reception. Con-
trol information (clocking and frame synchronization) is communicated via four
other pins. The device communicates to the McBSP via 32-bit-wide control
registers accessible via the internal peripheral bus.

The McBSP consists of a data path and control path, as shown in Figure 11–1.
Seven pins listed in Table 11–1 connect the control and data paths to external
devices.

Figure 11–1.McBSP Block Diagram

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

SRGR

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁÁÁÁ

ÁÁÁ

ÁÁÁ
ÁÁÁ

RBRÁÁÁ
ÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CLKS

FSR

FSX

CLKR

CLKX

DX

DR

XEVT

REVT

XINT

RINT

events to DMA
Synchronization

Interrupts to CPU

bus
peripheral
32-bit

McBSP

Compand

XSR

RSR

Compress

Expand DRR

DXR

Multichannel
selection

and control
generation
frame sync
Clock and

PCR

XCER

RCER

MCR

XCR

SPCR

RCR

McBSP Interface Signals and Registers

 11-4

Data is communicated to devices interfacing to the McBSP via the data transmit
(DX) pin for transmission and the data receive (DR) pin for reception. Control
information (clocking and frame synchronization) is communicated via CLKX,
CLKR, FSX, and FSR. The ’C6201/C6701 communicates to the McBSP via
32-bit-wide control registers accessible via the internal peripheral bus (see sec-
tion 2.7, Peripheral Bus). Either the CPU or the DMA controller reads the re-
ceived data from the data receive register (DRR) and writes the data to be trans-
mitted to the data transmit register (DXR). Data written to the DXR is shifted out
to DX via the transmit shift register (XSR). Similarly, receive data on the DR pin
is shifted into the receive shift register (RSR) and copied into the receive buffer
register (RBR). RBR is then copied to DRR, which can be read by the CPU or
the DMA controller. This allows simultaneous internal data movement and ex-
ternal data communications.

The data receive and transmit registers (DRR and DXR) are mapped to loca-
tions shown in Table 11–2. For the TMS320C6211/C6711 device, the DRR and
DXR are also mapped to memory locations 30000000h–33FFFFFFh (McBSP
0) and 34000000h–3FFFFFFFh (McBSP 1), as shown in Table 11–3. Both the
CPU and the EDMA in the TMS320C6211/C6711 device can access the DRR
and DXR in all the memory-mapped locations shown in Table 11–3. A write to
any location in 30000000h – 33FFFFFFh is equivalent to a write to the DXR
of McBSP 0 at 018C0004h. A read from any location in
30000000h–3FFFFFFh is equivalent to a read from the DRR of McBSP 0 at
018C0000h. Similarly, a read from any location in 34000000h–3FFFFFFFh is
equivalent to a read from the DRR of McBSP 1 at 01900000h, while a write to
any location in 34000000h–3FFFFFFFh is equivalent to a write to the DXR of
McBSP 1 at 01900004h. You have a choice of reading from/writing to the DRR
and DXR in either the 3xxxxxxxh or the 018Cxxxxh/0190xxxxh location. Ac-
cesses to the 018Cxxxxh and 0190xxxxh locations go through the peripheral
bus. Therefore, it is recommended that you set up the EDMA to use the
3xxxxxxxh addresses for serial port servicing in order to free up the peripheral
bus for other functions. The McBSP control registers are only mapped to the
018Cxxxxh/0190xxxxh locations.

The remaining registers accessible to the CPU configure the control mechanism
of the McBSP. The McBSP registers are listed in Table 11–2. The control block
consists of internal clock generation, frame-synchronization signal generation
and control of these signals, and multichannel selection. This control block
sends notification of important interrupts to the CPU and events to the DMA
controller via the four signals shown in Table 11–4.

McBSP Interface Signals and Registers

11-5Multichannel Buffered Serial Ports

Table 11–1. McBSP Interface Signals

Pin I/O/Z Description

CLKR I/O/Z Receive clock

CLKX I/O/Z Transmit clock

CLKS I External clock

DR I Received serial data

DX O/Z Transmitted serial data

FSR I/O/Z Receive frame synchronization

FSX I/O/Z Transmit frame synchronization

Note: I = Input, O = Output, Z = High Impedance

McBSP Interface Signals and Registers

 11-6

Table 11–2. McBSP Registers

Hex Byte Address

McBSP 0 McBSP 1 McBSP 2§ Abbreviation McBSP Register Name † Section

– – – RBR Receive buffer register 11.2

– – – RSR Receive shift register 11.2

– – – XSR Transmit shift register 11.2

018C 0000 0190 0000 01A4 0000 DRR Data receive register‡¶ 11.2

018C 0004 0190 0004 01A4 0004 DXR Data transmit register# 11.2

018C 0008 0190 0008 01A4 0008 SPCR Serial port control register 11.2.1

018C 000C 0190 000C 01A4 000C RCR Receive control register 11.2.2

018C 0010 0190 0010 01A4 0010 XCR Transmit control register 11.2.2

018C 0014 0190 0014 01A4 0014 SRGR Sample rate generator register 11.5.1.1

018C 0018 0190 0018 01A4 0018 MCR Multichannel control register 11.6.1

018C 001C 0190 001C 01A4 001C RCER Receive channel enable register 11.6.3.1

018C 0020 0190 0020 01A4 0020 XCER Transmit channel enable register 11.6.3.1

018C 0024 0190 0024 01A4 0024 PCR Pin control register 11.2.1

† The RBR, RSR, and XSR are not directly accessible via the CPU or the DMA controller.
‡ The CPU and DMA controller can only read this register; they cannot write to it.
§ Applicable only to ’C6202 and ’C6203
¶ For the TMS320C6211/C6711, the DRR is also mapped at 30000000–33FFFFFFF for McBSP 0, and at

34000000h–3FFFFFFFh for McBSP 1.
For the TMS320C6211/C6711, the DXR is also mapped at 30000000–33FFFFFFF for McBSP 0, and at

34000000h–3FFFFFFFh for McBSP 1.

Table 11–3. TMS320C6211/C6711 Data Receive and Transmit Registers (DRR/DXR)
Mapping

Accessible Via

Serial Port Peripheral Bus EDMA Bus

McBSP 0 0x018C0000 0x30000000–0x33FFFFFF

McBSP 1 0x01900000 0x34000000–0x3FFFFFFF

McBSP Interface Signals and Registers

11-7Multichannel Buffered Serial Ports

Table 11–4. McBSP CPU Interrupts and DMA Synchronization Events

Interrupt Name Description Section

RINT Receive interrupt to CPU 11.3.3

XINT Transmit interrupt to CPU 11.3.3

REVT Receive synchronization event to the DMA
controller

11.3.2.1

XEVT Transmit synchronization event to the DMA
controller

11.3.2.2

11.2.1 Serial Port Configuration

The serial port is configured via the 32-bit serial port control register (SPCR)
and the pin control register (PCR) shown in Figure 11–2 and Figure 11–3, re-
spectively. The SPCR and PCR contain McBSP status control bits. Table 11–5
and Table 11–6 summarize the SPCR and the PCR fields, respectively.

The PCR is also used to configure the serial port pins as general purpose in-
puts or outputs during receiver and/or transmitter reset (for more information
see Section 11.8).

Figure 11–2.Serial Port Control Register (SPCR)
31 24 23 22 21 20 19 18 17 16

reserved† FRST GRST XINTM XSYNCERR‡ XEMPTY XRDY XRST

R, +0 RW, +0 RW, +0 RW, +0 RW, +0 R, +0 R, +0 RW, +0

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

DLB RJUST CLKSTP Rsvd† DXENA§ Rsvd† RINTM RSYNCERR‡ RFULL RRDY RRST

RW,+0 RW, +0 RW,+0 R, +0 RW, +0 R, +0 RW, +0 RW, +0 R, +0 R, +0 RW, +0

† Reserved-fields have no storage associated with them. However, they are always read as 0.
‡ Writing a 1 to this bit will set the error condition. Thus, it is used mainly for testing purposes or if this operation is desired.
§ The DXENA feature is only available in the ’C6211/C711.

McBSP Interface Signals and Registers

 11-8

Table 11–5. Serial Port Control Register (SPCR) Field Descriptions

Name Function Section

FRST Frame sync generator reset

FRST = 0: The frame sync generation logic is reset. Frame sync signal is not
generated by the sample rate generator.

FRST = 1: Frame sync signal is generated after eight CLKG clocks. All frame
counters are loaded with their programmed values.

11.5.3

GRST Sample rate generator reset

GRST = 0: Sample rate generator is reset.

GRST = 1: Sample rate generator is pulled out of reset; CLKG is driven accord-
ing to the programmed values in the sample rate generator register
(SRGR).

11.5.1.2

RINTM Receive interrupt mode

RINTM = 00b: RINT driven by RRDY

RINTM = 01b: RINT generated by end-of-subframe in multichannel operation

RINTM = 10b: RINT generated by a new frame synchronization

RINTM = 11b: RINT generated by RSYNCERR

11.3.3

XINTM Transmit interrupt mode

XINTM = 00b: XINT driven by XRDY

XINTM = 01b: XINT generated by end-of-subframe in multichannel
operation

XINTM = 10b: XINT generated by a new frame synchronization

XINTM = 11b: XINT generated by XSYNCERR

11.3.3

RSYNCERR Receive synchronization error

RSYNCERR = 0: No frame synchronization error

RSYNCERR = 1: Frame synchronization error detected by McBSP

11.3.7.2
11.3.7.5

XSYNCERR Transmit synchronization error

XSYNCERR = 0: No frame synchronization error

XSYNCERR = 1: Frame synchronization error detected by McBSP

11.3.7.2
11.3.7.5

XEMPTY Transmit shift register (XSR) empty

XEMPTY = 0: XSR is empty.

XEMPTY = 1: XSR is not empty.

11.3.7.4

McBSP Interface Signals and Registers

11-9Multichannel Buffered Serial Ports

Table 11–5. Serial Port Control Register (SPCR) Field Descriptions (Continued)

Name SectionFunction

RFULL Receive shift register (RSR) full error condition

RFULL = 0: Receiver is not in overrun condition.

RFULL = 1: DRR is not read, RBR is full, and RSR is full with a new element.

11.3.7.1

RRDY Receiver ready

RRDY = 0: Receiver is not ready.

RRDY = 1: Receiver is ready with data to be read from DRR.

11.3.2

XRDY Transmitter ready

XRDY = 0: The transmitter is not ready.

XRDY = 1: The transmitter is ready for data to be written to DXR.

11.3.2

RRST Receiver reset. This resets or enables the receiver.

RRST = 0: The serial port receiver is disabled and is in reset state.

RRST = 1: The serial port receiver is enabled.

11.3.1

XRST Transmitter reset. This resets or enables the transmitter.

XRST = 0: The serial port transmitter is disabled and is in reset state.

XRST = 1: The serial port transmitter is enabled.

11.3.1

DLB Digital loopback mode

DLB = 0: Digital loopback mode disabled

DLB = 1: Digital loopback mode enabled

11.5.2.5
11.5.2.6
11.5.3.2

RJUST Receive data sign-extension and justification mode

RJUST = 00b: Right-justify and zero-fill MSBs in DRR.

RJUST = 01b: Right-justify and sign-extend MSBs in DRR.

RJUST = 10b: Left-justify and zero-fill LSBs in DRR.

RJUST = 11b: Reserved

11.3.8

McBSP Interface Signals and Registers

 11-10

Table 11–5. Serial Port Control Register (SPCR) Field Descriptions (Continued)

Name SectionFunction

CLKSTP Clock stop mode

CLKSTP = 0Xb: Clock stop mode disabled. Normal clocking enabled for non-SPI
mode.

Clock stop mode enabled for various SPI� modes when:

CLKSTP = 10b and CLKXP = 0: Clock starts with rising edge without delay.

CLKSTP = 10b and CLKXP = 1: Clock starts with falling edge without delay.

CLKSTP = 11b and CLKXP = 0: Clock starts with rising edge with delay.

CLKSTP = 11b and CLKXP = 1: Clock starts with falling edge with delay.

11.7

DXENA DX Enabler – applicable only for the ’C6211/C6711 device. Enable extra delay
for DX turn-on time. This bit controls the Hi-Z enable on the DX pin, not the data
itself, so only the first bit of data is delayed.

DXENA = 0: DX enabler is off.

DXENA = 1: DX enabler is on.

11.6.4

McBSP Interface Signals and Registers

11-11Multichannel Buffered Serial Ports

Figure 11–3.Pin Control Register (PCR)
31 16

reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsvd XIOEN RIOEN FSXM FSRM CLKXM CLKRM Rsvd CLKS_STAT DX_STAT DR_STAT FSXP FSRP CLKXP CLKRP

R,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW, +0 R,+0 RW,+0 RW,+0 R,+0 RW,+0 RW,+0 RW,+0 RW,+0

Table 11–6. Pin Control Register (PCR) Field Descriptions

Name Function Section

RIOEN Receiver in general-purpose I/O mode only when RRST = 0 in SPCR

RIOEN = 0: DR and CLKS pins are not general-purpose inputs. FSR and CLKR are
not general-purpose I/Os and perform serial port operation.

RIOEN = 1: DR and CLKS pins are general-purpose inputs. FSR and CLKR are general-
purpose I/Os. These serial port pins do not perform serial port operation.

11.8

XIOEN Transmitter in general-purpose I/O mode only when XRST = 0 in SPCR

XIOEN = 0: CLKS pin is not a general-purpose input. DX pin is not a general purpose
output. FSX and CLKX are not general-purpose I/Os.

XIOEN = 1: CLKS pin is a general-purpose input. DX pin is a general-purpose output.
FSX and CLKX are general-purpose I/Os. These serial port pins do not per-
form serial port operation.

11.8

FSXM Transmit frame synchronization mode

FSXM = 0: Frame synchronization signal is provided by an external source. FSX is
an input pin.

FSXM = 1: Frame synchronization generation is determined by the sample rate gen-
erator frame synchronization mode bit FSGM in the SRGR.

11.5.3.3
and
11.8

FSRM Receive frame synchronization mode

FSRM = 0: Frame synchronization signals are generated by an external device.
FSR is an input pin.

FSRM = 1: Frame synchronization signals are generated internally by the sample rate
generator. FSR is an output pin except when GSYNC = 1 (see section
11.5.1.1) in SRGR.

11.5.3.2
and
11.8

McBSP Interface Signals and Registers

 11-12

Table 11–6. Pin Control Register (PCR) Field Descriptions (Continued)

Name SectionFunction

CLKRM Receiver clock mode

Case 1: Digital loopback mode not set (DLB = 0) in SPCR

CLKRM = 0: Receive clock (CLKR) is an input driven by an external clock.

CLKRM = 1: CLKR is an output pin and is driven by the sample rate generator.

Case 2: Digital loopback mode set (DLB = 1) in SPCR

CLKRM = 0: Receive clock (not the CLKR pin) is driven by the transmit clock
(CLKX), which is based on the CLKXM bit in PCR. CLKR is in high im-
pedance.

CLKRM = 1: CLKR is an output pin and is driven by the transmit clock. The transmit
clock is derived from CLKXM bit in the PCR.

11.5.2.6
and
11.8

CLKXM Transmitter clock mode

CLKXM = 0: Transmitter clock is driven by an external clock with CLKX as an input
pin.

CLKXM = 1: CLKX is an output pin and is driven by the internal sample rate genera-
tor.

During SPI mode (CLKSTP in SPCR is a nonzero value):

CLKXM = 0: McBSP is a slave and (CLKX) is driven by the SPI master in the system.
CLKR is internally driven by CLKX.

CLKXM = 1: McBSP is a master and generates the transmitter clock (CLKX) to drive
its receiver clock (CLKR) and the shift clock of the SPI-compliant slaves
in the system.

11.5.2.7
and
11.8

11.7

CLKS_STAT CLKS pin status. Reflects the value on the CLKS pin when selected as a general-pur-
pose input.

11.8

DX_STAT DX pin status. Reflects the value driven onto the DX pin when selected as a general-
purpose output.

11.8

DR_STAT DR pin status. Reflects the value on the DR pin when selected as a general-purpose
input.

11.8

FSRP Receive frame synchronization polarity

FSRP = 0: Frame synchronization pulse FSR is active high

FSRP = 1: Frame synchronization pulse FSR is active low

11.3.4.1
and
11.8

FSXP Transmit frame synchronization polarity

FSXP = 0: Frame synchronization pulse FSX is active high

FSXP = 1: Frame synchronization pulse FSX is active low

11.3.4.1
and
11.8

McBSP Interface Signals and Registers

11-13Multichannel Buffered Serial Ports

Table 11–6. Pin Control Register (PCR) Field Descriptions (Continued)

Name SectionFunction

CLKXP Transmit clock polarity

CLKXP = 0: Transmit data driven on rising edge of CLKX

CLKXP = 1: Transmit data driven on falling edge of CLKX

11.3.4.1
and
11.8

CLKRP Receive clock polarity

CLKRP = 0: Receive data sampled on falling edge of CLKR

CLKRP = 1: Receive data sampled on rising edge of CLKR

11.3.4.1
and
11.8

McBSP Interface Signals and Registers

 11-14

11.2.2 Receive and Transmit Control Registers: RCR and XCR

The receive and transmit control registers (RCR and XCR), shown in
Figure 11–4 and Figure 11–5, configure parameters of the receive and
transmit operations, respectively. The fields of RCR and XCR are
summarized in Figure 11–4.

Figure 11–4.Receive Control Register (RCR)

31 30 24 23 21 20 19 18 17 16

RPHASE RFRLEN2 RWDLEN2 RCOMPAND RFIG RDATDLY

RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0

15 14 8 7 5 4 3 0

RPHASE 2† RFRLEN1 RWDLEN1 RWDREVRS‡ Reserved

RW, +0 RW, +0 RW, +0 RW, +0 R, +0

† (R/X) PHASE 2 feature’s available only on ’C6211/C6711
‡ RWDREVRS and XWDREVRS 32-bit reversal feature is applicable only to the ’C6211/C6711 device.

Figure 11–5.Transmit Control Register (XCR)

31 30 24 23 21 20 19 18 17 16

XPHASE XFRLEN2 XWDLEN2 XCOMPAND XFIG XDATDLY

RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0

15 14 8 7 5 4 3 0

XPHASE 2† XFRLEN1 XWDLEN1 XWDREVRS‡ Reserved

RW, +0 RW, +0 RW, +0 RW, +0 R, +0

† (R/X) PHASE 2 feature’s available only on ’C6211/C6711
‡ RWDREVRS and XWDREVRS 32-bit reversal feature is applicable only to the ’C6211/C6711 device.

McBSP Interface Signals and Registers

11-15Multichannel Buffered Serial Ports

Table 11–7. Receive/Transmit Control Register (RCR/XCR) Field Descriptions

Name Function Section

RPHASE Receive phases

RPHASE = 0: Single phase frame

RPHASE = 1: Dual phase frame

11.3.4.2

XPHASE Transmit phases

XPHASE = 0: Single phase frame

XPHASE = 1: Dual phase frame

11.3.4.2

RFRLEN(1/2) Receive frame length in phase 1 and phase 2

RFRLEN(1/2) = 000 0000b: 1 word per phase

RFRLEN(1/2) = 000 0001b: 2 words per phase
�

�

�

RFRLEN(1/2) = 111 1111b: 128 words per phase

11.3.4.4

XFRLEN(1/2) Transmit frame length in phase 1 and phase 2

XFRLEN(1/2) = 000 0000b: 1 word per phase

XFRLEN(1/2) = 000 0001b: 2 words per phase
�

�

�

XFRLEN(1/2) = 111 1111b: 128 words per phase

11.3.4.4

RWDLEN(1/2) Receive element length in phase 1 and phase 2

RWDLEN(1/2) = 000b: 8 bits

RWDLEN(1/2) = 001b: 12 bits

RWDLEN(1/2) = 010b: 16 bits

RWDLEN(1/2) = 011b: 20 bits

RWDLEN(1/2) = 100b: 24 bits

RWDLEN(1/2) = 101b: 32 bits

RWDLEN(1/2) = 11Xb: Reserved

11.3.4.5

McBSP Interface Signals and Registers

 11-16

Table 11–7. Receive/Transmit Control Register (RCR/XCR) Field Descriptions (Continued)

Name SectionFunction

XWDLEN(1/2) Transmit element length in phase 1 and phase 2

XWDLEN(1/2) = 000b: 8 bits

XWDLEN(1/2) = 001b: 12 bits

XWDLEN(1/2) = 010b: 16 bits

XWDLEN(1/2) = 011b: 20 bits

XWDLEN(1/2) = 100b: 24 bits

XWDLEN(1/2) = 101b: 32 bits

XWDLEN(1/2) = 11Xb: Reserved

11.3.4.5

RCOMPAND Receive companding mode. Modes other than 00b are only applicable
when the appropriate RWDLEN is 000b, indicating 8-bit data.

RCOMPAND = 00b: No companding. Data transfer starts with MSB first.

RCOMPAND = 01b: No companding, 8-bit data. Transfer starts with LSB first.

RCOMPAND = 10b: Compand using µ-law for receive data.

RCOMPAND = 11b: Compand using A-law for receive data.

11.4

XCOMPAND Transmit companding mode. Modes other than 00b are only applicable when the
appropriate XWDLEN is 000b, indicating 8-bit data.

XCOMPAND = 00b: No companding, Data transfer starts with MSB first.

XCOMPAND = 01b: No companding, 8-bit data. Transfer starts with LSB first.

XCOMPAND = 10b: Compand using µ-law for transmit data.

XCOMPAND = 11b: Compand using A-law for transmit data.

11.4

RFIG Receive frame ignore

RFIG = 0: Unexpected receive frame synchronization pulses restart the
transfer.

RFIG = 1: Unexpected receive frame synchronization pulses are ignored.

11.3.6.1

XFIG Transmit frame ignore

XFIG = 0: Unexpected transmit frame synchronization pulses restart the
transfer.

XFIG = 1: Unexpected transmit frame synchronization pulses are ignored.

11.3.6.1

McBSP Interface Signals and Registers

11-17Multichannel Buffered Serial Ports

Table 11–7. Receive/Transmit Control Register (RCR/XCR) Field Descriptions (Continued)

Name SectionFunction

RDATDLY Receive data delay

RDATDLY = 00b: 0-bit data delay

RDATDLY = 01b: 1-bit data delay

RDATDLY = 10b: 2-bit data delay

RDATDLY = 11b: Reserved

11.3.4.7

XDATDLY Transmit data delay

XDATDLY = 00b: 0-bit data delay

XDATDLY = 01b: 1-bit data delay

XDATDLY = 10b: 2-bit data delay

XDATDLY = 11b: Reserved

11.3.4.7

RPHASE 2 Receive PHASE 2. Applicable only for dual-phase frames. Mainly used for I2S
feature. Applicable only for ’C6211/C6711 device.

RPHASE 2 = 0: The start of phase 2 is unaffected by receive frame sync.

RPHASE 2 = 1: The second phase in a dual-phase frame starts when the
receive frame sync transitions to the opposite edge that started
the first phase.

This is applicable when frame syncs are inputs or outputs.

11.3.4.3

XPHASE 2 Transmit PHASE 2. Applicable only for dual-phase frames. Mainly used for I2S
feature. Applicable only for ’C6211/C6711 device.

XPHASE 2 = 0: The start of phase 2 is unaffected by transmit frame sync.

XPHASE 2 = 1: The second phase in a dual-phase frame starts when the
transmit frame sync transitions to the opposite edge that
started the first phase.

This is applicable when frame syncs are inputs or outputs

11.3.4.3

RWDREVRS Receive 32-bit bit reversal feature. Applicable only for ’C6211/C6711 device.

RWDREVRS = 0: 32-bit reversal disabled

RWDREVRS = 1: 32-bit reversal enabled. 32-bit data is received LSB first.
RWDLEN should be set for 32-bit operation; else operation is
undefined.

11.3.9

XWDREVRS Transmit 32-bit bit reversal feature. Applicable only for ’C6211/C6711 device.

XWDREVRS = 0: 32-bit reversal disabled

XWDREVRS = 1: 32-bit reversal enabled. 32-bit data is transmitted LSB first.
XWDLEN should be set for 32-bit operation; else operation is
undefined.

11.3.9

Data Transmission and Reception

 11-18

11.3 Data Transmission and Reception

As shown in Figure 11–1 on page 11-3, the receive operation is triple-buff-
ered and the transmit operation is double-buffered. Receive data arrives on
the DR and is shifted into the RSR. Once a full element (8, 12, 16, 20, 24, or
32 bits) is received, the RSR is copied to the receive buffer register (RBR) only
if the RBR is not full. The RBR is then copied to the DRR unless the DRR has
not been read by the CPU or the DMA controller.

Transmit data is written by the CPU or the DMA controller to the DXR. If there
is no data in the XSR, the value in the DXR is copied to the XSR. Otherwise,
the DXR is copied to the XSR when the last bit of data is shifted out on the DX.
After transmit frame synchronization, the XSR begins shifting out the transmit
data on the DX.

11.3.1 Resetting the Serial Port: (R/X)RST , GRST, and RESET

The serial port can be reset in the following two ways:

� Device reset (RESET pin is low) places the receiver, the transmitter, and
the sample rate generator in reset. When the device reset is removed
(RESET = 1), FRST = GRST = RRST = XRST = 0, keeping the entire serial
port in the reset state.

� The serial port transmitter and receiver can be independently reset by the
XRST and RRST bits in the SPCR. The sample rate generator is reset by
the GRST bit in the SPCR.

Table 11–8 shows the state of the McBSP pins when the serial port is reset by
these methods.

Data Transmission and Reception

11-19Multichannel Buffered Serial Ports

Table 11–8. Reset State of McBSP Pins

McBSP
Pins Direction

Device Reset
(RESET = 0) McBSP Reset

Receiver Reset (RRST = 0 and GRST = 1)

DR I Input Input

CLKR I/O/Z Input Known state if input; CLKR if output

FSR I/O/Z Input Known state if input; FSRP(inactive state) if output

CLKS I Input Input

Transmitter Reset (XRST = 0 and GRST = 1)

DX O/Z High impedance High impedance

CLKX I/O/Z Input Known state if input; CLKX if output

FSX I/O/Z Input Known state if input; FSXP(inactive state) if output

CLKS I Input Input

� Device reset or McBSP reset: When the McBSP is reset by device reset
or McBSP reset, the state machine is reset to its initial state. All counters
and status bits are reset. This includes the receive status bits RFULL,
RRDY, and RSYNCERR and the transmit status bits XEMPTY, XRDY, and
XSYNCERR.

� Device reset: When the McBSP is reset due to device reset, the entire se-
rial port (including the transmitter, receiver, and the sample rate generator)
is reset. All input-only pins and 3-state pins should be in a known state. The
output-only pin, DX, is in the high impedance state. Since the sample rate
generator is also reset (GRST = 0), the sample rate generator clock,
CLKG, is driven by a divide-by-2 internal clock source, and the frame sync
signal, FSG, is not generated. The internal clock source for the
’C6211/C6711 is CPU clock, while the internal clock source for
’C6211/C6711 is CPU/2 clock (half of the CPU clock frequency). See
section 11.5.1.2 for more information on sample rate generator reset.
When the device is pulled out of reset, the serial port remains in the reset
condition ((R/X)RST = FRST = 0). In this reset condition, the serial port
pins can be used as general-purpose I/O (see section 11.8).

Data Transmission and Reception

 11-20

� McBSP reset: When the receiver and transmitter reset bits, RRST and
XRST, are written with 0, the respective portions of the McBSP are reset and
activity in the corresponding section stops. All input-only pins, such as DR
and CLKS, and all other pins that are configured as inputs are in a known
state. FS(R/X) is driven to its inactive state (same as its polarity bit,
FS(R/X)P) if it is an output. If CLK(R/X) are programmed as outputs, they
are driven by CLKG, provided that GRST = 1. The DX pin is in the high-im-
pedance state when the transmitter is reset. During normal operation, the
sample rate generator can be reset by writing a 0 to GRST. GRST should
be low only when neither the transmitter nor the receiver is using the sample
rate generator. In this case, the internal sample rate generator clock CLKG,
and its frame sync signal (FSG) is driven inactive (low). When the sample
rate generator is not in the reset state (GRST = 1), FSR and FSX are in an
inactive state when RRST = 0 and XRST = 0, respectively, even if they are
outputs driven by FSG. This ensures that when only one portion of the
McBSP is in reset, the other portion can continue operation when FRST
= 1 and frame sync is driven by FSG.

� Sample-rate generator reset: As mentioned previously, the sample rate
generator is reset when the device is reset or when its reset bit, GRST, is
written with 0. In the case of device reset, the CLKG signal is driven by a
divide-by-2 internal clock source and FSG is driven inactive (low). The in-
ternal clock source for the ’C6211/C6711 is CPU clock, while the internal
clock source for ’C6211/C6711 is CPU/2 clock (half of the CPU clock fre-
quency). If you want to reset the sample rate generator when neither the
transmitter nor receiver is fed by the CLKG and FSG, you can program
GRST in the SRGR to 0. CLKG and FSG are driven inactive (low). When
GRST = 1, CLKG runs as programmed in the SRGR. If FRST = 1, FSG
is driven active (high) after eight cycles have elapsed.

The serial port initialization procedure is as follows:

1) Set XRST = RRST = FRST = 0 in SPCR. If the device has been reset, this
step is not required.

2) Program only the McBSP configuration registers, not the data registers,
that are listed in Table 11–2, as required when the serial port is in the reset
state (XRST = RRST = FRST = 0).

3) Wait two bit clocks to ensure proper internal synchronization.

4) Set up data acquisition as desired.

5) Set XRST = RRST = 1 to enable the serial port. The value written to the
SPCR should have only the reset bits changed to 1 and the remaining bit
fields should have the same value as in step 2.

6) Set FRST = 1. If it is the frame master, the McBSP is now ready to transmit
and/or receive.

Data Transmission and Reception

11-21Multichannel Buffered Serial Ports

Alternatively, on either write (steps 1 and 5 above), the transmitter and receiver
can be placed in or taken out of reset individually by modifying only the desired
bit. The necessary duration of the active(low) period of XRST or RRST is at least
two bit clocks (CLKR/CLKX). This procedure for reset initialization can be ap-
plied generally when the receiver or transmitter has to be reset during its normal
operation and also when the sample rate generator is not used for either op-
eration. The sample-rate generator reset procedure is explained in section
11.5.1.2.

Notes:

1) The appropriate fields in the serial port configuration registers SPCR,
PCR, RCR, XCR, and SRGR should be modified only when the affected
portion of the serial port is in reset.

2) The data transmit register, DXR, should be loaded by the CPU or DMA
only when the transmitter is not in reset (XRST = 1). The exception to this
rule occurs during non-digital loop-back mode, which is described in sec-
tion 11.4.1.

3) The multichannel selection registers MCR, XCER, and RCER can be
modified at any time as long as they are not being used by the current
block in the multichannel selection. See section 11.6.3.2 for more infor-
mation.

11.3.2 Determining Ready Status

RRDY and XRDY indicate the ready state of the McBSP receiver and transmit-
ter, respectively. Writes and reads from the serial port can be synchronized by
any of the following methods:

� Polling RRDY and XRDY
� Using the events sent to the DMA controller (REVT and XEVT)
� Using the interrupts to the CPU (RINT and XINT) that the events generate.

Note:

Note that reading the DRR and writing to DXR affects RRDY and XRDY, re-
spectively.

11.3.2.1 Receive Ready Status: REVT, RINT, and RRDY

RRDY = 1 indicates that the RBR contents have been copied to the DRR and
that the data can be read by either the CPU or the DMA controller. Once that

Data Transmission and Reception

 11-22

data has been read by either the CPU or the DMA controller, RRDY is cleared
to 0. Also, at device reset or serial port receiver reset (RRST = 0), the RRDY
is cleared to 0 to indicate that no data has yet been received and loaded into
DRR. RRDY directly drives the McBSP receive event to the DMA controller
(via REVT). Also, the McBSP receive interrupt (RINT) to the CPU can be driv-
en by RRDY if RINTM = 00b (default value) in the SPCR.

