
TMS320C6000
CPU and Instruction Set

Reference Guide

Literature Number: SPRU189D
March 1999

Printed on Recycled Paper



IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgement, including those pertaining to warranty, patent
infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY
AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Copyright   1999, Texas Instruments Incorporated



iiiContents

Preface

Read This First

About This Manual

This reference guide describes the CPU architecture, pipeline, instruction set,
and interrupts for the TMS320C6000 digital signal processors (DSPs). Unless
otherwise specified, all references to the ’C6000 refer to the TMS320C6000
platform of DSPs, ’C62x refers to the TMS320C62x fixed-point DSPs in the
’C6000 platform, and ’C67x refers to the TMS320C67x floating-point DSPs in
the ’C6000 platform.

How to Use This Manual

Use this manual as a reference for the architecture of the TMS320C6000 CPU.
First-time readers should read Chapter 1 for general information about TI
DSPs, the features of the ’C6000, and the applications for which the ’C6000
is best suited.

Read chapters 2, 5, 6, and 7 to grasp the concepts of the architecture. Chap-
ter 3 and Chapter 4 contain detailed information about each instruction and is
best used as reference material; however, you may want to read sections 3.1
through 3.9 and sections 4.1 through 4.6 for general information about the
instruction set and to understand the instruction descriptions, then browse
through Chapter 3 and Chapter 4 to familiarize yourself with the instructions.



iv  

The following table gives chapter references for specific information:

If you are looking for in-
formation about: Turn to these chapters:

Addressing modes Chapter 3, TMS320C62x/C67x Fixed-Point
Instruction Set

Chapter 4, TMS320C67x Floating-Point
Instruction Set

Conditional operations Chapter 3, TMS320C62x/C67x Fixed-Point
Instruction Set

Chapter 4, TMS320C67x Floating-Point
Instruction Set

Control registers Chapter 2, CPU Data Paths and Control

CPU architecture and data
paths

Chapter 2, CPU Data Paths and Control

Delay slots Chapter 3, TMS320C62x/C67x Fixed-Point
Instruction Set

Chapter 4, TMS320C67x Floating-Point
Instruction Set

Chapter 5, TMS320C62x Pipeline

Chapter 6, TMS320C67x Pipeline

General-purpose register files Chapter 2, CPU Data Paths and Control

Instruction set Chapter 3, TMS320C62x/C67x Fixed-Point
Instruction Set

Chapter 4, TMS320C67x Floating-Point
Instruction Set

Interrupts and control registers Chapter 7, Interrupts

Parallel operations Chapter 3, TMS320C62x/C67x Fixed-Point
Instruction Set

Chapter 4, TMS320C67x Floating-Point
Instruction Set

Pipeline phases and operation Chapter 5, TMS320C62x Pipeline

Chapter 6, TMS320C67x Pipeline

Reset Chapter 7, Interrupts

If you are interested in topics that are not listed here, check Related Documen-
tation From Texas Instruments, on page vi, for brief descriptions of other
’C6x-related books that are available.

Read This First



v

Notational Conventions

This document uses the following conventions:

� Program listings and program examples are shown in a special font .
Here is a sample program listing:

LDW .D1 *A0,A1
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A1,A4,A5

� To help you easily recognize instructions and parameters throughout the
book, instructions are in bold face  and parameters are in italics (except
in program listings).

� In instruction syntaxes, portions of a syntax that are in bold  should be en-
tered as shown; portions of a syntax that are in italics describe the type of
information that should be entered. Here is an example of an instruction:

MPY src1,src2,dst

MPY is the instruction mnemonic. When you use MPY, you must supply
two source operands (src1 and src2) and a destination operand (dst) of
appropriate types as defined in Chapter 3, TMS320C62x/C67x Fixed-
Point Instruction Set.

Although the instruction mnemonic (MPY in this example) is in capital let-
ters, the ’C6x assembler is not case sensitive — it can assemble mnemon-
ics entered in either upper or lower case.

� Square brackets, [ and ], and parentheses, ( and ), are used to identify op-
tional items. If you use an optional item, you must specify the information
within brackets or parentheses; however, you do not enter the brackets or
parentheses themselves. Here is an example of an instruction that has op-
tional items.

[label] EXTU (.unit) src2, csta, cstb, dst

The EXTU instruction is shown with a label and several parameters. The
[label] and the parameter (.unit) are optional. The parameters src2, csta,
cstb, and dst are not optional.

� Throughout this book MSB means most significant bit and LSB means
least significant bit.

� A special icon is used to indicate material that applies only to the floating-
point (’C67x) DSP:

Notational Conventions

Read This First



vi  

Related Documentation From Texas Instruments

The following books describe the TMS320C6x generation and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number.

TMS320C62x/C67x Technical Brief  (literature number SPRU197) gives an
introduction to the ’C62x/C67x digital signal processors, development
tools, and third-party support.

TMS320C6201 Digital Signal Processor Data Sheet  (literature number
SPRS051) describes the features of the TMS320C6201 and provides
pinouts, electrical specifications, and timings for the device.

TMs320C6202 Digital Signal Processor Data Sheet  (literature number
SPRS072) describes the features of the TMS320C6202 fixed-point DSP
and provides pinouts, electrical specifications, and timings for the de-
vice.

TMS320C6211 Digital Signal Processor Data Sheet  (literature number
SPRS073) describes the features of the TMS320C6211 fixed-point DSP
and provides pinouts, electrical specifications, and timings for the de-
vice.

TMS320C6701 Digital Signal Processor Data Sheet  (literature number
SPRS067) describes the features of the TMS320C6701 floating-point
DSP and provides pinouts, electrical specifications, and timings for the
device.

TMS320C6000 Peripherals Reference Guide  (literature number SPRU190)
describes common peripherals available on the TMS320C6000 digital
signal processors. This book includes information on the internal data
and program memories, the external memory interface (EMIF), the host
port, serial ports, direct memory access (DMA), clocking and phase-
locked loop (PLL), and the power-down modes.

TMS320C62x/C67x Programmer’s Guide  (literature number SPRU198)
describes ways to optimize C and assembly code for the
TMS320C62x/C67x DSPs and includes application program examples.

TMS320C6000 Assembly Language Tools User’s Guide  (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C6000 generation of devices.

Related Documentation From Texas Instruments



vii

TMS320C6000 Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the ’C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the ’C6000 generation of devices. The
assembly optimizer helps you optimize your assembly code.

TMS320 Third-Party Support Reference Guide  (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the family of TMS320 digital signal processors. A
myriad of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise can-
cellation, modems, etc.

Trademarks

TI, XDS510, VelociTI, and 320 Hotline On-line are trademarks of Texas Instru-
ments Incorporated.

Windows and Windows NT are registered trademarks of Microsoft Corpora-
tion.

Related Documentation From Texas Instruments / Trademarks

Read This First



viii  

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax:  (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax:  (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines: 

Multi-Language Support +33 1 30 70 11 69 Fax:  +33 1 30 70 10 32
Email: epic@ti.com

Deutsch +49 8161 80 33 11  or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax:  +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax:  +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax:  +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax:  +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax:  +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax:  +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026  (in Japan) Fax:  +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax:  +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax:  +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: dsph@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

If You Need Assistance



Contents

ix

Contents

Summarizes the features of the TMS320 family of products and presents typical applications.
Describes the TMS320C62x/C67x DSPs and lists their key features.

1 Introduction 1�1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Summarizes the features of the TMS320 family of products and presents typical applications.
Describes the TMS320C62xx DSP and lists its key features.

1.1 TMS320 Family Overview 1�2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.1.1 History of TMS320 DSPs 1�2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.1.2 Typical Applications for the TMS320 Family 1�2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.2 Overview of the TMS320C6x Generation of Digital Signal Processors 1�4. . . . . . . . . . . . . 
1.3 Features and Options of the TMS320C62x/C67x 1�5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.4 TMS320C62x/C67x Architecture 1�7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.4.1 Central Processing Unit (CPU) 1�8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.4.2 Internal Memory 1�8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.4.3 Peripherals 1�9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 CPU Data Paths and Control 2 �1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Summarizes the TMS320C62x/C67x architecture and describes the primary components of
the CPU.

2.1 General-Purpose Register Files 2�4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2 Functional Units 2�6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3 Register File Cross Paths 2�7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.4 Memory, Load, and Store Paths 2�7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.5 Data Address Paths 2�7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.6 TMS320C62x/C67x Control Register File 2�8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.6.1 Addressing Mode Register (AMR) 2�9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.6.2 Control Status Register (CSR) 2�11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.6.3 E1 Phase Program Counter (PCE1) 2�12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.7 TMS320C67x Extensions to the Control Register File 2�13. . . . . . . . . . . . . . . . . . . . . . . . . . 
2.7.1 Floating-Point Adder Configuration Register (FADCR) 2�14. . . . . . . . . . . . . . . . . . . 
2.7.2 Floating-Point Auxiliary Configuration Register (FAUCR) 2�16. . . . . . . . . . . . . . . . . 
2.7.3 Floating-Point Multiplier Configuration Register (FMCR) 2�18. . . . . . . . . . . . . . . . . 



Contents

x  

3 TMS320C62x/C67x Fixed-Point Instruction Set 3 �1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes the assembly language instructions that are common to both the TMS320C62x and
TMS320C67x, including examples of each instruction. Provides information about addressing
modes, resource constraints, parallel operations, and conditional operations.

3.1 Instruction Operation and Execution Notations 3�2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2 Mapping Between Instructions and Functional Units 3�4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3 TMS320C62x/C67x Opcode Map 3�9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.4 Delay Slots 3�12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.5 Parallel Operations 3�13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.5.1 Example Parallel Code 3�15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.5.2 Branching Into the Middle of an Execute Packet 3�15. . . . . . . . . . . . . . . . . . . . . . . . 

3.6 Conditional Operations 3�16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.7 Resource Constraints 3�17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.7.1 Constraints on Instructions Using the Same Functional Unit 3�17. . . . . . . . . . . . . . 
3.7.2 Constraints on Cross Paths (1X and 2X) 3�17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.7.3 Constraints on Loads and Stores 3�18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.7.4 Constraints on Long (40-Bit) Data 3�18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.7.5 Constraints on Register Reads 3�19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.7.6 Constraints on Register Writes 3�19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.8 Addressing Modes 3�21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.8.1 Linear Addressing Mode 3�21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.8.2 Circular Addressing Mode 3�21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.8.3 Syntax for Load/Store Address Generation 3�23. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.9 Individual Instruction Descriptions 3�24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4 TMS320C67x Floating-Point Instruction Set 4 �1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes the TMS320C67x floating-point instruction set, including examples of each
instruction. Provides information about addressing modes and resource constraints.

4.1 Instruction Operation and Execution Notations 4�2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2 Mapping Between Instructions and Functional Units 4�4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3 Overview of IEEE Standard Single- and Double-Precision Formats 4�6. . . . . . . . . . . . . . . . 
4.4 Delay Slots 4�11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.5 TMS320C67x Instruction Constraints 4�12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.6 Individual Instruction Descriptions 4�15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5 TMS320C62x Pipeline 5 �1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes phases, operation, and discontinuities for the TMS320C62x CPU pipeline.

5.1 Pipeline Operation Overview 5�2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.1 Fetch 5�2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.2 Decode 5�4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.3 Execute 5�5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.4 Summary of Pipeline Operation 5�6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.2 Pipeline Execution of Instruction Types 5�11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.1 Single-Cycle Instructions 5�12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

xiContents

5.2.2 Multiply Instructions 5�12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.3 Store Instructions 5�13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.4 Load Instructions 5�15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2.5 Branch Instructions 5�16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3 Performance Considerations 5�18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet 5�18. . . . . . 
5.3.2 Multicycle NOPs 5�20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.3 Memory Considerations 5�22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6 TMS320C67x Pipeline 6 �1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes phases, operation, and discontinuities for the TMS320C67x CPU pipeline.

6.1 Pipeline Operation Overview 6�2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.1.1 Fetch 6�2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.1.2 Decode 6�4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.1.3 Execute 6�5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.1.4 Summary of Pipeline Operation 6�6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.2 Pipeline Execution of Instruction Types 6�13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3 Functional Unit Hazards 6�20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3.1 .S-Unit Hazards 6�21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.2 .M-Unit Hazards 6�25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.3 .L-Unit Hazards 6�30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.4 D-Unit Instruction Hazards 6�34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.5 Single-Cycle Instructions 6�38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.6 16 ×  16-Bit Multiply Instructions 6�39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.7 Store Instructions 6�40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.8 Load Instructions 6�42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.9 Branch Instructions 6�44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.10 2-Cycle DP Instructions 6�46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.11 4-Cycle Instructions 6�47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.12 INTDP Instruction 6�47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.13 DP Compare Instructions 6�48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.14 ADDDP/SUBDP Instructions 6�49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.15 MPYI Instructions 6�50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.16 MPYID Instructions 6�50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.17 MPYDP Instructions 6�51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.4 Performance Considerations 6�52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.4.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet 6�52. . . . . . 
6.4.2 Multicycle NOPs 6�54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.4.3 Memory Considerations 6�56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

xii  

7 Interrupts 7�1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes the TMS320C62x/C67x interrupts, including reset and nonmaskable interrupts
(NMI), and explains interrupt control, detection, and processing.