11.3.2.2 Transmit Ready Status: XEVT, XINT, and XRDY

XRDY = 1 indicates that the DXR contents have been copied to XSR and that
DXR is ready to be loaded with a new data word. When the transmitter transi-
tions from reset to non-reset (XRST transitions from 0 to 1), XRDY also transi-
tions from 0 to 1 indicating that the DXR is ready for new data. Once new data
is loaded by the CPU or the DMA controller, XRDY is cleared to 0. However,
once this data is copied from the DXR to the XSR, XRDY transitions again from
0 to 1. The CPU or the DMA controller can write to DXR although XSR has not
yet been shifted out on DX. XRDY directly drives the transmit synchronization
event to the DMA controller (via XEVT). Also, the transmit interrupt (XINT) to
the CPU can be driven by XRDY if XINTM = 00b (default value) in the SPCR.

11.3.3 CPU Interrupts: (R/X)INT

The receive interrupt (RINT) and transmit interrupt (XINT) signal the CPU of
changes to the serial port status. Four options exist for configuring these inter-
rupts. These options are set by the receive/transmit interrupt mode field,
(R/X)INTM, in the SPCR. The possible values of the mode and the configura-
tions they represent are:

� (R/X)INTM = 00b. Interrupt on every serial element by tracking the
(R/X)RDY bits in the SPCR.

� (R/X)INTM = 01b. Interrupt at the end of a subframe (16 elements or less)
within a frame. See subsection 11.6.3.3 for details.

� (R/X)INTM = 10b. Interrupt on detection of frame synchronization pulses.
This generates an interrupt even when the transmitter/receiver is in reset.
This is done by synchronizing the incoming frame sync pulse to the CPU
clock and sending it to the CPU via (R/X)INT. See subsection 11.5.3.4 for
more information.

� (R/X)INTM = 11b. Interrupt on frame synchronization error. Note that if any
of the other interrupt modes are selected, (R/X)SYNCERR may be read
when servicing the interrupts to detect this condition. See subsections
11.3.7.2 and 11.3.7.5 for more details on synchronization error.

Data Transmission and Reception

11-23Multichannel Buffered Serial Ports

11.3.4 Frame and Clock Configuration

Figure 11–6 shows typical operation of the McBSP clock and frame sync sig-
nals. Serial clocks CLKR and CLKX define the boundaries between bits for re-
ceive and transmit, respectively. Similarly, frame sync signals FSR and FSX
define the beginning of an element transfer. The McBSP allows configuration
of the following parameters for data and frame synchronization:

� Polarities of FSR, FSX, CLKX, and CLKR

� A choice of single- or dual-phase frames

� For each phase, the number of elements per frame

� For each phase, the number of bits per element

� Whether subsequent frame synchronization restarts the serial data
stream or is ignored

� The data delay from frame synchronization to first data bit which can be
0-, 1-, or 2-bit delays

� Right or left justification as well as sign extension or zero filling for receive
data

The configuration can be independent for receive and transmit.

Figure 11–6.Frame and Clock Operation

D(R/X)

FS(R/X)

CLK(R/X)

B3 B2 B1 B0B5 B4B6B7A0A1 ÁÁ
ÁÁ

ÁÁ
ÁÁ

Á
Á

11.3.4.1 Frame and Clock Operation

Receive and transmit frame sync pulses can either be generated internally by
the sample rate generator (see section 11.5.1) or be driven by an external in-
put. The source of frame sync is selected by programming the mode bit,
FS(R/X)M, in the PCR. FSR is also affected by the GSYNC bit in the SRGR
(see section 11.5.3.2 for details). Similarly, receive and transmit clocks can be
selected to be inputs or outputs by programming the mode bit, CLK(R/X)M, in
the PCR.

When FSR and FSX are inputs (FSXM = FSRM = 0), the McBSP detects them
on the internal falling edge of clock, CLKR_int and CLKX_int, respectively (see

Data Transmission and Reception

 11-24

Figure 11–37 on page 11-53). The receive data arriving at the DR pin is also
sampled on the falling edge of CLKR_int. These internal clock signals are either
derived from external source via the CLK(R/X) pins or driven by the sample rate
generator clock (CLKG) internal to the McBSP.

When FSR and FSX are outputs driven by the sample rate generator, they are
generated (transition to their active state) on the rising edge of the internal
clock, CLK(R/X)_int. Similarly, data on DX is output on the rising edge of
CLKX_int. See section 11.3.4.7 for more information.

FSRP, FSXP, CLKRP, and CLKXP configure the polarities of FSR, FSX, CLKR,
and CLKX, as indicated in Table 11–6. All frame sync signals (FSR_int and
FSX_int) internal to the serial port are active high. If the serial port is configured
for external frame synchronization (FSR/FSX are inputs to the McBSP) and
FSRP = FSXP = 1, the external active (low) frame sync signals are inverted be-
fore being sent to the receiver signal (FSR_int) and transmitter signal (FSX_int).
Similarly, if internal synchronization is selected (FSR/FSX are outputs and
GSYNC = 0), the internal active (high) sync signals are inverted if the polarity bit
FS(R/X)P = 1, before being sent to the FS(R/X) pin. Figure 11–37 shows this in-
version using XOR gates.

On the transmit side, the transmit clock polarity bit, CLKXP, sets the edge used
to shift and clock out transmit data. Data is always transmitted on the rising
edge of CLKX_int. If CLKXP = 1 and external clocking is selected (CLKXM =
0 and CLKX is an input), the external falling-edge-triggered input clock on
CLKX is inverted to a rising-edge-triggered clock before being sent to the
transmitter. If CLKXP = 1 and internal clocking is selected (CLKXM = 1 and
CLKX is an output pin), the internal (rising-edge-triggered) clock, CLKX_int,
is inverted before being sent out on the CLKX pin.

Similarly, the receiver can reliably sample data that is clocked (by the transmit-
ter) with a rising-edge clock. The receive clock polarity bit, CLKRP, sets the
edge used to sample received data. The receive data is always sampled on
the falling edge of CLKR_int. Therefore, if CLKRP = 1 and external clocking
is selected (CLKRM = 0 and CLKR is an input pin), the external rising-edge
triggered input clock on CLKR is inverted to a falling-edge clock before being
sent to the receiver. If CLKRP = 1 and internal clocking is selected (CLKRM
= 1), the internal falling-edge-triggered clock is inverted to a rising edge before
being sent out on the CLKR pin.

Data Transmission and Reception

11-25Multichannel Buffered Serial Ports

In a system where the same clock (internal or external) is used to clock the re-
ceiver and transmitter, CLKRP = CLKXP. The receiver uses the opposite edge
as the transmitter to ensure valid setup and hold times of data around this edge.
Figure 11–7 shows how data clocked by an external serial device using a rising-
edge clock can be sampled by the McBSP receiver with the falling edge of the
same clock.

Figure 11–7.Receive Data Clocking

DR

CLKR_int

B6B7

Data hold
Data setup

ÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁ

11.3.4.2 Frame Synchronization Phases

Frame synchronization indicates the beginning of a transfer on the McBSP.
The data stream following frame synchronization can have up to two phases,
phase 1 and phase 2. The number of phases can be selected by the phase bit,
(R/X)PHASE, in the RCR and XCR. The number of elements per frame and
bits per element can be independently selected for each phase via
(R/X)FRLEN(1/2) and (R/X)WDLEN(1/2), respectively. Figure 11–8 shows a
frame in which the first phase consists of two elements of 12 bits each followed
by a second phase of three elements of 8 bits each. The entire bit stream in
the frame is contiguous; no gaps exist either between elements or phases.
Table 11–9 shows the fields in the receive/transmit control registers (RCR/
XCR) that control the frame length and element length for each phase for both
the receiver and the transmitter. The maximum number of elements per frame
is 128 for a single-phase frame and 256 elements in a dual-phase frame. The
number of bits per element can be 8, 12, 16, 20, 24, or 32.

Note:

For a dual-phase frame with internally generated frame sync, the maximum
number of elements per phase depends on the word length. This is because
the frame period, FPER is only 12-bits wide and, therefore, provides 4096
bits per frame. Hence, the maximum number of 128 elements per single-
phase frame for a total of 256 elements per dual-phase frame applies only
when the WDLEN is 16-bits.

Data Transmission and Reception

 11-26

Figure 11–8.Dual-Phase Frame Example

D(R/X)

FS(R/X)

CLK(R/X)

Element 3
Phase 2

Element 2
Phase 2Element 1

Phase 2

Element 2
Phase 1Element 1

Phase 1

ÁÁ

ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 11–9. RCR/XCR Fields Controlling Elements per Frame and Bits per Element

Serial Port
RCR/XCR field Control

Serial Port
McBSP0/1 Frame Phase Elements per Frame Bits per Element

Receive 1 RFRLEN1 RWDLEN1

Receive 2 RFRLEN2 RWDLEN2

Transmit 1 XFRLEN1 XWDLEN1

Transmit 2 XFRLEN2 XWDLEN2

11.3.4.3 Phase 2 Control: (R/X) PHASE2

This feature is available only in the ’C6211/C6711 device. The (R/X)PHASE2
bits in the (R/X)CR register determine when the second phase starts in a dual
phase frame. This feature is to support more varieties of IIS formats. Note that
the McBSP in the other ’C6000 family of devices does support some IIS for-
mats.

The start of second phase can be controlled by setting the (R/X)PHASE2 bit.
When (R/X)PHASE 2 is zero, the start of phase 2 is unaffected by the receive/
transmit frame sync. As shown in Figure 11–8, phase 2 starts as soon as
phase 1 is finished. When (R/X)PHASE2 = 1, the first phase starts as soon as
the frame sync goes active (low if FS(R/X)P = 1, high if FS(R/X)P = 0). The
second phase starts when the frame sync transitions to the opposite edge that
started the first phase as shown in Figure 11–9. If FS(R/X) is an output driven
by the McBSP, FWID determines the duration of Phase 1, and FPER
determines the total frame period for the two phases. If FS(R/X) is an input,
the frame sync transition after the first phase is detected and the second phase
transmission/reception is initiated.

For all dual phase frames, phase 1 and phase 2 can have elements with differ-
ent word lengths. Hence, WDLEN1 can be different than WDLEN2. Setting the
(R/X)PHASE2 bit also allows dead time between Phase 1 and Phase 2 as
shown in Figure 11–9. All data delays are still valid with this set up.

Data Transmission and Reception

11-27Multichannel Buffered Serial Ports

Figure 11–9.Inter-IC Sound (IIS) Timing

D(R/X)

FS(R/X)

CLK(R/X)

Phase 1 Phase 2

FPER
FWID

B7 B6 B5 B2 B1 B0 C15 C14 C0

11.3.4.4 Frame Length: (R/X)FRLEN(1/2)

Frame length can be defined as the number of serial elements transferred per
frame. The length corresponds to the number of elements or logical time slots or
channels per frame synchronization signal. The 7-bit (R/X)FRLEN(1/2) field in the
(R/X)CR supports up to 128 elements per frame, as shown in Table 11–10.
(R/X)PHASE = 0 selects a single-phase data frame, and (R/X)PHASE = 1 selects
a dual-phase frame for the data stream. For a single-phase frame, the value of
FRLEN2 does not matter. Program the frame length fields with (w minus 1),
where w represents the number of elements per frame. For Figure 11–8,
(R/X)FRLEN1 = 1 or 0000001b and (R/X)FRLEN2 = 2 or 0000010b.

Table 11–10. McBSP Receive/Transmit Frame Length 1/2 Configuration

(R/X)PHASE (R/X)FRLEN1 (R/X)FRLEN2 Frame Length

0 0 ≤ n ≤ 127 x Single-phase frame; (n+1) words per frame

1 0 ≤ n ≤ 127 0 ≤ m ≤ 127 Dual-phase frame; (n+1) plus (m+1) words per frame

Data Transmission and Reception

 11-28

11.3.4.5 Element Length: (R/X)WDLEN(1/2)

The (R/X)WDLEN(1/2) fields in the receive/transmit control register determine
the element length in bits per element for the receiver and the transmitter for
each phase of the frame, as indicated in Table 11–9. Table 11–11 shows how
the value of these fields selects particular element lengths in bits. For the exam-
ple in Figure 11–8, (R/X)WDLEN1 = 001b and (R/X)WDLEN2 = 000b. If
(R/X)PHASE = 0, indicating a single-phase frame, (R/X)WDLEN2 is not used
by the McBSP and its value does not matter.

Table 11–11. McBSP Receive/Transmit Element Length Configuration

(R/X)WDLEN
(1/2)

McBSP
Element

Length (Bits)

000 8

001 12

010 16

011 20

100 24

101 32

110 Reserved

111 Reserved

11.3.4.6 Data Packing using Frame Length and Element Length

The frame length and element length can be manipulated to effectively pack
data. For example, consider a situation in which four 8-bit elements are trans-
ferred in a single-phase frame, as shown in Figure 11–10. In this case:

� (R/X)PHASE = 0, indicating a single-phase frame
� (R/X)FRLEN1 = 0000011b, indicating a 4-element frame
� (R/X)WDLEN1 = 000b, indicating 8-bit elements

In this situation, four 8-bit data elements are transferred to and from the McBSP
by the CPU or the DMA controller. Four reads of DRR and four writes of DXR
are necessary for each frame.

Data Transmission and Reception

11-29Multichannel Buffered Serial Ports

Figure 11–10. Single-Phase Frame of Four 8-Bit Elements

DX

FSX

CLKX

DR

FSR

CLKR

Element 4Element 3Element 2Element 1

DXR-to-XSR copyDXR-to-XSR copyDXR-to-XSR copyDXR-to-XSR copy

ÁÁ
ÁÁ

Á
Á

Á
Á

ÁÁ
ÁÁ

ÁÁÁ
RBR–to-DRR copyRBR-to-DRR copy RBR-to-DRR copyRBR–to–DRR copy

The example in Figure 11–10 can also be viewed as a data stream of a single-
phase frame of one 32-bit data element, as shown in Figure 11–11. In this
case:

� (R/X)PHASE = 0, indicating a single phase frame
� (R/X)FRLEN1 = 0b, indicating a 1-element frame
� (R/X)WDLEN1 = 101b, indicating 32-bit elements

In this situation, one 32-bit data element is transferred to and from the McBSP
by the CPU or the DMA controller. Thus, one read of DRR and one write of DXR
is necessary for each frame. As a result, the number of transfers is one fourth
that of the previous case. This manipulation reduces the percentage of bus
time required for serial port data movement.

Figure 11–11.Single-Phase Frame of One 32-Bit Element

Element 1

DXR to XSR Copy

RBR to DRR copy

CLKR

FSR

DR

CLKX

FSX

DX

Data Transmission and Reception

 11-30

11.3.4.7 Data Delay: (R/X)DATDLY

The start of a frame is defined by the first clock cycle in which frame synchro-
nization is active. The beginning of actual data reception or transmission with
respect to the start of the frame can be delayed if required. This delay is called
data delay. RDATDLY and XDATDLY specify the data delay for reception and
transmission, respectively. The range of programmable data delay is zero to
two bit clocks ((R/X)DATDLY = 00b to10b), as indicated in Table 11–7 and
shown in Figure 11–12. Typically, a 1-bit delay is selected because data often
follows a 1-cycle active frame sync pulse.

Figure 11–12. Data Delay

B5B6B7

B4B5B6B7

B3B4B5B6B7

D(R/X)
data delay 2

data delay 1
D(R/X)

data delay 0
D(R/X)

FS(R/X)

CLK(R/X)

Á
Á

Á
Á

Á
Á

0-bit period

2-bit period

1-bit period

Normally a frame sync pulse is detected or sampled with respect to an edge of
serial clock CLK(R/X). Thus, on a subsequent cycle (depending on data delay
value), data can be received or transmitted. However, in the case of a 0-bit data
delay, the data must be ready for reception and/or transmission on the same
serial clock cycle. For reception, this problem is solved by receive data being
sampled on the first falling edge of CLKR when an active (high) FSR is detected.
However, data transmission must begin on the rising edge of CLKX that gener-
ated the frame synchronization. Therefore, the first data bit is assumed to be in
the XSR and DX. The transmitter then asynchronously detects the frame syn-
chronization, FSX goes active, and it immediately starts driving the first bit to be
transmitted on the DX pin.

Data Transmission and Reception

11-31Multichannel Buffered Serial Ports

Another common operation uses a data delay of 2. This configuration allows the
serial port to interface to different types of T1 framing devices in which the data
stream is preceded by a framing bit. During the reception of such a stream with
a data delay of two bits, the framing bit appears after a 1-bit delay and data ap-
pears after a 2-bit delay). The serial port essentially discards the framing bit from
the data stream, as shown in Figure 11–13. In transmission, by delaying the first
transfer bit, the serial port essentially inserts a blank period (a high-impedance
period) in place of the framing bit. Here, it is expected that the framing device in-
serts its own framing bit or that the framing bit is generated by another device.
Alternatively, you may pull up or pull down DX to achieve the desired value.

Figure 11–13. 2-Bit Data Delay Used to Discard Framing Bit

B7 B6 B5

2 Bit Periods

Framing Bit

CLKR

FSR

DR

Data Transmission and Reception

 11-32

11.3.4.8 Multiphase Frame Example: AC97

Figure 11–14 shows an example of the Audio Codec ’97 (AC97) standard,
which uses the dual-phase frame feature. The first phase consists of a single
16-bit element. The second phase consists of 12 20-bit elements. The phases
are configured as follows:

� (R/X)PHASE = 1b: specifying a dual-phase frame
� (R/X)FRLEN1 = 0b: specifying one element per frame in phase 1
� (R/X)WDLEN1 = 010b: specifying 16 bits per element in phase 1
� (R/X)FRLEN2 = 0001011b: specifying 12 elements per frame in phase 2
� (R/X)WDLEN2 = 011b: specifying 20 bits per element in phase 2
� CLK(R/X)P = 0: specifying that the receive data sampled on the falling edge

of CLKR and the transmit data are clocked on the rising edge of CLKX
� FS(R/X)P = 0: indicating that active frame sync signals are used
� (R/X)DATDLY = 01b: indicating a data delay of one bit clock

Figure 11–14. AC97 Dual-Phase Frame Format�

D(R/X)

FS(R/X)

P2E12P2E11P2E10P2E9P2E8P2E7P2E6P2E5P2E4P2E3P2E2P2E1P1E1

20 bits

16 bits

1-bit data delay

Á
Á† PxEy denotes phase x and element y.

Figure 11–14 shows the AC97 timing near frame synchronization. First the
frame sync pulse itself overlaps the first element. In McBSP operation, the inac-
tive-to-active transition of the frame synchronization signal actually indicates
frame synchronization. For this reason, frame synchronization can be high for
an arbitrary number of bit clocks. Only after the frame synchronization is recog-
nized as inactive and then active again is the next frame synchronization recog-
nized.

In Figure 11–15, there is 1-bit data delay. Regardless of the data delay, trans-
mission can occur without gaps. The last bit of the previous (last) element in
phase 2 is immediately followed by the first data bit of the first element in phase
1 of the next data frame.

Data Transmission and Reception

11-33Multichannel Buffered Serial Ports

Figure 11–15. AC97 Bit Timing Near Frame Synchronization�

1-bit data delay

P2E12B1 P1E1B12P1E1B13P1E1B14P1E1B15P2E12B0DR

FSR

CLKR

†� PxEyBz denotes phase x, element y, and bit z.

11.3.5 McBSP Standard Operation

During a serial transfer, there are typically periods of serial port inactivity
between packets or transfers. The receive and transmit frame synchronization
pulse occurs for every serial transfer. When the McBSP is not in the reset state
and has been configured for the desired operation, a serial transfer can be initi-
ated by programming (R/X)PHASE = 0 for a single-phase frame with the required
number of elements programmed in (R/X)FRLEN1. The number of elements can
range from 1 to 128 ((R/X)FRLEN1 = 00h to 7Fh). The required serial element
length is set in the (R/X)WDLEN1 field in the (R/X)CR. If a dual-phase frame is
required for the transfer, RPHASE = 1 and each (R/X)FRLEN(1/2) can be set to
any value between 00h and 7Fh.

Figure 11–16 shows a single-phase data frame of one 8-bit element. Since the
transfer is configured for a 1-bit data delay, the data on the DX and DR pins
are available one bit clock after FS(R/X) goes active. This figure as well as all
others in this section use the following assumptions:

� (R/X)PHASE = 0, specifying a single-phase frame

� (R/X)FRLEN1 = 0b, specifying one element per frame

� (R/X)WDLEN1 = 000b, specifying eight bits per element

� (R/X)FRLEN2 = (R/X)WDLEN2 = Value is ignored.

� CLK(R/X)P = 0, specifying that the receive data is clocked on the falling
edge and that transmit data is clocked on the rising edge

� FS(R/X)P = 0, specifying that active (high) frame sync signals are used

� (R/X)DATDLY = 01b, specifying a 1-bit data delay

Data Transmission and Reception

 11-34

Figure 11–16. McBSP Standard Operation

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 D(R/X)

 FS(R/X)

C5C6C7B0B2B3B4B5B6B7A0A1 B1

 CLK(R/X)

11.3.5.1 Receive Operation

Figure 11–17 shows serial reception. Once the receive frame synchronization
signal (FSR) transitions to its active state, it is detected on the first falling edge
of the receiver’s CLKR. The data on the DR pin is then shifted into the receive
shift register (RSR) after the appropriate data delay as set by RDATDLY. The con-
tents of RSR is copied to RBR at the end of every element on the rising edge of
the clock, provided RBR is not full with the previous data. Then, an RBR-to-DRR
copy activates the RRDY status bit to 1 on the following falling edge of CLKR. This
indicates that the receive data register (DRR) is ready with the data to be read
by the CPU or the DMA controller. RRDY is deactivated when the DRR is read
by the CPU or the DMA controller.

Figure 11–17. Receive Operation

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Read of DRR
(B)

RBR-to-DRR copy
(B)

Read of DRR
(A)

RBR-to-DRR copy
(A)

RRDY

 DR

 FSR

C5C6C7B0B2B3B4B5B6B7A0A1 B1

 CLKR

11.3.5.2 Transmit Operation

Once transmit frame synchronization occurs, the value in the transmit shift
register, XSR, is shifted out and driven on the DX pin after the appropriate data
delay as set by XDATDLY. XRDY is activated after every DXR-to-XSR copy on
the following falling edge of CLKX, indicating that the data transmit register
(DXR) can be written with the next data to be transmitted. XRDY is deactivated
when the DXR is written by the CPU or the DMA controller. Figure 11–18 illus-
trates serial transmission. See section 11.3.7.4 for information on transmit op-
eration when the transmitter is pulled out of reset (XRST = 1).

Data Transmission and Reception

11-35Multichannel Buffered Serial Ports

Figure 11–18. Transmit Operation

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Write of DXR
(D)

DXR to XSR copy
(C)

Write of DXR
(C)

XRDY

 DX

 FSX

C5C6C7B0B2B3B4B5B6B7A0A1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

B1

 CLKX

DXR to XSR copy
(B)

11.3.5.3 Maximum Frame Frequency

The frame frequency is determined by the following equation, which calculates
the period between frame synchronization signals:

��������������� ��

�
�����������������

����������
����������������������������
	����

The frame frequency may be increased by decreasing the time between frame
synchronization signals in bit clocks (which is limited only by the number of bits
per frame). As the frame transmit frequency is increased, the inactivity period
between the data frames for adjacent transfers decreases to 0. The minimum
time between frame synchronization pulses is the number of bits transferred per
frame. This time also defines the maximum frame frequency, which is calculated
by the following equation:

���
����������������� ��

�
�����������������

����������
�����������

Figure 11–19 shows the McBSP operating at maximum frame frequency. The
data bits in consecutive frames are transmitted continuously with no inactivity
between bits. If there is a 1-bit data delay, as shown, the frame synchronization
pulse overlaps the last bit transmitted in the previous frame.

Data Transmission and Reception

 11-36

Figure 11–19. Maximum Frame Frequency Transmit and Receive

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁ
ÁÁ

A2 D(R/X)

 FS(R/X)

C6C7B0B2B3B4B5B6B7A0A1 B1

 CLK(R/X)

Note:

For (R/X)DATDLY = 0, the first bit of data transmitted is asynchronous to
CLKX, as shown in Figure 11–12.

11.3.6 Frame Synchronization Ignore

The McBSP can be configured to ignore transmit and receive frame synchro-
nization pulses. The (R/X)FIG bit in the (R/X)CR can be set to 0 to recognize
frame sync pulses, or it can be set to 1 to ignore frame sync pulses. This way,
you can use (R/X)FIG either to pack data, if operating at maximum frame fre-
quency, or to ignore unexpected frame sync pulses.

Data Transmission and Reception

11-37Multichannel Buffered Serial Ports

11.3.6.1 Frame Sync Ignore and Unexpected Frame Sync Pulses

RFIG and XFIG are used to ignore unexpected frame sync pulses. Any frame
sync pulse is considered unexpected if it occurs one or more bit clocks earlier
than the programmed data delay from the end of the previous frame specified
by ((R/X)DATDLY). Setting the frame ignore bits to 1 causes the serial port to
ignore these unexpected frame sync signals.

In reception, if not ignored (RFIG = 0), an unexpected FSR pulse discards the
contents of RSR in favor of the incoming data. Therefore, if RFIG = 0, an unex-
pected frame synchronization pulse aborts the current data transfer, sets
RSYNCERR in the SPCR to 1, and begins the reception of a new data ele-
ment. When RFIG = 1, the unexpected frame sync pulses are ignored.

In transmission, if not ignored (XFIG = 0), an unexpected FSX pulse aborts the
ongoing transmission, sets the XSYNCERR bit in the SPCR to 1, and reiniti-
ates transmission of the current element that was aborted. When XFIG = 1,
unexpected frame sync signals are ignored.

Figure 11–20 shows that element B is interrupted by an unexpected frame sync
pulse when (R/X)FIG = 0. The reception of B is aborted (B is lost), and a new data
element (C) is received after the appropriate data delay. This condition causes a
receive synchronization error and thus sets the RSYNCERR bit. However, for
transmission, the transmission of B is aborted and the same data (B) is retrans-
mitted after the appropriate data delay. This condition is a transmit synchronization
error and thus sets the XSYNCERR bit. Synchronization errors are discussed in
sections 11.3.7.2 and 11.3.7.5.

Figure 11–20. Unexpected Frame Synchronization With (R/X)FIG = 0

A0

Current data retransmitted

New data received

(R/X)SYNCERR

DX C6C7B0B1B2B3B4B5B6B7B6B7A0

DR

 FS(R/X)

D6D7C0C2C3C4C5C6C7B6B7 C1

 CLK(R/X)

Frame sync aborts current transfer

Data Transmission and Reception

 11-38

Figure 11–21 shows McBSP operation when unexpected frame synchronization
signals are ignored by setting (R/X)FIG = 1. Here, the transfer of element B is not
affected by an unexpected frame synchronization.

Figure 11–21. Unexpected Frame Synchronization With (R/X)FIG = 1

(R/X)SYNCERR
(low)

A0D(R/X)

 FS(R/X)

C4C5C6B0B1B2B3B4B5B6B7 C7

 CLK(R/X)

Frame synchronization ignored

Data Transmission and Reception

11-39Multichannel Buffered Serial Ports

11.3.6.2 Data Packing using Frame Sync Ignore Bits

Section 11.3.4.6 describes one method of changing the element length and frame
length to simulate 32-bit serial element transfers, thus requiring much less bus
bandwidth than four 8-bit transfers require. This example works when there are
multiple elements per frame. Now consider the case of the McBSP operating at
maximum packet frequency, as shown in Figure 11–22. Here, each frame has on-
ly a single 8-bit element. This stream takes one read transfer and one write trans-
fer for each 8-bit element. Figure 11–23 shows the McBSP configured to treat this
stream as a continuous stream of 32-bit elements. In this example, (R/X)FIG is
set to 1 to ignore unexpected subsequent frames. Only one read transfer and one
write transfer is needed every 32-bits. This configuration effectively reduces the
required bus bandwidth to one-fourth of the bandwidth needed to transfer four
8-bit blocks.

Figure 11–22. Maximum Frame Frequency Operation With 8-Bit Data

DXR-to-XSR copyDXR-to-XSR copyDXR-to-XSR copy DXR-to-XSR copy

 DX

 FSX

 CLKX

Element 4Element 3Element 2

 DR

Element 1

 FSR

 CLKR

RBR-to-DRR copyRBR-to-DRR copy RBR-to-DRR copyRBR-to-DRR copy

Data Transmission and Reception

 11-40

Figure 11–23. Data Packing at Maximum Frame Frequency With (R/X)FIG = 1

Frame ignored

Frame ignored

Frame ignored

Frame ignored

Frame ignored

Frame ignored

DXR-to-XSR copy

 DX

 FSX

 CLKX

RBR-to-DRR copy

 DR

Element 1

 FSR

 CLKR

Data Transmission and Reception

11-41Multichannel Buffered Serial Ports

11.3.7 Serial Port Exception Conditions

There are five serial port events that can constitute a system error:

� Receive overrun (RFULL = 1)

� Unexpected receive frame synchronization (RSYNCERR = 1)

� Transmit data overwrite

� Transmit empty (XEMPTY = 0)

� Unexpected transmit frame synchronization (XSYNCERR = 1)

11.3.7.1 Reception With Overrun: RFULL

RFULL = 1 in the SPCR indicates that the receiver has experienced overrun
and is in an error condition. RFULL is set when the following conditions are
met:

� DRR has not been read since the last RBR-to-DRR transfer.
� RBR is full and an RBR-to-DRR copy has not occurred.
� RSR is full and an RSR-to-RBR transfer has not occurred.

The data arriving on DR is continuously shifted into RSR. Once a complete
element is shifted into RSR, an RSR-to-RBR transfer can occur only if an RBR-
to-DRR copy is complete. Therefore, if DRR has not been read by the CPU or
the DMA controller since the last RBR-to-DRR transfer (RRDY = 1), an RBR-
to-DRR copy does not take place until RRDY = 0. This prevents an RSR-to-
RBR copy. New data arriving on the DR pin is shifted into RSR, and the pre-
vious contents of RSR is lost. After the receiver starts running from reset, a
minimum of three elements must be received before RFULL can be set, be-
cause there was no last RBR-to-DRR transfer before the first element.

This data loss can be avoided if DRR is read no later than two and a half CLKR
cycles before the end of the third element (data C) in RSR, as shown in
Figure 11–25.

Either of the following events clears the RFULL bit to 0 and allows subsequent
transfers to be read properly:

� Reading DRR
� Resetting the receiver (RRST = 0) or the device

Another frame synchronization is required to restart the receiver.

Figure 11–24 shows the receive overrun condition. Because element A is not
read before the reception of element B is complete, B is not transferred to DRR

Data Transmission and Reception

 11-42

yet. Another element, C, arrives and fills RSR. DRR is finally read, but not earli-
er than two and one half cycles before the end of element C. New data D over-
writes the previous element C in RSR. If RFULL is still set after the DRR is read,
the next element can overwrite D if DRR is not read in time.

Figure 11–24. Serial Port Receive Overrun

D7A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0

No RBR–to–DRR copy (B)

RBR–to–DRR copy (A)

No Read of DRR (A)

No RSR–to–RBR copy(C)

No Read of DRR(A)

CLKR

FSR

DR

RRDY

RFULL

Figure 11–25 shows the case in which RFULL is set but the overrun condition
is averted by reading the contents of DRR at least two and a half cycles before
the next element, C, is completely shifted into RSR. This ensures that a RBR-
to-DRR copy of data B occurs before the next element is transferred from RSR
to RBR.

Figure 11–25. Serial Port Receive Overrun Avoided

A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0

No RBR–to–DRR copy (B) Read of DRR (A)

RBR–to–DRR copy (A)

No Read of DRR (A)

RBR–to–DRR (B)

CLKR

FSR

DR

RRDY

RFULL

Data Transmission and Reception

11-43Multichannel Buffered Serial Ports

11.3.7.2 Unexpected Receive Frame Synchronization: RSYNCERR

Figure 11–26 shows the decision tree that the receiver uses to handle all incom-
ing frame synchronization pulses. The diagram assumes that the receiver has
been activated (RRST = 1). Unexpected frame sync pulses can originate from
an external source or from the internal sample rate generator. An unexpected
frame sync pulse is defined as a sync pulse which occurs RDATDLY bit clocks
earlier than the last transmitted bit of the previous frame. Any one of three cases
can occur:

� Case 1: Unexpected FSR pulses with RFIG = 1. This case is discussed in
section 8.3.6.1 and shown in Figure 11–21. Here, receive frame sync
pulses are ignored and the reception continues.

� Case 2: Normal serial port reception. There are three reasons for a receive
not to be in progress:

� This FSR is the first after RRST = 1.

� This FSR is the first after DRR has been read clearing an RFULL con-
dition.

� The serial port is in the inter-packet intervals. The programmed data
delay (RDATDLY) for reception may start during these inter-packet in-
tervals for the first bit of the next element to be received. Thus, at maxi-
mum frame frequency, frame synchronization can still be received
RDATDLY bit clocks before the first bit of the associated element.

For this case, reception continues normally, because these are not unex-
pected frame sync pulses.

� Case 3: Unexpected receive frame synchronization with RFIG = 0 (unex-
pected frame not ignored). This case was shown in Figure 11–20 for maxi-
mum packet frequency. Figure 11–27 shows this case during normal
operation of the serial port with time intervals between packets. Unex-
pected frame sync pulses are detected when they occur the value in
RDATDLY bit clocks before the last bit of the previous element is received
on DR. In both cases, RSYNCERR in the SPCR is set. RSYNCERR can
be cleared only by receiver reset or by writing a 0 to this bit in the SPCR.
If RINTM = 11b in the SPCR, RSYNCERR drives the receive interrupt
(RINT) to the CPU.

Note:

Note that the RSYNCERR bit in the SPCR is a read/write bit, so writing a 1
to it sets the error condition. Typically, writing a 0 is expected.

Data Transmission and Reception

 11-44

Figure 11–26. Decision Tree Response to Receive Frame Synchronization Pulse

No

Yes

No

Yes

RFIG = 1 ?

Unexpected
frame sync

pulse ?

Start next reception.
Previous element is lost.

Normal reception

Set RSYNCERR.
Abort reception.

Ignore frame pulse.
Receiver continues running.

Start receiving data

sync pulse occurs
Receive frame

Case 1:

Case 2:

Case 3:

Figure 11–27. Unexpected Receive Synchronization Pulse

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RSYNCERR

RRDY

 DR

 FSR

C1 C0B7A0

 CLKR

Unexpected frame synchronization

RBR-to-DRR copy Read of DRR RBR-to-DRR copy Read of DRR

B6 B5 B4 C7 C6 C5 C4 C3 C2A1

Data Transmission and Reception

11-45Multichannel Buffered Serial Ports

11.3.7.3 Transmit With Data Overwrite

Figure 11–28 shows what happens if the data in DXR is overwritten before it is
transmitted. Suppose you load the DXR with data C. A subsequent write to the
DXR overwrites C with D before C is copied to the XSR. Thus, C is never trans-
mitted on DX. The CPU can avoid overwriting data by polling XRDY before writ-
ing to DXR or by waiting for a programmed XINT to be triggered by XRDY
(XINTM = 00b). The DMA controller can avoid overwriting by synchronizing data
writes with XEVT.

Figure 11–28. Transmit With Data Overwrite

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁWrite of DXR (D)

D6D7B0B1B2B3B4B5B6A1

Write of DXR (E)DXR-to-XSR copy (D)Write of DXR (C)DXR-to-XSR copy (B)

XRDY

DX

 FSX

B7A0

 CLKX

11.3.7.4 Transmit Empty: XEMPTY

XEMPTY indicates whether the transmitter has experienced under flow. Either
of the following conditions causes XEMPTY to become active (XEMPTY = 0):

� During transmission, DXR has not been loaded since the last DXR-to-XSR
copy, and all bits of the data element in the XSR have been shifted out on
DX.

� The transmitter is reset (XRST = 0 or the device is reset) and then re-
started.

During underflow condition, the transmitter continues to transmit the old data
in DXR for every new frame sync signal that arrives on FSX until a new element
is loaded into DXR by the CPU or the DMA controller. XEMPTY is deactivated
(XEMPTY = 1) when this new element in DXR is transferred to XSR. In the
case of internal frame sync generation, the transmitter regenerates a single
FSX initiated by a DXR-to-XSR copy (FSXM = 1 in the PCR and FSGM = 0 in
SRGR). Otherwise, the transmitter waits for the next frame synchronization.

Data Transmission and Reception

 11-46

When the transmitter is taken out of reset (XRST = 1), it is in a transmit ready
(XRDY = 1) and transmit empty (XEMPTY = 0) condition. If DXR is loaded by
the CPU or the DMA controller before FSX goes active, a valid DXR-to-XSR
transfer occurs. This allows for the first element of the first frame to be valid
even before the transmit frame sync pulse is generated or detected. Alterna-
tively, if a transmit frame sync is detected before DXR is loaded, 0s are output
on DX.

Figure 11–29 depicts a transmit underflow condition. After B is transmitted, B
is retransmitted on DX if you fail to reload the DXR before the subsequent
frame synchronization. Figure 11–30 shows the case of writing to DXR just be-
fore a transmit underflow condition that would otherwise occur. After B is trans-
mitted, C is written to DXR before the next transmit frame sync pulse occurs
so that C is successfully transmitted on DX, averting a transmit empty condi-
tion.

Figure 11–29. Transmit Empty

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

B4B5

XEMPTY

B6B7B0B1B2B3B4B5B6A1

XRDY

DX

 FSX

B7A0

 CLKX

Write of DXR (C)DXR-to-XSR copy (B)

Figure 11–30. Transmit Empty Avoided

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XEMPTY

XRDY

DX

 FSX

 CLKX

DXR-to-XSR copy (B)
Write of DXR (C)

DXR-to-XSR copy (C)

C5C6C7B0B1B2B3B4B5B6A1 B7A0

Data Transmission and Reception

11-47Multichannel Buffered Serial Ports

11.3.7.5 Unexpected Transmit Frame Synchronization: XSYNCERR

Figure 11–26 shows the decision tree that the transmitter uses to handle all
incoming frame synchronization signals. The diagram assumes that the trans-
mitter has been started (XRST = 1). An unexpected transmit frame sync pulse
is defined as a sync pulse that occurs XDATDLY bit clocks earlier than the last
transmitted bit of the previous frame. Any one of three cases can occur:

� Case 1: Unexpected FSX pulses with XFIG = 1. This case is discussed in
section 11.3.6.1 and shown in Figure 11–21. In this case, unexpected FSX
pulses are ignored, and the transmission continues.

� Case 2: FSX pulses with normal serial port transmission. This situation is
discussed in section 11.3.5.3. There are two possible reasons for a trans-
mit not to be in progress:

� This FSX pulse is the first one to occur after XRST = 1.

� The serial port is in the interpacket intervals. The programmed data
delay (XDATDLY) may start during these interpacket intervals before
the first bit of the next element is transmitted. Thus, if operating at
maximum packet frequency, frame synchronization can still be re-
ceived XDATDLY bit clocks before the first bit of the associated ele-
ment.

Figure 11–31. Response to Transmit Frame Synchronization

No

Yes

No

Yes

XFIG = 1 ?

Unexpected
frame sync

pulse ?

Restart current transfer.

Normal transmission

Set XSYNCERR.
Abort transfer.

Ignore frame pulse.
Transmitter continues running.

Start new transmit.

Transmit frame
sync pulse occurs.

Case 1:

Case 2:

Case 3:

Data Transmission and Reception

 11-48

� Case 3: Unexpected transmit frame synchronization with XFIG = 0. The
case for frame synchronization with XFIG = 0 at maximum packet frequen-
cy is shown in Figure 11–20. Figure 11–32 shows the case for normal op-
eration of the serial port with interpacket intervals. In both cases, XSYN-
CERR in the SPCR is set. XSYNCERR can be cleared only by transmitter
reset or by writing a 0 to this bit in the SPCR. If XINTM = 11b in the SPCR,
XSYNCERR drives the receive interrupt (XINT) to the CPU.

Note:

The XSYNCERR bit in the SPCR is a read/write bit, so writing a 1 to it sets the
error condition. Typically, writing a 0 is expected.

Figure 11–32. Unexpected Transmit Frame Synchronization Pulse

A1 B2B3B4B5B6B7B4B5B6

XSYNCERR

XRDY

 DX

 FSX

B1 B0B7A0

 CLKX

Unexpected frame synchronization

DXR-to-XSR copy (B) Write of DXR (C) DXR-to-XSR (C) Write of DXR (D)

Data Transmission and Reception

11-49Multichannel Buffered Serial Ports

11.3.8 Receive Data Justification and Sign Extension: RJUST

RJUST in the SPCR selects whether data in the RBR is right- or left-justified
(with respect to the MSB) in the DRR. If right justification is selected, RJUST
further selects whether the data is sign-extended or zero-filled. Table 11–12
summarizes the effect that various values of RJUST have on an example
12-bit receive data value ABCh.

Table 11–12. Effect of RJUST Values With 12-Bit Example Data ABCh

RJUST value Justification Extension Value in DRR

00 Right Zero-fill MSBs 0000 0ABCh

01 Right Sign-extend MSBs FFFF FABCh

10 Left Zero-fill LSBs ABC0 0000h

11 Reserved Reserved Reserved

11.3.9 32-Bit Bit Reversal: (R/X)WDREVRS

The 32-bit bit reversal feature is only available for the ’C6211/C6711 device.
Normally all transfers are sent and received with the MSB first. However, if you
set the RWDREVRS field to 1 in the RCR, or the XWDREVRS field to 1 in the
XCR, the bit ordering of the 32-bit elements is reversed (LSB first) before being
received by or sent from the serial port. The (R/X)WDLEN(1/2) fields in the
(R/X)CR should be set to 101b to indicate 32-bit elements. Otherwise the
operation is undefined.

m-LAW/A-LAW Companding Hardware Operation

 11-50

11.4 µ-LAW/A-LAW Companding Hardware Operation

Companding (compressing and expanding) hardware allows compression
and expansion of data in either µ-law or A-law format. The specification for
µ-law and A-law log PCM is part of the CCITT G.711 recommendation. The
companding standard employed in the United States and Japan is µ-law and
allows 14 bits of dynamic range. The European companding standard is A-law
and allows 13 bits of dynamic range. Any values outside these ranges are set
to the most positive or most negative value. Thus, for companding to work best
here, the data transferred to and from the McBSP via the CPU or the DMA con-
troller must be at least 16 bits wide.

The µ-law and A-law formats encode data into 8-bit code elements. Compan-
ded data is always 8-bits-wide, so the appropriate (R/X)WDLEN(1/2) must be
set to 0, indicating an 8-bit serial data stream. If companding is enabled and
either phase of the frame does not have an 8-bit element length, companding
continues as if the element length is eight bits.

When companding is used, transmit data is encoded according to the
specified companding law, and receive data is decoded to 2s-complement
format. Companding is enabled and the desired format is selected by
appropriately setting (R/X)COMPAND in the (R/X)CR, as indicated in Table 11–7.
Compression occurs during the process of copying data from DXR to XSR and
expansion occurs from RBR to DRR, as shown in Figure 11–33.

Figure 11–33. Companding Flow

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ168

32168

From CPU/DMADX

DR To CPU/DMAÁÁÁ
ÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

DRRRJUST

DXR

Expand

Compress

RBR

XSR

RSR

For transmit data to be compressed, it should be 16-bit, left-justified data, such
as LAW16 as shown in Figure 11–34. The value can be either 13 or 14 bits
wide, depending on the companding law. This 16-bit data is aligned in DXR,
as shown in Figure 11–35.

µ-LAW/A-LAW Companding Hardware Operation

m-LAW/A-LAW Companding Hardware Operation

11-51Multichannel Buffered Serial Ports

Figure 11–34. Companding Data Formats

LAW16 15 2 1 0

µ-Law Value 0

LAW16 15 3 2 0

A-law Value 0

Figure 11–35. Transmit Data Companding Format in DXR
DXR bits

31 16 15 0

Don’t care LAW16

For reception, the 8-bit compressed data in RBR is expanded to a left-justified
16-bit data, LAW16. This can be further justified to a 32-bit data by programming
the RJUST field in the SPCR as shown in Table 11–13.

Table 11–13. Justification of Expanded Data in DRR

DRR Bits

RJUST 31 16 15 0

00 0 LAW16

01 sign LAW16

10 LAW16 0

11 Reserved

11.4.1 Companding Internal Data

If the McBSP is otherwise unused, the companding hardware can compand
internal data. This hardware can be used to:

� Convert linear data to the appropriate µ-law or A-law format

� Convert µ-law or A-law data to the linear format

� Observe the quantization effects in companding by transmitting linear
data and compressing and re-expanding this data. This is useful only if
both XCOMPAND and RCOMPAND enable the same companding format.

µ-LAW/A-LAW Companding Hardware Operation

m-LAW/A-LAW Companding Hardware Operation

 11-52

Figure 11–36 shows two methods by which the McBSP can compand internal
data. Data paths for these two methods are indicated by (DLB) and (non-DLB)
arrows.

� Non-DLB: When both the transmit and receive sections of the serial port
are reset, the DRR and DXR are internally connected through the com-
panding logic. Values from the DXR are compressed as determined by
XCOMPAND and then expanded as determined by RCOMPAND. RRDY
and XRDY bits are not set. However, data is available in DRR four CPU
clocks after being written to DXR. The advantage of this method is its
speed. The disadvantage is that there is no synchronization available to
the CPU and the DMA controller to control the flow of data.

� DLB: The McBSP is enabled in digital loopback (DLB) mode with compand-
ing appropriately enabled by RCOMPAND and XCOMPAND. Receive and
transmit interrupts (RINT when RINTM = 0 and XINT when XINTM = 0) or
synchronization events (REVT and XEVT) allow synchronization of the CPU
or the DMA controller to these conversions, respectively. Here, the time for
this companding depends on the serial bit rate selected.

Figure 11–36. Companding of Internal Data

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ(DLB)

From CPU/DMA controllerDX

DR To CPU/DMA
controller

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

DRRRJUST

DXR

Expand

Compress

RBR

XSR

RSR

(non-DLB)

11.4.1.1 Bit Ordering

Normally, all transfers on the McBSP are sent and received with the MSB first.
However, certain 8-bit data protocols (that do not use companded data) require
the LSB to be transferred first. By setting the (R/X)COMPAND = 01b in the
(R/X)CR, the bit ordering of 8-bit elements is reversed (LSB first) before being
sent to the serial port. Like the companding feature, this feature is enabled only
if the appropriate (R/X)WDLEN(1/2) bit is set to 0, indicating that 8-bit elements
are to be transferred serially.

µ-LAW/A-LAW Companding Hardware Operation

Programmable Clock and Framing

11-53Multichannel Buffered Serial Ports

11.5 Programmable Clock and Framing

The McBSP has several means of selecting clocking and framing for both the
receiver and transmitter. Clocking and framing can be sent to both portions by
the sample rate generator. Each portion can select external clocking and/or
framing independently. Figure 11–37 is a block diagram of the clock and frame
selection circuitry.

Figure 11–37. Clock and Frame Generation

0

1

1

0

CLKXM

0

1

Inset:

FSX pin

FSR pinCLKR pin

CLKX pin

FSG

FSX_intCLKX_int

Frame selectionClock selection

(R/X) IOEN

CLKG

FSR_intCLKS pin

internal clock source†

DXR to XSR

FSGM

0

1

FSR_intCLKR_int

FSRP

1

0 0

1

FSRM

FSRM & GSYNCFSRP

0

1
FSXP

See inset

FSXP

FSXM

FSXM

generator

Sample
rate

Receive

Transmit

DLB
CLKRM

CLKRM

CLKXM

CLKRP

CLKRP

CLKXP

CLKXP

See inset

See inset See inset

Yyy_int

DLB

† ’C6201/C6202/C6701 uses CPU clock as the internal clock source to the sample rate generator.
’C6211/C6711 uses CPU/2 clock as the internal clock source to the sample rate generator.

Programmable Clock and Framing

 11-54

11.5.1 Sample Rate Generator Clocking and Framing

The sample rate generator is composed of a 3-stage clock divider that provides
a programmable data clock (CLKG) and framing signal (FSG), as shown in
Figure 11–38. CLKG and FSG are McBSP internal signals that can be pro-
grammed to drive receive and/or transmit clocking, CLK(R/X), and framing,
FS(R/X). The sample rate generator can be programmed to be driven by an inter-
nal clock source or an internal clock derived from an external clock source. The
three stages of the sample rate generator circuit compute:

� Clock divide-down (CLKGDV): The number of input clocks per data bit
clock

� Frame period (FPER): The frame period in data bit clocks

� Frame width (FWID): The width of an active frame pulse in data bit clocks

In addition, a frame pulse detection and clock synchronization module allows
synchronization of the clock divide-down with an incoming frame pulse. The
operation of the sample rate generator during device reset is described in
section 11.3.1.

Figure 11–38. Sample Rate Generator

CLKS

CLKSP

FSR

GSYNC

FSG

CLKG
CLKSM

CLKGDV FPER FWID

pulse
Frame

synchronization
and clock
detection

Frame pulse

internal clock source†

1

0

CLKSRG

† ’C6201/C6202/C6701 uses CPU clock as the internal clock source to the sample rate generator.
’C6211/C6711 uses CPU/2 clock as the internal clock source to the sample rate generator.

Programmable Clock and Framing

11-55Multichannel Buffered Serial Ports

11.5.1.1 Sample Rate Generator Register (SRGR)

The sample rate generator register (SRGR) shown in Figure 11–39 and
summarized in Table 11–14, controls the operation of various features of
the sample rate generator. This section describes the fields in the SRGR.

Figure 11–39. Sample Rate Generator Register (SRGR)

31 30 29 28 27 16

GSYNC CLKSP CLKSM FSGM FPER

RW, +0 RW, +0 RW, +1 RW, +0 RW, +0

15 8 7 0

FWID CLKGDV

RW, +0 RW, +1

Table 11–14. Sample Rate Generator Register (SRGR) Field Summary

Name Function Section

GSYNC Sample rate generator clock synchronization. Used only when the external clock
(CLKS) drives the sample rate generator clock (CLKSM = 0).

GSYNC = 0: The sample rate generator clock (CLKG) is free running.

GSYNC = 1: (CLKG) is running but is resynchronized, and the frame sync signal
(FSG) is generated only after the receive frame synchronization sig-
nal (FSR) is detected. Also, the frame period (FPER) is a don’t care
because the period is dictated by the external frame sync pulse.

11.5.2.4

CLKSP CLKS polarity clock edge select. Used only when the external clock CLKS drives
the sample rate generator clock (CLKSM = 0).

CLKSP = 0: The rising edge of CLKS generates CLKG and FSG.

CLKSP = 1: The falling edge of CLKS generates CLKG and FSG.

11.5.2.3

CLKSM McBSP sample rate generator clock mode

CLKSM = 0: The sample rate generator clock is derived from CLKS.

CLKSM = 1: (Default value) The sample rate generator clock is derived from the
internal clock source.

11.5.2.1

FSGM Sample rate generator transmit frame synchronization mode. Used when FSXM
= 1 in PCR.

FSGM = 0: The transmit frame sync signal (FSX) is generated on every DXR-to-
XSR copy.

FSGM = 1: The transmit frame sync signal is driven by the sample rate generator
frame sync signal, FSG.

11.5.3.3

Programmable Clock and Framing

 11-56

Table 11–14. Sample Rate Generator Register (SRGR) Field Summary (Continued)

Name SectionFunction

FPER Frame period. This field’s value plus 1 determines when the next frame sync signal
should become active.

Valid values: 0 to 4095

11.5.3.1

FWID Frame width. This field’s value plus 1 is the width of the frame sync pulse, FSG,
during its active period.

Valid values: 0 to 255

11.5.3.1

CLKGDV Sample rate generator clock divider. This value is used as the divide-down number
to generate the required sample rate generator clock frequency. The default value
is 1. Valid values: 0 to 255

11.5.2.2

11.5.1.2 Sample Rate Generator Reset Procedure

The sample rate generator reset and initialization procedure is as follows:

1) During device reset, GRST = 0. Otherwise, during normal operation, reset
the sample rate generator with GRST = 0 in SPCR, provided CLKG and/or
FSG (FRST = 1) are not used by any portion of the McBSP. If GRST is low
due to device reset, CLKG is driven by a divide-by-2 internal clock and
FSG is driven inactive. The internal clock source for the ’C6211/C6711 is
CPU clock, while the internal clock source for ’C6211/C6711 is CPU/2
clock (half of the CPU clock frequency). CLKG and FSG are inactive when
GRST = 0. If necessary, set (R/X)RST = 0.

2) Program SRGR as required. If necessary, other control registers can be
written with desired values if the respective portion (R/X) is in reset.

3) Wait two CLKSRG clocks. This is to ensure proper internal synchronization.
4) Set GRST = 1 to enable the sample rate generator.
5) Wait two CLKG bit clocks.
6) Pull the receiver and/or transmitter out of reset ((R/X)RST = 1) if required.
7) On the next rising edge of CLKSRG, CLKG transitions to 1 and starts

clocking with a frequency equal to either (internal clock / (1+CLKGDV)) if
CLKSM =1 or CLKS clock/(1 + CLKGDV) if CLKSM = 0. The internal clock
source for the ’C6211/C6711 is CPU clock, while the internal clock source
for ’C6211/C6711 is CPU/2 clock (half of the CPU clock frequency).

8) After the required data acquisition setup, such as writing to DXR, FRST
can be written with 1 in the SPCR if an internally generated frame pulse is
required. FSG is generated on an active edge after eight CLKG clocks
have elapsed.

Programmable Clock and Framing

11-57Multichannel Buffered Serial Ports

11.5.2 Data Clock Generation

When the receive/transmit clock mode is set to 1 (CLK(R/X)M = 1), the data
clocks (CLK(R/X)) are driven by the internal sample rate generator output
clock, CLKG. You can select for the receiver and transmitter from a variety of
data bit clocks including:

� The input clock to the sample rate generator, which can be either the inter-
nal clock source or a dedicated external clock source (CLKS). The internal
clock source for the ’C6211/C6711 is CPU clock, while the internal clock
source for ’C6211/C6711 is CPU/2 clock (half of the CPU clock frequency).

� The input clock source (internal clock source or external clock CLKS) to
the sample rate generator can be divided down by a programmable value
(CLKGDV) to drive CLKG.

Regardless of the source to the sample rate generator, the rising edge of
CLKSRG (see Figure 11–38) generates CLKG and FSG (see section
11.5.2.3).

11.5.2.1 Input Clock Source Mode: CLKSM

The CLKSM bit in the SRGR selects either the CPU clock (CLKSM = 1) or the
external clock input (CLKSM = 0), CLKS, as the source for the sample rate
generator input clock. Any divide periods are divide-downs calculated by the
sample rate generator and are timed by this input clock selection. The McBSP
cannot run faster than half of the CPU clock frequency. Therefore, when
CLKSM = 1, the minimum value of CLKGDV should be 1 for the
’C6201/C6202/C6701. For the ’C6211/C6711, even if CLKSM = 1 you can set
CLKGDV to the minimum of 0 because a CPU/2 clock drives the sample rate
generator.

11.5.2.2 Sample Rate Generator Data Bit Clock Rate: CLKGDV

The first divider stage generates the serial data bit clock from the input clock.
This divider stage uses a counter that is preloaded by CLKGDV and that con-
tains the divide ratio value. The output of this stage is the data bit clock that
is output on the sample rate generator output, CLKG, and that serves as the
input for the second and third divider stages.

CLKG has a frequency equal to 1/(CLKGDV+1) of the sample rate generator
input clock. Thus, the sample-rate generator input clock frequency is divided
by a value between 1 and 256. When CLKGDV is odd or equal to 0, the CLKG
duty cycle is 50%. When CLKGDV is an even value (2p) the high state duration
is p + 1 cycles and the low state duration is p cycles.

Programmable Clock and Framing

 11-58

11.5.2.3 Bit Clock Polarity: CLKSP

The external clock (CLKS) is selected to drive the sample rate generator clock
divider by selecting CLKSM = 0. In this case, the CLKSP bit in the SRGR
selects the edge of CLKS on which sample rate generator data bit clock
(CLKG) and frame sync signal (FSG) are generated. Since the rising edge of
CLKSRG generates CLKG and FSG, the rising edge of CLKS when CLKSP
= 0 or the falling edge of CLKS when CLKSP = 1 causes the transition on CLKG
and FSG.

11.5.2.4 Bit Clock and Frame Synchronization

When CLKS is selected to drive the sample rate generator (CLKSM = 0),
GSYNC can be used to configure the timing of CLKG relative to CLKS. GSYNC
= 1 ensures that the McBSP and the external device to which it is communicat-
ing are dividing down the CLKS with the same phase relationship. If GSYNC =
0, this feature is disabled and CLKG runs freely and is not resynchronized. If
GSYNC = 1, an inactive-to-active transition on FSR triggers a resynchronization
of CLKG and the generation of FSG. CLKG always begins at a high state after
synchronization. Also, FSR is always detected at the same edge of CLKS that
generates CLKG, regardless of the length the FSR pulse. Although an external
FSR is provided, FSG can still drive internal receive frame synchronization
when GSYNC = 1. When GSYNC = 1, FPER is a don’t care, because the frame
period is determined by the arrival of the external frame sync pulse.

Figure 11–40 and Figure 11–41 show this operation with various polarities of
CLKS and FSR. These figures assume that FWID is 0, for a FSG = 1 CLKG
wide.

Programmable Clock and Framing

11-59Multichannel Buffered Serial Ports

Figure 11–40. CLKG Synchronization and FSG Generation When GSYNC = 1
and CLKGDV = 1

FSR external (FSRP = 1)

FSG

CLKG (needs resync)

CLKG (no need to resync)

FSR external (FSRP = 0)

CLKS (CLKSP = 0)

CLKS (CLKSP = 1)

Figure 11–41. CLKG Synchronization and FSG Generation When GSYNC = 1
and CLKGDV = 3

FSR external (FSRP = 1)

FSG

CLKG (needs resync)

CLKG (no need to resync)

FSR external (FSRP = 0)

CLKS (CLKSP = 0)

CLKS (CLKSP = 1)

Programmable Clock and Framing

 11-60

These figures show what happens to CLKG when it is initially in sync and
GSYNC = 1, as well as when it is not in sync with the frame synchronization
and GSYNC = 1.

When GSYNC = 1, the transmitter can operate synchronously with the receiv-
er, provided that the following conditions are met:

� FSX is programmed to be driven by the sample rate generator frame sync,
FSG (FSGM = 1 in the SRGR and FSXM = 1 in the PCR). If the input FSR
has timing that enables it to be sampled by the falling edge of CLKG, it can
be used instead by setting FSXM = 0 in the PCR and connecting FSR to
FSX externally.

� The sample-rate generator clock should drive the transmit and receive bit
clock (CLK(R/X)M = 1 in the SPCR). Therefore, the CLK(R/X) pin should
not be driven by any other source.

11.5.2.5 Digital Loopback Mode: DLB

Setting DLB = 1 in the SPCR enables digital loopback mode. In DLB mode, DR,
FSR, and CLKR are internally connected through multiplexers to DX, FSX, and
CLKX, respectively, as shown in Figure 11–37. DLB mode allows testing of se-
rial port code with a single DSP device.

11.5.2.6 Receive Clock Selection: DLB, CLKRM

Table 11–15 shows how the digital loopback bit (DLB) and the CLKRM bit in
the PCR select the receiver clock. In digital loopback mode (DLB = 1), the
transmitter clock drives the receiver. CLKRM determines whether the CLKR
pin is an input or an output.

Table 11–15. Receive Clock Selection

DLB
in SPCR

CLKRM
in PCR Source of Receive Clock CLKR Function

0 0 CLKR acts as an input driven by the
external clock and inverted as deter-
mined by CLKRP before being used.

Input

0 1 The sample rate generator clock
(CLKG) drives CLKR.

Output. CLKG inverted as determined by
CLKRP before being driven out on CLKR.

1 0 CLKX_int drives the receive clock
CLKR_int as selected and is in-
verted. See Table 11–16.

High impedance

1 1 CLKX_int drives CLKR_int as se-
lected and is inverted. See
Table 11–16.

Output. CLKR (same as CLKX) inverted as
determined by CLKRP before being driven
out.

Programmable Clock and Framing

11-61Multichannel Buffered Serial Ports

11.5.2.7 Transmit Clock Selection: CLKXM

Table 11–16 shows how the CLKXM bit in the PCR selects the transmit clock
and whether the CLKX pin is an input or output.

Table 11–16. Transmit Clock Selection

CLKXM
in PCR Source of Transmit Clock CLKX Function

0 The external clock drives the CLKX input pin.
CLKX is inverted as determined by CLKXP
before being used.

Input

1 The sample rate generator clock, CLKG,
drives the transmit clock

Output. CLKG is inverted as determined by
CLKXP before being driven out on CLKX.

11.5.3 Frame Sync Signal Generation

Data frame synchronization is independently programmable for the receiver and
the transmitter for all data delay values. When set to 1 the FRST bit in the SPCR
activates the frame generation logic to generate frame sync signals, provided that
FSGM = 1 in SRGR. The frame sync programming options are:

� A frame pulse with a programmable period between sync pulses and a pro-
grammable active width specified in the sample rate generator register
(SRGR).

� The transmitter can trigger its own frame sync signal that is generated by
a DXR-to-XSR copy. This causes a frame sync to occur on every DXR-to-
XSR copy. The data delays can be programmed as required. However,
maximum packet frequency cannot be achieved in this method for data
delays of 1 and 2.

� Both the receiver and transmitter can independently select an external frame
synchronization on the FSR and FSX pins, respectively.

Programmable Clock and Framing

 11-62

11.5.3.1 Frame Period and Frame Width: FPER and FWID

The FPER block is a 12-bit down counter that can count down the generated
data clocks from 4095 to 0. FPER controls the period of active frame sync
pulses. The FWID block in the sample rate generator is an 8-bit down counter.
The FWID field controls the active width of the frame sync pulse.

When the sample rate generator comes out of reset, FSG is in an inactive (low)
state. After this, when FRST = 1 and FSGM = 1, frame sync signals are gener-
ated. The frame width value (FWID + 1) is counted down on every CLKG cycle
until it reaches 0 when FSG goes low. Thus, the value of FWID+1 determines
an active frame pulse width ranging from 1 to 256 data bit clocks. At the same
time, the frame period value (FPER + 1) is also counting down, and when this
value reaches 0, FSG goes high again, indicating a new frame is beginning.
Thus, the value of FPER + 1 determines a frame length from 1 to 4096 data
bits. When GSYNC = 1, the value of FPER does not matter. Figure 11–42
shows a frame of 16 CLKG periods (FPER = 15 or 00001111b).

Figure 11–42. Programmable Frame Period and Width

19181716151413121110987654321

FSG

 CLKG

Frame width: (FWID + 1) � CLKG

Frame period: (FPER + 1) � CLKG

11.5.3.2 Receive Frame Sync Selection: DLB, FSRM, GSYNC

Table 11–17 explains how you can select various sources to provide the re-
ceive frame synchronization signal. Note that in digital loopback mode (DLB
= 1) the transmit frame sync signal is used as the receive frame sync signal
and that DR is internally connected to DX.

Programmable Clock and Framing

11-63Multichannel Buffered Serial Ports

Table 11–17. Receive Frame Synchronization Selection

DLB
in SPCR

FSR
in PCR

GSYNC
in SRGR

Source of Receive Frame
Synchronization FSR Pin Function

0 0 X External frame sync signal drives
the FSR input pin, whose signal is
then inverted as determined by
FSRP before being used as
FSR_int.

Input

0 1 0 Sample rate generator frame
sync signal (FSG) drives
FSR_int, FRST = 1.

Output. FSG is inverted as deter-
mined by FSRP before being
driven out on the FSR pin.

0 1 1 Sample rate generator frame
sync signal (FSG) drives
FSR_int, FRST = 1.