7.1 Overview of Interrupts 7�2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.1.1 Types of Interrupts and Signals Used 7�2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.1.2 Interrupt Service Table (IST) 7�5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.1.3 Summary of Interrupt Control Registers 7�10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.2 Globally Enabling and Disabling Interrupts
(Control Status Register–CSR) 7�11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.3 Individual Interrupt Control 7�13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.3.1 Enabling and Disabling Interrupts (Interrupt Enable Register–IER) 7�13. . . . . . . . 
7.3.2 Status of, Setting, and Clearing Interrupts

(Interrupt Flag, Set, and Clear Registers–IFR, ISR, ICR) 7�14. . . . . . . . . . . . . . . . . 
7.3.3 Returning From Interrupt Servicing 7�16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.4 Interrupt Detection and Processing 7�18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.4.1 Setting the Nonreset Interrupt Flag 7�18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.4.2 Conditions for Processing a Nonreset Interrupt 7�18. . . . . . . . . . . . . . . . . . . . . . . . . 
7.4.3 Actions Taken During Nonreset Interrupt Processing 7�21. . . . . . . . . . . . . . . . . . . . 
7.4.4 Setting the RESET Interrupt Flag for the TMS320C62x/C67x 7�22. . . . . . . . . . . . . 
7.4.5 Actions Taken During RESET Interrupt Processing 7�23. . . . . . . . . . . . . . . . . . . . . . 

7.5 Performance Considerations 7�24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.5.1 General Performance 7�24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.5.2 Pipeline Interaction 7�24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.6 Programming Considerations 7�25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.6.1 Single Assignment Programming 7�25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.6.2 Nested Interrupts 7�26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.6.3 Manual Interrupt Processing 7�26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.6.4 Traps 7�27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A Glossary A�1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Defines terms and abbreviations used throughout this book.



Figures

xiiiContents

Figures

1–1 TMS320C62x/C67x Block Diagram 1�7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–1 TMS320C62x CPU Data Paths 2�2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–2 TMS320C67x CPU Data Paths 2�3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–3 Storage Scheme for 40-Bit Data in a Register Pair 2�5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–4 Addressing Mode Register (AMR) 2�9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–5 Control Status Register (CSR) 2�11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–6 E1 Phase Program Counter (PCE1) 2�12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–7 Floating-Point Adder Configuration Register (FADCR) 2�14. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–8 Floating-Point Auxiliary Configuration Register (FAUCR) 2�16. . . . . . . . . . . . . . . . . . . . . . . . . . 
2–9 Floating-Point Multiplier Configuration Register (FMCR) 2�18. . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–1 TMS320C62x/C67x Opcode Map 3�10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–2 Basic Format of a Fetch Packet 3�13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–3 Examples of the Detectability of Write Conflicts by the Assembler 3�20. . . . . . . . . . . . . . . . . . 
4–1 Single-Precision Floating-Point Fields 4�8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–2 Double-Precision Floating-Point Fields 4�9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–1 Fixed-Point Pipeline Stages 5�2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–2 Fetch Phases of the Pipeline 5�3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–3 Decode Phases of the Pipeline 5�4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–4 Execute Phases of the Pipeline and Functional Block Diagram 

of the TMS320C62x 5�5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–5 Fixed-Point Pipeline Phases 5�6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–6 Pipeline Operation: One Execute Packet per Fetch Packet 5�6. . . . . . . . . . . . . . . . . . . . . . . . . 
5–7 Functional Block Diagram of TMS320C62x Based on Pipeline Phases 5�8. . . . . . . . . . . . . . . 
5–8 Single-Cycle Instruction Phases 5�12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–9 Single-Cycle Execution Block Diagram 5�12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–10 Multiply Instruction Phases 5�12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–11 Multiply Execution Block Diagram 5�13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–12 Store Instruction Phases 5�13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–13 Store Execution Block Diagram 5�14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–14 Load Instruction Phases 5�15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–15 Load Execution Block Diagram 5�15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–16 Branch Instruction Phases 5�16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–17 Branch Execution Block Diagram 5�17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–18 Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets 5�19. . . . . . . 
5–19 Multicycle NOP in an Execute Packet 5�20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–20 Branching and Multicycle NOPs 5�21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Figures

xiv  

5–21 Pipeline Phases Used During Memory Accesses 5�22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–22 Program and Data Memory Stalls 5�23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–23 4-Bank Interleaved Memory 5�24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–24 4-Bank Interleaved Memory With Two Memory Spaces 5�25. . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–1 Floating-Point Pipeline Stages 6�2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–2 Fetch Phases of the Pipeline 6�3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–3 Decode Phases of the Pipeline 6�4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–4 Execute Phases of the Pipeline and Functional Block Diagram

 of the TMS320C67x 6�5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–5 Floating-Point Pipeline Phases 6�6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–6 Pipeline Operation: One Execute Packet per Fetch Packet 6�6. . . . . . . . . . . . . . . . . . . . . . . . . 
6–7 Functional Block Diagram of TMS320C67x Based on Pipeline Phases 6�10. . . . . . . . . . . . . . 
6–8 Single-Cycle Instruction Phases 6�38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–9 Single-Cycle Execution Block Diagram 6�38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–10 Multiply Instruction Phases 6�39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–11 Multiply Execution Block Diagram 6�39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–12 Store Instruction Phases 6�40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–13 Store Execution Block Diagram 6�41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–14 Load Instruction Phases 6�42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–15 Load Execution Block Diagram 6�43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–16 Branch Instruction Phases 6�44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–17 Branch Execution Block Diagram 6�45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–18 2-Cycle DP Instruction Phases 6�46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–19 4-Cycle Instruction Phases 6�47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–20 INTDP Instruction Phases 6�48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–21 DP Compare Instruction Phases 6�48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–22 ADDDP/SUBDP Instruction Phases 6�49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–23 MPYI Instruction Phases 6�50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–24 MPYID Instruction Phases 6�51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–25 MPYDP Instruction Phases 6�51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–26 Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets 6�53. . . . . . . 
6–27 Multicycle NOP in an Execute Packet 6�54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–28 Branching and Multicycle NOPs 6�55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–29 Pipeline Phases Used During Memory Accesses 6�56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–30 Program and Data Memory Stalls 6�57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–31 8-Bank Interleaved Memory 6�58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–32 8-Bank Interleaved Memory With Two Memory Spaces 6�59. . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–1 Interrupt Service Table 7�5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–2 Interrupt Service Fetch Packet 7�6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–3 IST With Branch to Additional Interrupt Service Code Located Outside the IST 7�7. . . . . . . . 
7–4 Interrupt Service Table Pointer (ISTP) 7�8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–5 Control Status Register (CSR) 7�11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–6 Interrupt Enable Register (IER) 7�13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–7 Interrupt Flag Register (IFR) 7�14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Figures

xvContents

7–8 Interrupt Set Register (ISR) 7�15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–9 Interrupt Clear Register (ICR) 7�15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–10 NMI Return Pointer (NRP) 7�16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–11 Interrupt Return Pointer (IRP) 7�17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–12 TMS320C62x Nonreset Interrupt Detection and Processing: Pipeline Operation 7�19. . . . . . 
7–13 TMS320C67x Nonreset Interrupt Detection and Processing: Pipeline Operation 7�20. . . . . . 
7–14 RESET Interrupt Detection and Processing: Pipeline Operation 7�22. . . . . . . . . . . . . . . . . . . . 



Tables

xvi  

Tables

1–1 Typical Applications for the TMS320 DSPs 1�3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–1 40-Bit/64-Bit Register Pairs 2�4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–2 Functional Units and Operations Performed 2�6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–3 Control Registers 2�8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–4 Addressing Mode Register (AMR) Mode Select Field Encoding 2�9. . . . . . . . . . . . . . . . . . . . . 
2–5 Block Size Calculations 2�10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–6 Control Status Register Field Descriptions 2�11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–7 Control Register File Extensions 2�13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–8 Floating-Point Adder Configuration Register Field Descriptions 2�15. . . . . . . . . . . . . . . . . . . . . 
2–9 Floating-Point Auxiliary Configuration Register Field Descriptions 2�17. . . . . . . . . . . . . . . . . . 
2–10 Floating-Point Multiplier Configuration Register Field Descriptions 2�19. . . . . . . . . . . . . . . . . . 
3–1 Fixed-Point Instruction Operation and Execution Notations 3�2. . . . . . . . . . . . . . . . . . . . . . . . . 
3–2 Instruction to Functional Unit Mapping 3�4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–3 Functional Unit to Instruction Mapping 3�5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–4 TMS320C62x/C67x Opcode Map Symbol Definitions 3�9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–5 Delay Slot and Functional Unit Latency Summary 3�12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–6 Registers That Can Be Tested by Conditional Operations 3�16. . . . . . . . . . . . . . . . . . . . . . . . . 
3–7 Indirect Address Generation for Load/Store 3�23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–8 Relationships Between Operands, Operand Size, Signed/Unsigned, Functional

Units, and Opfields for Example Instruction (ADD) 3�26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–9 Program Counter Values for Example Branch Using a Displacement 3�41. . . . . . . . . . . . . . . . 
3–10 Program Counter Values for Example Branch Using a Register 3�43. . . . . . . . . . . . . . . . . . . . 
3–11 Program Counter Values for B IRP 3�45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–12 Program Counter Values for B NRP 3�47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–13 Data Types Supported by Loads 3�67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–14 Address Generator Options 3�67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–15 Data Types Supported by Loads 3�72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–16 Register Addresses for Accessing the Control Registers 3�87. . . . . . . . . . . . . . . . . . . . . . . . . . 
3–17 Data Types Supported by Stores 3�123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–18 Address Generator Options 3�123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–19 Data Types Supported by Stores 3�127. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–1 Floating-Point Instruction Operation and Execution Notations 4�2. . . . . . . . . . . . . . . . . . . . . . . 
4–2 Instruction to Functional Unit Mapping 4�4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–3 Functional Unit to Instruction Mapping 4�4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–4 IEEE Floating-Point Notations 4�7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–5 Special Single-Precision Values 4�8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Tables

xviiContents

4–6 Hex and Decimal Representation for Selected Single-Precision Values 4�9. . . . . . . . . . . . . . . 
4–7 Special Double-Precision Values 4�10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–8 Hex and Decimal Representation for Selected Double-Precision Values 4�10. . . . . . . . . . . . . 
4–9 Delay Slot and Functional Unit Latency Summary 4�11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–10 Address Generator Options 4�52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–1 Operations Occurring During Fixed-Point Pipeline Phases 5�7. . . . . . . . . . . . . . . . . . . . . . . . . . 
5–2 Execution Stage Length Description for Each Instruction Type 5�11. . . . . . . . . . . . . . . . . . . . . 
5–3 Program Memory Accesses Versus Data Load Accesses 5�22. . . . . . . . . . . . . . . . . . . . . . . . . . 
5–4 Loads in Pipeline From Example 5–2 5�25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–1 Operations Occurring During Floating-Point Pipeline Phases 6�7. . . . . . . . . . . . . . . . . . . . . . . 
6–2 Execution Stage Length Description for Each Instruction Type 6�13. . . . . . . . . . . . . . . . . . . . . 
6–3 Single-Cycle .S-Unit Instruction Hazards 6�21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–4 DP Compare .S-Unit Instruction Hazards 6�22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–5 2-Cycle DP .S-Unit Instruction Hazards 6�23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–6 Branch .S-Unit Instruction Hazards 6�24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–7 16 × 16 Multiply .M-Unit Instruction Hazards 6�25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–8 4-Cycle .M-Unit Instruction Hazards 6�26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–9 MPYI .M-Unit Instruction Hazards 6�27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–10 MPYID .M-Unit Instruction Hazards 6�28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–11 MPYDP .M-Unit Instruction Hazards 6�29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–12 Single-Cycle .L-Unit Instruction Hazards 6�30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–13 4-Cycle .L-Unit Instruction Hazards 6�31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–14 INTDP .L-Unit Instruction Hazards 6�32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–15 ADDDP/SUBDP .L-Unit Instruction Hazards 6�33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–16 Load .D-Unit Instruction Hazards 6�34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–17 Store .D-Unit Instruction Hazards 6�35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–18 Single-Cycle .D-Unit Instruction Hazards 6�36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–19 LDDW Instruction With Long Write Instruction Hazards 6�37. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–20 Single-Cycle Execution 6�38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–21 16 × 16-Bit Multiply Execution 6�39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–22 Store Execution 6�40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–23 Load Execution 6�42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–24 Branch Execution 6�44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–25 2-Cycle DP Execution 6�46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–26 4-Cycle Execution 6�47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–27 INTDP Execution 6�48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–28 DP Compare Execution 6�48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–29 ADDDP/SUBDP Execution 6�49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–30 MPYI Execution 6�50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–31 MPYID Execution 6�50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–32 MPYDP Execution 6�51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–33 Program Memory Accesses Versus Data Load Accesses 6�56. . . . . . . . . . . . . . . . . . . . . . . . . . 
6–34 Loads in Pipeline From Example 6–2 6�59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Tables

xviii  

7–1 Interrupt Priorities 7�3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–2 Interrupt Service Table Pointer (ISTP) Field Descriptions 7�8. . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–3 Interrupt Control Registers 7�10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–4 Control Status Register (CSR) Interrupt Control Field Descriptions 7�11. . . . . . . . . . . . . . . . . 



Examples

xixContents

Examples

3–1 Fully Serial p-Bit Pattern in a Fetch Packet 3�14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–2 Fully Parallel p-Bit Pattern in a Fetch Packet 3�14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–3 Partially Serial p-Bit Pattern in a Fetch Packet 3�15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–4 LDW in Circular Mode 3�22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–5 ADDAH in Circular Mode 3�22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–1 Execute Packet in Figure 5–7 5�9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–2 Load From Memory Banks 5�24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–1 Execute Packet in Figure 6–7 6�12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–2 Load From Memory Banks 6�58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–1 Relocation of Interrupt Service Table 7�9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–2 Code Sequence to Disable Maskable Interrupts Globally 7�12. . . . . . . . . . . . . . . . . . . . . . . . . . 
7–3 Code Sequence to Enable Maskable Interrupts Globally 7�12. . . . . . . . . . . . . . . . . . . . . . . . . . 
7–4 Code Sequence to Enable an Individual Interrupt (INT9) 7�14. . . . . . . . . . . . . . . . . . . . . . . . . . 
7–5 Code Sequence to Disable an Individual Interrupt (INT9) 7�14. . . . . . . . . . . . . . . . . . . . . . . . . . 
7–6 Code to Set an Individual Interrupt (INT6) and Read the Flag Register 7�15. . . . . . . . . . . . . . 
7–7 Code to Clear an Individual Interrupt (INT6) and Read the Flag Register 7�15. . . . . . . . . . . . 
7–8 Code to Return From NMI 7�16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–9 Code to Return from a Maskable Interrupt 7�17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–10 Code Without Single Assignment: Multiple Assignment of A1 7�25. . . . . . . . . . . . . . . . . . . . . . 
7–11 Code Using Single Assignment 7�25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–12 Manual Interrupt Processing 7�26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–13 Code Sequence to Invoke a Trap 7�27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–14 Code Sequence for Trap Return 7�27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



1-1

a

Introduction

The TMS320C6x generation of digital signal processors is part of the TMS320
family of digital signal processors (DSPs). The TMS320C62x devices are
fixed-point DSPs in the TMS320C6x generation, and the TMS320C67x
devices are floating-point DSPs in the TMS320C6x generation. The
TMS320C62x and TMS320C67x are code compatible and both use the
VelociTI  architecture, a high-performance, advanced VLIW (very long
instruction word) architecture, making these DSPs excellent choices for multi-
channel and multifunction applications.

The VelociTI architecture of the ’C62x and ’C67x make them the first off-the-
shelf DSPs to use advanced VLIW to achieve high performance through
increased instruction-level parallelism. A traditional VLIW architecture
consists of multiple execution units running in parallel, performing multiple
instructions during a single clock cycle. Parallelism is the key to extremely high
performance, taking these DSPs well beyond the performance capabilities of
traditional superscalar designs. VelociTI is a highly deterministic architecture,
having few restrictions on how or when instructions are fetched, executed, or
stored. It is this architectural flexibility that is key to the breakthrough efficiency
levels of the ’C6x compiler. VelociTI’s advanced features include:

� Instruction packing: reduced code size
� All instructions can operate conditionally: flexibility of code
� Variable-width instructions: flexibility of data types
� Fully pipelined branches: zero-overhead branching

Topic Page

1.1 TMS320 Family Overview 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.2 Overview of the TMS320C6x Generation of
Digital Signal Processors 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.3 Features and Options of the TMS320C62x/C67x 1-5. . . . . . . . . . . . . . . . . 

1.4 TMS320C62x/C67x Architecture 1-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 1



TMS320 Family Overview

1-2

1.1 TMS320 Family Overview

The TMS320 family consists of fixed-point, floating-point, and multiprocessor
digital signal processors (DSPs). TMS320 DSPs have an architecture de-
signed specifically for real-time signal processing.

1.1.1 History of TMS320 DSPs

In 1982, Texas Instruments introduced the TMS32010—the first fixed-point
DSP in the TMS320 family. Before the end of the year, Electronic Products
magazine awarded the TMS32010 the title “Product of the Year”. Today, the
TMS320 family consists of many generations: ’C1x, ’C2x, ’C2xx, ’C5x, and
’C54x fixed-point DSPs; ’C3x and ’C4x floating-point DSPs, and ’C8x multipro-
cessor DSPs. Now there is a new generation of DSPs, the TMS320C6x gen-
eration, with performance and features that are reflective of Texas Instruments
commitment to lead the world in DSP solutions.

1.1.2 Typical Applications for the TMS320 Family

Table 1–1 lists some typical applications for the TMS320 family of DSPs. The
TMS320 DSPs offer adaptable approaches to traditional signal-processing
problems. They also support complex applications that often require multiple
operations to be performed simultaneously.



TMS320 Family Overview

1-3Introduction

Table 1–1. Typical Applications for the TMS320 DSPs

Automotive Consumer Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation
Vibration analysis
Voice commands

Digital radios/TVs
Educational toys
Music synthesizers
Pagers
Power tools
Radar detectors
Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General Purpose Graphics/Imaging Industrial

Adaptive filtering
Convolution
Correlation
Digital filtering
Fast Fourier transforms
Hilbert transforms
Waveform generation
Windowing

3-D transformations
Animation/digital maps
Homomorphic processing
Image compression/transmission
Image enhancement 
Pattern recognition
Robot vision
Workstations

Numeric control
Power-line monitoring
Robotics
Security access

Instrumentation Medical Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids
Patient monitoring
Prosthetics
Ultrasound equipment

Image processing
Missile guidance
Navigation
Radar processing
Radio frequency modems
Secure communications
Sonar processing

Telecommunications Voice/Speech

1200- to 56�600-bps modems
Adaptive equalizers
ADPCM transcoders
Base stations
Cellular telephones
Channel multiplexing
Data encryption
Digital PBXs
Digital speech interpolation (DSI)
DTMF encoding/decoding
Echo cancellation

Faxing
Future terminals
Line repeaters
Personal communications

systems (PCS)
Personal digital assistants (PDA)
Speaker phones
Spread spectrum communications
Digital subscriber loop (xDSL)
Video conferencing
X.25 packet switching

Speaker verification
Speech enhancement
Speech recognition
Speech synthesis
Speech vocoding
Text-to-speech
Voice mail



Overview of the TMS320C6x Generation of Digital Signal Processors

 1-4

1.2 Overview of the TMS320C6x Generation of Digital Signal Processors

With a performance of up to 1600 million instructions per second (MIPS) and
an efficient C compiler, the TMS320C6x DSPs give system architects unlimit-
ed possibilities to differentiate their products. High performance, ease of use,
and affordable pricing make the TMS320C6x generation the ideal solution for
multichannel, multifunction applications, such as:

� Pooled modems
� Wireless local loop base stations
� Beam-forming base stations
� Remote access servers (RAS)
� Digital subscriber loop (DSL) systems
� Cable modems
� Multichannel telephony systems
� Virtual reality 3-D graphics
� Speech recognition
� Audio
� Radar
� Atmospheric modeling
� Finite element analysis
� Imaging (examples: fingerprint recognition, ultrasound, and MRI)

The TMS320C6x generation is also an ideal solution for exciting new applica-
tions; for example:

� Personalized home security with face and hand/fingerprint recognition

� Advanced cruise control with global positioning systems (GPS) navigation
and accident avoidance

� Remote medical diagnostics



Features and Options of the TMS320C62x/C67x

1-5Introduction

1.3 Features and Options of the TMS320C62x/C67x

The ’C62x devices operate at 200 MHz (5-ns cycle time). The ’C67x devices
operate at 167 MHz (6-ns cycle time). Both DSPs execute up to eight 32-bit
instructions every cycle. The device’s core CPU consists of 32 general-
purpose registers of 32-bit word length and eight functional units:

� Two multipliers
� Six ALUs

The ’C62x/C67x have a complete set of optimized development tools, includ-
ing an efficient C compiler, an assembly optimizer for simplified assembly-
language programming and scheduling, and a Windows  based debugger
interface for visibility into source code execution characteristics. A hardware
emulation board, compatible with the TI XDS510  emulator interface, is also
available. This tool complies with IEEE Standard 1149.1–1990, IEEE Stan-
dard Test Access Port and Boundary-Scan Architecture.

Features of the ’C62x/C67x include:

� Advanced VLIW CPU with eight functional units, including two multipliers
and six arithmetic units

� Executes up to eight instructions per cycle for up to ten times the
performance of typical DSPs

� Allows designers to develop highly effective RISC-like code for fast
development time

� Instruction packing

� Gives code size equivalence for eight instructions executed serially or
in parallel

� Reduces code size, program fetches, and power consumption.

� All instructions execute conditionally.

� Reduces costly branching

� Increases parallelism for higher sustained performance

� Code executes as programmed on independent functional units.

� Industry’s most efficient C compiler on DSP benchmark suite

� Industry’s first assembly optimizer for fast development and improved
parallelization

� 8/16/32-bit data support, providing efficient memory support for a variety
of applications

� 40-bit arithmetic options add extra precision for vocoders and other com-
putationally intensive applications



Features and Options of the TMS320C62x/C67x

 1-6

� Saturation and normalization provide support for key arithmetic opera-
tions.

� Field manipulation and instruction extract, set, clear, and bit counting
support common operation found in control and data manipulation
applications.

The ’C67x has these additional features:

� Peak 1336 MIPS at 167 MHz

� Peak 1G FLOPS at 167 MHz for single-precision operations

� Peak 250M FLOPS at 167 MHz for double-precision operations

� Peak 688M FLOPS at 167 MHz for multiply and accumulate operations

� Hardware support for single-precision (32-bit) and double-precision
(64-bit) IEEE floating-point operations

� 32 � 32-bit integer multiply with 32- or 64-bit result

A variety of memory and peripheral options are available for the ’C62x/C67x:

� Large on-chip RAM for fast algorithm execution

� 32-bit external memory interface supports SDRAM, SBSRAM, SRAM,
and other asynchronous memories for a broad range of external memory
requirements and maximum system performance

� 16-bit host port for access to ’C62x/C67x memory and peripherals

� Multichannel DMA controller

� Multichannel serial port(s)

� 32-bit timer(s)



TMS320C62x/C67x Architecture

1-7Introduction

1.4 TMS320C62x/C67x Architecture

Figure 1–1 is the block diagram for the TMS320C62x/C67x DSPs. The
’C62x/C67x devices come with program memory, which, on some devices,
can be used as a program cache. The devices also have varying sizes of data
memory. Peripherals such as a direct memory access (DMA) controller,
power-down logic, and external memory interface (EMIF) usually come with
the CPU, while peripherals such as serial ports and host ports are on only
certain devices. Check the data sheet for your device to determine the specific
peripheral configurations you have.

Figure 1–1. TMS320C62x/C67x Block Diagram

ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

256-bit data
32-bit address

Program cache/program memory

Á
ÁÁ

Á
Á

ÁÁ
ÁÁ

Á
Á

Á
Á

ÁÁ
ÁÁ

Á
Á

Á
Á

Á
Á

ÁÁ
ÁÁ

Á
Á

Á

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

8-, 16-, 32-bit data

32-bit address
Data cache/data memory

etc.
serial ports,

Timers,

Additional
peripherals:

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

down
Power

’C62x/C67x CPU

ÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ Á Interrupts

Emulation

Test

Control
logic

registers
Control

Á
Á
ÁÁ
ÁÁ

Á
Á Á

Á
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Á

ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

.D1.M1.S1.L1

Register file BRegister file A
DMA, EMIF

.D2 .M2 .S2 .L2

ÁÁ
Data path A Data path B

ÁProgram fetch

Instruction decode

Instruction dispatch

’C62x/’C67x device



TMS320C62x/C67x Architecture

 1-8

1.4.1 Central Processing Unit (CPU)

The ’C62x/C67x CPU, shaded in Figure 1–1, is common to all the ’C62x/C67x
devices. The CPU contains:

� Program fetch unit
� Instruction dispatch unit
� Instruction decode unit
� Two data paths, each with four functional units
� 32 32-bit registers
� Control registers
� Control logic
� Test, emulation, and interrupt logic

The program fetch, instruction dispatch, and instruction decode units can
deliver up to eight 32-bit instructions to the functional units every CPU clock
cycle. The processing of instructions occurs in each of the two data paths (A
and B), each of which contains four functional units (.L, .S, .M, and .D) and 16
32-bit general-purpose registers. The data paths are described in more detail
in Chapter 2, CPU Data Paths and Control. A control register file provides the
means to configure and control various processor operations. To understand
how instructions are fetched, dispatched, decoded, and executed in the data
path, see Chapter 5, TMS320C62x Pipeline, and Chapter 6, TMS320C67x
Pipeline.

1.4.2 Internal Memory

The ’C62x/C67x have a 32-bit, byte-addressable address space. Internal (on-
chip) memory is organized in separate data and program spaces. When off-
chip memory is used, these spaces are unified on most devices to a single
memory space via the external memory interface (EMIF).

The ’C62x/C67x have two 32-bit internal ports to access internal data memory.
The ’C62x/C67x have a single internal port to access internal program
memory, with an instruction-fetch width of 256 bits.



TMS320C62x/C67x Architecture

1-9Introduction

1.4.3 Peripherals

The following peripheral modules can complement the CPU on the
’C62x/C67x DSPs. Some devices have a subset of these peripherals but may
not have all of them.

� Serial ports

� Timers

� External memory interface (EMIF) that supports synchronous and
asynchronous SRAM and synchronous DRAM

� DMA controller

� Host-port interface

� Power-down logic that can halt CPU activity, peripheral activity, and
phased-locked loop (PLL) activity to reduce power consumption



2-1 August 1996

CPU Data Paths and Control

This chapter focuses on the CPU, providing information about the data paths
and control registers. The two register files and the data crosspaths are
described.

Figure 2–1 and Figure 2–2 show the components of the data paths the ’C62x
and C67x, repectively. These components consist of:

� Two general-purpose register files (A and B)
� Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)
� Two load-from-memory paths (LD1 and LD2)
� Two store-to-memory paths (ST1 and ST2)
� Two register file cross paths (1X and 2X)

Topic Page

2.1 General-Purpose Register Files 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2 Functional Units 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3 Register File Cross Paths 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.4 Memory, Load, and Store Paths 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.5 Data Address Paths 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.6 TMS320C62x/C67x Control Register File 2-8. . . . . . . . . . . . . . . . . . . . . . . . 