Input. The external frame sync
input on FSR is used to synchro-
nize CLKG and generate FSG.

1 0 0 FSX_int drives FSR_int. FSX is
selected as shown in Table 11–18.

High impedance

1 X 1 FSX_int drives FSR_int and is
selected as shown in Table 11–18.

Input. External FSR is not used for
frame synchronization but is used
to synchronize CLKG and gener-
ate FSG since GSYNC = 1.

1 1 0 FSX_int drives FSR_int and is
selected as shown in Table 11–18.

Output. Receive (same as transmit)
frame synchronization is inverted
as determined by FSRP before be-
ing driven out.

11.5.3.3 Transmit Frame Sync Signal Selection: FSXM, FSGM

Table 11–18 shows how you can select the source of transmit frame synchro-
nization pulses. The three choices are:

� External frame sync input
� The sample rate generator frame sync signal, FSG
� A signal that indicates a DXR-to-XSR copy has been made

Programmable Clock and Framing

 11-64

Table 11–18. Transmit Frame Synchronization Selection

FSXM
in PCR

FSGM
in SRGR

Source of Transmit Frame
Synchronization FSX Pin Function

0 X External frame sync input on the FSX
pin. This is inverted by FSXP before be-
ing used as FSX_int.

Input

1 1 Sample rate generator frame sync signal
(FSG) drives FSX_int. FRST = 1

Output. FSG is inverted by FSXP be-
fore being driven out on FSX.

1 0 A DXR-to-XSR copy activates transmit
frame sync signal.

Output. 1-bit-clock-wide signal inverted
as determined by FSXP before being
driven out on FSX.

11.5.3.4 Frame Detection for Initialization

To facilitate detection of frame synchronization, the receive and transmit CPU
interrupts (RINT and XINT) can be programmed to detect frame synchroniza-
tion by setting RINTM = XINTM = 10b in the SPCR. Unlike other types of serial
port interrupts, this one can operate while the associated portion of the serial
port is in reset (for example, RINT can be activated while the receiver is in re-
set). In that case, the FS(R/X)M and FS(R/X)P still select the appropriate
source and polarity of frame synchronization. Thus, even when the serial port
is in reset, these signals are synchronized to the CPU clock and then sent to
the CPU in the form of RINT and XINT at the point at which they feed the re-
ceive and transmit portions of the serial port. A new frame synchronization
pulse can be detected, after which the CPU can safely take the serial port out
of reset.

Programmable Clock and Framing

11-65Multichannel Buffered Serial Ports

11.5.4 Clocking Examples

11.5.4.1 Double-Rate ST-BUS Clock

Figure 11–43 shows the McBSP timing to be compatible with the Mitel ST-
Bus . The operation is running at maximum frame frequency.

� CLK(R/X)M = 1: CLK(R/X)_int generated internally by sample rate generator

� GSYNC = 1: CLKG is synchronized with the external frame sync signal in-
put on FSR. CLKG is not synchronized (it runs freely) until the frame sync
signal is active. Also, FSR is regenerated internally to form a minimum
pulse width.

� CLKSM = 0: external clock (CLKS) drives the sample rate generator

� CLKSP = 1: falling edge of CLKS generates CLKG and thus CLK(R/X)_int

� CLKGDV = 1: receive clock (shown as CLKR) is half of CLKS frequency

� FS(R/X)P = 1: active (low) frame sync pulse

� (R/X)FRLEN1 = 11111b: 32 elements per frame

� (R/X)WDLEN1 = 0: 8-bit element

� (R/X)PHASE = 0: single-phase frame and thus (R/X)FRLEN2 =
(R/X)WDLEN2 = X

� (R/X)DATDLY = 0: no data delay

Figure 11–43. ST-BUS and MVIP Example

Sample point

E2B7E1B0E1B1E1B2E1B3E1B4E1B5E1B6E1B7

E2B7E1B0E1B1E1B2E1B3E1B4E1B5E1B6E1B7

E32B0

2.048-MHz CLKG,
 CLKR_int,

CLKX_int (first FSR)

DR, DX
 (subsequent FSR)

CLKG, CLKR_int,
 CLKX_int

(subsequent FSR)

DR, DX (first FSR)

FSG, FSR_int,
 FSX_int

FSR external

4.096-MHz CLKS

Programmable Clock and Framing

 11-66

11.5.4.2 Single-Rate ST-BUS Clock

This example is the same as the ST-BUS example except for the following
items:

� CLKGDV = 0: CLKS drives CLK(R/X)_int without any divide down (single-
rate clock).

� CLKSP = 0: The rising edge of CLKS generates internal clocks CLKG and
CLK(R/X)_int.

Figure 11–44. Single-Rate Clock Example

E2B7E1B0E1B1E1B2E1B3E1B4E1B5E1B6E1B7

E2B7E1B0E1B1E1B2E1B3E1B4E1B5E1B6E1B7

E32B0

CLKG, CLKR_int,
 CLKX_int (first FSR)

DR, DX
 (subsequent FSR)

CLKG, CLKR_int,
CLKX_int

 (subsequent FSR)

DR, DX (first FSR)

FSG, FSR_int, FSX_int

FSR external

CLKS
Sample point

The rising edge of CLKS detects the external FSR. This external frame sync
pulse resynchronizes the internal McBSP clocks and generates the frame sync
for internal use. The internal frame sync is generated so that it is wide enough
to be detected on the falling edge of the internal clocks.

Programmable Clock and Framing

11-67Multichannel Buffered Serial Ports

11.5.4.3 Double-Rate Clock

This example is the same as the ST-BUS example except for the following:

� CLKSP = 0: The rising edge of CLKS generates CLKG and CLK(R/X).

� CLKGDV = 1: CLKG, CLKR_int, and CLKX_int frequencies are half of the
CLKS frequency.

� GSYNC = 0: CLKS drives CLKG. CLKG runs freely and is not resynchro-
nized by FSR.

� FS(R/X)M = 0: Frame synchronization is externally generated. The fram-
ing pulse is wide enough to be detected.

� FS(R/X)P = 0: Active (high) input frame sync signal

� (R/X)DATDLY = 1: Specifies a data delay of one bit

Figure 11–45. Double-Rate Clock Example

E2B7E1B0E1B1E1B2E1B3E1B4E1B5E1B6E1B7E32B0

CLK(R/X)_int

 D(R/X)

 FS(R/X)_int

CLKS

Multichannel Selection Operation

 11-68

11.6 Multichannel Selection Operation

Multiple channels can be independently selected for the transmitter and receiver
by configuring the McBSP with a single-phase frame. Each frame represents a
time-division multiplexed data stream. The number of elements per frame repre-
sented by (R/X)FRLEN1 denotes the number of channels available for selection.
Thus, to save memory and bus bandwidth, multichannel selection allows inde-
pendent enabling of particular elements for transmission and reception. Up to
32 elements in a bit stream of up to 128 elements can be enabled at any given
time.

If a receive element is not enabled:

� RRDY is not set to 1 upon reception of the last bit of the element.

� RBR is not copied to DRR upon reception of the last bit of the element. Thus,
RRDY is not set active. This feature also implies that no interrupts or synchro-
nization events are generated for this element.

If a transmit element is not enabled:

� DX is in the high impedance state.

� A DXR-to-XSR transfer is not automatically triggered at the end of serial
transmission of the related element.

� XEMPTY and XRDY are not affected by the end of transmission of the re-
lated serial element.

An enabled transmit element can have its data masked or transmitted. When data
is masked, the DX pin is forced to the high-impedance state even though the
transmit channel is enabled.

11.6.1 Multichannel Operation Control Registers

The following control registers are used in multichannel operation:

� The multichannel control register (MCR)
� The transmit channel enable register (XCER)
� The receive channel enable register (RCER)

Multichannel Selection Operation

11-69Multichannel Buffered Serial Ports

Figure 11–46. Multichannel Control Register

31 25 24 23 22 21 20 18 17 16

rsvd XPBBLK XPABLK XCBLK XMCM

R, +0000 000 RW, +00 RW, +00 R, +000 RW, +00

15 9 8 7 6 5 4 2 1 0

rsvd RPBBLK RPABLK RCBLK rsvd RMCM

R, +0000 000 RW, +00 RW, +00 R, +000 R, +0 RW, +0

Table 11–19. Multichannel Control Register Field Descriptions

Name Function Section

RMCM Receive multichannel selection enable

RMCM = 0: All channels are enabled.

RMCM = 1: All elements are disabled. Required channels are selected by enabling
RP(A/B)BLK and RCER appropriately.

11.6.2

XMCM Transmit multichannel selection enable

XMCM = 00b: All elements are enabled without masking (DX is always driven during
transmission of data). DX is masked or driven to hi-Z during inter-
packet intervals, when a channel is masked (regardless of whether
it is enabled), or when an element is disabled.

XMCM = 01b: All elements are disabled and therefore masked by default. Required
elements are selected by enabling XP(A/B)BLK and XCER appropri-
ately and these selected elements are not masked, DX is always driv-
en.

XMCM = 10b: All elements are enabled but masked. Selected elements that are en-
abled via XP(A/B)BLK and XCER are unmasked.

XMCM = 11b: All elements are disabled and therefore masked by default. Required
elements are selected by enabling RP(A/B)BLK and RCER appropri-
ately. Selected elements can be unmasked by RP(A/B)BLK and
XCER. This mode is used for symmetric transmit and receive opera-
tion. (See section 11.6.3 for more details on symmetric operation).

11.6.3

Multichannel Selection Operation

 11-70

Table 11–19. Multichannel Control Register Field Descriptions (Continued)

Name SectionFunction

RCBLK Receive current subframe

RCBLK = 000b: Subframe 0. Element 0 to element 15

RCBLK = 001b: Subframe 1. Element 16 to element 31

RCBLK = 010b: Subframe 2. Element 32 to element 47

RCBLK = 011b: Subframe 3. Element 48 to element 63

RCBLK = 100b: Subframe 4. Element 64 to element 79

RCBLK = 101b: Subframe 5. Element 80 to element 95

RCBLK = 110b: Subframe 6. Element 96 to element 111

RCBLK = 111b: Subframe 7. Element 112 to element 127

11.6.3.2

XCBLK Transmit current subframe

XCBLK = 000b: Subframe 0. Element 0 to element 15

XCBLK = 001b: Subframe 1. Element 16 to element 31

XCBLK = 010b: Subframe 2. Element 32 to element 47

XCBLK = 011b: Subframe 3. Element 48 to element 63

XCBLK = 100b: Subframe 4. Element 64 to element 79

XCBLK = 101b: Subframe 5. Element 80 to element 95

XCBLK = 110b: Subframe 6. Element 96 to element 111

XCBLK = 111b: Subframe 7. Element 112 to element 127

11.6.3.2

RPBBLK Receive partition B subframe

RPBBLK = 00b: Subframe 1. Element 16 to element 31

RPBBLK = 01b: Subframe 3. Element 48 to element 63

RPBBLK = 10b: Subframe 5. Element 80 to element 95

RPBBLK = 11b: Subframe 7. Element 112 to element 127

11.6.3

XPBBLK Transmit partition B subframe

XPBBLK = 00b: Subframe 1. Element 16 to element 31

XPBBLK = 01b: Subframe 3. Element 48 to element 63

XPBBLK = 10b: Subframe 5. Element 80 to element 95

XPBBLK = 11b: Subframe 7. Element 112 to element 127

11.6.3

Multichannel Selection Operation

11-71Multichannel Buffered Serial Ports

Table 11–19. Multichannel Control Register Field Descriptions (Continued)

Name SectionFunction

RPABLK Receive partition A subframe

RPABLK = 00b: Subframe 0. Element 0 to element 15

RPABLK = 01b: Subframe 2. Element 32 to element 47

RPABLK = 10b: Subframe 4. Element 64 to element 79

RPABLK = 11b: Subframe 6. Element 96 to element 111

11.6.3

XPABLK Transmit partition A subframe

XPABLK = 00b: Subframe 0. Element 0 to element 15

XPABLK = 01b: Subframe 2. Element 32 to element 47

XPABLK = 10b: Subframe 4. Element 64 to element 79

XPABLK = 11b: Subframe 6. Element 96 to element 111

11.6.3

11.6.2 Enabling Multichannel Selection

Multichannel mode can be enabled independently for reception and transmis-
sion by setting RMCM to 1 and XMCM to a nonzero value in the MCR, respec-
tively.

11.6.3 Enabling and Masking of Channels

A total of 32 of the available 128 elements can be enabled at any given time.
The 128 elements comprise eight subframes (0 through 7), and each sub-
frame has 16 contiguous elements. Further, even-numbered subframes 0, 2,
4, and 6 belong to partition A, and odd-numbered subframes 1, 3, 5, and 7 be-
long to partition B.

The number of elements enabled can be updated during the course of a frame
to allow any arbitrary group of elements to be enabled. This update is accom-
plished using an alternating ping-pong scheme for controlling two subframes
(one odd-numbered and the other even-numbered) of 16 contiguous elements
within a frame at any time. One subframe belongs to partition A and the other
to partition B.

Any one 16-element block from partition A and partition B can be selected, yield-
ing a total of 32 elements that can be enabled at one time. The subframes are
allocated on 16-element boundaries within the frame, as shown in
Figure 11–47. The (R/X)PABLK and (R/X)PBBLK fields in the MCR select the
subframes in partition A and B respectively. This enabling is performed indepen-
dently for transmit and receive.

Multichannel Selection Operation

 11-72

Figure 11–47. Element Enabling by Subframes in Partitions A and B

112–127
3

80–95
2

48–63
1

16–31
0

0–15
0

96–111
3

64–79
2

32–47
1

0–15
0

076543210

FS(R/X)

Partition B
elements

(R/X)PBBLK

Partition A
elements

(R/X)PABLK

Subframe #

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Transmit data masking allows an element enabled for transmit to have its DX pin
set to the high-impedance state during its transmit period. In systems where sym-
metric transmit and receive provides software benefits, this feature allows trans-
mit elements to be disabled on a shared serial bus. A similar feature is not needed
for receive, because multiple receptions cannot cause serial bus contention.

Note:

DX is masked or driven to the high-impedance state.

� During inter-packet intervals
� When an element is masked regardless of whether it is enabled
� When an element is disabled.

Following are descriptions of how each XMCM value affects operation:

� XMCM = 00b: The serial port transmits data over the DX pin for the number
of elements programmed in XFRLEN1. Thus, DX is driven during transmit.

� XMCM = 01b: Only those elements that need to be transmitted are se-
lected via XP(A/B)BLK and XCER. Only these selected elements are writ-
ten to DXR and ultimately transmitted. In other words, if XINTM = 00b,
which implies that an XINT is generated for every DXR-to-XSR copy, the
number of XINT generated is equal to the number of elements selected
via XCER (and not equal to XFRLEN1).

� XMCM = 10b: All elements are enabled, which means all the elements in
a data frame (XFRLEN1) are written to DXR and DXR-to-XSR copies oc-
cur at their respective times. However, DX is driven only for those ele-
ments that are selected via XP(A/B)BLK and XCER and is placed in the
high-impedance state otherwise. In this case, if XINTM = 00b, the number
of interrupts generated due to every DXR-to-XSR copy would equal the
number of elements in that frame (XFRLEN1).

Multichannel Selection Operation

11-73Multichannel Buffered Serial Ports

� XMCM = 11b: In this mode, symmetric transmit and receive operation is
forced. Symmetric operation occurs when a device transmits and receives
on the same set of subframes. These subframes are determined by setting
RP(A/B)BLK. The elements in each of these subframes can then be en-
abled/selected using the RCER register for receive. The transmit side
uses the same blocks as the receive side (thus the value of X(P/A)BLK
does not matter). In this mode, all elements are disabled, so DR and DX
are in the high-impedance state. For receiving, a RBR-to-DRR copy oc-
curs only for those elements that are selected via RP(A/B)BLK and RCER.
If RINT were to be generated for every RBR-to-DRR copy, it would occur
as many times as the number of elements selected in RCER (and not the
number of elements programmed in RFRLEN1). For transmitting, the
same subframe that is used for reception is used to maintain symmetry,
so the value XP(A/B)BLK does not matter. DXR is loaded, and DXR-to-
XSR copy occurs for all the elements that are enabled via RP(A/B)BLK .
However, DX is driven only for those elements that are selected via XCER.
The elements enabled in XCER can be either a subset of or the same as
those selected in RCER. Therefore, if XINTM = 00b, transmit interrupts to
the CPU would be generated the same number of times as the number of
elements selected in RCER (not XCER).

Figure 11–48 shows the activity on the McBSP pins for all of the preceding
XMCM values with the following conditions:

� (R/X)PHASE = 0: Single-phase frame for multichannel selection enabled
� FRLEN1 = 011b: 4-element frame
� WDLEN1 = Any valid serial element length

In the following illustrations, the arrows indicating the occurrence of events are
only sample indications.

Multichannel Selection Operation

 11-74

Figure 11–48. XMCM Operation

(a) XMCM = 00b

DXR to XSR
(E0)

Write of DXR
(E1)

DXR-to-XSR copy
(E1)

Write of DXR
(E2)

DXR-to-XSR copy
(E2)

DXR-to-XSR copy
(E3)

E3E2E1

Write of DXR
(E3)

XRDY

DX E0

FSX

(b) XMCM = 01b, XPABLK = 00b, XCER = 1010b

DXR-to-XSR (E1)

Write of DXR (E3)
DXR-to-XSR copy (E3)

E3E1

XRDY

DX

FSX

Multichannel Selection Operation

11-75Multichannel Buffered Serial Ports

Figure 11–48. XMCM Operation (Continued)

DXR-to-XSR copy
(E3)

Write of DXR
(E3)

DXR-to-XSR copy
(E1)

Read of DRR
(E1)

RBR-to-DRR copy
(E3)

E3DX

XRDY

(d) XMCM = 11b, RPABLK = 00b, XPABLK = X, RCER = 1010b, XCER = 1000b

RBR-to-DRR copy
(E3)

Read of DRR
(E3)

RBR-to-DRR copy
(E1)

E3E1

RRDY

DR

FS(R/X)

DXR-to-XSR copy
(E3)

(c) XMCM = 10b, XPABLK = 00b, XCER = 1010b

DXR to XSR
(E0)

Write of DXR
(E1)

DXR-to-XSR copy
(E1)

Write of DXR
(E2)

DXR-to-XSR copy
(E2)

E3E1

Write of DXR
(E3)

XRDY

DX

FSX

Multichannel Selection Operation

 11-76

11.6.3.1 Channel Enable Registers: (R/X)CER

The receive channel enable register (RCER) and transmit channel enable regis-
ter (XCER) are used to enable any of the 32 elements for receive and transmit,
respectively. Of the 32 elements, 16 belong to a subframe in partition A and the
other 16 belong to a subframe in partition B. They are shown in Figure 11–49
and Figure 11–50. The (R/X)CEA and (R/X)CEB register fields shown in
Table 11–20 enable elements within the 16-channel elements in partitions A and
B, respectively. The (R/X)PABLK and (R/X)PBBLK fields in the MCR determine
which 16-element subframes are selected.

Figure 11–49. Receive Channel Enable Register (RCER)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RCEB
15

RCEB
14

RCEB
13

RCEB
12

RCEB
11

RCEB
10

RCEB
9

RCEB
8

RCEB
7

RCEB
6

RCEB
5

RCEB
4

RCEB
3

RCEB
2

RCEB
1

RCEB
0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RCEA
15

RCEA
14

RCEA
13

RCEA
12

RCEA
11

RCEA
10

RCEA
9

RCEA
8

RCEA
7

RCEA
6

RCEA
5

RCEA
4

RCEA
3

RCEA
2

RCEA
1

RCEA
0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Figure 11–50. Transmit Channel Enable Register (XCER)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XCEB
15

XCEB
14

XCEB
13

XCEB
12

XCEB
11

XCEB
10

XCEB
9

XCEB
8

XCEB
7

XCEB
6

XCEB
5

XCEB
4

XCEB
3

XCEB
2

XCEB
1

XCEB
0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XCEA
15

XCEA
14

XCEA
13

XCEA
12

XCEA
11

XCEA
10

XCEA
9

XCEA
8

XCEA
7

XCEA
6

XCEA
5

XCEA
4

XCEA
3

XCEA
2

XCEA
1

XCEA
0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Multichannel Selection Operation

11-77Multichannel Buffered Serial Ports

Table 11–20. Receive/Transmit Channel Enable Register Field Description

Name Function

RCEAn
0 ≤ n ≤ 15

Receive channel enable

RCEAn = 0: Disables reception of the nth element in an even-numbered subframe in partition A

RCEAn = 1: Enables reception of the nth element in an even-numbered subframe in partition A

XCEAn
0 ≤ n ≤ 15

Transmit channel enable

XCEAn = 0: Disables transmission of the nth element in an even-numbered subframe in
partition A

XCEAn = 1: Enables transmission of the nth element in an even-numbered subframe in
partition A

RCEBn
0 ≤ n ≤ 15

Receive channel enable

(R/X)CEBn = 0: Disables reception of the nth element in an odd-numbered subframe in partition B

(R/X)CEBn = 1: Enables reception of the nth element in an odd-numbered subframe in partition B

XCEBn
0 ≤ n ≤ 15

Transmit channel enable

XCEBn = 0: Disables transmission of the nth element in anodd-numbered subframe in partition B

XCEBn = 1: Enables transmission of the nth element in an odd-numbered subframe in partition B

11.6.3.2 Changing Element Selection

Using the multichannel selection feature, a static group of 32 elements can be
enabled and remains enabled with no CPU intervention until this allocation is
modified. An arbitrary number of, group of, or all of the elements within a frame
can be accessed by updating the block allocation registers during the course of
the frame in response to the end-of-subframe interrupts (see section 11.6.3.3
for information about these interrupts).

Note:

You must be careful not to affect the currently selected subframe when chang-
ing the selection.

The currently selected subframe is readable through the RCBLK and XCBLK
fields in the MCR for receive and transmit, respectively. The associated channel
enable register cannot be modified if it is selected by the appropriate
(R/X)P(A/B)BLK register to point toward the current subframe. Similarly, the
(R/X)PABLK and (R/X)PBBLK fields in the MCR cannot be modified while point-
ing to or being changed to point to the currently selected subframe. If the total
number of elements is 16 or less, the current partition is always pointed to. In
this case, only a reset of the serial port can change the element enabling.

Multichannel Selection Operation

 11-78

11.6.3.3 End-of-Subframe Interrupt

At the end of every subframe (16 elements or less) boundary during multichan-
nel operation, the receive interrupt (RINT) or transmit interrupt (XINT) to the
CPU is generated if RINTM = 01b or XINTM = 01b in the SPCR, respectively.
This interrupt indicates that a new partition has been crossed. You can then
check the current partition and change the selection of subframes in the A and/
or B partitions if they do not point to the current subframe. These interrupts are
two CPU-clock high pulses. If RINTM = XINTM = 01b when (R/X)MCM = 0
(nonmultichannel operation), interrupts are not generated.

11.6.4 DX Enabler: DXENA

The DX enabler is only available for the ’C6211/C6711 device. The DXENA
field in the serial port control register (SPCR) controls the high impedance en-
able on the DX pin. When DXENA = 1, the McBSP enables extra delay for the
DX pin turn-on time. This feature is useful for McBSP multichannel operations,
such as in a time-division multiplexed (TDM) system. The McBSP supports up
to 128 channels in a multichannel operation. These channels can be driven by
different devices in a TDM data communication line, such as the T1/E1 line.
In any multichannel operation where multiple devices transmit over the same
DX line, you need to ensure that no two devices transmit data simultaneously,
which results in bus contention. Enough dead time should exist between the
transmission of the first data bit of the current device and the transmission of
the last data bit of the previous device. In other words, the last data bit of the
previous device needs to be disabled to a high impedance state before the
next device begins transmitting data to the same data line, as shown in
Figure 11–51.

Figure 11–51. DX Timing for Multichannel Operation

B0 (processor 0)

CLKX

DX B7 (processor 1) B6 (processor 1)

Extra delay
if DXENA = 1 (processor 1)

Disable time
(processor 0)

Dead time
No extra delay
even with DXENA = 1

Multichannel Selection Operation

11-79Multichannel Buffered Serial Ports

In the case when two McBSPs are used to transmit data over the same TDM
line, bus contention occurs if DXENA = 0. The first McBSP turns off the
transmission of the last data bit (changes DX from valid to Hi–Z) after a disable
time specified in the datasheet. As shown in Figure 11–51, this disable time
is measured from the CLKX active clock edge. The next McBSP turns on its
DX pin (changes from Hi–Z to valid) after a delay time. Again, this delay time
is measured from the CLKX active clock edge. Bus contention occurs because
the dead time between the two devices is not enough. You need to apply
alternative software or hardware methods to ensure proper multichannel
operation in this case.

If you set DXENA = 1 in the second McBSP, the second McBSP turns on its
DX pin after two CPU-clock cycles of extra delay time. This ensures that the
previous McBSP on the same DX line is disabled before the second McBSP
starts driving out data. The DX enabler controls only the high impedance en-
able on the DX pin, not the data itself. Data is shifted out to the DX pin at the
same time as in the case when DXENA = 0. The only difference is that with
DXENA = 1, the DX pin is masked to high impedance for two extra CPU cycles
before the data is seen on the TDM data line. Therefore only the first bit of data
is delayed.

SPI Protocol: CLKSTP

 11-80

11.7 SPI Protocol: CLKSTP

A system conforming to this protocol has a master-slave configuration. The
SPI protocol is a 4-wire interface composed of serial data in (master in slave
out or MISO), serial data out (master out slave in or MOSI), shift clock (SCK),
and an active (low) slave enable (SS) signal. Communication between the mas-
ter and the slave is determined by the presence or absence of the master clock.
Data transfer is initiated by the detection of the master clock and is terminated
on absence of the master clock. The slave has to be enabled during this period
of transfer. When the McBSP is the master, the slave enable is derived from the
master transmit frame sync pulse, FSX. Example block diagrams of the
McBSP as a master and as a slave are shown in Figure 11–52 and
Figure 11–53, respectively.

Figure 11–52. SPI Configuration: McBSP as the Master

McBSP master

CLKX

DX

DR

FSX

SPI compliant
slave

SCK

MOSI

MISO

SS

SPI Protocol: CLKSTP

11-81Multichannel Buffered Serial Ports

Figure 11–53. SPI Configuration: McBSP as the Slave

McBSP slave

CLKX

DX

DR

FSX

SPI compliant
master

SCK

MISO

MOSI

SS

The clock stop mode (CLKSTP) of the McBSP provides compatibility with the
SPI protocol. The McBSP supports two SPI transfer formats which are specified
by the clock stop mode field (CLKSTP) in the SPCR. The clock stop mode field
(CLKSTP) in conjunction with the CLKXP bit in the PCR allows serial clocks to
be stopped between transfers using one of four possible timing variations, as
shown in Table 11–21. Figure 11–54 and Figure 11–55 show the timing
diagrams of the two SPI transfer formats and the four timing variations.

Table 11–21. SPI-Mode Clock Stop Scheme

CLKSTP CLKXP Clock Scheme

0X X Clock stop mode disabled. Clock enabled for non-SPI mode.

10 0 Low inactive state without delay. The McBSP transmits data on the rising edge
of CLKX and receives data on the falling edge of CLKR.

11 0 Low inactive state with delay. The McBSP transmits data one-half cycle ahead
of the rising edge of CLKX and receives data on the rising edge of CLKR.

10 1 High inactive state without delay. The McBSP transmits data on the falling
edge of CLKX and receives data on the rising edge of CLKR.

11 1 High inactive state with delay. The McBSP transmits data one-half cycle ahead
of the falling edge of CLKX and receives data on the falling edge of CLKR.

SPI Protocol: CLKSTP

 11-82

Figure 11–54. SPI Transfer with CLKSTP = 10b

Á
Á

Á
Á

Á
Á

Á
Á

B1B2B4 B3 B0B5B6B7

B0B1B2B3B4B5B6B7

FSX/SS

D(R/X)/MISO
(from slave)§

D(R/X)/MOSI
(from master)†

CLKX (CLKXP=1)/SCK

CLKX (CLKXP=0)/SCK

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 11–55. SPI Transfer with CLKSTP = 11b

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

B1B2B4 B3 B0B5B6B7

B0B1B2B3B4B5B6B7

FSX/SS

D(R/X)/MISO
(from slave)§

D(R/X)/MOSI
(from master)†

CLKX (CLKXP=1)/SCK

CLKX (CLKXP=0)/SCK

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Á
Á

Á
Á

ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† If the McBSP is the SPI master (CLKXM = 1), MOSI=DX. If the McBSP is the SPI slave (CLKXM = 0), MOSI = DR.
§ If the McBSP is the SPI master (CLKXM = 1), MISO=DR. If the McBSP is the SPI slave (CLKXM = 0), MISO = DX.

The CLKSTP and CLKXP fields of the serial port control register (SPCR) select
the appropriate clock scheme for a particular SPI interface, as shown in
Table 11–21. The CLKSTP and CLKXP fields in the SPCR determine the fol-
lowing conditions:

� Whether clock stop mode is enabled or not

� In clock stop mode, whether the clock is high or low when stopped

� In clock stop mode, whether the first clock edge occurs at the start of the
first data bit or at the middle of the first data bit

The CLKXP bit selects the edge on which data is transmitted (driven) and
received (sampled), as shown in Table 11–21.

SPI Protocol: CLKSTP

11-83Multichannel Buffered Serial Ports

Figure 11–54 is the timing diagram when CLKSTP = 10b. In this SPI transfer
format, the transition of the first clock edge (CLKX) marks the beginning of data
transfer, provided the slave enable (FSX/SS) is already asserted. Data trans-
fer is synchronized to the first clock edge. Figure 11–55 is the timing diagram
when CLKSTP = 11b. Data transfer begins before the transition of the serial
clock. Therefore, the transition of the slave enable signal FSX/SS from high
to low, instead of the transition of the serial clock, marks the beginning of trans-
fer in this SPI transfer format. The McBSP clock stop mode requires single-
phase frames ((R/X)PHASE = 0) and one element per frame ((R/X)FRLEN =
0).

When the McBSP is configured to operate in SPI mode, both the transmitter
and the receiver operate together as a master or a slave. The McBSP is a
master when it generates clocks. When the McBSP is the SPI master, CLKX
drives both its own internal receive clock CLKR and the serial clock SCK of the
SPI slave. In conjunction with CLKSTP enabled, CLKXM = 1 (in PCR)
indicates that the McBSP is a master, and CLKXM = 0 indicates that the
McBSP is an SPI slave. The slave enable signal (FSX/SS) enables the serial
data input and output driver on the slave device (the device not providing the
output clock).

SPI Protocol: CLKSTP

 11-84

11.7.1 McBSP Operation as the SPI Master

When the McBSP is the SPI master, it generates the master clock CLKX and
the slave enable FSX. Therefore, CLKX should be configured as an output
(CLKXM = 1) and FSX should be configured as an output that can be con-
nected to the slave enable (SS) input on the slave device (FSXM = 1). The
DXR-to-XSR transfer of each element generates the slave enable FSX.
Therefore, the FSGM field of the sample rate generator register (SRGR) must
be set to zero. The SPI protocol specifies that the slave needs to be enabled
before the transfer of the data. In other words, FSX needs to be asserted (low)
before the McBSP starts shifting out data on the DX pin. Refer to the MOSI and
FSX waveforms in Figure 11–54 and Figure 11–55. Therefore, XDATDLY
must be programmed to 1. When the McBSP is the SPI master, an XDATDLY
value of 0 or 2 causes undefined operation.

As the SPI master, the McBSP generates CLKX and FSX through the internal
sample rate generator. As discussed in section 11.5.2.1, the CLKSM bit in the
SRGR should be set to specify either the CPU clock or the external clock input
(CLKS) as the clock source to the internal sample rate generator. The
CLKGDV (clock divide ratio) in SRGR should be programmed to generate
CLKX at the required SPI data rate. The McBSP generates a continuous clock
(CLKX) internally and gates the clock off (stops the clock) to the external inter-
face when transfers are finished. The McBSP’s receive clock is provided from
the internal continuously running clock, so the receiver and transmitter both
work internally as if clocks do not stop. Selection of the clock stop modes over-
rides the frame generator bit fields (FPER and FWID) of the the sample rate
generator register (SRGR).