2.7 TMS320C67x Extensions to the Control Register File 2-13. . . . . . . . . . . 

Chapter 2



 2-2

Figure 2–1. TMS320C62x CPU Data Paths

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

2X

1X

.L2

.S2

.M2

.D2

(B0–B15)

(A0–A15)

Á
Á

Á
Á

Á

Á
ÁÁ

ÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ

ÁÁ
ÁÁ
ÁÁ

ÁÁ

ÁÁ

ÁÁ

Á
Á
Á

Á
Á
Á

Á
Á

Á
ÁÁ

ÁÁ .D1

.M1

ÁÁ
ÁÁ
ÁÁ

Á
Á
Á

ÁÁ
ÁÁÁ
Á
ÁÁÁ

ÁÁ

.S1

ÁÁ
Á
ÁÁ

ÁÁ
Á

.L1

long src

dst

src2

src1

ÁÁ
ÁÁ
ÁÁ

Á
ÁÁ

Á
Á

ÁÁ
ÁÁ

src1

src1

src1

src1

src1

src1

src1

8

8

8

8

8
8

long dst

long dst
dst

dst

dst

dst

dst

dst

dst

src2

src2

src2

src2

src2

src2

src2

long src

Control
register

fileÁ

DA1

DA2

ST1

LD1

LD2

ST2

32

32

Data path A

Data path B

Register 
  file A

Register 
  file B

long src
long dst

long dst
long src

CPU Data Paths and Control



2-3CPU Data Paths and Control

Figure 2–2. TMS320C67x CPU Data Paths

8

8

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

2X

1X

.L2

.S2

.M2

.D2

(B0–B15)

(A0–A15)

ÁÁ

Á

Á
Á

Á

Á
Á

Á
Á

Á
Á

Á

Á

Á

Á

Á

Á

Á
Á
ÁÁ

Á
ÁÁ

ÁÁ
Á

Á
.D1

.M1

Á
Á
Á

Á
Á

ÁÁ
Á
Á

Á
ÁÁ

.S1

Á
Á
Á
Á

Á
Á

Á

.L1

long src

dst

src2

src1

Á
Á

Á

ÁÁ
Á
Á
Á
Á

src1

src1

src1

src1

src1

src1

src1

8

8

long dst

long dst
dst

dst

dst

dst

dst

dst

dst

src2

src2

src2

src2

src2

src2

src2

long src

Control
register

fileÁ

DA1

DA2

ST1

LD1 32 LSB

LD2 32 LSB

LD2 32 MSB

32

32

Data path A

Data path B

Register 
  file A

Register 
  file B

long src
long dst

long dst
long src

Á
LD1 32 MSB

32

ST2

32

8

8

8

8

Á
Á

Á

CPU Data Paths and Control



General-Purpose Register Files

 2-4

2.1 General-Purpose Register Files

There are two general-purpose register files (A and B) in the ’C62x/C67x data
paths. Each of these files contains 16 32-bit registers (A0–A15 for file A and
B0–B15 for file B). The general-purpose registers can be used for data, data
address pointers, or condition registers.

The general-purpose register files support 32- and 40-bit fixed-point data. The
32-bit data can be contained in any general-purpose register. The ’C67x also
supports 32-bit single-precision and 64-bit double-precision data. The 40-bit
data is contained across two registers; the 32 LSBs of the data are placed in
an even register and the remaining eight MSBs are placed in the eight LSBs
of the next upper register (which is always an odd register). There are 16 valid
register pairs for 40-bit data, as shown in Table 2–1. In assembly language
syntax, the register pairs are denoted by a colon between the register names
and the odd register is specified first. The ’C67x also uses these register pairs
to hold 64-bit double-precision floating-point values. See Chapter 4 for more
information on double-precision floating-point values.

Table 2–1. 40-Bit/64-Bit Register Pairs

Register Files

A B

A1:A0 B1:B0

A3:A2 B3:B2

A5:A4 B5:B4

A7:A6 B7:B6

A9:A8 B9:B8

A11:A10 B11:B10

A13:A12 B13:B12

A15:A14 B15:B14



General-Purpose Register Files

2-5CPU Data Paths and Control

Figure 2–3 illustrates the register storage scheme for 40-bit long data. Opera-
tions requiring a long input ignore the 24 MSBs of the odd register. Operations
producing a long result zero-fill the 24 MSBs of the odd register. The even
register is encoded in the opcode.

Figure 2–3. Storage Scheme for 40-Bit Data in a Register Pair

ÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍ

31 0 31 0Odd register Even register

39 32 31 0

Zero-filled 40-bit data

39 32 31 0

40-bit data

Á
Á

ÁÁ
ÁÁ

Á ÁÁOdd register Even register

Read from registers

Write to registers

Ignored

78



Functional Units

 2-6

2.2 Functional Units

The eight functional units in the ’C62x/C67x data paths can be divided into two
groups of four; each functional unit in one data path is almost identical to the
corresponding unit in the other data path. The functional units are described
in Table 2–2.

Table 2–2. Functional Units and Operations Performed

Functional Unit Fixed-Point Operations Floating-Point Operations

.L unit (.L1,.L2) 32/40-bit arithmetic and compare operations
Leftmost 1 or 0 bit counting for 32 bits
Normalization count for 32 and 40 bits
32-bit logical operations

Arithmetic operations
DP → SP, INT → DP, INT → SP
conversion operations

.S unit (.S1, .S2) 32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations
Branches
Constant generation
Register transfers to/from the control register file 
(.S2 only)

Compare
Reciprocal and reciprocal square-
root operations
Absolute value operations
SP → DP conversion operations

.M unit (.M1, .M2) 16 � 16 bit multiply operations 32 � 32 bit fixed-point multiply
operations
Floating-point multiply operations

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address
calculation
Loads and stores with a 5-bit constant offset
Loads and stores with 15-bit constant offset 
(.D2 only)

Load doubleword with 5-bit constant
offset

Note: Fixed-point operations are available on both the ’C62x and the ’C67x. Floating-point operations and 32-bit fixed-point
multiply are available only on the ’C67x.

Most data lines in the CPU support 32-bit operands, and some support long
(40-bit) operands. Each functional unit has its own 32-bit write port into a
general-purpose register file. All units ending in 1 (for example, .L1) write to
register file A and all units ending in 2 write to register file B. Each functional
unit has two 32-bit read ports for source operands src1 and src2. Four units
(.L1, .L2, .S1, and .S2) have an extra 8-bit-wide port for 40-bit long writes, as
well as an 8-bit input for 40-bit long reads. Because each unit has its own 32-bit
write port, all eight units can be used in parallel every cycle.



Functional Units

2-7CPU Data Paths and Control

2.3 Register File Cross Paths

Each functional unit reads directly from and writes directly to the register file
within its own data path. That is, the .L1, .S1, .D1, and .M1 units write to register
file A and the .L2, .S2, .D2, and .M2 units write to register file B. The register
files are connected to the opposite-side register file’s functional units via the
1X and 2X cross paths. These cross paths allow functional units from one data
path to access a 32-bit operand from the opposite side’s register file. The 1X
cross path allows data path A’s functional units to read their source from regis-
ter file B and the 2X cross path allows data path B’s functional units to read their
source from register file A.

Six of the functional units have access to the opposite side’s register file via
a cross path. The .M1, .M2, .S1, and .S2 units’ src2 inputs are multiplex-select-
able between the cross path and the same side register file. The .L1 and .L2
units’ src1 and src2 inputs are also multiplex-selectable between the cross
path and the same-side register file.

Only two cross paths, 1X and 2X, exist in the ’C62x/C67x CPUs. This limits one
source read from each data path’s opposite register file per cycle, or two cross-
path source reads per cycle.

2.4 Memory, Load, and Store Paths

There are two 32-bit paths for loading data from memory to the register file:
LD1 for register file A, and LD2 for register file B. The ’C67x also has a second
32-bit load path for both register files A and B, which allows the LDDW instruc-
tion to simultaneously load two 32-bit registers into side A and two 32-bit regis-
ters into side B. There are also two 32-bit paths, ST1 and ST2, for storing regis-
ter values to memory from each register file. The store paths are shared with
the .L and .S long read paths.

2.5 Data Address Paths

The data address paths (DA1 and DA2 in Figure 2–1 and Figure 2–2) coming
out of the .D units allow data addresses generated from one register file to sup-
port loads and stores to memory from the other register file.

Register File Cross Paths / Memory, Load, and Store Paths / Data Address Paths 



TMS320C62x/C67x Control Register File

 2-8

2.6 TMS320C62x/C67x Control Register File
One unit (.S2) can read from and write to the control register file, as shown in
Figure 2–1 and Figure 2–2. Table 2–3 lists the control registers contained in
the control register file and describes each. If more information is available on
a control register, the table lists where to look for that information. Each control
register is accessed by the MVC instruction. See the MVC instruction descrip-
tion in Chapter 3, TMS320C62x/C67x Fixed-Point Instruction Set, for informa-
tion on how to use this instruction.

Table 2–3. Control Registers

Register

Abbreviation Name Description Page

AMR Addressing mode register Specifies whether to use linear or circular addres-
sing for each of eight registers; also contains sizes
for circular addressing

2-9

CSR Control status register Contains the global interrupt enable bit, cache
control bits, and other miscellaneous control and
status bits

2-11

IFR Interrupt flag register Displays status of interrupts 7-14

ISR Interrupt set register Allows you to set pending interrupts manually 7-14

ICR Interrupt clear register Allows you to clear pending interrupts manually 7-14

IER Interrupt enable register Allows enabling/disabling of individual interrupts 7-13

ISTP Interrupt service table pointer Points to the beginning of the interrupt service
table

7-8

IRP Interrupt return pointer Contains the address to be used to return from a
maskable interrupt

7-16

NRP Nonmaskable interrupt return
pointer

Contains the address to be used to return from a
nonmaskable interrupt

7-16

PCE1 Program counter, E1 phase Contains the address of the fetch packet that con-
tains the execute packet in the E1 pipeline stage

2-12



TMS320C62x/C67x Control Register File

2-9CPU Data Paths and Control

2.6.1 Addressing Mode Register (AMR)

For each of the eight registers (A4–A7, B4–B7) that can perform linear or circu-
lar addressing, the AMR specifies the addressing mode. A 2-bit field for each
register selects the address modification mode: linear (the default) or circular
mode. With circular addressing, the field also specifies which BK (block size)
field to use for a circular buffer. In addition, the buffer must be aligned on a byte
boundary equal to the block size. The mode select fields and block size fields
are shown in Figure 2–4, and the mode select field encoding is shown in
Table 2–4.

Figure 2–4. Addressing Mode Register (AMR)

31 26 1625 21 20

BK0

R, W, +0

Reserved

R, +0 R, W, +0

BK1

 

Block size fields

15

B7 mode

14

B6 mode B5 mode B4 mode A7 mode A6 mode A5 mode A4 mode

13 12 11 10 9 8 7 6 5 4 3 2 1 0

R, W, +0

Mode select fields

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+0 Value is zero after reset

Table 2–4. Addressing Mode Register (AMR) Mode Select Field Encoding

Mode Description

0 0 Linear modification 
(default at reset)

0 1 Circular addressing using
the BK0 field

1 0 Circular addressing using
the BK1 field

1 1 Reserved

The reserved portion of AMR is always 0. The AMR is initialized to 0 at reset.



TMS320C62x/C67x Control Register File

 2-10

The block size fields, BK0 and BK1, contain 5-bit values used in calculating
block sizes for circular addressing.

Block size (in bytes) = 2(N+1)

where N is the 5-bit value in BK0 or BK1

Table 2–5 shows block size calculations for all 32 possibilities.

Table 2–5. Block Size Calculations

N Block Size N Block Size

00000 2 10000 131 072

00001 4 10001 262 144

00010 8 10010 524 288

00011 16 10011 1 048 576

00100 32 10100 2 097 152

00101 64 10101 4 194 304

00110 128 10110 8 388 608

00111 256 10111 16 777 216

01000 512 11000 33 554 432

01001 1 024 11001 67 108 864

01010 2 048 11010 134 217 728

01011 4 096 11011 268 435 456

01100 8 192 11100 536 870 912

01101 16 384 11101 1 073 741 824

01110 32 768 11110 2 147 483 648

01111 65 536 11111 4 294 967 296



TMS320C62x/C67x Control Register File

2-11CPU Data Paths and Control

2.6.2 Control Status Register (CSR)

The CSR, shown in Figure 2–5, contains control and status bits. The functions
of the fields in the CSR are shown in Table 2–6. For the EN, PWRD, PCC, and
DCC fields, see your data sheet to see if your device supports the options that
these fields control and see the TMS320C6201/C6701 Peripherals Reference
Guide for more information on these options.

Figure 2–5. Control Status Register (CSR)
31 24

CPU ID
1623

Revision ID

R
15

PWRD SAT EN PCC DCC

10 9 8 7 5 4 2 1 0

PGIE GIE

R, W, +0 R, +x R, W, +0R, C, +0

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+x Value undefined after reset
+0 Value is zero after reset
C Clearable using the MVC instruction

Table 2–6. Control Status Register Field Descriptions

Bit Position Width Field Name Function

31-24 8 CPU ID CPU ID; defines which CPU.
CPU ID = 00b: indicates ’C62x,  CPU ID= 10b: indicates ’C67x

23-16 8 Revision ID Revision ID; defines silicon revision of the CPU

15-10 6 PWRD Control power-down modes; the values are always read as zero.†

9 1 SAT The saturate bit, set when any unit performs a saturate, can be
cleared only by the MVC instruction and can be set only by a func-
tional unit. The set by a functional unit has priority over a clear (by
the MVC instruction) if they occur on the same cycle. The saturate
bit is set one full cycle (one delay slot) after a saturate occurs. This
bit will not be modified by a conditional instruction whose condition
is false.