SPI Protocol: CLKSTP

11-85Multichannel Buffered Serial Ports

11.7.2 McBSP Operation as the SPI Slave

When the McBSP is an SPI slave device, the master clock CLKX and slave
enable FSX are generated by an external SPI master, as shown in
Figure 11–53. Thus, the CLKX and FSX pins are configured as inputs by set-
ting the CLKXM and FSXM fields to zero in the PCR. In SPI mode, the FSX
and CLKX inputs are also utilized as the internal FSR and CLKR signals for
data reception. Data transfer is synchronized to the master clock CLKX and
the internal serial port logic performs transfers using only the exact number of
input clock pulses CLKX per data bit. The external master needs to assert FSX
(low) before the transfer of data begins. FSX is used in its asynchronous form
and it controls the McBSP’s initial drive of data to the DX pin.

When the McBSP is a slave, (R/X)DATDLY in the receive/transmit control
register ((R/X)CR) should be set to zero. XDATDLY = 0 ensures that the first
data to be transmitted is available on the DX pin. The MISO waveform in
Figure 11–54 and Figure 11–55 shows how the McBSP transmits data as an
SPI slave. Setting RDATDLY = 0 ensures that the McBSP is ready to receive
data from the SPI master as soon as it detects the serial clock CLKX. Depend-
ing on the clock stop mode used, data is received at various clock edges ac-
cording to Table 11–21.

Although the CLKX signal is generated externally by the master, the internal
sample rate generator of the McBSP must be enabled for proper SPI slave
mode operation. The internal sample rate clock is then used to synchronize
the input clock (CLKX) and frame sync (FSX) from the master to the CPU
clock. Accordingly the CLKSM field of the sample rate generator (SRGR)
should be left at the default value (CLKSM = 1) to specify the CPU clock as the
clock source of the sample rate generator. Furthermore, the CLKGDV in the
SRGR must be set to a value such that the rate of the internal clock CLKG is
at least eight times that of the SPI data rate. This rate is achieved by program-
ming the sample rate generator to its maximum speed (CLKGDV = 1) for all
SPI transfer rates.

SPI Protocol: CLKSTP

 11-86

11.7.3 McBSP Initialization for SPI Mode

The operation of the serial port during device reset, transmitter reset, and
receiver reset is described in section 11.3.1. For McBSP operation as a master
or a slave in SPI mode, you must follow these steps for proper initialization:

1) Set XRST = RRST = 0 in SPCR.

2) Program the necessary McBSP configuration registers (and not the data
registers) listed in Table 11–2 as required when the serial port is in the
reset state (XRST = RRST = 0) except for CLKSTP, which should be dis-
abled. Program CLKSTP to 0Xb if CLKSTP is not disabled.

3) Set GRST = 1 in SPCR to get the sample rate generator out of reset.

4) Wait two bit clocks for the McBSP to reinitialize.

5) Write the desired value into the CLKSTP field in the SPCR. Table 11–21
shows the various CLKSTP modes.

6) Depending on whether the CPU or DMA services the McBSP, either (a) or
(b) should be followed.

a) This step should be performed if the CPU is used to service the
McBSP. Set /XRST = /RRST = 1 to enable the serial port. Note that
the value written to the SPCR at this time should have only the reset
bits changed to 1 and the remaining bit–fields should have the same
values as in Step 2 and 4 above.

b) If DMA is used to perform data transfers, the DMA should be initialized
first with the appropriate read/write syncs and the start bit set to run.
The DMA waits for the synchronization events to occur. Now, pull the
McBSP out of reset by setting XRST = RRST = 1.

7) Wait two bit clocks for the receiver and transmitter to become active.

McBSP Pins as General-Purpose I/O

11-87Multichannel Buffered Serial Ports

11.8 McBSP Pins as General-Purpose I/O

Two conditions allow the serial port pins (CLKX, FSX, DX, CLKR, FSR, DR,
and CLKS) to be used as general-purpose I/O rather than serial port pins:

� The related portion (transmitter or receiver) of the serial port is in reset:
(R/X)RST = 0 in the SPCR

� General-purpose I/O is enabled for the related portion of the serial port:
(R/X)IOEN = 1 in the PCR

Figure 11–3 shows the PCR bits that configure each of the McBSP pins as
general-purpose inputs or outputs. Table 11–22 shows how this is achieved.
In the case of FS(R/X), FS(R/X)M = 0 configures the pin as an input and
FS(R/X)M = 1 configures that pin as an output. When configured as an output,
the value driven on FS(R/X) is the value stored in FS(R/X)P. If configured as
an input, the FS(R/X)P becomes a read-only bit that reflects the status of that
signal. CLK(R/X)M and CLK(R/X)P work similarly for CLK(R/X). When the
transmitter is selected as general-purpose I/O, the value of the DX_STAT bit
in the PCR is driven onto DX. DR is always an input, and its value is held in
the DR_STAT bit in the PCR. To configure CLKS as a general-purpose input,
both the transmitter and receiver have to be in the reset state and (R/X)IOEN
has to be set to 1, because (R/X)IOEN is always an input to the McBSP and
it affects both transmit and receive operations.

Table 11–22. Configuration of Pins as General Purpose I/O

Pin
General-Purpose
I/O Enabled When...

Selected as
Output When...

Output Value
Driven From

Selected as
Input When ...

Input Value
Readable on

CLKX XRST = 0
XIOEN = 1

CLKXM = 1 CLKXP CLKXM = 0 CLKXP

FSX XRST = 0
XIOEN = 1

FSXM = 1 FSXP FSXM = 0 FSXP

DX XRST = 0
XIOEN = 1

Always DX_STAT Never N/A

CLKR RRST = 0
RIOEN = 1

CLKRM = 1 CLKRP CLKRM = 0 CLKRP

FSR RRST = 0
RIOEN = 1

FSRM = 1 FSRP FSRM = 0 FSRP

DR RRST = 0
RIOEN = 1

Never N/A Always DR_STAT

CLKS RRST = XRST = 0
RIOEN = XIOEN = 1

Never N/A Always CLKS_STAT

12-1

Timers

This chapter describes the 32-bit timer functionality, registers, and signals.

Topic Page

12.1 Overview 12-2.

12.2 Timer Registers 12-4.

12.3 Resetting the Timer and Enabling Counting: GO and HLD 12-7.

12.4 Timer Counting 12-8.

12.5 Timer Clock Source Selection: CLKSRC 12-8.

12.6 Timer Pulse Generation 12-9.

12.7 Boundary Conditions in the Control Registers 12-11.

12.8 Timer Interrupts 12-11.

12.9 Emulation Operation 12-11.

Chapter 12

Overview

 12-2

12.1 Overview

The device has two 32-bit general-purpose timers that you can use to:
� Time events
� Count events
� Generate pulses
� Interrupt the CPU
� Send synchronization events to the DMA

The timers have two signaling modes and can be clocked by an internal or an
external source. The timers have an input pin and an output pin. The input and
output pins, (TINP and TOUT) can function as timer clock input and clock out-
put. They can also be configured for general-purpose input and output,
respectively.

With an internal clock, for example, the timer can signal an external A/D
converter to start a conversion, or it can trigger the DMA controller to begin a
data transfer. With an external clock, the timer can count external events and
interrupt the CPU after a specified number of events. Figure 12–1 shows a
block diagram of the timers.

Overview

12-3Timers

Figure 12–1. Timer Block Diagram

DATIN

TOUT pinTINP pin

Synchronizer

(CPU clock)1/4

ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ

INVINP

FUNC
10

INVOUT

TSTAT, timer output TINT, timer
interrupt to CPU and DMA

ÁÁÁÁ
ÁÁ
ÁÁ

CLKSRC

HLD

01

Peripheral Bus to CPU and DMA

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Equals comparator

Count
zero

GOÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Edge detect

Count
enableÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer period
register

Timer counter
register

C/P

PWID

DATOUT

HLD

Pulse generator

Timer Registers

 12-4

12.2 Timer Registers
Table 12–1 describes the three registers that configure timer operation.

Table 12–1. Timer Registers

Hex Byte Address

Timer 0 Timer 1 Name Description Section

01940000 01980000 Timer Control Determines the operating mode of the timer, monitors
the timer status, and controls the function of the TOUT
pin.

12.2.1

01940004 01980004 Timer Period Contains the number of timer input clock cycles to count.
This number controls the TSTAT signal frequency.

12.2.2

01940008 01980008 Timer Counter Current value of the incrementing counter 12.2.3

12.2.1 Timer Control Register

Figure 12–2 shows the timer control register. Table 12–2 describes the fields
in this register.

Figure 12–2. Timer Control Register

31 12 11 10 9 8

Rsvd TSTAT INVINP CLKSRC C/P

R, +0 R, +0 RW, +0 RW, +0 RW, +0

7 6 5 4 3 2 1 0

HLD GO Rsvd PWID DATIN DATOUT INVOUT FUNC

RW, +0 RW, +0 R, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0

Table 12–2. Timer Control Register Field Descriptions

Bitfield Description Section

FUNC Function of TOUT pin

FUNC = 0: TOUT is a general-purpose output pin.
FUNC = 1: TOUT is a timer output pin.

12.6

DATOUT Data output

When FUNC = 0: The DATOUT is driven on TOUT.

When FUNC = 1: The TSTAT is driven on TOUT after inversion by INVOUT.

12.6

DATIN Data in: Value on TINP pin 12.5

GO GO bit. Resets and starts the timer counter.

GO = 0: No effect on the timers.
GO = 1: If HLD = 1, the counter register is zeroed and begins counting on the next clock.

12.3

Timer Registers

12-5Timers

Table 12–2. Timer Control Register Field Descriptions (Continued)

Bitfield SectionDescription

HLD Hold. Counter may be read or written regardless of HLD value.

HLD = 0: Counter is disabled and held in the current state.
HLD = 1: Counter is allowed to count.

12.3

C/P Clock/pulse mode

C/P = 0: Pulse mode. TSTAT is active one CPU clock after the timer reaches the timer
period. PWID determines when it goes inactive.

C/P = 1: Clock mode. TSTAT has a 50% duty cycle with each high and low period one
countdown period wide.

12.6

PWID Pulse width. Only used in pulse mode (C/P = 0).

PWID = 0: TSTAT goes inactive one timer input clock cycle after the timer counter value
equals the timer period value.
PWID = 1: TSTAT goes inactive two timer input clock cycles after the timer counter val-
ue equals the timer period value.

12.6

CLKSRC Timer input clock source

CLKSRC = 0: External clock source drives the TINP pin.
CLKSRC = 1: CPU clock/4.

12.5

INVINP TINP inverter control. Only affects operation if CLKSRC = 0.

INVINP = 0: Uninverted TINP drives timer.
INVINP = 1: Inverted TINP drives timer.

12.5

TSTAT Timer status. Value of timer output. 12.6

INVOUT TOUT inverter control. Used only if FUNC = 1.

INVOUT = 0: Uninverted TSTAT drives TOUT.
INVOUT = 1: Inverted TSTAT drives TOUT.

Timer Registers

 12-6

12.2.2 Timer Period Register

The timer period register (Figure 12–3) contains the number of timer input
clock cycles to count. This number controls the frequency of TSTAT.

Figure 12–3. Timer Period Register

31 0

Timer Period

RW, +0

12.2.3 Timer Counter Register

The timer counter register (Figure 12–4) increments when it is enabled to count.
It resets to 0 on the next CPU clock after the value in the timer period register
is reached.

Figure 12–4. Timer Counter Register

31 0

Timer Counter

RW, +0

Resetting the Timers and Enabling Counting: GO and HLD

12-7Timers

12.3 Resetting the Timers and Enabling Counting: GO and HLD

Table 12–3 shows how the GO and HLD enable basic features of timer operation.

Table 12–3. Timer GO and HLD Field Operation

Operation GO HLD Description

Holding the timer 0 0 Counting is disabled.

Restarting the timer after
hold

0 1 Timer continues from the value before hold. The timer
counter is not reset.

Reserved 1 0 Undefined

Starting the timer 1 1 Timer counter resets to 0 and starts counting whenever
enabled. Once set, GO self-clears.

Configuring a timer requires three basic steps:

1) If the timer is not currently in the hold state, place the timer in hold (HLD
= 0). Note that after device reset, the timer is already in the hold state.

2) Write the desired value to the timer period register.

3) Start the timer by setting the GO and HLD bits of the timer control register
to 1 and simultaneously writing the desired values to the timer control
register.

Timer Counting

 12-8

12.4 Timer Counting

The timer counter runs at the CPU clock rate. However, counting is enabled
on the low-to-high transition of the timer count enable source. This transition
is detected by the edge detect circuit shown in Figure 12–1. Each time an ac-
tive transition is detected, one CPU-clock-wide clock enable pulse is gener-
ated. To the user, this makes the counter appear as if it were getting clocked
by the count enable source. Thus, this count enable source is referred to as
the timer input clock source.

Once the timer reaches a value equal to the value in the timer period register,
the timer is reset to 0 on the next CPU clock. Thus, the counter counts from
0 to N. Consider the case where the period is 2 and the CPU clock/4 is selected
as the timer clock source (CLKSRC = 1). Once started, the timer counts the
following sequence: 0, 0, 0, 0, 1, 1, 1, 1, 2, 0, 0, 0, 1, 1, 1, 1, 2, 0, 0, 0…. Note
that although the counter counts from 0 to 2, the period is 8 (2*4) CPU clock
cycles rather than 12 (3*4) CPU clock cycles. Thus, the countdown period is
the value of TIMER PERIOD, not TIMER PERIOD+1.

12.5 Timer Clock Source Selection: CLKSRC

Low-to-high transitions (or high-to-low transitions if INVINP = 1) of the timer
input clock allow the timer counter to increment. Two sources are available to
drive the timer input clock:

� The input value on the TINP pin, selected by CLKSRC = 0. This signal is
synchronized to prevent any metastability caused by asynchronous
external inputs. The value present on the TINP pin is reflected by DATIN.

� The CPU clock/4, selected by CKSRC = 1.

Timer Counting / Timer Clock Source Selection: CLKSRC

Timer Pulse Generation

12-9Timers

12.6 Timer Pulse Generation

The two basic pulse generation modes are pulse mode and clock mode, as
shown in Figure 12–5 and Figure 12–6, respectively. You can select the mode
with the C/P bit of the timer control register. Note that in pulse mode, PWID in
the timer control register can set the pulse width to either one or two input clock
periods. The purpose of this feature is to provide minimum pulse widths in the
case in which TSTAT drives the TOUT output. TSTAT drives this pin when
TOUT is used as a timer pin (FUNC = 1), and may be inverted by setting
INVOUT = 1. The value actually driven out to the TOUT pin is reflected by DAT-
OUT. Table 12–4 gives equations for various TSTAT timing parameters in
pulse and clock modes.

Figure 12–5. Timer Operation in Pulse Mode (C/P = 0)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2 � timer clock source period (PWID = 1)

Timer counter = timer period, TINT timer interrupt period

1 � timer clock source period (PWID = 0)

Period Register � f(timer input clock)

TSTAT, TINT

Figure 12–6. Timer Operation in Clock Mode (C/P = 1)

timer counter = timer period

Timer clock source period

2 � Period Register � f(timer input clock)

STAT, TINT

Period

TINT timer interrupt period

Timer Pulse Generation

 12-10

Table 12–4. TSTAT Parameters in Pulse and Clock Modes

Mode Frequency Period Width High Width Low

Pulse
f (clock source) timer period register (PWID + 1) timer period register – (PWID + 1)

Pulse
timer period register f (clock source) f (clock source) f (clock source)

f (clock source) 2 * timer period register timer period register timer period register
Clock 2 * timer period register f (clock source) f (clock source) f (clock source)

Boundary Conditions in the Control Registers

12-11Timers

12.7 Boundary Conditions in the Control Registers

The following boundary conditions affect timer operation:

1) Timer period and counter register value is 0: After device reset and before
the timer starts counting, TSTAT is held at 0. After the timer starts running
by setting HLD = 1 and GO = 1, while the period and counter registers are
zero, the operation of the timer depends on the C/P mode selected. In
pulse mode, the TSTAT = 1 regardless of whether or not the timer is held.
In clock mode, when the timer is held (HLD = 0), TSTAT keeps it’s previous
value and when HLD = 1, TSTAT toggles with a frequency of 1/2 of the CPU
clock frequency.

2) Counter overflow: When the counter register is set to a value greater than
the value of the period register, the counter reaches its maximum value
(FFFF FFFFh), rolls over to 0, and continues.

3) Writing to registers of an active timer: Writes from the peripheral bus over-
ride register updates to the counter register and new status updates to the
control register.

4) Small timer period values in pulse mode: Note that small periods in pulse
mode can cause TSTAT to remain high. This condition occurs when TIMER
PERIOD ≤ PWID + 1.

12.8 Timer Interrupts

The TSTAT signal directly drives the CPU interrupt as well as a DMA synchro-
nization event. The frequency of the interrupt is the same as the frequency of
TSTAT.

12.9 Emulation Operation

During debug using the emulator, the CPU may be halted on an execute packet
boundary for single stepping, benchmarking, profiling, or other debug uses.
During an emulation halt, the timer halts when the CPU clock/4 is selected as
the clock source (CLKSRC = 1). Here, the counter is only enabled to count dur-
ing those cycles when the CPU is not stalled due to the emulation halt. Thus,
counting will be re-enabled during single-step operation. If CLKSRC = 0, the
timer continues counting as programmed.

Boundary Conditions in the Control Registers / Timer Interrupts / Emulation Operation

13-1

Interrupt Selector and External Interrupts

This chapter describes the interrupt selector and registers available.

Topic Page

13.1 Available Interrupt Sources 13-2.

13.2 External Interrupt Signal Timing 13-5.

13.3 Interrupt Selector Registers 13-7.

13.4 Configuring the Interrupt Selector 13-10.

Chapter 13

Available Interrupt Sources

 13-2

13.1 Available Interrupt Sources

The ‘C6000 peripheral set has up to 32 interrupt sources. The CPU however
has 12 interrupts available for use. The interrupt selector allows you to choose
and prioritize which 12 of the 32 your system needs to use. The interrupt selec-
tor also allows you to effectively change the polarity of external interrupt inputs.

Table 13–1 lists the available interrupts. Note that this table is similar to the
DMA synchronization events in Chapter 4, DMA Controller except for two dif-
ferences. One difference is that the McBSP generates separate interrupts and
DMA synchronization events. The second difference is that DSPINT has been
moved from 10000b to 00000b.

Available Interrupt Sources

13-3Interrupt Selector and External Interrupts

Table 13–1. TMS320C6201/C6202/C6701 Available Interrupts

Interrupt
Selection Number

Interrupt
Acronym Interrupt Description

00000b DSPINT Host processor to DSP interrupt

00001b TINT0 Timer 0 interrupt

00010b TINT1 Timer 1 interrupt

00011b SD_INT EMIF SDRAM timer interrupt

00100b EXT_INT4 External interrupt pin 4

00101b EXT_INT5 External interrupt pin 5

00110b EXT_INT6 External interrupt pin 6

00111b EXT_INT7 External interrupt pin 7

01000b DMA_INT0 DMA channel 0 interrupt

01001b DMA_INT1 DMA channel 1 interrupt

01010b DMA_INT2 DMA channel 2 interrupt

01011b DMA_INT3 DMA channel 3 interrupt

01100b XINT0 McBSP 0 transmit interrupt

01101b RINT0 McBSP 0 receive interrupt

01110b XINT1 McBSP 1 transmit interrupt

01111b RINT1 McBSP 1 receive interrupt

10000b Reserved

10001b XINT2 McBSP 2 transmit interrupt†

10010b RINT2 McBSP 2 receive interrupt†

other Reserved

† Only available on the ’C6202

For more information on interrupts, including the interrupt vector table, see the
TMS320C6000 CPU and Instruction Set Reference Guide.

Available Interrupt Sources

 13-4

The EDMA controller in the ‘C6211/C6711 device has 16 channels; each trig-
gered by a specific event. As in the other ’C6000 platform of devices, the
’C6211/C6711 CPU has 12 interrupts available for use. Although there is provi-
sion for 32 interrupt sources, the ‘C6211/C6711 provides for 13 interrupt
sources. As shown in Table 13–2, the four DMA interrupts in existing
’C6201/’C6701/’C6202 devices are replaced with a single EDMA interrupt
(EDMA_INT) which is described in EDMA Controller chapter 6, section 6.13
EDMA Interrupt Generation.

Table 13–2. TMS320C6211/C6711 Available Interrupts

Interrupt
Selection
Number

Interrupt
Acronym Interrupt Description

00000b DSPINT Host port host to DSP interrupt

00001b TINT0 Timer 0 interrupt

00010b TINT1 Timer 1 interrupt

00011b SD_INT EMIF SDRAM timer interrupt

00100b EXT_INT4 External interrupt 4

00101b EXT_INT5 External interrupt 5

00110b EXT_INT6 External interrupt 6

00111b EXT_INT7 External interrupt 7

01000b EDMA_INT EDMA channel (0 through 15) interrupt

01001b Reserved Not used

01010b Reserved Not used

01011b Reserved Not used

01100b XINT0 McBSP 0 transmit interrupt

01101b RINT0 McBSP 0 receive interrupt

01110b XINT1 McBSP 1 transmit interrupt

01111b RINT1 McBSP 1 receive interrupt

other Reserved

External Interrupt Signal Timing

13-5Interrupt Selector and External Interrupts

13.2 External Interrupt Signal Timing

EXT_INT4–7, and NMI are dedicated external interrupt sources. In addition, the
FSR and FSX can be programmed to directly drive the RINT and XINT signals.
Because these signals are asynchronous, they are passed through two regis-
ters before being sent to either the DMA or CPU. Figure 13–1 shows the timing
of external interrupt signals using INT4 as an example. This diagram is similar
to the one in the CPU Reference Guide. However, this diagram also shows the
delays for the external interrupt through the two synchronization flip-flops. Note,
that this delay is two CPU clock (CLKOUT1) cycles. However, if the EXT_INT4
input transitions during the setup and hold time with respect to the CLKOUT1
rising edge, this delay could be as long as 3 CLKOUT1 cycles. Once synchro-
nized, an additional 3 CLKOUT1 cycle delay occurs before the related interrupt
flag (IF4) is set.

The earliest cycle that the interrupt can be scheduled is one CLKOUT1 cycle
after IF4 is set. This is indicated by the active internal interrupt acknowledge
(IACK) signal as shown in Figure 13–1. The interrupt can be postponed or in-
hibited if not properly enabled as described in other chapters of the CPU Refer-
ence Guide. In that case, IACK will be also be postponed. Along with IACK,
the CPU sets the INUM signal to indicate which interrupt was taken. Externally,
the IACK pin pulse is extended to two CLKOUT2 cycles wide and synchro-
nized to CLKOUT2. Also, the INUM pin signal frames this external IACK with
one CLKOUT2 cycle of setup and hold, for a width of 4 CLKOUT2 cycles. Note
that even though INUM and IACK in the diagram are not valid on a CLKOUT2
rising edge, the internal circuitry still catches the transition and produces the
desired waveforms on the IACK and INUM pins.

The NMI can interrupt a maskable interrupt’s fetch packet (ISFP) just before
the interrupt reaches E1. In this case an IACK and INUM for the NMI is not seen
because the IACK and INUM corresponding to the maskable interrupt is on the
pins.

External Interrupt Signal Timing

 13-6

Figure 13–1. Timing of External Interrupt Related Signals

0100

INUM_int

IACK pin

INUM pins

IF4

IACK_int

EXT_INT4 pin

2019181716151413121110987654321

INT4_int

CLKOUT2

CLKOUT1

2–3 � CLKOUT1

3 � CLKOUT1

0100

CLKOUT 2

2X CLKOUT 2

4X CLKOUT 2

Interrupt Selector Registers

13-7Interrupt Selector and External Interrupts

13.3 Interrupt Selector Registers

Table 13–3 shows the interrupt selector registers. The interrupt multiplexer
registers determine the mapping between the interrupt sources in Table 13–1
and the CPU interrupts 4 through 15 (INT4–INT15). The external interrupt
polarity register sets the polarity of external interrupts.

Table 13–3. Interrupt Selector Registers

Byte
Address Name Description Section

019C0000h Interrupt multiplexer high Selects which interrupts drive CPU interrupts 10–15
(INT10–15)

13.3.2

019C0004h Interrupt multiplexer low Selects which interrupts drive CPU interrupts 4–9
(INT4–INT9)

13.3.2

019C0008h External interrupt polarity Sets the polarity of the external interrupts
(EXT_INT4–EXT_INT7)

13.3.1

13.3.1 External Interrupt Polarity Register

The external interrupt polarity register allows you to change the polarity of the
four external interrupts (EXT_INT4 to EXT_INT7). When XIP is its default value
of 0, a low-to-high transition on an interrupt source is recognized as an interrupt.
By setting the related XIP bit in this register to 1, you can invert the external inter-
rupt source and effectively have the CPU detect high-to-low transitions of the
external interrupt. Changing an XIP bit’s value creates transitions on the related
CPU interrupt (INT4–INT15) that the external interrupt, EXT_INT, is selected to
drive. For example, if XIP4 is changed from 0 to 1 and EXT_INT4 is low, or if
XIP4 is changed from 1 to 0 and EXT_INT4 is high, the CPU interrupt that is
mapped to EXT_INT4 becomes set. The external interrupt polarity register only
affects interrupts to the CPU, and has no effect on DMA events.

Figure 13–2. External Interrupt Polarity Register

31 4 3 2 1 0

Rsvd XIP7 XIP6 XIP5 XIP4

R, +0 R, +0 RW, +0 RW, +0 RW, +0

Interrupt Selector Registers

 13-8

13.3.2 Interrupt Multiplexer Register

The INTSEL fields in the interrupt multiplexer registers, shown in Figure 13–3
and Figure 13–4 allow mapping the interrupt sources in to particular interrupts.
The INTSEL4–INTSEL15 correspond to CPU interrupts INT4–INT15. By
setting the INTSEL fields to the value of the desired interrupt selection number
in Table 13–1 or Table 13–2, you may map any interrupt source to any CPU
interrupt. Table 13–4 shows the default mapping of interrupt sources to CPU
interrupts.

Figure 13–3. Interrupt Multiplexer Low Register Diagram
31 30 26 25 21 20 16

Reserved INTSEL9 INTSEL8 INTSEL7

R, +0 RW, +01001 RW, +01000 RW, +00111

15 14 10 9 5 4 0

Reserved INTSEL6 INTSEL5 INTSEL4

R, +0 RW, +00110 RW, +00101 RW, +00100

Figure 13–4. Interrupt Multiplexer High Register Diagram
31 30 26 25 21 20 16

Reserved INTSEL15 INTSEL14 INTSEL13

R, +0 RW, +00010 RW, +00001 RW, +00000

15 14 10 9 5 4 0

Reserved INTSEL12 INTSEL11 INTSEL10

R, +0 RW, +01011 RW, +01010 RW, +00011

Interrupt Selector Registers

13-9Interrupt Selector and External Interrupts

Table 13–4. Default Interrupt Mapping

CPU
Interrupt

Related
INTSEL field

INTSEL
Reset Value

Interrupt
Acronym Interrupt Description

INT4 INTSEL4 00100b EXT_INT4 External interrupt pin 4

INT5 INTSEL5 00101b EXT_INT5 External interrupt pin 5

INT6 INTSEL6 00110b EXT_INT6 External interrupt pin 6

INT7 INTSEL7 00111b EXT_INT7 External interrupt pin 7

INT8 INTSEL8 01000b DMA_INT0/
EDMA_INT

DMA Channel 0 Interrupt/
EDMA interrupt

INT9 INTSEL9 01001b DMA_INT1 DMA Channel 1 interrupt†

INT10 INTSEL10 00011b SD_INT EMIF SDRAM timer interrupt

INT11 INTSEL11 01010b DMA_INT2 DMA Channel 2 interrupt†

INT12 INTSEL12 01011b DMA_INT3 DMA Channel 3 interrupt†

INT13 INTSEL13 00000b DSPINT Host port to DSP interrupt

INT14 INTSEL14 00001b TINT0 Timer 0 interrupt

INT15 INTSEL15 00010b TINT1 Timer 1 interrupt

† Reserved on ’C6211/C6711

Configuring the Interrupt Selector

 13-10

13.4 Configuring the Interrupt Selector

The interrupt selector registers are meant to be configured once after reset dur-
ing initialization and before enabling interrupts.

Note:

Once the registers have been set, the interrupt flag register should be cleared
by the user after some delay to remove any spurious transitions caused by the
configuration.

You may reconfigure the interrupt selector during other times, but spurious inter-
rupt conditions may be detected by the CPU on the interrupts affected by the
modified fields. For example, if EXT_INT4 is low, EXT_INT5 is high, and INT9
is remapped from EXT_INT4 to EXT_INT5, the low-to-high transition on INT9
is recognized as an interrupt and sets IF9.

14-1

Power-Down Logic

This chapter describes the power-down modes.

Topic Page

14.1 Overview 14-2.

14.2 Triggering, Wake-Up, and Effects 14-4.

14.3 Additional Power-Saving Modes for the TMS320C6202 14-6.

Chapter 14

Overview

 14-2

14.1 Overview

Most of the operating power of CMOS logic is dissipated during circuit switching
from one logic state to another. By preventing some or all of chip’s logic from
switching, significant power savings can be realized without losing any data or
operational context. PD1, PD2, and PD3 are three power-down modes avail-
able to perform this function. Power-down mode PD1 blocks the internal clock
inputs at the boundary of the CPU, preventing most of its logic from switching.
PD1 effectively shuts down the CPU. Additional power savings are accom-
plished in power-down mode PD2, where the entire on-chip clock structure
(including multiple buffers) is “halted” at the output of the PLL (see Figure 14–1).
PD3 is like PD2 but also disconnects the external clock source (CLKIN) from
reaching the PLL. Wake-up from PD3 takes longer then wake-up from PD2 be-
cause the PLL needs to be re-locked, just as it does following power-up.

On the ’C6201/C6202/C6701, both the PD2 and PD3 signals also assert the
PD pin for external recognition of these two power-down modes. Although the
’C6211/C6711 has power-down modes identical to the other devices, there is
no PD pin driven externally. In addition to power-down modes described in this
chapter, the IDLE instruction provides lower CPU power consumption by exe-
cuting continuous NOPs. The IDLE instruction terminates only upon servicing
an interrupt.

Overview

14-3Power-Down Logic

Figure 14–1. Power-Down Mode Logic

PWRD

Internal clock tree

C6200 CPU

IFR

IER

CSR

PD1

PD2

Power-
down
logic

Internal
peripheral

Clock
PLL

CLKIN RESET

CLKOUT1

TMS320C6201/TMS320C6701

PD

PD3

Internal
peripheral

Figure 14–2. PWRD Field of the CSR Register

31 16 15 14 13 12 11 10 9 0

rsvd

Enabled
or

non-enabled
interrupt wake

Enabled
interrupt

wake
Pd3 Pd2 Pd1

Table 14–1. Power-Down Mode and Wake-Up Selection

PRWD Power-down mode/Wake-up method

000000 no power-down

001001 PD1 / wake by an enabled interrupt

010001 PD1 / wake by an enabled or non-enabled interrupt

011010 PD2

011100 PD3

other reserved

Triggering, Wake-Up, and Effects

 14-4

14.2 Triggering, Wake-Up, and Effects

Power-down mode PD1 takes effect eight to nine clock cycles after the instruc-
tion that caused the power down (by setting the idle bits in the CSR). Use the
following code segment to enter power down:

B NextInst ;branch does not effect program flow, but
NOP ; hides the move to the CSR in the delay

; slots
MVC Breg, CSR ;power-down mode is set by this instruction
NOP
NOP
NOP

NextInst: NOP
NOP5 ;CPU notifies power-down logic to initiate

; power down
INSTR2 ;normal program exexution resumed here

The power-down modes and their wake-up methods are programmed by setting
bits 10-15 of the control status register (CSR PWRD field). PD2 and PD3 modes
can only be aborted by device reset, while PD1 mode can also be terminated by
an enabled interrupt, or any interrupt (enabled or not), as directed by bits 13 and
14 of the CSR. When writing to CSR, all bits of the PWRD field should be set at
the same time. Logic 0 should be used when writing to reserved fields (bit 15 of
CSR).