8 1 EN Endian bit: 1 = little endian, 0 = big endian †

7-5 3 PCC Program cache control mode†

4-2 3 DCC Data cache control mode†

1 1 PGIE Previous GIE (global interrupt enable); saves GIE when an inter-
rupt is taken

0 1 GIE Global interrupt enable; enables (1) or disables (0) all interrupts
except the reset interrupt and NMI (nonmaskable interrupt)

† See the TMS320C6201/C6701 Peripherals Reference Guide for more information.



TMS320C62x/C67x Control Register File

 2-12

2.6.3 E1 Phase Program Counter (PCE1)

The PCE1, shown in Figure 2–6, contains the 32-bit address of the execute
packet in the E1 pipeline phase.

Figure 2–6. E1 Phase Program Counter (PCE1)
31

PCE1

R,W, +x

16

15
PCE1

R,W, +x

0

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+x Value undefined after reset



TMS320C67x Extensions to the Control Register File

2-13CPU Data Paths and Control

2.7 TMS320C67x Extensions to the Control Register File

The ’C67x has three additional configuration registers to support floating point
operations. The registers specify the desired floating-point rounding mode for
the .L and .M units. They also contain fields to warn if src1 and src2 are NaN
or denormalized numbers, and if the result overflows, underflows, is inexact,
infinite, or invalid. There are also fields to warn if a divide by 0 was performed,
or if a compare was attempted with a NaN source. Table 2–7 shows the addi-
tional registers used by the ’C67x. The OVER, UNDER, INEX, INVAL, DENn,
NANn, INFO, UNORD and DIV0 bits within these registers will not be modified
by a conditional instruction whose condition is false.

Table 2–7. Control Register File Extensions

Register

Abbreviation Name Description Page

FADCR Floating-point adder configura-
tion register

Specifies underflow mode, rounding mode, NaNs,
and other exceptions for the .L unit.

2-14

FAUCR Floating-point auxiliary configu-
ration register

Specifies underflow mode, rounding mode, NaNs,
and other exceptions for the .S unit.

2-16

FMCR Floating-point multiplier config-
uration register

Specifies underflow mode, rounding mode, NaNs,
and other exceptions for the .M unit.

2-18



TMS320C67x Extensions to the Control Register File

 2-14

2.7.1 Floating-Point Adder Configuration Register (FADCR)

The floating-point configuration register (FADCR) contains fields that specify
underflow or overflow, the rounding mode, NaNs, denormalized numbers, and
inexact results for instructions that use the .L functional units. FADCR has a
set of fields specific to each of the .L units, .L1 and .L2. Figure 2–7 shows the
layout of FADCR. The functions of the fields in the FADCR are shown in
Table 2–8.

Figure 2–7. Floating-Point Adder Configuration Register (FADCR)

 

31

RMode INEX OVER INVAL
24 23 22 21 20 19 18 17 16

NAN1

R,  +0 R, W, +0

DEN2INFOUNDERReserved
27 26   25

NAN2DEN1

15

RMode INEX OVER INVAL
8 7 6 5 4 3 2 1 0

NAN1

R, +0 R, W, +0

DEN2INFOUNDERReserved
11 10     9

NAN2DEN1Fields used by .L1

Fields used by .L2

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+0 Value is zero after reset



TMS320C67x Extensions to the Control Register File

2-15CPU Data Paths and Control

Table 2–8. Floating-Point Adder Configuration Register Field Descriptions

Bit Position Width Field Name Function

31–27 5 Reserved

26–25 2 Rmode .L2 Value 00: Round toward nearest representable floating-point  number
Value 01: Round toward 0 (truncate)
Value 10: Round toward infinity (round up)
Value 11: Round toward negative infinity (round down)

24 1 UNDER .L2 Set to 1 when result underflows

23 1 INEX .L2 Set to 1 when result differs from what would have been computed had
the exponent range and precision been unbounded; never set with
INVAL

22 1 OVER .L2 Set to 1 when result overflows

21 1 INFO .L2 Set to 1 when result is signed infinity

20 1 INVAL .L2 Set to 1 when a signed NaN (SNaN) is a source, NaN is a source in
a floating-point to integer conversion, or when infinity is subtracted
from infinity

19 1 DEN2 .L2 src2 is a denormalized number

18 1 DEN1 .L2 src1 is a denormalized number

17 1 NAN2 .L2 src2 is NaN

16 1 NAN1 .L2 src1 is NaN

15–11 5 Reserved

10–9 2 Rmode .L1 Value 00: Round toward nearest even representable floating-point
number
Value 01: Round toward 0 (truncate)
Value 10: Round toward infinity (round up)
Value 11: Round toward negative infinity (round down)

8 1 UNDER .L1 Set to 1 when result underflows

7 1 INEX .L1 Set to 1 when result differs from what would have been computed had
the exponent range and precision been unbounded; never set with
INVAL

6 1 OVER .L1 Set to 1 when result overflows

5 1 INFO .L1 Set to 1 when result is signed infinity

4 1 INVAL .L1 Set to 1 when a signed NaN is a source, NaN is a source in a floating-
point to integer conversion, or when infinity is subtracted from infinity

3 1 DEN2 .L1 src2 is a denormalized number

2 1 DEN1 .L1 src1 is a denormalized number

1 1 NAN2 .L1 src2 is NaN

0 1 NAN1 .L1 src1 is NaN



TMS320C67x Extensions to the Control Register File

 2-16

2.7.2 Floating-Point Auxiliary Configuration Register (FAUCR)

The floating-point auxiliary register (FAUCR) contains fields that specify un-
derflow or overflow, the rounding mode, NaNs, denormalized numbers, and
inexact results for instructions that use the .S functional units. FAUCR has a
set of fields specific to each of the .S units, .S1 and .S2. Figure 2–8 shows the
layout of FAUCR. The functions of the fields in the FAUCR are shown in
Table 2–9.

Figure 2–8. Floating-Point Auxiliary Configuration Register (FAUCR)

R, +0

31

DIV0 INEX OVER INVAL
24 23 22 21 20 19 18 17 16

NAN1

R, W, +0

DEN2INFOUNDReserved
26 25

NAN2DEN1UNORD
27

Fields used by .S2

R, +0

15
DIV0 INEX OVER INVAL

8 7 6 5 4 3 2 1 0

NAN1

R, W, +0

DEN2INFOUNDFields used by .S1
10 9

NAN2DEN1UNORD

11
Reserved

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+0 Value is zero after reset



TMS320C67x Extensions to the Control Register File

2-17CPU Data Paths and Control

Table 2–9. Floating-Point Auxiliary Configuration Register Field Descriptions

Bit Position Width Field Name Function

31–27 5 Reserved

26 1 DIV0 .S2 Set to 1 when 0 is source to reciprocal operation

25 1 UNORD .S2 Set to 1 when NaN is a source to a compare operation

24 1 UNDER .S2 Set to 1 when result underflows

23 1 INEX .S2 Set to 1 when result differs from what would have been computed had the
exponent range and precision been unbounded; never set with INVAL

22 1 OVER .S2 Set to 1 when result overflows

21 1 INFO .S2 Set to 1 when result is signed infinity

20 1 INVAL .S2 Set to 1 when a signed NaN (SNaN) is a source, NaN is a source in a float-
ing-point to integer conversion, or when infinity is subtracted from infinity

19 1 DEN2 .S2 src2 is a denormalized number

18 1 DEN1 .S2 src1 is a denormalized number

17 1 NAN2 .S2 src2 is NaN

16 1 NAN1 .S2 src1 is NaN

15–11 5 Reserved

10 1 DIV0 .S1 Set to 1 when 0 is source to reciprocal operation

9 1 UNORD .S1 Set to 1 when NaN is a source to a compare operation

8 1 UNDER .S1 Set to 1 when result underflows

7 1 INEX .S1 Set to 1 when result differs from what would have been computed had the
exponent range and precision been unbounded; never set with INVAL

6 1 OVER .S1 Set to 1 when result overflows

5 1 INFO .S1 Set to 1 when result is signed infinity

4 1 INVAL .S1 Set to 1 when SNaN is a source, NaN is a source in a floating-point to
integer conversion, or when infinity is subtracted from infinity

3 1 DEN2 .S1 src2 is a denormalized number

2 1 DEN1 .S1 src1 is a denormalized number

1 1 NAN2 .S1 src2 is a NaN

0 1 NAN1 .S1 src1 is a NaN



TMS320C67x Extensions to the Control Register File

 2-18

2.7.3 Floating-Point Multiplier Configuration Register (FMCR)

The floating-point multiplier configuration register (FMCR) contains fields that
specify underflow or overflow, the rounding mode, NaNs, denormalized num-
bers, and inexact results for instructions that use the .M functional units. FMCR
has a set of fields specific to each of the .M units, .M1 and .M2. Figure 2–9
shows the layout of FMCR.  The functions of the fields in the FMCR are shown
in Table 2–10.

Figure 2–9. Floating-Point Multiplier Configuration Register (FMCR)

31

RMode INEX OVER INVAL
24 23 22 21 20 19 18 17 16

NAN1

R, +0 R, W, +0

DEN2INFOUNDERReserved
27 26   25

NAN2DEN1Fields used by .M2

15

RMode INEX OVER INVAL
8 7 6 5 4 3 2 1 0

NAN1

R, +0 R, W, +0

DEN2INFOUNDERReserved
11 10     9

NAN2DEN1Fields used by .M1

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+0 Value is zero after reset



TMS320C67x Extensions to the Control Register File

2-19CPU Data Paths and Control

Table 2–10. Floating-Point Multiplier Configuration Register Field Descriptions

Bit Position Width Field Name Function

31–27 5 Reserved

26–25 2 Rmode .M2 Value 00: Round toward nearest representable floating-point
number
Value 01: Round toward 0 (truncate)
Value 10: Round toward infinity (round up)
Value 11: Round toward negative infinity (round down)

24 1 UNDER .M2 Set to 1 when result underflows

23 1 INEX .M2 Set to 1 when result differs from what would have been com-
puted had the exponent range and precision been unbounded;
never set with INVAL

22 1 OVER .M2 Set to 1 when result overflows

21 1 INFO .M2 Set to 1 when result is signed infinity

20 1 INVAL .M2 Set to 1 when SNaN is a source, NaN is a source in a floating-
point to integer conversion, or when infinity is subtracted from
infinity

19 1 DEN2 .M2 src2 is a denormalized number

18 1 DEN1 .M2 src1 is a denormalized number

17 1 NAN2 .M2 src2 is NaN

16 1 NAN1 .M2 src1 is NaN

15–11 5 Reserved

10–9 2 Rmode .M1 Value 00: Round toward nearest representable floating-point
number
Value 01: Round toward 0 (truncate)
Value 10: Round toward infinity (round up)
Value 11: Round toward negative infinity (round down)

8 1 UNDER .M1 Set to 1 when result underflows

7 1 INEX .M1 Set to 1 when result differs from what would have been com-
puted had the exponent range and precision been unbounded;
never set with INVAL

6 1 OVER .M1 Set to 1 when result overflows

5 1 INFO .M1 Set to 1 when result is signed infinity

4 1 INVAL .M1 Set to 1 when SNaN is a source, NaN is a source in a floating-
point to integer conversion, or when infinity is subtracted from
infinity

3 1 DEN2 .M1 src2 is a denormalized number

2 1 DEN1 .M1 src1 is a denormalized number

1 1 NAN2 .M1 src2 is NaN

0 1 NAN1 .M1 src1 is NaN



3-1

TMS320C62x/C67x Fixed-Point Instruction Set

The ’C62x and the ’C67x share an instruction set. All of the instructions valid
for the ’C62x are also valid for the ’C67x. However, because the ’C67x is a
floating-point device, there are some instructions that are unique to it and do
not execute on the fixed-point device. This chapter describes the assembly
language instructions that are common to both the ’C62x and ’C67x digital sig-
nal processors. Also described are parallel operations, conditional operations,
resource constraints, and addressing modes.

Instructions unique to the ’C67x (floating-point addition, subtraction, multi-
plication, and others) are described in Chapter 4.

Topic Page

3.1 Instruction Operation and Execution Notations 3-2. . . . . . . . . . . . . . . . . . 

3.2 Mapping Between Instructions and Functional Units 3-4. . . . . . . . . . . . . 

3.3 TMS320C62x/C67x Opcode Map 3-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.4 Delay Slots 3-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.5 Parallel Operations 3-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.6 Conditional Operations 3-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.7 Resource Constraints 3-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.8 Addressing Modes 3-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.9 Individual Instruction Descriptions 3-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 3



Instruction Operation and Execution Notations

 3-2

3.1 Instruction Operation and Execution Notations

Table 3–1 explains the symbols used in the fixed-point instruction descriptions.