The wake-up from PD1 can be triggered by either an enabled interrupt, or any
interrupt (enabled or not). The first case is selected by writing a logic 1 to bit 13
of the Control Status Register (PWRD field), and the second case is selected by
writing a logic 1 into bit 14 of CSR. If PD1 mode is terminated by a non-enabled
interrupt, the program execution returns to the instruction following the NOP 9.
Wake-up by an enabled interrupt executes the corresponding interrupt service
fetch packet (ISFP) first, prior to returning to the instruction following the NOP 9.
CSR register GIE bit and IER register NMIE bit must also be set in order for the
ISFP to execute, otherwise execution returns to the previous point, rather than
servicing the interrupt.

Triggering, Wake-Up, and Effects

14-5Power-Down Logic

Table 14–2. Characteristics of the Power-Down Modes

Power-Down
Mode Trigger Action Wake-up Method Effect on Chip’s Operation

PD1 write logic 001001b
or 010001b to bits
15-10 of the CSR

internal interrupt,
external interrupt or
Reset

CPU halted (except for the interrupt logic)

PD2 write logic 011010b to
bits 15-10 of the CSR

Reset only Output clock from PLL is halted, stopping
the internal clock structure from switching
and resulting in the entire chip being
halted. Signal terminal PD is driven high.
All register and internal RAM contents are
preserved. All signal terminals behave the
same way as during Reset.

PD3 write logic 11100b to
bits 15-10 of the CSR

Reset only Input clock to the PLL stops generating
clocks. Signal terminal PD is driven high.
All register and internal RAM contents are
preserved. All signal terminals behave the
same way as during Reset. Following re-
set, the PLL needs time to re-lock, just as
it does following power-up.

Additional Power-Saving Modes for the TMS320C6202

 14-6

14.3 Additional Power-Saving Modes for the TMS320C6202

In addition to the power down modes common to all of the C6x devices, the
’C6202 has the ability to turn off clocks to individual peripherals on the device.
This feature allows the user to selectively turn off peripherals which are not be-
ing used for a specific application and not pay the extra price in power con-
sumption for unused peripherals.

This method can have significant savings in power consumption. In a device
which is as highly integrated as the C6000 series of DSPs a significant amount
of power can be consumed in a reset or no activity state just due to the internal
clock distribution. By selectively turning off unused portions of the device, the
effects can be minimized.

Table 14–3 shows the peripheral power down register address location, and
Figure 14–3 shows the register fields.

Table 14–3. TMS320C6202 Peripheral Power-Down Memory-Mapped Register

Byte Address Field

019C 0200h Peripheral Power-Down Control

Figure 14–3. Peripheral Power-Down Control Fields for the TMS320C6202

31 5 4 3 2 1 0

Reserved PDMCSP2 PDMCSP1 PDMCSP0 PDEMIF PDDMA

R,+0 RW,+1 RW,+1 RW,+1 RW,+1 RW,+1

Additional Power-Saving Modes for the TMS320C6202

14-7Power-Down Logic

Table 14–4 lists and describes the fields in the TMS320C6202 peripheral
power-down memory-mapped register.

Table 14–4. Description of TMS320C6202 Power-Down Control Fields

Field Description Section

PDDMA Enable/disable internal DMA clock

PDDMA=0: internal DMA clock allowed to clock
PDDMA=1: internal DMA clock disabled. DMA is not functional

14.3

PDEMIF Enable/disable internal EMIF clock

PDEMIF=0: internal EMIF clock allowed to clock
PDEMIF=1: Internal EMIF clock disabled. EMIF is not functional. The HOLD

condition which exists at power down will remain active and
external clocks continue to clock.

14.3

PDMCSP0 Enable/disable internal McBSP0 clock

PDMCSP0=0: Internal McBSP0 clock allowed to clock.
PDMCSP0=1: Internal McBSP0 clock disabled. McBSP0 is not functional.

14.3

PDMCSP1 Enable/disable internal McBSP1 clock

PDMCSP1=0: internal McBSP1 clock allowed to clock.
PDMCSP1=1: internal McBSP1 clock disabled, McBSP1 is not functional.

14.3

PDMCSP2 Enable/disable internal McBSP2 clock

PDMCSP2=0: internal McBSP2 clock allowed to clock
PDMCSP2=1: internal McBSP2 clock disabled, McBSP2 is not functional

14.3

Additional Power-Saving Modes for the TMS320C6202

 14-8

You must careful to not disable a portion of the device which is being used,
since the peripheral in question will not be operational. A clock-off mode can
be entered and exited depending on the needs of the application. For example,
if an application does not need the serial ports, the ports can be disabled and
then re-enabled when needed.

When re-enabling any of the PD bits, the CPU should wait at least 5 additional
clock cycles before attempting to access that peripheral. This delay can be ac-
complished with a NOP 5 after any write to a peripheral power down register,
as shown in Example 14–1.

Example 14–1. Assemble Code for Initializing Peripheral Power-Down Register

MVK 0x019C0200, Dest_Ptr_Reg
MVKH 0x019C0200, Dest_Ptr_Reg
STW SrcReg, *Dest_Ptr_Reg
NOP 5

15-1Designing for JTAG Emulation

Designing for JTAG Emulation

This chapter assists you in meeting the design requirements of the XDS510
emulator with respect to JTAG designs and discusses the XDS510 cable
(manufacturing part number 2617698-0001). This cable is identified by a label
on the cable pod marked JTAG 3/5V and supports both standard 3-volt and
5-volt target system power inputs.

The term JTAG, as used in this book, refers to TI scan-based emulation, which
is based on the IEEE 1149.1 standard.

Topic Page

15.1 Designing Your Target System’s
Emulator Connector (14-Pin Header) 15-2.

15.2 Bus Protocol 15-3.

15.3 IEEE 1149.1 Standard 15-3.

15.4 JTAG Emulator Cable Pod Logic 15-4.

15.5 JTAG Emulator Cable Pod Signal Timing 15-5.

15.6 Emulation Timing Calculations 15-6.

15.7 Connections Between the Emulator and the Target System 15-8.

15.8 Mechanical Dimensions for the 14-Pin Emulator Connector 15-12. . . .

15.9 Emulation Design Considerations 15-14.

Chapter 15

Designing Your Target System’s Emulator Connector (14-Pin Header)

 15-2

15.1 Designing Your Target System’s Emulator Connector (14-Pin Header)
JTAG target devices support emulation through a dedicated emulation port.
This port is a superset of the IEEE 1149.1 standard and is accessed by the
emulator. To communicate with the emulator, your target system must have
a 14-pin header (two rows of seven pins) with the connections that are shown
in Figure 15–1. Table 15–1 describes the emulation signals.

Figure 15–1. 14-Pin Header Signals and Header Dimensions

TDO 7 8 GND

TMS 1 2 TRST

TDI 3 4 GND

TCK_RET 9 10 GND

TCK 11 12 GND

Header Dimensions:
Pin-to-pin spacing, 0.100 in. (X,Y)
Pin width, 0.025-in. square post
Pin length, 0.235-in. nominal

PD (VCC) 5 6 no pin (key)†

EMU0 13 14 EMU1

† While the corresponding female position on the cable connector is plugged to prevent improper
connection, the cable lead for pin 6 is present in the cable and is grounded, as shown in the sche-
matics and wiring diagrams in this document.

Table 15–1. 14-Pin Header Signal Descriptions

Signal Description
Emulator †

State
Target †

State
TMS Test mode select O I

TDI Test data input O I

TDO Test data output I O

TCK Test clock. TCK is a 10.368-MHz clock
source from the emulation cable pod. This
signal can be used to drive the system test
clock

O I

TRST‡ Test reset O I

EMU0 Emulation pin 0 I I/O

EMU1 Emulation pin 1 I I/O

PD(VCC) Presence detect. Indicates that the emula-
tion cable is connected and that the target is
powered up. PD should be tied to VCC in the
target system.

I O

TCK_RET Test clock return. Test clock input to the
emulator. May be a buffered or unbuffered
version of TCK.

I O

GND Ground
† I = input; O = output
‡ Do not use pullup resistors on TRST: it has an internal pulldown device. In a low-noise

environment, TRST can be left floating. In a high-noise environment, an additional pulldown
resistor may be needed. (The size of this resistor should be based on electrical current
considerations.)

Designing Your Target System’s Emulator Connector (14-Pin Header)

15-3Designing for JTAG Emulation

Although you can use other headers, recommended parts include:

straight header, unshrouded DuPont Connector Systems
part numbers: 65610–114

 65611–114

 67996–114

 67997–114

15.2 Bus Protocol

The IEEE 1149.1 specification covers the requirements for the test access port
(TAP) bus slave devices and provides certain rules, summarized as follows:

� The TMS/TDI inputs are sampled on the rising edge of the TCK signal of
the device.

� The TDO output is clocked from the falling edge of the TCK signal of the
device.

When these devices are daisy-chained together, the TDO of one device has
approximately a half TCK cycle setup to the next device’s TDI signal. This type
of timing scheme minimizes race conditions that would occur if both TDO and
TDI were timed from the same TCK edge. The penalty for this timing scheme
is a reduced TCK frequency.

The IEEE 1149.1 specification does not provide rules for bus master (emula-
tor) devices. Instead, it states that it expects a bus master to provide bus slave
compatible timings. The XDS510 provides timings that meet the bus slave
rules.

15.3 IEEE 1149.1 Standard

For more information concerning the IEEE 1149.1 standard, contact IEEE
Customer Service:

Address: IEEE Customer Service
445 Hoes Lane, PO Box 1331
Piscataway, NJ 08855-1331

Phone: (800) 678–IEEE in the US and Canada
(908) 981–1393 outside the US and Canada

FAX: (908) 981–9667 Telex: 833233

Designing Your Target System’s Emulator Connector (14-Pin Header) / Bus Protocol / IEEE 1149.1 Standard

JTAG Emulator Cable Pod Logic

 15-4

15.4 JTAG Emulator Cable Pod Logic

Figure 15–2 shows a portion of the emulator cable pod. These are the func-
tional features of the pod:

� Signals TDO and TCK_RET can be parallel-terminated inside the pod if
required by the application. By default, these signals are not terminated.

� Signal TCK is driven with a 74LVT240 device. Because of the high-current
drive (32 mA IOL/IOH), this signal can be parallel-terminated. If TCK is tied
to TCK_RET, then you can use the parallel terminator in the pod.

� Signals TMS and TDI can be generated from the falling edge of TCK_RET,
according to the IEEE 1149.1 bus slave device timing rules.

� Signals TMS and TDI are series-terminated to reduce signal reflections.

� A 10.368-MHz test clock source is provided. You may also provide your
own test clock for greater flexibility.

Figure 15–2. JTAG Emulator Cable Pod Interface

100 Ω

TL7705A
RESIN

270 Ω

JP2

180 Ω

TCK_RET (Pin 9)�

EMU1 (Pin 14)

EMU0 (Pin 13)
74AS1034

GND (Pins 4,6,8,10,12)

TRST (Pin 2)

TCK (Pin 11)�

10.368 MHz

33 Ω

33 Ω

TDI (Pin 3)

TMS (Pin 1)

TDO (Pin 7)

74LVT240

180 Ω

JP1

270 Ω
74F175

Q

Q

D

PD(VCC) (Pin 5)

+5 V

+5 V

74AS1004

Y

Y

Y

Y

A

† The emulator pod uses TCK_RET as its clock source for internal synchronization. TCK is provided
as an optional target system test clock source.

JTAG Emulator Cable Pod Signal Timing

15-5Designing for JTAG Emulation

15.5 JTAG Emulator Cable Pod Signal Timing

Figure 15–3 shows the signal timings for the emulator cable pod. Table 15–2
defines the timing parameters. These timing parameters are calculated from
values specified in the standard data sheets for the emulator and cable pod
and are for reference only. Texas Instruments does not test or guarantee these
timings.

The emulator pod uses TCK_RET as its clock source for internal synchroni-
zation. TCK is provided as an optional target system test clock source.

Figure 15–3. JTAG Emulator Cable Pod Timings

TDO

TMS/TDI

TCK_RET

6
5

4

3
2

1

1.5 V

Table 15–2. Emulator Cable Pod Timing Parameters

No. Reference Description Min Max Units

1 tc(TCK) TCK_RET period 35 200 ns

2 tw(TCKH) TCK_RET high-pulse duration 15 ns

3 tw(TCKL) TCK_RET low-pulse duration 15 ns

4 td(TMS) Delay time, TMS/TDI valid from TCK_RET low 6 20 ns

5 tsu(TDO) TDO setup time to TCK_RET high 3 ns

6 th(TDO) TDO hold time from TCK_RET high 12 ns

Emulation Timing Calculations

 15-6

15.6 Emulation Timing Calculations

The following examples help you calculate emulation timings in your system.
For actual target timing parameters, see the appropriate device data sheets.

Assumptions:

tsu(TTMS) Target TMS/TDI setup to TCK high 10 ns

td(TTDO) Target TDO delay from TCK low 15 ns

td(bufmax) Target buffer delay, maximum 10 ns

td(bufmin) Target buffer delay, minimum 1 ns

t(bufskew) Target buffer skew between two devices
in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

t(TCKfactor) Assume a 40/60 duty cycle clock 0.4
(40%)

Given in Table 15–2 (on page 15-5):

td(TMSmax) Emulator TMS/TDI delay from TCK_RET
low, maximum

20 ns

tsu(TDOmin) TDO setup time to emulator TCK_RET
high, minimum

3 ns

There are two key timing paths to consider in the emulation design:

� The TCK_RET-to-TMS/TDI path, called tpd(TCK_RET–TMS/TDI), and
� The TCK_RET-to-TDO path, called tpd(TCK_RET–TDO).

Of the following two cases, the worst-case path delay is calculated to deter-
mine the maximum system test clock frequency.

Case 1: Single processor, direct connection, TMS/TDI timed from TCK_RET low.

t
pd �TCK_RET–TMS�TDI�

�

�td �TMSmax� � tsu �TTMS�
�

t
�TCKfactor�

�
[20ns � 10ns]

0.4
� 75ns (13.3 MHz)

tpd �TCK_RET–TDO�
�

�td �TTDO�
� tsu �TDOmin�

�

t
�TCKfactor�

�
[15ns � 3ns]

0.4
� 45ns (22.2 MHz)

In this case, the TCK_RET-to-TMS/TDI path is the limiting factor.

Emulation Timing Calculations

15-7Designing for JTAG Emulation

Case 2: Single/multiprocessor, TMS/TDI/TCK buffered input, TDO buffered output,

TMS/TDI timed from TCK_RET low.

tpd (TCK_RET–TMS�TDI) �

�td (TMSmax)
� tsu (TTMS)

� t (bufskew)
�

t
�TCKfactor�

�

�20ns � 10ns � 1.35ns�

0.4

� 78.4ns (12.7 MHz)

tpd (TCK_RET–TDO) �

�td (TTDO)
� tsu (TDOmin) � td (bufmax)

�

t
�TCKfactor�

� 70ns (14.3 MHz)

�
[15ns � 3ns � 10ns]

0.4

In this case, the TCK_RET-to-TMS/TDI path is the limiting factor.

In a multiprocessor application, it is necessary to ensure that the EMU0–1 lines

can go from a logic low level to a logic high level in less than 10 µs. This can be

calculated as follows:

tr = 5(Rpullup × Ndevices × Cload_per_device)

= 5(4.7 k� ×16 × 15 pF)

= 5.64 µs

Connections Between the Emulator and the Target System

 15-8

15.7 Connections Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator
and the JTAG target system. Depending upon the situation, you must supply
the correct signal buffering, test clock inputs, and multiple processor intercon-
nections to ensure proper emulator and target system operation.

Signals applied to the EMU0 and EMU1 pins on the JTAG target device can
be either input or output (I/O). In general, these two pins are used as both input
and output in multiprocessor systems to handle global run/stop operations.
EMU0 and EMU1 signals are applied only as inputs to the XDS510 emulator
header.

15.7.1 Buffering Signals

If the distance between the emulation header and the JTAG target device is
greater than six inches, the emulation signals must be buffered. If the distance
is less than six inches, no buffering is necessary. The following illustrations
depict these two situations.

� No signal buffering. In this situation, the distance between the header
and the JTAG target device should be no more than six inches.

VCC

Emulator Header

VCC

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG Device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

6 Inches or Less

The EMU0 and EMU1 signals must have pullup resistors connected to VCC to
provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is suggested for
most applications.

Connections Between the Emulator and the Target System

15-9Designing for JTAG Emulation

� Buffered transmission signals. In this situation, the distance between
the emulation header and the processor is greater than six inches. Emula-
tion signals TMS, TDI, TDO, and TCK_RET are buffered through the same
package.

VCC

Emulator Header
VCC

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG Device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater Than
6 Inches

� The EMU0 and EMU1 signals must have pullup resistors connected to
VCC to provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is
suggested for most applications.

� The input buffers for TMS and TDI should have pullup resistors con-
nected to VCC to hold these signals at a known value when the emula-
tor is not connected. A resistor value of 4.7 kΩ or greater is suggested.

� To have high-quality signals (especially the processor TCK and the
emulator TCK_RET signals), you may have to employ special care
when routing the PWB trace. You also may have to use termination
resistors to match the trace impedance. The emulator pod provides
optional internal parallel terminators on the TCK_RET and TDO. TMS
and TDI provide fixed series termination.

� Since TRST is an asynchronous signal, it should be buffered as
needed to insure sufficient current to all target devices.

Connections Between the Emulator and the Target System

 15-10

15.7.2 Using a Target-System Clock

Figure 15–4 shows an application with the system test clock generated in the
target system. In this application, the TCK signal is left unconnected.

Figure 15–4. Target-System-Generated Test Clock

NC

System Test Clock

VCC

Emulator Header

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG Device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater Than
6 Inches

VCC

Note: When the TMS/TDI lines are buffered, pullup resistors should be used to hold the buffer
inputs at a known level when the emulator cable is not connected.

There are two benefits to having the target system generate the test clock:

� The emulator provides only a single 10.368-MHz test clock. If you allow
the target system to generate your test clock, you can set the frequency
to match your system requirements.

� In some cases, you may have other devices in your system that require
a test clock when the emulator is not connected. The system test clock
also serves this purpose.

Connections Between the Emulator and the Target System

15-11Designing for JTAG Emulation

15.7.3 Configuring Multiple Processors

Figure 15–5 shows a typical daisy-chained multiprocessor configuration,
which meets the minimum requirements of the IEEE 1149.1 specification. The
emulation signals in this example are buffered to isolate the processors from
the emulator and provide adequate signal drive for the target system. One of
the benefits of this type of interface is that you can generally slow down the test
clock to eliminate timing problems. You should follow these guidelines for
multiprocessor support:

� The processor TMS, TDI, TDO, and TCK signals should be buffered
through the same physical package for better control of timing skew.

� The input buffers for TMS, TDI, and TCK should have pullup resistors con-
nected to VCC to hold these signals at a known value when the emulator
is not connected. A resistor value of 4.7 kΩ or greater is suggested.

� Buffering EMU0 and EMU1 is optional but highly recommended to provide
isolation. These are not critical signals and do not have to be buffered
through the same physical package as TMS, TCK, TDI, and TDO. Unbuf-
fered and buffered signals are shown in this section (page 15-8 and page
15-9).

Figure 15–5. Multiprocessor Connections

TDITDI TDOTDO

JTAG DeviceJTAG Device

VCC

Emulator Header

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

T
M

S

T
C

K

T
R

S
T

E
M

U
0

E
M

U
1

T
M

S

T
C

K

T
R

S
T

E
M

U
0

E
M

U
1 VCC

Mechanical Dimensions for the 14-Pin Emulator Connector

 15-12

15.8 Mechanical Dimensions for the 14-Pin Emulator Connector

The JTAG emulator target cable consists of a 3-foot section of jacketed cable,
an active cable pod, and a short section of jacketed cable that connects to the
target system. The overall cable length is approximately 3 feet 10 inches.
Figure 15–6 and Figure 15–7 (page 15-13) show the mechanical dimensions
for the target cable pod and short cable. Note that the pin-to-pin spacing on
the connector is 0.100 inches in both the X and Y planes. The cable pod box
is nonconductive plastic with four recessed metal screws.

Figure 15–6. Pod/Connector Dimensions

0.90

2.70

4.50

9.50

Refer to Figure 15–7.

Emulator Cable Pod

Short, Jacketed Cable

Connector

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.

Mechanical Dimensions for the 14-Pin Emulator Connector

15-13Designing for JTAG Emulation

Figure 15–7. 14-Pin Connector Dimensions

0.100
Key, Pin 6

0.100

0.87

0.66

0.20

Pins 2, 4, 6, 8, 10, 12, 14Pins 1, 3, 5, 7, 9, 11, 13

Cable

Connector, Side View

Connector, Front View

Cable

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.

Emulation Design Considerations

 15-14

15.9 Emulation Design Considerations

This section describes the use and application of the scan path linker (SPL),
which can simultaneously add all four secondary JTAG scan paths to the main
scan path. It also describes the use of the emulation pins and the configuration
of multiple processors.

15.9.1 Using Scan Path Linkers

You can use the TI ACT8997 scan path linker (SPL) to divide the JTAG
emulation scan path into smaller, logically connected groups of 4 to 16
devices. As described in the Advanced Logic and Bus Interface Logic Data
Book (literature number SCYD001), the SPL is compatible with the JTAG
emulation scanning. The SPL is capable of adding any combination of its four
secondary scan paths into the main scan path.

A system of multiple, secondary JTAG scan paths has better fault tolerance
and isolation than a single scan path. Since an SPL has the capability of adding
all secondary scan paths to the main scan path simultaneously, it can support
global emulation operations, such as starting or stopping a selected group of
processors.

TI emulators do not support the nesting of SPLs (for example, an SPL
connected to the secondary scan path of another SPL). However, you can
have multiple SPLs on the main scan path.

Although the ACT8999 scan path selector is similar to the SPL, it can add only
one of its secondary scan paths at a time to the main JTAG scan path. Thus,
global emulation operations are not assured with the scan path selector. For
this reason, scan path selectors are not supported.

You can insert an SPL on a backplane so that you can add up to four device
boards to the system without the jumper wiring required with nonbackplane
devices. You connect an SPL to the main JTAG scan path in the same way you
connect any other device. Figure 15–8 shows you how to connect a secondary
scan path to an SPL.

Emulation Design Considerations

15-15Designing for JTAG Emulation

Figure 15–8. Connecting a Secondary JTAG Scan Path to an SPL

TDI

TCK

TDO

TRST

TMS

TDO

TRST

TCK

TMS

TDI

DTDI0

DTMS0

DTDO0

DTCK

TDO

TRST

TCK

TMS

TDI

SPL

JTAG 0

JTAG N
DTDI1

DTMS1

DTDO1

DTDI2

DTMS2

DTDO2

DTDI3

DTMS3

DTDO3

. .
 .

The TRST signal from the main scan path drives all devices, even those on
the secondary scan paths of the SPL. The TCK signal on each target device
on the secondary scan path of an SPL is driven by the SPL’s DTCK signal. The
TMS signal on each device on the secondary scan path is driven by the respec-
tive DTMS signals on the SPL.

DTDO on the SPL is connected to the TDI signal of the first device on the sec-
ondary scan path. DTDI on the SPL is connected to the TDO signal of the last
device in the secondary scan path. Within each secondary scan path, the TDI
signal of a device is connected to the TDO signal of the device before it. If the
SPL is on a backplane, its secondary JTAG scan paths are on add-on boards;
if signal degradation is a problem, you may need to buffer both the TRST and
DTCK signals. Although less likely, you may also need to buffer the DTMSn
signals for the same reasons.

Emulation Design Considerations

 15-16

15.9.2 Emulation Timing Calculations for SPL

The following examples help you to calculate the emulation timings in the SPL
secondary scan path of your system. For actual target timing parameters, see
the appropriate device data sheets.

Assumptions:

tsu(TTMS) Target TMS/TDI setup to TCK high 10 ns

td(TTDO) Target TDO delay from TCK low 15 ns

td(bufmax) Target buffer delay, maximum 10 ns

td(bufmin) Target buffer delay, minimum 1 ns

t(bufskew) Target buffer skew between two devices
in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

t(TCKfactor) Assume a 40/60 duty cycle clock 0.4
(40%)

Given in the SPL data sheet:

td(DTMSmax) SPL DTMS/DTDO delay from TCK
low, maximum

31 ns

tsu(DTDLmin) DTDI setup time to SPL TCK
high, minimum

7 ns

td(DTCKHmin) SPL DTCK delay from TCK
high, minimum

2 ns

td(DTCKLmax) SPL DTCK delay from TCK
low, maximum

16 ns

There are two key timing paths to consider in the emulation design:

� The TCK-to-DTMS/DTDO path, called tpd(TCK–DTMS), and
� The TCK-to-DTDI path, called tpd(TCK–DTDI).

Emulation Design Considerations

15-17Designing for JTAG Emulation

Of the following two cases, the worst-case path delay is calculated to deter-
mine the maximum system test clock frequency.

Case 1: Single processor, direct connection, DTMS/DTDO timed from TCK low.

tpd �TCK–DTMS� �

�td �DTMSmax� � td �DTCKHmin� � tsu �TTMS�
�

t
�TCKfactor�

�
[31ns � 2ns � 10ns]

0.4

� 107.5ns (9.3 MHz)

t
pd �TCK–DTDI�

�

�t
d �TTDO�

� t
d �DTCKLmax�

� t
su �DTDLmin�

�

t
�TCKfactor�

�
[15ns � 16ns � 7ns]

0.4

� 9.5ns (10.5 MHz)

In this case, the TCK-to-DTMS/DTDL path is the limiting factor.

Case 2: Single/multiprocessor, DTMS/DTDO/TCK buffered input, DTDI buffered out-

put, DTMS/DTDO timed from TCK low.

tpd (TCK–TDMS) �

�td (DTMSmax) � t
�DTCKHmin� � tsu (TTMS) � t(bufskew)�

t
�TCKfactor�

�
[31ns � 2ns � 10ns � 1.35ns]

0.4

� 110.9ns (9.0 MHz)

tpd (TCK–DTDI) �

�td (TTDO) � td �DTCKLmax� � tsu (DTDLmin)
� td (bufskew)

t
�TCKfactor�

� 120ns (8.3 MHz)

�
[15ns � 15ns � 7ns � 10ns]

0.4

In this case, the TCK-to-DTDI path is the limiting factor.

Emulation Design Considerations

 15-18

15.9.3 Using Emulation Pins

The EMU0/1 pins of TI devices are bidirectional, three-state output pins. When
in an inactive state, these pins are at high impedance. When the pins are
active, they function in one of the two following output modes:

� Signal Event
The EMU0/1 pins can be configured via software to signal internal events.
In this mode, driving one of these pins low can cause devices to signal
such events. To enable this operation, the EMU0/1 pins function as open-
collector sources. External devices such as logic analyzers can also be
connected to the EMU0/1 signals in this manner. If such an external
source is used, it must also be connected via an open-collector source.

� External Count
The EMU0/1 pins can be configured via software as totem-pole outputs
for driving an external counter. If the output of more than one device is
configured for totem-pole operation, then these devices can be damaged.
The emulation software detects and prevents this condition. However, the
emulation software has no control over external sources on the EMU0/1
signal. Therefore, all external sources must be inactive when any device
is in the external count mode.

TI devices can be configured by software to halt processing if their EMU0/1
pins are driven low. This feature, in combination with the use of the signal event
output mode, allows one TI device to halt all other TI devices on a given event
for system-level debugging.

If you route the EMU0/1 signals between boards, they require special handling
because these signals are more complex than normal emulation signals.
Figure 15–9 shows an example configuration that allows any processor in the
system to stop any other processor in the system. Do not tie the EMU0/1 pins
of more than 16 processors together in a single group without using buffers.
Buffers provide the crisp signals that are required during a RUNB (run bench-
mark) debugger command or when the external analysis counter feature is
used.

Emulation Design Considerations

15-19Designing for JTAG Emulation

Figure 15–9. EMU0/1 Configuration

Open
Collector

Drivers

EMU0/1-IN

Backplane

Target Board m

TCK

XCNT_ENABLE

Pullup Resistor

To Emulator EMU0

PAL
Pullup
Resistor

Open
Collector

Drivers

Target Board 1

EMU0/1

Pullup Resistor

EMU0/1-OUT

. . .Device Device

EMU0/1

. . .

. . .

. . .

. . .

. . .

1 n

Device Device
1 n

Notes: 1) The low time on EMUx-IN should be at least one TCK cycle and less than 10 �s. Software will set the EMUx-OUT
pin to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rising/falling edges of less than 25 ns,
the modification shown in this figure is suggested. Rising edges slower than 25 ns can cause the emulator to detect
false edges during the RUNB command or when the external counter selected from the debugger analysis menu
is used.

These seven important points apply to the circuitry shown in Figure 15–9 and
Figure 15–10 , and the timing shown in Figure 15–11:

� Open-collector drivers isolate each board. The EMU0/1 pins are tied to-
gether on each board.

� At the board edge, the EMU0/1 signals are split to provide IN/OUT. This
is required to prevent the open-collector drivers from acting as a latch that
can be set only once.

� The EMU0/1 signals are bused down the backplane. Pullup resistors are
installed as required.

� The bused EMU0/1 signals go into a PAL� device, whose function is to
generate a low pulse on the EMU0/1-IN signal when a low level is detected

Emulation Design Considerations

 15-20

on the EMU0/1-OUT signal. This pulse must be longer than one TCK
period to affect the devices, but less than 10 µs to avoid possible conflicts
or retriggering, once the emulation software clears the device’s pins.

� During a RUNB debugger command or other external analysis count, the
EMU0/1 pins on the target device become totem-pole outputs. The EMU1
pin is a ripple carry-out of the internal counter. EMU0 becomes a
processor-halted signal. During a RUNB or other external analysis count,
the EMU0/1-IN signal to all boards must remain in the high (disabled)
state. You must provide some type of external input (XCNT_ENABLE) to
the PAL to disable the PAL from driving EMU0/1-IN to a low state.

� If sources other than TI processors (such as logic analyzers) are used to
drive EMU0/1, their signal lines must be isolated by open-collector drivers
and be inactive during RUNB and other external analysis counts.

� You must connect the EMU0/1-OUT signals to the emulation header or di-
rectly to a test bus controller.

Emulation Design Considerations

15-21Designing for JTAG Emulation

Figure 15–10. EMU0/1 Configuration With Additional AND Gate to Meet Timing
Requirements

Open
Collector

Drivers

EMU0/1-IN

Backplane

Target Board m

TCK

XCNT_ENABLE

Pullup Resistor

To Emulator EMU0

PAL
Pullup
Resistor

Open
Collector

Drivers

Target Board 1

EMU0/1

Pullup Resistor

EMU1 signal from other boards

EMU1AND

To Emulator EMU1

Circuitry required for >25-ns rising/
falling edge modification

EMU0/1-OUT

. . .Device Device

EMU0/1

. . .

. . .

. . .

. . .

. . .

. . .

1 n

Device Device
1 n

Up to
m boards

Notes: 1) The low time on EMUx–IN should be at least one TCK cycle and less than 10 �s. Software will set the EMUx–OUT
pin to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rising/falling edges of less than 25 ns,
the modification shown in this figure is suggested. Rising edges slower than 25 ns can cause the emulator to detect
false edges during the RUNB command or when the external counter selected from the debugger analysis menu
is used.

Figure 15–11. Suggested Timings for the EMU0 and EMU1 Signals

EMU0/1-IN

EMU0/1-OUT

TCK

Emulation Design Considerations

 15-22

If having devices on one target board stopped by devices on another target
board via the EMU0/1 signals is not important, then the circuit in Figure 15–12
can be used. In this configuration, the global-stop capability is lost. It is impor-
tant not to overload EMU0/1 with more than 16 devices.