Table 3–1. Fixed-Point Instruction Operation and Execution Notations

Symbol Meaning

abs(x) Absolute value of x

and Bitwise AND

–a Perform 2s-complement subtraction using the addressing mode de-
fined by the AMR

+a Perform 2s-complement addition using the addressing mode defined
by the AMR

by..z Selection of bits y through z of bit string b

cond Check for either creg equal to 0 or creg not equal to 0

creg 3-bit field specifying a conditional register

cstn n-bit constant field (for example, cst5)

int 32-bit integer value

lmb0(x) Leftmost 0 bit search of x

lmb1(x) Leftmost 1 bit search of x

long 40-bit integer value

lsbn or LSBn n least significant bits (for example, lsb16)

msbn or MSBn n most significant bits (for example, msb16)

nop No operation

norm(x) Leftmost nonredundant sign bit of x

not Bitwise logical complement

or

op

Bitwise OR

Opfields

R Any general-purpose register

scstn n-bit signed constant field

sint Signed 32-bit integer value

slong Signed 40-bit integer value

slsb16 Signed 16 LSB of register

smsb16 Signed 16 MSB of register



Instruction Operation and Execution Notations

3-3TMS320C62x/C67x Fixed-Point Instruction Set

Table 3–1. Fixed-Point Instruction Operation and Execution Notations (Continued)

Symbol Meaning

–s Perform 2s-complement subtraction and saturate the result to the re-
sult size if an overflow occurs

+s Perform 2s-complement addition and saturate the result to the result
size if an overflow occurs

ucstn n-bit unsigned constant field (for example, ucst5)

uint Unsigned 32-bit integer value

ulong Unsigned 40-bit integer value

ulsb16 Unsigned 16 LSB of register

umsb16 Unsigned 16 MSB of register

x clear b,e Clear a field in x, specified by b (beginning bit) and e (ending bit)

x ext l,r Extract and sign-extend a field in x, specified by l (shift left value) and
r (shift right value)

x extu l,r Extract an unsigned field in x, specified by l (shift left value) and r (shift
right value)

x set b,e Set field in x to all 1s, specified by b (beginning bit) and e (ending bit)

xor Bitwise exclusive OR

xsint Signed 32-bit integer value that can optionally use cross path

xslsb16 Signed 16 LSB of register that can optionally use cross path

xsmsb16 Signed 16 MSB of register that can optionally use cross path

xuint Unsigned 32-bit integer value that can optionally use cross path

xulsb16 Unsigned 16 LSB of register that can optionally use cross path

xumsb16 Unsigned 16 MSB of register that can optionally use cross path

→ Assignment

+ Addition

× Multiplication

– Subtraction

<< Shift left

>>s Shift right with sign extension

>>z Shift right with a zero fill



Mapping Between Instructions and Functional Units

 3-4

3.2 Mapping Between Instructions and Functional Units

Table 3–2 shows the mapping between instructions and functional units and
Table 3–3 shows the mapping between functional units and instructions.

Table 3–2. Instruction to Functional Unit Mapping

.L Unit .M Unit .S Unit .D Unit

ABS MPY ADD SET ADD STB (15-bit offset)‡

ADD MPYU ADDK SHL ADDAB STH (15-bit offset)‡

ADDU MPYUS ADD2 SHR ADDAH STW (15-bit offset)‡

AND MPYSU AND SHRU ADDAW SUB

CMPEQ MPYH B disp SSHL LDB SUBAB

CMPGT MPYHU B IRP† SUB LDBU SUBAH

CMPGTU MPYHUS B NRP† SUBU LDH SUBAW

CMPLT MPYHSU B reg SUB2 LDHU ZERO

CMPLTU MPYHL CLR XOR LDW

LMBD MPYHLU EXT ZERO LDB (15-bit offset)‡

MV MPYHULS EXTU LDBU (15-bit offset)‡

NEG MPYHSLU MV LDH (15-bit offset)‡

NORM MPYLH MVC† LDHU (15-bit offset)‡

NOT MPYLHU MVK LDW (15-bit offset)‡

OR MPYLUHS MVKH MV

SADD MPYLSHU MVKLH STB

SAT SMPY NEG STH

SSUB SMPYHL NOT STW

SUB SMPYLH OR

SUBU SMPYH

SUBC

XOR

ZERO

† S2 only
‡ D2 only



Mapping Between Instructions and Functional Units

3-5TMS320C62x/C67x Fixed-Point Instruction Set

Table 3–3. Functional Unit to Instruction Mapping 

’C62x/’C67x Functional Units

Instruction .L Unit .M Unit .S Unit .D Unit

ABS �

ADD � � �

ADDU �

ADDAB �

ADDAH �

ADDAW �

ADDK �

ADD2 �

AND � �

B �

B IRP �†

B NRP �†

B reg �†

CLR �

CMPEQ �

CMPGT �

CMPGTU �

CMPLT �

CMPLTU �

EXT �

EXTU �

IDLE

LDB mem �

LDBU mem �

LDH mem �

LDHU mem �

† S2 only
‡ D2 only



Mapping Between Instructions and Functional Units

 3-6

Table 3–3. Functional Unit to Instruction Mapping (Continued)

’C62x/’C67x Functional Units

Instruction .D Unit.S Unit.M Unit.L Unit

LDW mem �

LDB mem (15-bit offset) �‡

LDBU mem (15-bit offset) �‡

LDH mem (15-bit offset) �‡

LDHU mem (15-bit offset) �‡

LDW mem (15-bit offset) �‡

LMBD �

MPY �

MPYU �

MPYUS �

MPYSU �

MPYH �

MPYHU �

MPYHUS �

MPYHSU �

MPYHL �

MPYHLU �

MPYHULS �

MPYHSLU �

MPYLH �

MPYLHU �

MPYLUHS �

MPYLSHU �

MV � � �

MVC† �

MVK �

† S2 only
‡ D2 only



Mapping Between Instructions and Functional Units

3-7TMS320C62x/C67x Fixed-Point Instruction Set

Table 3–3. Functional Unit to Instruction Mapping (Continued)

’C62x/’C67x Functional Units

Instruction .D Unit.S Unit.M Unit.L Unit

MVKH �

MVKLH �

NEG � �

NOP

NORM �

NOT � �

OR � �

SADD �

SAT �

SET �

SHL �

SHR �

SHRU �

SMPY �

SMPYH �

SMPYHL �

SMPYLH �

SSHL �

SSUB �

STB mem �

STH mem �

STW mem �

STB mem (15-bit offset) �‡

STH mem (15-bit offset) �‡

STW mem (15-bit offset) �‡

SUB � � �

† S2 only
‡ D2 only



Mapping Between Instructions and Functional Units

 3-8

Table 3–3. Functional Unit to Instruction Mapping (Continued)

’C62x/’C67x Functional Units

Instruction .D Unit.S Unit.M Unit.L Unit

SUBU � �

SUBAB �

SUBAH �

SUBAW �

SUBC �

SUB2 �

XOR � �

ZERO � � �

† S2 only
‡ D2 only



TMS320C62x/C67x Opcode Map

3-9TMS320C62x/C67x Fixed-Point Instruction Set

3.3 TMS320C62x/C67x Opcode Map

Table 3–4 and the instruction descriptions in this chapter explain the field syn-
taxes and values. The ’C62x and ’C67x opcodes are mapped in Figure 3–1.

Table 3–4. TMS320C62x/C67x Opcode Map Symbol Definitions

Symbol Meaning

baseR base address register

creg 3-bit field specifying a conditional register

cst constant

csta constant a

cstb constant b

dst destination

h MVK or MVKH bit

ld/st load/store opfield

mode addressing mode

offsetR register offset

op opfield, field within opcode that specifies a unique instruction

p parallel execution

r

rsv

LDDW bit

reserved

s select side A or B for destination

src2 source 2

src1 source 1

ucstn n-bit unsigned constant field

x use cross path for src2

y select .D1 or .D2

z test for equality with zero or nonzero



TMS320C62x/C67x Opcode Map

 3-10

Figure 3–1. TMS320C62x/C67x Opcode Map

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

Operations on the .L unit

3 5 5 5 7

src2 src1/cst

31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

Operations on the .M unit

3 5 5 5 5

7 6

0 0src1/cst

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

Operations on the .D unit

3 5 5 5 6

7 6

1 0src2 src1/cst

31 29 28 27 23 22

creg z dst/src

4 3 2 1 0

1 1 s p

Load/store with 15-bit offset on the .D unit

3 5 15

6

ld/stucst15

78

y

3

Load/store baseR + offsetR/cst on the .D unit
31 29 28 27 23 22 18 17

creg z dst/src

13 12 9 8 7 6 4 3 2 1 0

mode r y ld/st 0 1 s p

3 5 5 5 4 3

baseR offsetR/ucst5

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

Operations on the .S unit

3 5 5 5 6

6

1

11

xsrc1/cstsrc 2

31 29 28 27 23 22

creg z dst

7 6 4 3 2 1 0

cst 0 0 s p

3 5 16

5

1 0 1

ADDK on the .S unit



TMS320C62x/C67x Opcode Map

3-11TMS320C62x/C67x Fixed-Point Instruction Set

Figure 3–1. TMS320C62x/C67x Opcode Map (Continued)

31 29 28 27 23 22 18 17

creg z dst

13 12 8 7 6 5 4 3 2 1 0

csta cstb op 0 0 1 0 s p

3 5 5 5 5 2

Field operations (immediate forms) on the .S unit

src2

31 29 28 27 23 22

creg z dst

7 6 5 4 3 2 1 0

1 0 1 0 s p

3 5 16

hcst

MVK and MVKH on the .S unit

Bcond disp on the .S unit
31 29 28 27

creg z

7 6 5 4 3 2 1 0

0 1 0 0 s p

3 21

0cst

5 0

00 0 0 s p

31

Reserved

18 17 16

14

15

1

14 13 12 11 10 9 8 7 6

0 0 0 0 0 0 0 01 1 1 1

14 3 2
IDLE

14

0

src 0 00 0 0 p

31

Reserved

18 17

1

16

4

13

0 0 0 0 0 0 0 0

NOP



Delay Slots

 3-12

3.4 Delay Slots

The execution of fixed-point instructions can be defined in terms of delay slots.
The number of delay slots is equivalent to the number of cycles required after
the source operands are read for the result to be available for reading. For a
single-cycle type instruction (such as ADD), source operands read in cycle i
produce a result that can be read in cycle i + 1. For a multiply instruction (MPY),
source operands read in cycle i produce a result that can be read in cycle i + 2.
Table 3–5 shows the number of delay slots associated with each type of in-
struction.

Delay slots are equivalent to an execution or result latency. All of the instruc-
tions that are common to the ’C62x and ’C67x have a functional unit latency
of 1. This means that a new instruction can be started on the functional unit
each cycle. Single-cycle throughput is another term for single-cycle functional
unit latency.

Table 3–5. Delay Slot and Functional Unit Latency Summary

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁInstruction Type

ÁÁÁÁÁ
ÁÁÁÁÁ

Delay
Slots

ÁÁÁÁ
ÁÁÁÁ

Functional
Unit Latency

ÁÁÁÁÁ
ÁÁÁÁÁ

Read
Cycles †

ÁÁÁÁ
ÁÁÁÁ

Write
Cycles †

ÁÁÁ
ÁÁÁ

Branch
Taken†
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

NOP (no operation)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
Store ÁÁÁÁÁ

ÁÁÁÁÁ
0 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

i ÁÁÁÁ
ÁÁÁÁ

i ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
Single cycle

ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

i
ÁÁÁÁ
ÁÁÁÁ

i
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Multiply (16 � 16)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

i
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

i + 1
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
Load ÁÁÁÁÁ

ÁÁÁÁÁ
4 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

i ÁÁÁÁ
ÁÁÁÁ

i, i + 4§ ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
Branch ÁÁÁÁÁ

ÁÁÁÁÁ
5 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

i‡ ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ

i + 5ÁÁÁÁ
ÁÁÁÁ† Cycle i is in the E1 pipeline phase.

‡ The branch to label, branch to IRP, and branch to NRP instructions instruction does not read any registers.
§ The write on cycle i + 4 uses a separate write port from other .D unit instructions.



Parallel Operations

3-13TMS320C62x/C67x Fixed-Point Instruction Set

3.5 Parallel Operations

Instructions are always fetched eight at a time. This constitutes a fetch packet.
The basic format of a fetch packet is shown in Figure 3–2. Fetch packets are
aligned on 256-bit (8-word) boundaries.

Figure 3–2. Basic Format of a Fetch Packet

p p p p p p p p

Instruction
A

000002

Instruction
B

001002

Instruction
C

010002

Instruction
D

011002

Instruction
E

100002

Instruction
F

101002

Instruction
G

110002

Instruction
H

111002

LSBs of
the byte
address

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

The execution of the individual instructions is partially controlled by a bit in
each instruction, the p-bit. The p-bit (bit 0) determines whether the instruction
executes in parallel with another instruction. The p-bits are scanned from left
to right (lower to higher address). If the p-bit of instruction i is 1, then instruction
i + 1 is to be executed in parallel with (in the the same cycle as) instruction i.
If the p-bit of instruction i is 0, then instruction i + 1 is executed in the cycle after
instruction i. All instructions executing in parallel constitute an execute packet.
An execute packet can contain up to eight instructions. Each instruction in an
execute packet must use a different functional unit.

An execute packet cannot cross an 8-word boundary. Therefore, the last p-bit
in a fetch packet is always set to 0, and each fetch packet starts a new execute
packet. There are three types of p-bit patterns for fetch packets. These three
p-bit patterns result in the following execution sequences for the eight instruc-
tions:

� Fully serial
� Fully parallel
� Partially serial

Example 3–1 through Example 3–3 illustrate the conversion of a p-bit se-
quence into a cycle-by-cycle execution stream of instructions.



Parallel Operations

 3-14

Example 3–1. Fully Serial p-Bit Pattern in a Fetch Packet

This p-bit pattern:

0 0 0 0 0 0 0 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

results in this execution sequence:

Cycle/Execute
Packet Instructions

1 A

2 B

3 C

4 D

5 E

6 F

7 G

8 H

The eight instructions are executed sequentially.

Example 3–2. Fully Parallel p-Bit Pattern in a Fetch Packet

This p-bit pattern:

1 1 1 1 1 1 1 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

results in this execution sequence:

Cycle/Execute
Packet Instructions

1 A B C D E F G H

All eight instructions are executed in parallel.



Parallel Operations

3-15TMS320C62x/C67x Fixed-Point Instruction Set

Example 3–3. Partially Serial p-Bit Pattern in a Fetch Packet

This p-bit pattern:

31 0 31 0 31 0 31 0

0 0 1 1

31 0 31 0 31 0 31 0

0 1 1 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

results in this execution sequence:

Cycle/Execute
Packet Instructions

1 A

2 B

3 C D E

4 F G H

Note: Instructions C, D, and E do not use any of the same functional units, cross paths, or
other data path resources. This is also true for instructions F, G, and H.

3.5.1 Example Parallel Code

The || characters signify that an instruction is to execute in parallel with the pre-
vious instruction. The code for the fetch packet in Example 3–3 would be rep-
resented as this:

instruction A

instruction B

instruction C
|| instruction D
|| instruction E

instruction F
|| instruction G
|| instruction H

3.5.2 Branching Into the Middle of an Execute Packet

If a branch into the middle of an execute packet occurs, all instructions at lower
addresses are ignored. In Example 3–3, if a branch to the address containing
instruction D occurs, then only D and E execute. Even though instruction C is
in the same execute packet, it is ignored. Instructions A and B are also ignored
because they are in earlier execute packets. If your result depends on execut-
ing A,B, or C, the branch to the middle of the execute packet will produce an
erroneous result.



Conditional Operations

 3-16

3.6 Conditional Operations

All instructions can be conditional. The condition is controlled by a 3-bit opcode
field (creg) that specifies the condition register tested, and a 1-bit field (z) that
specifies a test for zero or nonzero. The four MSBs of every opcode are creg
and z. The specified condition register is tested at the beginning of the E1 pipe-
line stage for all instructions. For more information on the pipeline, see Chap-
ter 5, TMS320C62x Pipeline, and Chapter 6,  TMS320C67x Pipeline. If z = 1,
the test is for equality with zero. If z = 0, the test is for nonzero. The case of
creg = 0 and z = 0 is treated as always true to allow instructions to be executed
unconditionally. The creg field is encoded in the instruction opcode as shown
in Table 3–6.

Table 3–6. Registers That Can Be Tested by Conditional Operations

Specified 
C diti l

creg z
Conditional
Register Bit 31 30 29 28

Unconditional 0 0 0 0

Reserved 0 0 0 1

B0 0 0 1 z

B1 0 1 0 z

B2 0 1 1 z

A1 1 0 0 z

A2 1 0 1 z

Reserved 1 1 x x

Note: x can be any value.

Conditional instructions are represented in code by using square brackets, [  ],
surrounding the condition register name. The following execute packet con-
tains two ADD instructions in parallel. The first ADD is conditional on B0 being
nonzero. The second ADD is conditional on B0 being zero. The character ! in-
dicates the inverse of the condition.

[B0] ADD .L1 A1,A2,A3
|| [!B0] ADD .L2 B1,B2,B3

The above instructions are mutually exclusive. This means that only one will
execute. If they are scheduled in parallel, mutually exclusive instructions are
constrained as described in section 3.7. If mutually exclusive instructions
share any resources as described in section 3.7, they cannot be scheduled in
parallel (put in the same execute packet), even though only one will execute.



Resource Constraints

3-17TMS320C62x/C67x Fixed-Point Instruction Set

3.7 Resource Constraints

No two instructions within the same execute packet can use the same
resources. Also, no two instructions can write to the same register during the
same cycle. The following sections describe how an instruction can use each
of the resources.

3.7.1 Constraints on Instructions Using the Same Functional Unit

Two instructions using the same functional unit cannot be issued in the same
execute packet.

The following execute packet is invalid:

ADD .S1 A0, A1, A2 ; \ .S1 is used for
|| SHR .S1 A3, 15, A4 ; / both instructions

The following execute packet is valid:

ADD .L1 A0, A1, A2 ; \ Two different functional
|| SHR .S1 A3, 15, A4 ; / units are used

3.7.2 Constraints on Cross Paths (1X and 2X)

One unit (either a .S, .L, or .M unit) per data path, per execute packet, can read
a source operand from its opposite register file via the cross paths (1X and 2X).
For example, .S1 can read both of an instruction’s operands from the A register
file, or it can read one operand from the B register file using the 1X cross path
and the other from the A register file. This is denoted by an X following the unit
name in the instruction syntax.

Two instructions using the same cross path between register files cannot be
issued in the same execute packet, because there is only one path from A to
B and one path from B to A.

The following execute packet is invalid:

     ADD.L1X  A0,B1,A1 ; \ 1X cross path is used
||   MPY.M1X A4,B4,A5 ; / for both instructions

The following execute packet is valid:

     ADD.L1X  A0,B1,A1 ; \ Instructions use the 1X and
||   MPY.M2X B4,A4,B2 ; / 2X cross paths

The operand will come from a register file opposite of the destination if the x
bit in the instruction field is set (shown in the opcode map located in Figure 3–1
on page 3-10).



Resource Constraints

 3-18

3.7.3 Constraints on Loads and Stores

Load/store instructions can use an address pointer from one register file while
loading to or storing from the other register file. Two load/store instructions us-
ing a destination/source from the same register file cannot be issued in the
same execute packet. The address register must be on the same side as the
.D unit used.

The following execute packet is invalid:

LDW.D1  *A0,A1 ; \ .D2 unit must use the address
|| LDW.D2  *A2,B2 ; / register from the B register file

The following execute packet is valid:

LDW.D1 *A0,A1 ; \ Address registers from correct
|| LDW.D2 *B0,B2 ; / register files

Two loads and/or stores loading to and/or storing from the same register file
cannot be issued in the same execute packet.

The following execute packet is invalid:

LDW.D1  *A4,A5 ; \ Loading to and storing from the
|| STW.D2  A6,*B4 ; / same register file

The following execute packets are valid:

LDW.D1 *A4,B5 ; \ Loading to, and storing from
|| STW.D2  A6,*B4 ; / different register files

LDW.D1 *A0,B2 ; \ Loading to
|| LDW.D2  *B0,A1 ; / different register files

3.7.4 Constraints on Long (40-Bit) Data

Because the .S and .L units share a read register port for long source operands
and a write register port for long results, only one long result may be issued
per register file in an execute packet. All instructions with a long result on the
.S and .L units have zero delay slots. See section 2.1 on page 2-4 for the order
for long pairs.

The following execute packet is invalid:

   ADD.L1 A5:A4,A1,A3:A2 ; \ Two long writes
|| SHL.S1   A8,A9,A7:A6  ; / on A register file



Resource Constraints

3-19TMS320C62x/C67x Fixed-Point Instruction Set

The following execute packet is valid:

   ADD.L1 A5:A4,A1,A3:A2  ; \ One long write for
|| SHL.S2 B8,B9,B7:B6  ; / each register file

Because the .L and .S units share their long read port with the store port, op-
erations that read a long value cannot be issued on the .L and/or .S units in
the same execute packet as a store.

The following execute packet is invalid:

   ADD .L1 A5:A4,A1,A3:A2 ; \ Long read operation and a
|| STW .D1 A8,*A9         ; / store

The following execute packet is valid:

   ADD.L1 A4, A1, A3:A2 ; \ No long read with
|| STW.D1 A8,*A9 ; / with the store

3.7.5 Constraints on Register Reads

More than four reads of the same register cannot occur on the same cycle.
Conditional registers are not included in this count.

The following code sequences are invalid:

        MPY .M1 A1,A1,A4 ; five reads of register A1
||      ADD .L1 A1,A1,A5
||       SUB .D1 A1,A2,A3

        MPY .M1 A1,A1,A4 ; five reads of register A1
||      ADD .L1 A1,A1,A5
||       SUB .D2x A1,B2,B3

This code sequence is valid:

         MPY  .M1 A1,A1,A4 ; only four reads of A1
|| [A1]  ADD   .L1 A0,A1,A5
||       SUB  .D1 A1,A2,A3

3.7.6 Constraints on Register Writes

Two instructions cannot write to the same register on the same cycle. Two in-
structions with the same destination can be scheduled in parallel as long as
they do not write to the destination register on the same cycle. For example,
a MPY issued on cycle i followed by an ADD on cycle i + 1 cannot write to the
same register because both instructions write a result on cycle i + 1. Therefore,
the following code sequence is invalid unless a branch occurs after the MPY,
causing the ADD not to be issued.

   MPY .M1 A0,A1,A2
  ADD .L1 A4,A5,A2



Resource Constraints

 3-20

However, this code sequence is valid:

   MPY .M1 A0,A1,A2
|| ADD .L1 A4,A5,A2

Figure 3–3 shows different multiple-write conflicts. For example, ADD and
SUB in execute packet L1 write to the same register. This conflict is easily de-
tectable.

MPY in packet L2 and ADD in packet L3 might both write to B2 simultaneously;
however, if a branch instruction causes the execute packet after L2 to be
something other than L3, a conflict would not occur. Thus, the potential conflict
in L2 and L3 might not be detected by the assembler. The instructions in L4
do not constitute a write conflict because they are mutually exclusive. In con-
trast, because the instructions in L5 may or may not be mutually exclusive, the
assembler cannot determine a conflict. If the pipeline does receive commands
to perform multiple writes to the same register, the result is undefined.

Figure 3–3. Examples of the Detectability of Write Conflicts by the Assembler

L1: ADD.L2 B5,B6,B7 ; \ detectable, conflict
|| SUB.S2 B8,B9,B7 ; /

L2: MPY.M2 B0,B1,B2 ; \ not detectable

L3: ADD.L2 B3,B4,B2 ; /

L4:[!B0] ADD.L2 B5,B6,B7 ; \ detectable, no conflict
|| [B0] SUB.S2 B8,B9,B7 ; /

L5:[!B1] ADD.L2 B5,B6,B7 ; \ not detectable
|| [B0] SUB.S2 B8,B9,B7 ; /



Addressing Modes

3-21TMS320C62x/C67x Fixed-Point Instruction Set

3.8 Addressing Modes

The addressing modes on the ’C62x and ’C67x are linear, circular using BK0,
and circular using BK1. The mode is specified by the addressing mode regis-
ter, or AMR (defined in Chapter 2).

All registers can perform linear addressing. Only eight registers can perform
circular addressing: A4–A7 are used by the .D1 unit and B4–B7 are used by
the .D2 unit. No other units can perform circular addressing.
LDB(U)/LDH(U)/LDW , STB/STH/STW, ADDAB/ADDAH/ADDAW/ADDAD ,
and SUBAB/SUBAH/SUBAW  instructions all use the AMR to determine what
type of address calculations are performed for these registers.

3.8.1 Linear Addressing Mode

3.8.1.1 LD/ST Instructions

For load and store instructions, linear mode simply shifts the offsetR/cst oper-
and to the left by 2, 1, or 0 for word, halfword, or byte access, respectively, and
then performs an add or a subtract to baseR (depending on the operation spe-
cified).

3.8.1.2 ADDA/SUBA Instructions

For integer addition and subtraction instructions, linear mode simply shifts the
src1/cst operand to the left by 2, 1, or 0 for word, halfword, or byte data sizes,
respectively, and then performs the add or subtract specified.

3.8.2 Circular Addressing Mode

The BK0 and BK1 fields in the AMR specify block sizes for circular addressing.
See section 2.6.1, on page 2-9, for more information on the AMR.

3.8.2.1 LD/ST Instructions

After shifting offsetR/cst to the left by 2, 1, or 0 for LDW, LDH(U), or LDB(U) ,
respectively, an add or subtract is performed with the carry/borrow inhibited
between bits N and N  + 1. Bits N + 1 to 31 of baseR remain unchanged. All
other carries/borrows propagate as usual. If you specify an offsetR/cst greater
than the circular buffer size, 2(N + 1), the effective offsetR/cst is modulo the cir-
cular buffer size (see Example 3–4). The circular buffer size in the AMR is not
scaled; for example, a block size of 4 is 4 bytes, not 4 � data size (byte, half-
word, word). So, to perform circular addressing on an array of 8 words, a size
of 32 should be specified, or N = 4. Example 3–4 shows a LDW performed with
register A4 in circular mode and BK0 = 4, so the buffer size is 32 bytes, 16 half-
words, or 8 words. The value put in the AMR for this example is 0004 0001h.



Addressing Modes

 3-22

Example 3–4. LDW in Circular Mode

LDW .D1 *++A4[9],A1

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A1 XXXX XXXXh A1 XXXX XXXXh A1 1234 5678h

mem 104h 1234 5678h mem 104h 1234 5678h mem 104h 1234 5678h

Note: 9h words is 24h bytes. 24h bytes is 4 bytes beyond the 32-byte (20h) boundary 100h–11Fh; thus, it is wrapped around to
(124h – 20h = 104h).

3.8.2.2 ADDA/SUBA Instructions

After shifting src1/cst to the left by 2, 1, or 0 for ADDAW, ADDAH , or ADDAB ,
respectively, an add or a subtract is performed with the carry/borrow inhibited
between bits N and N + 1. Bits N + 1 to 31 (inclusive) of src2 remain unchanged.
All other carries/borrows propagate as usual. If you specify src1 greater than
the circular buffer size, 2(N + 1), the effective offsetR/cst is modulo the circular
buffer size (see Example 3–5). The circular buffer size in the AMR is not
scaled; for example, a block size of 4 is 4 bytes, not 4 � data size (byte, half-
word, word). So, to perform circular addressing on an array of 8 words, a size
of 32 should be specified, or N = 4. Example 3–5 shows an ADDAH  performed
with register A4 in circular mode and BK0 = 4, so the buffer size is 32 bytes,
16 halfwords, or 8 words. The value put in the AMR for this example is
0004 0001h.

Example 3–5. ADDAH in Circular Mode

ADDAH .D1 A4,A1,A4

Before ADDAH 1 cycle after ADDAH

A4 0000 0100h A4 0000 0106h

A1 0000 0013h A1 0000 0013h

Note: 13h halfwords is 26h bytes. 26h bytes is 6 bytes beyond the 32-byte (20h) boundary
100h–11Fh; thus, it is wrapped around to (126h – 20h = 106h).



Addressing Modes

3-23TMS320C62x/C67x Fixed-Point Instruction Set

3.8.3 Syntax for Load/Store Address Generation

The ’C62x and ’C67x CPUs have a load/store architecture, which means that
the only way to access data in memory is with a load or store instruction.
Table 3–7 shows the syntax of an indirect address to a memory location.
Sometimes a large offset is required for a load/store. In this case you can use
the B14 or B15 register as the base register, and use a 15-bit constant (ucst15)
as the offset.