Figure 15–12. EMU0/1 Configuration Without Global Stop

EMU0/1

To Emulator

Pullup Resistor

. . .

EMU0/1

. . .Device Device

EMU0/1

. . .

. . .

. . .

1 n

Device Device
1 n

. . .

Target Board m

Target Board 1

Pullup Resistor

Pullup Resistor

Note: The open-collector driver and pullup resistor on EMU1 must be able to provide rising/falling edges of less than 25 ns.
Rising edges slower than 25 ns can cause the emulator to detect false edges during the RUNB command or when the
external counter selected from the debugger analysis menu is used. If this condition cannot be met, then the EMU0/1
signals from the individual boards should be ANDed together (as shown in Figure 15–10) to produce an EMU0/1 signal
for the emulator.

Emulation Design Considerations

15-23Designing for JTAG Emulation

15.9.4 Performing Diagnostic Applications

For systems that require built-in diagnostics, it is possible to connect the
emulation scan path directly to a TI ACT8990 test bus controller (TBC) instead
of the emulation header. The TBC is described in the Texas Instruments Ad-
vanced Logic and Bus Interface Logic Data Book (literature number
SCYD001). Figure 15–13 shows the scan path connections of n devices to the
TBC.

Figure 15–13. TBC Emulation Connections for n JTAG Scan Paths

JTAG0

JTAGN
TDI

EMU1

TMS

TDO

EMU0

TRST

TCK

TDO

TCK

TRST

EMU1

EMU0

TMS

TDI

Clock

TDI1

TDI0

TCKO

TMS5/EVNT3

TMS4/EVNT2

TMS3/EVNT1

TMS2/EVNT0

TMS1

TMS0

TDO

TCKI

VCC

TBC

In the system design shown in Figure 1–13, the TBC emulation signals TCKI,
TDO, TMS0, TMS2/EVNT0, TMS3/EVNT1, TMS5/EVNT3, TCKO, and TDI0
are used, and TMS1, TMS4/EVNT2, and TDI1 are not connected. The target
devices’ EMU0 and EMU1 signals are connected to VCC through pullup resis-
tors and tied to the TBC’s TMS2/EVNT0 and TMS3/EVNT1 pins, respectively.
The TBC’s TCKI pin is connected to a clock generator. The TCK signal for the
main JTAG scan path is driven by the TBC’s TCKO pin.

Emulation Design Considerations

 15-24

On the TBC, the TMS0 pin drives the TMS pins on each device on the main
JTAG scan path. TDO on the TBC connects to TDI on the first device on the
main JTAG scan path. TDI0 on the TBC is connected to the TDO signal of the
last device on the main JTAG scan path. Within the main JTAG scan path, the
TDI signal of a device is connected to the TDO signal of the device before it.
TRST for the devices can be generated either by inverting the TBC’s
TMS5/EVNT3 signal for software control or by logic on the board itself.

Index

Index-1

Index

14-pin connector, dimensions 15-13
14-pin header

header signals 15-2
JTAG 15-2

2–bit data delay used to discard framing bit,
figure 11-31

’320C6000 devices, features 1-5

A
A register file 8-4
AC97 bit timing near fram synchronization,

figure 11-33
AC97 dual–phase frame format, figure 11-32
access

asynchronous 9-53
DMA to program memory 2-1
host 7-19
host read/write 8-7
read 7-27
ROM mode 9-52
TMS320C6202 read/write 8-7
write 7-27

access off–chip peripherals 8-1
address

logical mapping of cache 2-5
memory mapped 8-7

address allocation, L1P 4-6
address and data registers 8-3
address generation

direct memory access 5-22
using frame index 5-25
programmable 5-3
sorting 5-26
transferring a large single block 5-25

address generation hardware 6-17
address mapping

internal data RAM 3-7

RAM in cache mode 3-5

address modification 6-14

address phase (Ta) 8-36

Address pin EA[12] 9-6

address range 6-9

address shift 9-32

address signals 8-3, 8-10

address space 1-6

address update mode 6-22

addresses must be aligned 6-27

adjustment, address 5-22

alignment 6-27

analog interface chips (AICs) 1-11

applications
TMS320 family 1-2
TMS320C6x family 1-4

arbitration mode 8-8

architecture
cache 2-4

TMS320C6000 3-2
internal memory 4-2
memory 3-2
RAM–based 6-9
register–based 6-9
two level memory 4-1

arithmetic logic units (ALUs) 1-5

array, definition 6-5

asynchronous
configuration 9-14
devices 9-2
interface 9-5, 9-13

asynchronous host port mode 8-41

asynchronous interface 8-9, 9-49
reads 9-54
ready input 9-57
writes 9-56

Index

Index-2

asynchronous mode 8-5
asynchronous or synchronous FIFOs 8-2
asynchronous peripheral FIFO interface 8-2
asynchronous peripherals 8-2
asynchronous read timing example, figure 9-55
auto–initialization feature 6-16
autoincrement 7-22
auxiliary port 8-3

B
B register file 8-4
background refreshes 9-24
bank collision 4-15
base address register 4-8
big endian (BE) 7-8
bit descriptions, HPI control register 7-17
bit ordering 11-52
bits, HOLD and HOLDA 9-28
block, definition 6-5
block diagram

EMIF 9-4
expansion bus 8-2
externalmemory interface in the

TMS320C6201/C6701 9-3
host port interface 7-4
internal memory 4-3
McBSP 11-3
timers 12-3
TMS320C6201/6202/6701 1-9
TMS320C6201/C6701 7-2
TMS320C6201/C6701 program memory

controller 2-2
TMS320C6202 data memory controller 3-7
TMS320C6202 program memory controller 3-3
TMS320C6211 1-10, 4-2

block transfer 5-2
block transfers 5-13, 6-5
Boot configuration 1-8
boot configuration 1-11

boot mode pins 10-3
boot process 10-8
HPI boot process 10-9
memory at reset address 10-8
memory map 10-5
overview 10-2
ROM boot process 10-8

TMS320C6211 summary 10-5
boot configuration control via expansion bus 8-49
bootload

note on program memory 2-6
TMS320C6202 3-6

bootload operation 3-6
BSP serial port control extension register (SPCE)

CLKP bit 11-13
FSP bit 11-12

buffered signals, JTAG 15-9
buffering 15-8
bus arbitration scheme 8-2
bus arbitration signals 8-2
bus connections between the CPU, internal

memories, and the enhanced DMA 4-2
bus data 8-7
bus devices 15-3
bus protocol 15-3
buses

data 7-7
external 9-60
HPI access 7-12

byte enable pins 7-8

C
cable, target system to emulator 15-1 to 15-24
cable pod 15-4
cache 1-6, 2-1

architecture 2-4
bypass 2-4
fetch packet figure 2-5
flush 2-5
logical mapping of address 2-5
miss 2-3, 2-5
usage of CPU address 2-5

cache , flush 2-5
Cache Configuration Register (CCFG) 4-15
cache configuration register (CCFG) 4-7, 4-12
Cache Configuration Register Field Description,

table 4-13
cache data 4-7, 4-11
cache data request 4-17
cache, freeze 2-3
cache hit 4-6
cache miss 4-6, 4-10
cache operation 3-5

Index

Index-3

cache RAM 4-3

chaining EDMA channels by an event 6-34

Channel Chain Enable Register (CCER),
figure 6-35

channel chain enable register (CCER) 6-6, 6-34

Channel Interrupt Enable Register (CIER),
figure 6-32

channel interrupt enable register (CIER) 6-6, 6-32

Channel Interrupt Pending Register (CIPR),
figure 6-32

channel interrupt pending register (CIPR) 6-6, 6-32

channel/event entry 6-13

channels 6-36
chaining 6-34

chip enable (CE) spaces 4-18

circular buffering 6-25

clean a range of address from the L2 4-23

clean operation 4-21

CLKRM 11-60

clock output enabling 9-64

clock source selection 12-8

communication between the host device
and the CPU 8-7

companding data format 11-51

companding hardware 11-50
nonDLB method 11-52

companding internal data 11-51

complex sorting, circular buffering 6-25

conditions, serial port exception 11-41

conditions for linking 6-26

configuration
element length 11-28
frame and clock 11-23
frame length 11-27
multiprocessor 15-11
serial port 11-7

configuration of the interrupt selector 13-10

connector
14-pin header 15-2
dimensions, mechanical 15-12
DuPont 15-3

contention on the data bus 8-10

contiguous elements 6-5

control and status register (CSR) 2-3, 4-6, 4-9

control pins, SDRAM 9-23

control register boundary conditions 12-11
control registers 1-9, 4-2, 8-4, 9-5, 9-6, 9-9

EDMA 6-6
control status register 3-4

figure iii
controller 2-3

data memory 1-6
direct memory access 1-6
DMA 2-1
DMA controller 5-4
L2 4-22
peripheral bus 1-8
program memory 2-2, 9-5

count events 12-2
counting 12-8
CPU, core 1-5
CPU control status register 3-5
CPU interrupts 11-22
CPU servicing of EDMA interrupts 6-34
CPU write to the ESR 6-17
CPU–initiated EDMA 6-17
CPU–initiated EDMA transfers 6-7, 6-17
CSR, figure iii
cycle description 8-36

D
data, invalidating in the L1D 4-12
data access controller 1-9, 8-4
data address 4-3
data and program memories 1-6
data bus, HD 7-7
data cache control (DCC) 4-9
data cache controller 4-3
data cache mode settings 4-10
data clock generation 11-57

bit clock 11-58
CLKRM 11-60
CLKSM 11-57, 11-60
frame synchronization 11-58
input clock source mode 11-57
receive clock selection 11-60

data delay 11-30
figure 11-30

data latches 7-5
data memory 3-2

internal 1-6

Index

Index-4

data memory
access 2-8
alignment 2-15
DMA accesses to 2-18
dual CPU access of 2-15
endianness 2-18
organization 2-9

TMS320C6201 revision 2 2-9
TMS320C6201 revision 2, figure 2-10
TMS320C6201 revision 2, table 2-9
TMS320C6201 revision 3 2-11
TMS320C6201 revision 3, figure 2-12
TMS320C6201 revision 3, table 2-11
TMS320C6701 2-13
TMS320C6701, figure 2-14
TMS320C6701, table 2-13

data memory controller 1-6, 2-8, 9-5
data memory controller (DMEMC) 3-7
data packing 11-28, 11-39
data path A 3-7, 8-4
data path B 3-7
data RAM address mapping 3-7
data receive (DR) pin 11-4
data receive register (DRR) 11-4
data reception 11-18
data register 7-8
data register, HPID 7-8
data registers 1-11
data transfe 6-17
data transfer 6-6
data transmission 11-18
data transmit (DX) pin 11-4
data write access 7-8
deactivation, SDRAM 9-35
debugger, interface 1-5
decision tree response to receive frame sync pulse,

figure 11-44
default interrupt mapping 13-9
definitions, EDMA 6-5
delay, data 11-30
Destination / source (address) update mode 6-14
destination address 6-13
destination address registers 5-22
destination update mode (DUM) 6-31
determining ready status 11-21
device reset 10-2, 11-19

diagnostic applications 15-23

diagram
expansion bus block 8-2
expansion bus host port interface block 8-22
expansion bus interface in the

TMS320C6202 8-4
expansion bus XCE (0/1/2/3) space control

register 8-9
host port interface block of TMS320C6211 7-5
internal memory block 4-3
L1D, 2–way set associative cache diagram 4-11
L1P, direct mapped cache 4-7
TMS320C6201/6202/C6701 1-9
TMS320C6201/C6701 1-10
TMS320C6202 data memory controller

block 3-7
TMS320C6202 program memory controller 3-3
TMS320C6211 block 4-2, 6-2, 7-3

digital loop back (DLB) 11-52

digital signal processors (DSPs) 1-1

digital subscriber loop (DSL) 1-4

dimensions
12-pin header 15-18
14-pin header 15-12
mechanical, 14-pin header 15-12

direct memory access 1-8

direct memory access (DMA) 1-6, 1-7, 1-9
action complete pins 5-38
address generation 5-22
autoinitialization 5-13
automated event clearing 5-19
synchronization 5-17
block transfers 5-13
channel condition 5-33
channel control registers 5-8
channel event flags 5-18
channel reload registers 5-14
emulator mode 5-38
endianness 5-23
FIFO 5-36
holding registers 5-37
memory map 5-12
overview 5-2
performance limits 5-38
priority configuration 5-30
registers 5-5
split channel operation 5-28
structure 5-35
transfer counting register 5-16

Index

Index-5

direct memory access (DMA) controller 1-6, 1-7,
5-2

direct memory access (EDMA) 6-2
direct memory access channels 5-1
direct memory access controller 2-1
direct–mapped cache 3-2
DMA. See direct memory access
DMA auxiliary channel 7-3, 7-19
DMA bus controller 3-3, 3-7
DMA channel control register 5-8
DMA channel primary control register 5-23

figure 5-8
DMA channel secondary control registers,

figure 5-10
DMA channel transfer counter register, figure 5-16
DMA controller 1-10, 9-2, 9-5, 11-18

access to program memory 2-6
DMA controller interconnect to

TMS320C6201/C6701 memory mapped
modules, figure 5-4

DMA global count reload register used as a transfer
counter reload, figure 5-16

DMA global index register 5-23
DMA interrupt mapping 6-33
double-rate clock 11-67
double-rate ST-BUS clock 11-65
DSPINT 6-18
dual–phase frame example 11-26
DUM/SUM 6-14
DuPont connector 15-3

E
E1 standards 1-11
EDMA

performance 6-37
QDMA 6-38
transfer parameters 6-13

EDMA Channel Association with Sync Events,
table 6-18

EDMA Channel Options Field Description,
table 6-13

EDMA channel transfer 6-34
EDMA channels 6-34
EDMA control registers, table 6-6

EDMA Controller, figure 6-3
EDMA controller 1-10, 6-6, 6-8, 6-25, 6-28, 6-32,

6-34, 7-3
TMS320C6211 13-4

EDMA DST Address Parameter Updates,
table 6-31

EDMA Element and Frame/Line Count Updates,
table 6-28

EDMA interrupt generation 6-32
EDMA interrupt servicing by the CPU 6-34
EDMA parameter RAM 6-16, 6-18, 6-28
EDMA Parameter RAM Contents, table 6-10
EDMA SRC Address Parameter Updates,

table 6-30
EDMA stalls 6-36, 6-37
EDMA terminology 6-5
EDMA transfer 6-7

initiating 6-17
EDMA transfers, synchronization of 6-17
EDMA transfers, linking 6-25
EDMA_TCC10 6-18
EDMA_TCC11 6-18
EDMA_TCC8 6-18
EDMA_TCC9 6-18
effects of a power down 14-4
element index (EIX) 6-12
element and frame/line count updates 6-28
Element Count 6-15
element count 5-16, 6-25
element count reload 6-12
element count (EC) 6-20, 6-28
element count reload 6-15, 6-28
element index 8-10
element index (EIX 6-21
element index (EIX) 6-20, 6-28
element length 11-28
Element size 6-14
element size 6-27
element transfer 5-2, 6-5, 6-21
element transfers 6-37
Element/(Frame/Line) Index 6-15
EMA transfer parameter entry 6-12
EMIF global control register diagram, figure 9-9
EMIF to 16–bit ROM interface, figure 9-51
EMIF to 8–bit ROM interface, figure 9-51

Index

Index-6

EMIF to SRAM interface, figure 9-50
EMU0/1

configuration 15-19, 15-22
emulation pins 15-18
IN signals 15-18
rising edge modification 15-21

EMU0/1 signals 15-2, 15-5, 15-6, 15-11, 15-16
emulation

JTAG cable 15-1
timing calculations 15-6 to 15-7, 15-16 to 15-24

emulation halt 9-64
emulator

connection to target system, JTAG mechanical
dimensions 15-12 to 15-24

designing the JTAG cable 15-1
emulation pins 15-18
signal buffering 15-8 to 15-11
target cable, header design 15-2 to 15-3

emulator mode, direct memory access (DMA) 5-38
emulator pod, JTAG timings 15-5
enabling counting 12-7
endianness 6-27

data memory 2-18
direct memory access 5-23

enhanced data memory controller 9-6
enhanced direct memory access (EDMA) 1-7
enhanced DMA 4-2
enhanced DMA controller 4-2, 6-9
ER bit 6-7
error condition 6-7
ESIZE 6-14
ESIZE field 6-27
even N parameters 6-25
event

chaining EDMA channels 6-34
McBSP0 receive 6-18
McBSP0 transmit 6-18

Event Clear Register (ECR), figure 6-8
event clear register (ECR) 6-6
Event Enable Register (EER), figure 6-7
event enable register (EER) 6-6
event encoder 6-8, 6-17
event flags 5-18
Event Processing and EDMA Control

Registers 6-6
Event Register (ER), figure 6-7

event register (ER) 6-6
Event Set Register (ESR), figure 6-8
event set register (ESR) 6-6, 6-7
event set register, ESR 6-17
event–triggered EDMA 6-17
events, synchronization 11-7
example, dual–phase frame 11-26
Example of the Expansion Bus Interface to Four

8–Bit FIFOs, figure 8-11
Example of the Expansion Bus Interface to Two

16–Bit FIFOs, figure 8-12
examples

DMA single frame transfer 8-20
DMA transfer 8-20
transfer with frame synchronization 8-21
two–dimensional block transfer with frame

sync 6-23
expansion bus 1-9, 8-1

’C6202 master 8-28
’C6202 slave on 8-35
arbitration 8-44
block diagram 8-2
boot configuration, pullup and pulldown

resistors 8-50
boot configuration control 8-49
data 8-7
data (XBD) register 8-7
data register 8-23
description 1-10
external address 8-7
external address (XBEA) register 8-6
external address register 8-24
global control register 8-8
global control register fields 8-8
host channel 8-2
host port control 8-7
host port interface control register 8-24
host port registers 8-23
I/O port operation 8-10
interface in the TMS320C6202, block

diagram 8-4
internal master address (XBIMA) register 8-6
internal master address register 8-7, 8-24
internal slave address 8-7
internal slave address (XBISA) register 8-7
internal slave address register 8-23
pin description

asynchronous host port mode 8-41
synchronous host port mode 8-26

Index

Index-7

space control register diagram 8-9
expansion bus (XB) 1-8
Expansion Bus Block Diagram, figure 8-2
Expansion Bus Boot Configuration via Pull Up/Pull

Down Resistors on XD[31:0], figure 8-49
expansion bus data (XBD) 8-23
expansion bus data (XBD) register 8-35, 8-41
Expansion Bus Global Control (XBGC)

Register 8-6
expansion bus global control register 8-44
expansion bus host port control (XBHC) 8-28
Expansion Bus Host Port Interface Block Diagram,

figure 8-22
Expansion Bus Host Port Interface Control (XBHC)

Register 8-6
figure 8-25

expansion bus host port operation 8-22
expansion bus host port registers 8-7
expansion bus internal address (XBIA)

register 8-41
expansion bus internal slave address (XBISA)

register 8-35
Expansion Bus Master Writes a Burst of Data to the

‘C6202, figure 8-37
Expansion Bus Pin Description (Asynchronous Host

Port Mode), figure 8-41
expansion bus signals 8-5
Expansion Bus XCE(0/1/2/3) Space Control

Register Diagram, figure 8-9
EXT_INT4 6-18
EXT_INT5 6-18
EXT_INT6 6-18
EXT_INT7 6-18
external address register 8-6
external arbiter 8-2
external bus 9-60
external clock source 9-23
external data communications 11-4
external decode 8-3
External Device Requests the Bus From ‘C6202

Using XBOFF. (Note that internal bus arbiter is
enabled, figure 8-33

external interfaces 9-6
external interrupt, signal timing 13-5
external IO port accesses 8-10

external memory 3-6, 10-2
external memory interface 3-7
external memory interface (EMIF) 1-8, 1-9, 2-3,

3-3, 3-7, 4-2, 8-3, 8-4, 9-5, 9-6
16-bit ROM 9-53
ASRAM parameters 9-53
asynchronous writes 9-56
asynchronous interface 9-49
asynchronous reads 9-54
boundary conditions for registers 9-63
CE space control register 9-12
clock output enabling 9-64
emulation operation 9-64
global control register 9-9
hold interface 9-60
memory request priority 9-61
power down 9-64
overview 9-2
ready input 9-57
registers 9-9
resetting 9-8
ROM modes 9-52
SBSRAM interface 9-43
SBSRAM reads 9-45
SBSRAM write 9-47
SDRAM control register 9-15
SDRAM deactivation 9-35, 9-39
SDRAM address shift 9-32
SDRAM initialization 9-25, 9-26
SDRAM mode register set 9-28
SDRAM page boundaries 9-25
SDRAM read 9-37
SDRAM timing register 9-17
SDRAM timing requirements 9-34

external memory interface CE0 10-7
external memory interface CE1 10-7
external memory interfaces (EMIF) 9-2
external memory space 4-23, 6-36
external shared–memory device controller 9-2

F
features 1-5
field

arbitration 9-11
arbitration mode 8-8
bootmode 8-50
cache configuration register 4-13
clean base address register 4-23

Index

Index-8

clean register 4-22
clock rate 9-11
expansion bus arbiter 8-50
external master to DSP interrupt 8-25
FIFO clock enable (XFCEN) 8-8
FIFO mode 8-50
FIFO mode set by boot mode selection

(FMOD) 8-8
flush register 4-22
frame synchronization (FS) 6-13
host mode 8-50
internal memory control register 4-13
interrupt source 8-25
L1D

flush base address register 4-12
flush word count register 4-12

L1P
flush base address register 4-8
flush word count register 4-8

L2 CE space allocation register 4-18, 4-19,
4-20

L2 flush base address register 4-22
L2 flush register 4-22
L2 flush word count registers 4-23
LINK 6-13
little endian mode 8-50
memory map 9-11
memory type 8-9
MTYPE 9-13
polarity of expansion bus read/write signal 8-50
polarity of the XBLAST signal 8-50
program cache control 4-6
RBTR8 9-11
SBSRAM clock 9-10
SSCEN 9-10
start bus master transaction 8-25
TCC 6-13
TCINT 6-13
transfer counter 8-25
XBHC register 8-25
FIFO clock rate (XFRAT) 8-8

field description, timer control register 12-4

field descriptions 5-8
DMA channel secondary control register 5-10
pin control register 11-11
receive/transmit control registers 11-15
SPCR 11-8

fields, L2 flush register 4-22

FIFO control register 8-6

FIFO Read Mode – Read Timing (glue–less case),
figure 8-17

FIFO Read Mode – With Glue, figure 8-18

FIFO Write Cycles, figure 8-16

first level memory 4-1

flag monitoring 8-19

flags, event 5-18

flow chart, L2 cache data request 4-17

flush and clean a range of addresses 4-22

flush base address register 4-5

flush base address register fields 4-8

flush begins when the L2FWC is written 4-22

flush word count register 4-5

format for the CCFG register 4-7, 4-13

frame, definition 6-5

frame (block) synchronization 6-19

frame count 5-16, 6-25

frame count (FC) 6-28

frame example, figure 11-26

frame frequency 11-35

frame index 6-25, 8-10

frame index (FIX) 6-20, 6-21, 6-24, 6-28

frame sync signal generation 11-61
frame period (FPER) 11-62
frame width (FWID) 11-62
FSGM 11-63
FSRM 11-62
FSXM 11-63
GSYNC 11-62
receive frame sync selection 11-62
transmit frame sync signal selection 11-63

frame synchronization 6-21

frame synchronization (FS) , field 6-13

frame synchronization ignore 11-36

frame synchronization phases 11-25

 framesynchronization signal (FSR) 11-34

Frame Synchronized 2–D Transfer, figure 6-23

frame synchronized non–2D transfer 6-21

frame–synchronization signal generation 11-4

frame/array count, FC 6-5

Frame/Line Count 6-15

frames 6-5

freeze or bypass modes 4-6

function, L2 ALLOC bit 4-20

Index

Index-9

G
general–purpose registers 1-5
general–purpose timers 1-12
generate pulses 12-2
global control register 8-8
global control register diagram 9-9
Glue–Less Read FIFO Interface, figure 8-17
Glue–Less Write FIFO Interface, figure 8-15
glueless interface 1-11, 9-2

H
hardware reset 9-8
header

14-pin 15-2
dimensions, 14-pin 15-2

history of the TMS320 DSPs 1-2
hold disable 8-8
hold state 8-8
host access 7-19
host device 1-10
host port interface 1-9, 8-2

bootload mode 2-6
host port interface (HPI) 4-2, 6-36
host port interface data write access 7-8
host–port interface (HPI) 1-8
host-port interface (HPI)

access control selection 7-7
access sequences 7-19
block diagram 7-4
bus accesses 7-12
byte enables 7-9
control register 7-16
CPU interrupt 7-18
data bus 7-7
halfword identification select 7-8
initialization 7-19
interrupt by CPU 7-18
memory access during reset 7-27
overview 7-2
read with autoincrement 7-22
read without autoincrement 7-20
interrupt to host 7-12
read/write select 7-10
ready pin 7-10
registers 7-16

signal descriptions 7-7
software handshaking 7-17
strobes 7-10
write with autoincrement 7-25
write without autoincrement 7-23

HPI 1-10
HPI Block Diagram of TMS320C6211, figure 7-5
HPI bootload 3-6
HPI control register (HPIC) 7-5

I
I/O port 8-2
I/O port operation 8-10
Idle modes 10-1, 13-2
idle modes 14-1
IEEE 1149.1 specification, bus slave device

rules 15-3
ignore frame synchronization 11-36
in–circuit emulation 4-2, 8-4
inactive cycles 8-10
index value 5-22
initialization, SDRAM 9-25
initiate data transfer 6-17
initiating an EDMA transfer 6-17
instruction decode 1-9
instruction fetch 1-9, 8-4
instruction fetch, dispatch, and decode 4-2
interface

asynchronous 9-5
EMIF to 16–bit ROM 9-51
EMIF to 8–bit ROM 9-51
EMIF to SRAM 9-50
glueless 9-2
read FIFO 8-17
synchronous 9-5
TMS320C6202 external memory 9-5
write 8-15

interface chips 8-1
interfaces, L2 4-15
internal arbiter 8-2
internal bus arbiter disabled 8-45
internal bus arbiter enabled 8-44
internal cache memory 4-10
Internal configuration bus timer 0 registers 10-7
internal data movement 11-4

Index

Index-10

internal data RAM address mapping 3-7

internal master address register 8-6

internal memories 4-2

internal memory 1-6, 3-6, 4-3

internal memory and cache configurations available
on the current TMS320C6000 3-2

Internal Memory Block Diagram, figure 4-3

Internal Memory Control Register Fields,
figure 4-13

internal memory control registers 4-5

internal memory control registers addresses 4-5

internal peripheral bus interrupt selector
registers 10-6

internal program memory 1-9, 2-3, 8-4
modes 2-3

internal program RAM 3-4

internal program RAM address mapping 3-5

Internal Program RAM Address Mapping in Memory
Mapped Mode, table 3-4

internal program space 3-5, 3-6

internal transfer controller 7-5

interrupt
channel interrupt enable register (CIER) 6-32
channel interrupt pending register (CIPR) 6-32
configuring 13-10
default mapping 13-9
EDMA generation 6-32
EDMA servicing 6-34
EMIF SDRAM timer 6-18
external pin 6-18
host port host to DSP 6-18
multiplexer register 13-8
polarity register 13-7
registers 13-7
SDINT 9-17
signal timing 13-5
source between DSPINT and XFRCT

counter 8-25
sources 13-2
TCC to DMA mapping 6-33
timer 0 6-18
xBHC register field DSPINT 8-25

interrupt
EDMA transfer complete code 6-18
timer 1 6-18

interrupt enable register 6-32

interrupt multiplexer high register diagram,
figure 13-8

interrupt multiplexer low register diagram,
figure 13-8

interrupt pending register 6-32
interrupt processing 6-6
Interrupt selector 1-8
interrupt selector 1-9
interrupt sources 1-12
interrupt the CPU 12-2
interrupts

CPU 11-22
DSPINT 7-18
timer 12-11

introduction iii to x, 1-1
TMS320 family overview 1-2

invalidating a block of data 4-8
invalidating a block of data in the L1D 4-12
invalidating data in the L1D 4-12
invalidation, L2 4-21

J
JTAG emulator

buffered signals 15-9
connection to target system 15-1 to 15-24
no signal buffering 15-8
pod interface 15-4

L
L1 program cache controller 4-3
L1D

2–way set associative cache diagram,
figure 4-11

address allocation, figure 4-9
data cache mode settings 4-10
description 4-9
flush word count register fields 4-12

L1D cache 4-2
L1D flush base address 4-5
L1D Flush Base Address Register Fields,

figure 4-12
L1DFBAR and L1DFWC registers 4-12
L1P

address allocation figure 4-6
description 4-6

Index

Index-11

direct mapped cache diagram 4-7
flush word count register fields 4-8

L1P address allocation 4-6

L1P cache direct mapped 4-2

L1PFWC register 4-8

L2
access 4-13
cache data request flow chart, figure 4-17
description 4-13
interfaces 4-15
memories 4-15
memory configuration, figure 4-14
operation 4-15

L2 CE Space Allocation Register Fields,
figure 4-18, 4-19, 4-20

L2 clean base address register fields, figure 4-23

L2 clean register 4-5

L2 clean register fields description 4-22

L2 controller 1-7

L2 EDMA Service 4-21

L2 flush 4-21

L2 Flush Base Address Register Fields,
figure 4-22

L2 flush register 4-5

L2 Flush Register Fields 4-22

L2 flush register fields 4-22

L2 Flush Word Count Register Fields, figure 4-23

L2 invalidation 4-21

L2ALLOC Bit Function, table 4-20

L2CBAR register 4-23

L2FBAR register 4-22

L2FWC register 4-22

latching 5-18

least recently used (LRU) 4-9

least–significant address bit 9-14

level 1 data cache mode settings 4-10

level 1 program cache mode settings 4-6

level–one data cache (L1D) controller 1-7

level–one program cache (L1P) 1-7

line/frame count (FC) 6-12

line/frame index (FIX) 6-12

link address 6-16

LINK bit in the options field 6-25

Link Conditions, table 6-26

Linked EDMA Transfer, figure 6-25
linking EDMA transfers 6-25
linking events 6-13
little endian (LE) 7-8
lock–up or error condition 6-7
logical address bit 0 9-14
logical addressing 8-10
LSB address bits 7-8

M
manual start operation 5-13
map, of cache address 2-5
mapping, default interrupt 13-9
MAR register 4-18
maximum frame frequency 11-35
maximum frame frequency transmit receive,

figure 11-36
maximum number of elements in a frame 6-28
McBSP CPU interrupts and DMA synch 11-7
McBSP data 10-7
McBSP standard operation, figure 11-34
memory

access through the HPI during reset 7-27
address register (BISA) 8-35
CPU 7-2
data 1-6
first level 4-1
internal 1-6, 3-6, 4-1
internal memory configuratins 4-2
internal program 2-3
L2 configuration 4-14
L2 memory banks 4-2
map 5-12
program 1-6
program memory controller block diagram 3-3
range 3-7
second level 4-1
summary of ’C6202 memory map 10-6
TMS320C6000, internal configurations 3-2
TMS320C6201 3-2
TMS320C6202 3-2
TMS320C6211 memory map summary 10-7
two–level internal 4-1

memory architecture 4-1
memory attribute register 4-5
memory attribute register (MARs) 4-18

Index

Index-12

memory map 2-3
boot configuration 10-5

memory mapped operation 3-4

memory mapped registers 9-9

memory request priority 9-61

memory type field (MTYPE) 8-9

memory
external interface 9-2
types and ’C6202 9-24
widths 9-14

memory–mapped registers 8-7

million instructions per second (MIPS) 1-4

mode
asynchronous 8-12
synchronous host port 8-26

modes
16–bit ROM 9-53
asynchronous host port 8-41
asynchronous I/O 8-3
cache 3-5
cache enabled 2-3
destination update mode (DUM) 6-31
FIFO output enable signal 8-14
freeze or bypass 4-6
host port (mutually exclusive) 8-5
host port interface 8-3
I/O port (non–exclusive) 8-5
internal program memory 2-3
level 1 data cache 4-10
mapped 3-4
power down 14-5
pulse and clock 12-10
slave 8-3
source update mode 6-30
synch FIFO 8-13
synchronous FIFO 8-3

monitoring , flag 8-19

MTYPE field 9-14

MTYPE, write hold, and read hold bit fields 9-13

multichannel buffered serial port (McBSP,
introduction 1-11

multichannel buffered serial port (McBSP) 1-9, 4-2,
8-4
channel enable diagram 11-72
channel enable register 11-76
CLKP bit 11-13
clock configuration 11-23
clocking examples 11-65

companding data formats 11-51
companding DLB method 11-52
companding hardware 11-50
companding nonDLB method 11-52
configuration 11-7
control register 11-7
CPU interrupts 11-22
data delay 11-30
data packing 11-39
data reception 11-18
data transmission 11-18
double-rate clock 11-67
double-rate ST-BUS clock 11-65
element length 11-28
end-of-block interrupt 11-78
end-of-frame interrupt 11-78
exception conditions 11-41
features 11-2
frame configuration 11-23
frame frequency 11-35
frame generation 11-53
frame sync signal generation 11-61
frame synch ignore bits 11-39
interface signals 11-3
multi hannel enable 11-71
multichannel selection operation 11-68
multiphase frame example: AC97 11-32
overrun 11-41
pins as general-purpose I/O 11-87
programmable clock 11-53
RDATDLY 11-30
receive control register 11-14
frame synchronization 11-36
receive operation 11-34
registers 11-3
reset 11-18
RFULL 11-41
rsyncherr 11-43
sample rate generator 11-54

reset procedure 11-56
sample rate generator register (SRGR) 11-55
sample rate generator reset 11-20
single-rate ST-BUS clock 11-66
SPI protocol (CLKSTP) 11-80
standard operation 11-33
transmit control register 11-14
transmit data companding 11-51
transmit ready 11-22
transmit with data overwrite 11-45
unexpected frame sync pulse 11-37

Index

Index-13

XDATDLY 11-30
XSYNCERR 11-47

multichannel buffered serial ports (McBSPs) 1-8
multiphase frame example 11-32

multiplexed address 8-3

multiplexed device control 9-6
multiplier 1-5

multivendor interface protocol 1-11

MVIP networking standards 1-11

N
non–2–dimensional (non–2D) 6-20

non–2D EDMA transfer 6-21
Non–2D EDMA Transfer With Frame Sync,

figure 6-22

Non–2D R/W Sync EDMA Transfer Without Frame
Sync, figure 6-21

non–2D transfer, definition 6-5

O
off–chip memory 9-1
off–chip peripherals 8-1

on–chip data memory controller 9-2

on–chip peripherals 1-6, 1-7, 1-8, 7-2

on–chip program memory controller 9-2
on-chip peripherals, TDM serial port 11-78

operation
bootload 3-6
cache 3-5
DMA 5-13
I/O port 8-10
L2 4-15
McBSP standard 11-33
memory mapped 3-4

operation
receive 11-34
transmit 11-34

Options Bit–Fields, figure 6-13

options parameter in the EDMA channel/event
entry 6-13

order of processing 6-8

output strobes 8-3
overview, TMS320 family 1-2

P
Packing and unpacking 9-14
page boundaries, monitoring 9-25
PAL 15-19, 15-20, 15-22
parameter entry of an EDMA event 6-12
Parameter RAM 6-10, 6-11
parameter RAM 6-24, 6-36
parameter RAM (PaRAM) 6-9
parameter reload space in EDMA parameter

RAM 6-21
Parameter Storage for an EDMA Event,

figure 6-12
parameters of the expansion bus 8-8
pause operation 5-13
PCC field 3-4
PCI bridge chips 8-2
PCI interface chips 8-1
performance 6-37
peripheral bus 1-8, 2-21

byte and halfword access 2-21
causing CPU wait states 2-22
CPU/DMA arbitration 2-22

peripheral bus controller 3-7
peripheral registers 6-36
peripherals 1-8
phases, frame synchronization 11-25
pin control register (PCR), figure 11-11
pins, asynchronous interface 9-49
polarity register 13-7
power down 9-64
power down logic 8-4
Power–down logic 1-8
power-down logic 14-1

overview 14-2
PRWD field 14-3
triggering 14-4
wake-up selection 14-3

Power-down logic 10-1, 13-2
powerdown logic 4-2
PRI 6-14
Priority levels for EDMA events 6-14
priority processing 6-36
Priorty Queue Register (PQSR), figure 6-37
processing of events 6-6

Index

Index-14

program access/cache controller 8-4
program address 4-3
program and data busses 4-1
program cache control (PCC) 2-3, 4-6
program cache control (PCC) field 4-6
program cache mode settings, L1P 4-6
program fetch 2-3, 3-3
program memory 2-1, 3-2

internal 1-6, 2-3
internal mode summary 2-4
note on bootload 2-6

program memory , DMA controller access 2-6
program memory controller 2-2, 9-5
program memory controller (PMEMC) 3-2
program RAM address mapping 3-5
programmable clock and framing

double-rate clock 11-67
double-rate ST-BUS clock 11-65
examples 11-65
single-rate ST-BUS clock 11-66

programmable parameters 9-53
Programmable Priority Levels for Data Requests,

table 6-36
protocol, bus 15-3
pullup and pulldown resistors on XD 8-50
pulse generation 12-9

Q
quick DMA (QDMA) 6-38

performance 6-40
registers 6-38

R
R/WSYNC event (FS=0) 6-20
R/WSYNC Non–2D Transfer 6-20
RAM 3-7
RAM address mapping 3-5
RAM–based architecture 6-9
read access with autoincrement 7-22
read FIFO interface 8-17
read hold and write hold fields 9-14
read hold bit fields 9-13
read strobe 9-12

Read/Write FIFO Interface With Glue, figure 8-16
read/write synchronization 6-19
Read/Write Synchronized 2–D Transfer

(No Frame Sync), figure 6-23
ready signals 8-27
ready status 11-21
)receive buffer register (RBR 11-4
receive control register 11-14
receive data clocking, figure 11-25
receive data justification 11-49
receive event 6-18
receive interrupt (RINT) 11-22
receive operation 11-34
receive shift register (RSR 11-4
reception, data 11-18
recovery phase (Tr) 8-36
refresh, SDRAM 9-26
register file 8-4
register–based architecture 6-9
registers

’C6211 EMIF CE space control 9-12
base address 4-8
boundary conditions 12-11
cache configuration 4-5
cache configuration 4-7, 4-15
channel chain enable 6-6
channel chain enable register 6-35
channel interrupt enable 6-6, 6-32
channel interrupt pending 6-6, 6-32
control and status 2-3, 4-6
CSR 14-3
data transmit register (DXR) 11-4
destination address 5-22
DMA 5-5
DMA channel control 5-8
DMA channel primary control 5-23
DMA channel reload 5-14
DMA channel secondary control 5-10
DMA control by address 5-6
DMA control by name 5-7
DMA global count reload 5-16
DMA global index 5-23
EDMA control 6-6
EMIF 9-9
EMIF CE space control 9-12
EMIF global control 9-9
EMIF global control , field descriptions 9-10
EMIF SDRAM control 9-15

Index

Index-15

EMIF SDRAM timing 9-17
event 6-6
event clear 6-6, 6-8
event enable 6-6, 6-8
event processing 6-6
event set 6-6, 6-7, 6-8
expansion bus 8-6

data 8-23, 8-35
external address 8-24
host port interface control 8-24
internal slave address 8-23, 8-35

expansion bus external address 8-6
expansion bus FIFO control 8-6
expansion bus global control 8-6, 8-8
expansion bus host port 8-6, 8-7
expansion bus host port interface control 8-6
expansion bus internal master address 8-6,

8-24
external interrupt polarity register 13-7
flush word count 4-8
general purpose 1-5
host-port interface 7-16
HPI control 7-16
HPIC 7-19
internal memory control 4-5, 4-13
interrupt 13-7
interrupt multiplexer 13-8
L1D , flush base address 4-12
L1D flush base address 4-5
L1P, flush word count 4-8
L1P flush base address 4-5
L2 CE space allocation 4-18, 4-19, 4-20
L2 flush base address 4-5
L1D flush word count 4-5
L2 flush word count 4-5
McBSP interface 11-3
memory attribute 4-5
memory attribute register (MAR) 4-18
mode register set 9-28
multichannel buffered serial port 11-3
multichannel control register (MCR) 11-6
page information 9-27
pin control register (PCR) 11-6, 11-11
receive buffer register (RBR) 11-4
receive channel enable register (RCER) 11-6
receive control register (RCR) 11-14
receive shift register (RSR) 11-4
reload 5-25
sample rate generator register (SRGR) 11-6
serial port control register (SPCR) 11-6, 11-7

space control 8-9
timer 12-4
timer counter 12-6
timer period 12-6
transfer counter 5-16
transmit channel enable register (XCER) 11-6
transmit control register (XCR) 11-14
transmit shift register (XSR) 11-4
writing to EMIF 9-63
XCE space control 8-9
XCE1 space control 8-6
XCE2 space control register 8-6

relevant registers (single frame transfer) 8-20
reload field 6-28
reload parameters 6-16, 6-25
reloading element count 6-28
remote access servers (RAS) 1-4
reset 10-2

device 11-19
McBSP 11-19
memory access through HPI 7-27
sample rate generator 11-20
serial port 11-18

resetting the timer 12-7
resource arbitration 6-36
REVT0 6-18
REVT1 6-18
ROM

16-bit 9-53
modes 9-52

run/stop operation 15-8
RUNB, debugger command 15-18, 15-19, 15-20,

15-21, 15-22
RUNB_ENABLE, input 15-20

S
sample rate generator

clocking and framing 11-54, 11-57
reset procedure 11-56
register 11-55

sample rate generator reset 11-20
SBSRAM

interface 9-43
reads 9-45
write 9-47

scan path linkers
secondary JTAG scan chain to an SPL 15-15

Index

Index-16

suggested timings 15-21

scan paths, TBC emulation connections for JTAG
scan paths 15-23

scratch pad RAM 6-9

SCSA standards 1-11

SD_INT 6-18

SDA10 pin 9-6

SDRAM
address shift 9-32
control pins 9-23
deactivation 9-35
EMIF timing register 9-17
initialization 9-25, 9-26
interface 9-20
mode register set 9-28
page boundaries 9-25
read 9-37
timing requirements 9-34
write 9-39

SDRAM commands 9-20

second level memory 4-1

selection of clock sources 12-8

send synchronization events to the DMA 12-2

sequential host accesses 7-22

serial port, reset 11-18

serial port configuration 11-7

serial port control register, figure 11-7

serial port exception conditions 11-41

serial port initialization 11-20

serial ports, time-division multiplexed (TDM) 11-78

set index 4-9

set index and tag data 4-6

shared signals 8-2

sign extension 11-49

signal descriptions, 14-pin header 15-2

signal timing interrupt 13-5

signals
acknowledge 8-26
address strobe 8-27
address/data bus 8-27
ARDY 9-56
asynchronous 8-5
buffered 15-9
buffering for emulator connections 15-8 to

15-11
burst last 8-27

bus back–off 8-27
byte enable 8-27, 8-41
chip select 8-26, 8-41
clock input 8-26
control 8-27, 8-41
data 8-14
data bus 8-41
description, 14-pin header 15-2
EMIF signal descriptions 9-7
expansion bus 8-5
FIFO clock output 8-14
FIFO output enable 8-14
FIFO read enable 8-14
FIFO read enable/write enable/chip select 8-14
FIFO write enable 8-14
frame sync 11-23
handshake 9-60
hold request 8-26
host port interface 7-7
McBSP 11-3
McBSP interface 11-5
read/write 8-27, 8-41
ready out/ready in 8-27
receive interrupt (RINT) 11-22
SDRAM 9-23
synchronous 8-5
timing 15-5
transmit interrupt (XINT) 11-22
XCNTL 8-7
XHOLD and XHOLDA 8-44

signals
expansion bus address 8-14
ready out 8-41

single frame transfer 8-20, 8-21
single phase fram of four 8–bit elements,

figure 11-29
single phase frame of one 32–bit element 11-29
single-rate ST-BUS clock 11-66
slave address 8-7
slave devices 15-3
slave mode 8-3
snoop address 4-3
software handshaking 7-17
source or destination address update 6-29
source update mode (SUM) 6-30
source/destination address 6-14
sources of interrupts 13-2
space control register 8-6, 9-12
space control registers 8-6

Index

Index-17

SPI Protocol: CLKSTP 11-80
SRC Address 6-12
SRC address parameter updates 6-30
SRC/DST Address 6-14
SRC/DST address updates 6-29
standard McBSP operation 11-33
stop operation 5-13
straight, unshrouded, 14-pin 15-3
subline index 4-9
SUM/DUM fields 6-28, 6-29
summary, TMS320C6211 boot configuration 10-5
summary of ’C6211 memory map 10-7
switching from one peripheral to the next 8-10
synchronization 5-17

frame (block) 6-19
frame phases 11-25
read/write 6-19

synchronization of EDMA transfers 6-17
synchronizing event 6-5
synchronous

interface 9-5
memory types 9-44

Synchronous burst SRAM (SBSRAM) 1-11
synchronous burst SRAMs (SBSRAMS) 9-43
Synchronous DRAM (SDRAM) 1-11
synchronous DRAM (SDRAM) 9-2
synchronous host port mode 8-26
synchronous master/slave interface 1-10
synchronous mode 8-5
synchronous–burst SRAM (SBSRAM) 9-2

T
T1 standards 1-11
tag data 4-9
tag RAM 4-7, 4-11
target cable 15-12
target system, connection to emulator 15-1 to

15-24
TCC value 6-33
TCINT bit 6-32
TCK signal 15-2, 15-3, 15-5, 15-6, 15-11, 15-16,

15-23
TDI signal 15-2, 15-3, 15-4, 15-5, 15-6, 15-7,

15-10, 15-11, 15-16, 15-17

TDM serial port control register (TSPC)
TXM bit 11-17, 11-55
XRDY bit 11-9

TDM serial port interface 11-78
TDO output 15-3
TDO signal 15-3, 15-4, 15-6, 15-7, 15-17, 15-23
test bus controller 15-20, 15-23
test clock 15-10
The Bus Master Reads a Burst of Data From the

‘C6202, figure 8-39
The Expansion Bus Interface in the TMS320C6202

Block Diagram, figure 8-4
The Expansion Bus Master Writes a Burst of Data to

the ‘C6202, figure 8-37
time events 12-2
timer 8-4
timer control register 12-4
timer control register field description, table 12-4
timer interrupt 6-18
timer operation in clock mode, figure 12-9
timer operation in pulse mode, figure 12-9
timers 1-8, 1-9

block diagram 12-3
clock source selection 12-8
counter register 12-6
counting 12-8
emulation operation 12-11
enabling counting 12-7
interrupts 12-11
overview 12-2
period register 12-6
pulse generation 12-9
register boundary conditions 12-11
registers 12-4
resetting 12-7

timing, requirements 9-34
timing calculations 15-6 to 15-7, 15-16 to 15-24
timing diagram, expansion bus master writes a burst

of data 8-37
Timing Diagrams for Asynchronous Host Port Mode

of the Expansion Bus, figure 8-43
Timing Diagrams for Bus Arbitration

XHOLD/XHOLDA (Internal bus arbiter is
disabled), figure 8-45

timing of external interrupt related signals,
figure 13-6

TINT0 6-18

Index

Index-18

TINT1 6-18
TMS signal 15-2, 15-3, 15-4, 15-5, 15-6, 15-7,

15-10, 15-11, 15-15, 15-16, 15-17, 15-23
TMS/TDI inputs 15-3
TMS320 DSPs, applications, table 1-3
TMS320 family 1-2

characteristics 1-2
overview 1-2

TMS320C6000
internal memory configurations 3-2
peripherals 1-8

TMS320C6000 (‘C6000) platform 1-1
TMS320C6000 Cache Architectures 4-2
TMS320C6000 cache architectures 3-2
TMS320C6201

cache architecture 3-2
data memory controller 3-7
internal memory configurations 3-2

TMS320C6201/C6701 block diagram 1-9, 1-10
TMS320C6202

cache architecture 3-2
data memory controller 3-7
data memory controller block diagram 3-7
external memory interface, figure 9-5
internal memory configuration 3-2
program and data memory 3-2
SDRAM interface 9-23

TMS320C6202 Block Diagram, figure 8-4
TMS320C6202 bootload 3-6
TMS320C6202 Memory Map Summary, table 10-6
TMS320C6202 program memory controller 3-1
TMS320C6202 program memory controller block

diagram 3-3
TMS320C6202 slave on the expansion bus 8-35
 TMS320C6211, two level internal memory 4-1
TMS320C6211

block diagram 4-2
external memory interface, figure 9-6
interface signals 9-24
MTYPE field configurations 9-13
two–level internal memory 4-1

TMS320C6211 Block Diagram 6-2
figure 7-3

TMS320C6211 Boot Configuration Summary,
table 10-5

TMS320C6211 EMIF CE Space Control Register,
figure 9-12

TMS320C6211 Internal Memory Block Diagram,
figure 4-3

TMS320C6211 Internal Memory Configurations,
table 4-2

TMS320C6211 Memory Map Summary, table 10-7
TMS320C6701

cache architecture 3-2
internal memory configuration 3-2

transfer, element 6-5
transfer complete code 6-13, 6-18
)transfer complete code (TCC 6-32
transfer complete code (TCC) field 6-34
Transfer Complete Code (TCC) to DMA Interrupt

Mapping, table 6-33
transfer complete interrupt 6-14
transfer parameter entry 6-12
transfer parameters 6-9, 6-13
transfer with frame synchronization 8-21
read transfer 5-2
transfers

2–dimensional 6-22
block 5-13
DMA 5-17
DMA examples 8-20
EDMA 6-17
EDMA linking 6-25
element 5-2, 5-23, 6-5
frame index 5-23
frame synchronized non–2D 6-21
linking EDMA 6-25
read 5-2
single frame example 8-20
transfer complete code 6-33
two dimensional 6-5
two–dimensional example 6-23
types 6-20
with frame synchronization 8-21
write 5-2

transmission, data 11-18
transmit control register (XCR) 11-14
transmit data companding format 11-51
transmit empty 11-45

figure 11-46
transmit empty avoided 11-46
transmit event 6-18
transmit interrupt (XINT) 11-22
transmit operation 11-34
transmit shift register (XSR) 11-4

Index

Index-19

transmit with data overwrite 11-45
triggering a power–down 14-4
TRST signal 15-2, 15-5, 15-6, 15-11, 15-16, 15-24
TSTAT parameters 12-10
two level memory architecture 4-1
two–dimensional (2D) transfers 6-20
two–dimensional destination or source

transfer 6-14
two–dimensional transfer, definition 6-5
two–dimensional transfers 6-22
types of EDMA transfers 6-20

U
unexpected frame sync pulses 11-37
unexpected transit frame sync 11-47
unsynchronized transfers 6-7
unused RAM 6-9
user–accessible peripherals 1-8

V
VelociTIt advanced VLIW architecture 1-1
very long instruction word (VLIW) 1-1

W
wait/data phase (Tw/Td) 8-36
wake up from a power down 14-4
word aligned 8-10

word count register 4-8
word index 4-9
write hold 9-12
write hold and read hold bit fields 9-13
write hold fields 9-14
write interface 8-15
write miss 4-9
write strobe 9-12
write transfer 5-2

X
XARB bit value 8-44
XBD register 8-7
XBEA register 8-6, 8-7
XBHC register 8-6, 8-7
XBHC register descriptions 8-25
XBIMA register 8-6, 8-7
XBISA register 8-7
XCE space control registers 8-9
XCE spaces 8-3
XCE0 Space Control Register 8-6
XCE1 Space Control Register 8-6
XCE2 Space Control Register 8-6
XCE3 Space Control Register 8-6
XCNTL signal 8-7
XDS510 emulator, JTAG cable. See emulation
XEVT0 6-18
XEVT1 6-18
XSREMPTY bit 11-8

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks
	If You Need Assistance

	Contents
	Figures
	Tables
	Introduction
	TMS320 Family Overview
	History of TMS320 DSPs
	Typical Applications for the TMS320 Family

	Overview of the TMS320C6000 Platform of DSPs
	Features and Options of the TMS320C6000 Devices
	Overview of TMS320C6000 Memory
	Overview of TMS320C6000 Peripherals

	TMS320C6201/C6701 Program and Data Memory
	Program Memory Controller
	Internal Program Memory
	Internal Program Memory Modes
	Cache Architecture
	Cache Usage of CPU Address
	Cache Flush
	Frame Replacement

	DMA Controller Access to Program Memory
	Data Memory Controller
	Data Memory Access
	Internal Data Memory Organization
	TMS320C6201 Revision 2
	TMS320C6201 Revision 3
	TMS320C6701
	Data Alignment
	Dual CPU Accesses to Internal Memory
	DMA Accesses to Internal Memory
	Data Endianness

	Peripheral Bus
	Byte and Halfword Access
	CPU Wait States
	Arbitration Between the CPU and the DMA Controller

	TMS320C6202 Program and Data Memory
	TMS320C6202 Program Memory Controller
	Memory Mapped Operation
	Cache Operation
	Bootload Operation
	TMS320C6202 Data Memory Controller

	TMS320C6211/C6711 Two-Level Internal Memory
	Overview
	Internal Memory Control Registers
	L1P Description
	L1D Description
	L2 Description
	L2 Interfaces
	L2 Operation
	L2 EDMA Service
	L2 Invalidation

	Direct Memory Access (DMA) Controller
	Overview
	DMA Registers
	DMA Channel Control Registers

	Memory Map
	Initiating a Block Transfer
	DMA Autoinitialization
	DMA Channel Reload Registers

	Transfer Counting
	Synchronization: Triggering DMA Transfers
	Latching of DMA Channel Event Flags
	Automated Event Clearing
	Synchronization Control

	Address Generation
	Basic Address Adjustment
	Address Adjustment With the Global Index Registers
	Element Size, Alignment, and Endianness
	Using a Frame Index to Reload Addresses
	Transferring a Large Single Block
	Sorting

	Split-Channel Operation
	Split DMA Operation
	Split Address Generation

	Resource Arbitration and Priority Configuration
	DMA Auxiliary Control Register and Priority Between Channels
	Switching Channels

	DMA Channel Condition Determination
	Definition of Channel Conditions

	DMA Controller Structure
	Read and Write Buses
	DMA FIFO
	Internal Holding Registers
	DMA Performance

	DMA Action Complete Pins
	Emulation

	EDMA Controller
	Overview
	EDMA Terminology
	Event Processing and EDMA Control Registers
	Event Encoder
	Parameter RAM (PaRAM)
	EDMA Transfer Parameter Entry

	EDMA Transfer Parameters
	Options Parameter
	SRC/DST Address
	Element Count
	Frame/Array Count
	Element/(Frame/Array) Index
	Element Count Reload
	Link Address

	Initiating an EDMA Transfer
	Synchronization of EDMA Transfers

	Types of EDMA Transfers
	Non-2Dimensional Transfers
	R/WSYNC Non-2D Transfer (FS=0)
	Frame Synchronized Non-2D Transfer (FS=1)

	2-Dimensional Transfers
	R/WSYNC 2D Transfer (FS = 0)
	Frame Synchronized 2D Transfer (FS=1)

	Linking EDMA Transfers
	Element Size and Alignment
	Element and Frame/Array Count Updates
	Element Count Reload (ECRLD)

	Src/Dst Address Updates
	EDMA Interrupt Generation
	EDMA Interrupt Servicing by the CPU
	Chaining EDMA Channels by an Event

	Resource Arbitration and Priority Processing
	EDMA Performance
	Quick DMA (QDMA)
	QDMA Registers
	QDMA Register Access
	Pseudo Mappings
	QDMA Performance
	QDMA Stalls and Priority

	Host-Port Interface
	Overview
	HPI Signal Descriptions
	Data Bus: HD[15:0]
	Access Control Select: HCNTL[1:0]
	Halfword Identification Select: HHWIL
	Byte Enables: HBE[1:0]
	Read/Write Select: HR/W
	Ready: HRDY
	Strobes: HCS, HDS1, HDS2
	Address Strobe Input: HAS
	Interrupt to Host: HINT
	HPI Bus Access

	HPI Registers
	HPI Control Register (HPIC)
	Software Handshaking Using HRDY and FETCH
	Host Device Using DSPINT to Interrupt the CPU
	CPU Using HINT to Interrupt the Host

	Host Access Sequences
	Host Initialization of HPIC and HPIA
	HPID Read Access Without Autoincrement
	HPID Read Access With Autoincrement
	Host Data Write Access Without Autoincrement
	HPID Write Access With Autoincrement
	Single Halfword Cycles

	Memory Access Through the HPI During Reset

	Expansion Bus
	Overview
	Expansion Bus Signals
	Expansion Bus Registers
	Expansion Bus Host Port Registers
	Expansion Bus Global Control Register
	XCE Space Control Registers

	Expansion Bus I/O Port Operation
	Asynchronous Mode
	Synch FIFO Modes
	Write Interface
	Read FIFO Interface
	Programming Offset Register
	Flag Monitoring

	DMA Transfer Examples
	Example 1 (single frame transfer)
	Example 2 (transfer with frame synchronization)

	Expansion Bus Host Port Operation
	Expansion Bus Host Port Registers Description
	Expansion Bus Data Register
	Expansion Bus Internal Slave Address Register
	Expansion Bus Internal Master Address Register
	Expansion Bus External Address Register
	Expansion Bus Host Port Interface Control Register

	Synchronous Host Port Mode
	TMS320C6202 Master on the Expansion Bus
	Burst Read Transfer
	Burst Write Transfer
	Preventing Deadlocks with Backoff

	TMS320C6202 Slave on the Expansion Bus
	Cycle Description
	Burst Write Transfer
	Burst Read Transfer

	Asynchronous Host Port Mode

	Expansion Bus Arbitration
	Internal Bus Arbiter Enabled
	Internal Bus Arbiter Disabled
	Expansion Bus Requestor Priority

	Boot Configuration Control via Expansion Bus

	External Memory Interface
	Overview
	Resetting the EMIF
	EMIF Registers
	Global Control Register
	EMIF CE Space Control Registers
	EMIF SDRAM Control Register
	EMIF SDRAM Timing Register
	TMS320C6211/C6711 SDRAM Extension Register

	SDRAM Interface
	SDRAM Initialization
	Monitoring Page Boundaries
	SDRAM Refresh
	Mode Register Set
	Address Shift
	Timing Requirements
	SDRAM Deactivation
	SDRAM Read
	TMS320C6201C6202C6701 SDRAM Read
	TMS320C6211/C6711 SDRAM Read

	SDRAM Write
	TMS320C6201C6202C6701 SDRAM Write
	TMS320C6211C6711 SDRAM Write

	TMS320C6211/C6711 Seamless Data Access

	SBSRAM Interface
	SBSRAM Reads
	SBSRAM Writes

	Asynchronous Interface
	TMS320C6201/C6202/C6701 ROM Modes
	8-Bit ROM Mode
	16-Bit ROM Mode

	Programmable ASRAM Parameters
	Asynchronous Reads
	Asynchronous Writes
	Ready Input

	Hold Interface
	Memory Request Priority
	TMS320C6201/C6202/C6701 Memory Request Priority
	TMS320C6211/C6711 Memory Request Priority

	Boundary Conditions When Writing to EMIF Registers
	Clock Output Enabling
	Emulation Halt Operation
	Power Down

	Boot Modes and Configuration
	Overview
	Device Reset
	Boot Configuration
	Memory Map
	Memory at Reset Address
	Boot Processes

	Device Configuration
	Input Clock Mode
	Endian Mode
	TMS320C6202 Expansion Bus

	Multichannel Buffered Serial Ports
	Features
	McBSP Interface Signals and Registers
	Serial Port Configuration
	Receive and Transmit Control Registers: RCR and XCR

	Data Transmission and Reception
	Resetting the Serial Port: (R/X)RST, GRST, and RESET
	Determining Ready Status
	Receive Ready Status: REVT, RINT, and RRDY
	Transmit Ready Status: XEVT, XINT, and XRDY

	CPU Interrupts: (R/X)INT
	Frame and Clock Configuration
	Frame and Clock Operation
	Frame Synchronization Phases
	Phase 2 Control: (R/X) PHASE2
	Frame Length: (R/X)FRLEN(1/2)
	Element Length: (R/X)WDLEN(1/2)
	Data Packing using Frame Length and Element Length
	Data Delay: (R/X)DATDLY
	Multiphase Frame Example: AC97

	McBSP Standard Operation
	Receive Operation
	Transmit Operation
	Maximum Frame Frequency

	Frame Synchronization Ignore
	Frame Sync Ignore and Unexpected Frame Sync Pulses
	Data Packing using Frame Sync Ignore Bits

	Serial Port Exception Conditions
	Reception With Overrun: RFULL
	Unexpected Receive Frame Synchronization: RSYNCERR
	Transmit With Data Overwrite
	Transmit Empty: XEMPTY
	Unexpected Transmit Frame Synchronization: XSYNCERR

	Receive Data Justification and Sign Extension: RJUST
	32-Bit Bit Reversal: (R/X)WDREVRS

	LAW/A-LAW Companding Hardware Operation
	Companding Internal Data
	Bit Ordering

	Programmable Clock and Framing
	Sample Rate Generator Clocking and Framing
	Sample Rate Generator Register (SRGR)
	Sample Rate Generator Reset Procedure

	Data Clock Generation
	Input Clock Source Mode: CLKSM
	Sample Rate Generator Data Bit Clock Rate: CLKGDV
	Bit Clock Polarity: CLKSP
	Bit Clock and Frame Synchronization
	Digital Loopback Mode: DLB
	Receive Clock Selection: DLB, CLKRM
	Transmit Clock Selection: CLKXM

	Frame Sync Signal Generation
	Frame Period and Frame Width: FPER and FWID
	Receive Frame Sync Selection: DLB, FSRM, GSYNC
	Transmit Frame Sync Signal Selection: FSXM, FSGM
	Frame Detection for Initialization

	Clocking Examples
	Double-Rate ST-BUS Clock
	Single-Rate ST-BUS Clock
	Double-Rate Clock

	Multichannel Selection Operation
	Multichannel Operation Control Registers
	Enabling Multichannel Selection
	Enabling and Masking of Channels
	Channel Enable Registers: (R/X)CER
	Changing Element Selection
	End-of-Subframe Interrupt

	DX Enabler: DXENA

	SPIProtocol: CLKSTP
	McBSP Operation as the SPI Master
	McBSP Operation as the SPI Slave
	McBSP Initialization for SPI Mode

	McBSP Pins as General-Purpose I/O

	Timers
	Overview
	Timer Registers
	Timer Control Register
	Timer Period Register
	Timer Counter Register

	Resetting the Timers and Enabling Counting: GO and HLD
	Timer Counting
	Timer Clock Source Selection: CLKSRC
	Timer Pulse Generation
	Boundary Conditions in the Control Registers
	Timer Interrupts
	Emulation Operation

	Interrupt Selector and External Interrupts
	Available Interrupt Sources
	External Interrupt Signal Timing
	Interrupt Selector Registers
	External Interrupt Polarity Register
	Interrupt Multiplexer Register

	Configuring the Interrupt Selector

	Power-Down Logic
	Overview
	Triggering, Wake-Up, and Effects
	Additional Power-Saving Modes for the TMS320C6202

	Designing for JTAG Emulation
	Designing Your Target System s Emulator Connector (14-Pin Header)
	Bus Protocol
	IEEE 1149.1 Standard
	JTAG Emulator Cable Pod Logic
	JTAG Emulator Cable Pod Signal Timing
	Emulation Timing Calculations
	Connections Between the Emulator and the Target System
	Buffering Signals
	Using a Target-System Clock
	Configuring Multiple Processors

	Mechanical Dimensions for the 14-Pin Emulator Connector
	Emulation Design Considerations
	Using Scan Path Linkers
	Emulation Timing Calculations for SPL
	Using Emulation Pins
	Performing Diagnostic Applications

	Index