Table 3–7. Indirect Address Generation for Load/Store

Addressing Type
No Modification of 
Address Register

Preincrement or
Predecrement of 
Address Register

Postincrement or
Postdecrement of
Address Register

Register indirect *R *++R
*– –R

*R++
*R– –

Register relative *+R[ucst5]
*–R[ucst5]

*++R[ucst5]
*– –R[ucst5]

*R++[ucst5]
*R– –[ucst5]

Register relative with
15-bit constant offset

*+B14/B15[ucst15] not supported not supported

Base + index *+R[offsetR]
*–R[offsetR]

*++R[offsetR]
*– –R[offsetR]

*R++[offsetR]
*R– –[offsetR]



Individual Instruction Descriptions

 3-24

3.9 Individual Instruction Descriptions

This section gives detailed information on the fixed-point instruction set for the
’C62x and ’C67x. Each instruction presents the following information:

� Assembler syntax
� Functional units
� Operands
� Opcode
� Description
� Execution
� Instruction type
� Delay slots
� Functional Unit Latency
� Examples

The ADD instruction is used as an example to familiarize you with the way
each instruction is described. The example describes the kind of information
you will find in each part of the individual instruction description and where to
obtain more information.



 Example Instruction EXAMPLE

3-25  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax EXAMPLE (.unit) src, dst
.unit = .L1, .L2, .S1, .S2, .D1, .D2

src and dst indicate source and destination, respectively. The (.unit) dictates
which functional unit the instruction is mapped to (.L1, .L2, .S1, .S2, .M1, .M2,
.D1, or .D2).

A table is provided for each instruction that gives the opcode map fields, units
the instruction is mapped to, types of operands, and the opcode.

The opcode map, repeated from the summary figure on page 3-10 shows the
various fields that make up each instruction. These fields are described in
Table 3–4 on page 3-9.

There are instructions that can be executed on more than one functional unit.
Table 3–8 shows how this situation is documented for the ADD instruction.
This instruction has three opcode map fields: src1, src2, and dst. In the
seventh row, the operands have the types cst5, long, and long for src1, src2,
and dst, respectively. The ordering of these fields implies cst5 + long � long,
where + represents the operation being performed by the ADD. This operation
can be done on .L1 or .L2 (both are specified in the unit column). The s in front
of each operand signifies that src1 (scst5), src2 (slong), and dst (slong) are all
signed values.

In the third row, src1, src2, and dst are int, int, and long, respectively. The u in
front of each operand signifies that all operands are unsigned. Any operand
that begins with x can be read from a register file that is different from the
destination register file. The operand comes from the register file opposite the
destination if the x bit in the instruction is set (shown in the opcode map).



EXAMPLE Example Instruction

3-26  

Table 3–8. Relationships Between Operands, Operand Size, Signed/Unsigned, Functional
Units, and Opfields for Example Instruction (ADD)

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

sint
xsint
sint

.L1,
.L2

0000011 ADD

src1
src2
dst

sint
xsint
slong

.L1,
.L2

0100011 ADD

src1
src2
dst

uint
xuint
ulong

.L1,
.L2

0101011 ADDU

src1
src2
dst

xsint
slong
slong

.L1,
.L2

0100001 ADD

src1
src2
dst

xuint
ulong
ulong

.L1,
.L2

0101001 ADDU

src1
src2
dst

scst5
xsint
sint

.L1,
.L2

0000010 ADD

src1
src2
dst

scst5
slong
slong

.L1,
.L2

0100000 ADD

src1
src2
dst

sint
xsint
sint

.S1,
.S2

000111 ADD

src1
src2
dst

scst5
xsint
sint

.S1,
.S2

000110 ADD

src2
src1
dst

sint
sint
sint

.D1,
.D2

010000 ADD

src2
src1
dst

sint
ucst5
sint

.D1,
.D2

010010 ADD



 Example Instruction EXAMPLE

3-27  TMS320C62x/C67x Fixed-Point Instruction Set

Description Instruction execution and its effect on the rest of the processor or memory con-
tents are described. Any constraints on the operands imposed by the proces-
sor or the assembler are discussed. The description parallels and supple-
ments the information given by the execution block.

Execution for .L1, .L2 and .S1, .S2 Opcodes
if (cond) src1 + src2 → dst
else nop

Execution for .D1, .D2 Opcodes
if (cond) src2 + src1 → dst
else nop

The execution describes the processing that takes place when the instruction
is executed. The symbols are defined in Table 3–1 on page 3-2.

Pipeline This section contains a table that shows the sources read from, the destina-
tions written to, and the functional unit used during each execution cycle of the
instruction.

Instruction Type This section gives the type of instruction. See section 5.2 on page 5-11 for in-
formation about the pipeline execution of this type of instruction.

Delay Slots This section gives the number of delay slots the instruction takes to execute
See section 3.4 on page 3-12 for an explanation of delay slots.

Functional Unit Latency
This section gives the number of cycles that the functional unit is in use during
the execution of the instruction.

Example Examples of instruction execution. If applicable, register and memory values
are given before and after instruction execution.



ABS Integer Absolute Value With Saturation

3-28  

Syntax ABS  (.unit) src2, dst

.unit = .L1, .L2

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
sint

.L1, .L2 0011010

src2
dst

slong
slong

.L1, L2 0111000

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The absolute value of src2 is placed in dst.

Execution if (cond) abs(src2) → dst
else nop

The absolute value of src2 when src2 is an sint is determined as follows:

1) If src2 � 0, then src2 → dst
2) If src2 � 0 and src2 � –231, then –src2 → dst
3) If src2 = –231, then 231 – 1 → dst

The absolute value of src2 when src2 is an slong is determined as follows:

1) If src2 � 0, then src2 → dst
2) If src2 � 0 and src2 � –239, then –src2 → dst
3) If src2 = –239, then 239 – 1 → dst

Pipeline 
Stage E1

Read src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Pipeline



 Integer Absolute Value With Saturation ABS

3-29  TMS320C62x/C67x Fixed-Point Instruction Set

Example 1 ABS .L1 A1,A5

Before instruction 1 cycle after instruction

A1 8000 4E3Dh –2147463619 A1 8000 4E3Dh –2147463619

A5 XXXX XXXXh A5 7FFF B1C3h 2147463619

Example 2 ABS .L1 A1,A5

Before instruction 1 cycle after instruction

A1 3FF6 0010h 1073086480 A1 3FF6 0010h 1073086480

A5 XXXX XXXXh A5 3FF6 0010h 1073086480



ADD(U) Signed or Unsigned Integer Addition Without Saturation

3-30  

Syntax ADD  (.unit) src1, src2, dst
or

ADDU (.L1 or .L2) src1, src2, dst
or

ADD (.D1 or .D2) src2, src1, dst

.unit = .L1, .L2, .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 0000011

src1
src2
dst

sint
xsint
slong

.L1, .L2 0100011

src1
src2
dst

uint
xuint
ulong

.L1, .L2 0101011

src1
src2
dst

xsint
slong
slong

.L1, .L2 0100001

src1
src2
dst

xuint
ulong
ulong

.L1, .L2 0101001

src1
src2
dst

scst5
xsint
sint

.L1, .L2 0000010

src1
src2
dst

scst5
slong
slong

.L1, .L2 0100000

src1
src2
dst

sint
xsint
sint

.S1, .S2 000111

src1
src2
dst

scst5
xsint
sint

.S1, .S2 000110

src2
src1
dst

sint
sint
sint

.D1, .D2 010000

src2
src1
dst

sint
ucst5
sint

.D1, .D2 010010



 Signed or Unsigned Integer Addition Without Saturation ADD(U)

3-31  TMS320C62x/C67x Fixed-Point Instruction Set

Opcode .L unit

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

Opcode .S unit

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description for .L1, .L2 and .S1, .S2 Opcodes
src2 is added to src1. The result is placed in dst.

Execution for .L1, .L2 and .S1, .S2 Opcodes
if (cond) src1 + src2 → dst
else nop

Opcode .D unit

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

7 6

1 0src2 src1/cst

Description for .D1, .D2 Opcodes
src1 is added to src2. The result is placed in dst.

Execution for .D1, .D2 Opcodes
if (cond) src2 + src1 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single-cycle

Delay Slots 0

Pipeline



ADD(U) Signed or Unsigned Integer Addition Without Saturation

3-32  

Example 1 ADD .L2X A1,B1,B2

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

B1 FFFF FF12h –238 B1 FFFF FF12h

B2 XXXX XXXXh B2 0000 316Ch 12652

Example 2 ADDU .L1 A1,A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 † A1 0000 325Ah

A2 FFFF FF12h 4294967058 † A2 FFFF FF12h

A5:A4 XXXX XXXX A5:A4 0000 0001h 0000 316Ch 4294979948 ‡

Example 3 ADDU .L1 A1,A3:A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A3:A2 0000 00FFh FFFF FF12h 1099511627538 ‡ A3:A2 0000 00FFh FFFF FF12h

A5:A4 0000 0000h 0000 0000h 0 A5:A4 0000 0000h 0000 316Ch 12652 ‡

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer

Example 4 ADD .L1 A1,A3:A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A3:A2 0000 00FFh FFFF FF12h –228 § A3:A2 0000 00FFh FFFF FF12h

A5:A4 0000 0000h 0000 0000h 0§ A5:A4 0000 0000h 0000 316Ch 12652 §

§ Signed 40-bit (long) integer

Example 5 ADD .L1 –13,A1,A6

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A6 XXXX XXXXh A6 0000 324Dh 12877



 Signed or Unsigned Integer Addition Without Saturation ADD(U)

3-33  TMS320C62x/C67x Fixed-Point Instruction Set

Example 6 ADD .D1 26,A1,A6

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A6 XXXX XXXXh A6 0000 3274h 12916



ADDAB/ADDAH/ADDAW Integer Addition Using Addressing Mode

3-34  

Syntax ADDAB  (.unit) src2, src1, dst
or 

ADDAH  (.unit) src2, src1, dst
or 

ADDAW  (.unit) src2, src1, dst

.unit = .D1 or .D2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 byte: 110000
halfword: 110100

word: 111000

src2
src1
dst

sint
ucst5
sint

.D1, .D2 byte: 110010
halfword: 110110

word: 111010

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

7 6

1 0src2 src1/cst

Description src1 is added to src2 using the addressing mode specified for src2. The addi-
tion defaults to linear mode. However, if src2 is one of A4–A7 or B4–B7, the
mode can be changed to circular mode by writing the appropriate value to the
AMR (see section 2.6.1). src1 is left shifted by 1 or 2 for halfword and word data
sizes respectively. Byte, halfword, and word mnemonics are ADDAB ,
ADDAH , and ADDAW, respectively. The result is placed in dst.

Execution if (cond) src2 +a src1 → dst
else nop

Pipeline 
stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

Pipeline



 Integer Addition Using Addressing Mode ADDAB/ADDAH/ADDAW

3-35  TMS320C62x/C67x Fixed-Point Instruction Set

Example 1 ADDAB .D1 A4,A2,A4

Before instruction 1 cycle after instruction

A2 0000 000Bh A2 0000 000Bh

A4 0000 0100h A4 0000 0103h

AMR 0002 0001h AMR 0002 0001h

BK0 = 2 → size = 8
A4 in circular addressing mode using BK0

Example 2 ADDAH .D1 A4,A2,A4

Before instruction 1 cycle after     instruction

A2 0000 000Bh A2 0000 000Bh

A4 0000 0100h A4 0000 0106h

AMR 0002 0001h AMR 0002 0001h

BK0 = 2 → size = 8
A4 in circular addressing mode using BK0

Example 3 ADDAW .D1 A4,2,A4

Before instruction 1 cycle after instruction

A4 0002 0000h A4 0002 0000h

AMR 0002 0001h AMR 0002 0001h

BK0 = 2 → size = 8
A4 in circular addressing mode using BK0



ADDK Integer Addition Using Signed 16-Bit Constant

3-36  

Syntax ADDK  (.unit) cst, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

cst
dst

scst16
uint

.S1, .S2

Opcode

165

z dst

6 0

cst 1 0 1 0 0 s p

31

creg

29 28 27 23 22 7

13 1 1

Description A 16-bit signed constant is added to the dst register specified. The result is
placed in dst.

Execution if (cond) cst + dst → dst
else nop

Pipeline 
Stage E1

Read cst

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example ADDK .S1 15401,A1

Before instruction 1 cycle after instruction

A1 0021 37E1h 2176993 A1 0021 740Ah 2192394

Pipeline



 Two 16-Bit Integer Adds on Upper and Lower Register Halves ADD2

3-37  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax ADD2  (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

sint
xsint
sint

.S1, .S2

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

0 0 0 0 0 1 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description The upper and lower halves of the src1 operand are added to the upper and
lower halves of the src2 operand. Any carry from the lower half add does not
affect the upper half add.

Execution if (cond) {
((lsb16(src1) + lsb16(src2)) and FFFFh) or

 ((msb16(src1) + msb16(src2)) << 16) → dst
}

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example ADD2 .S1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0021 37E1h 33 14305 A1 0021 37E1h

A2 XXXX XXXXh A2 03BB 1C99h 955 7321

B1 039A E4B8h 922 58552 B1 039A E4B8h

Pipeline



AND Bitwise AND

3-38  

Syntax AND  (.unit) src1, src2, dst

.unit = .L1 or .L2, .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 1111011

src1
src2
dst

scst5
xuint
uint

.L1, .L2 1111010

src1
src2
dst

uint
xuint
uint

.S1, .S2 011111

src1
src2
dst

scst5
xuint
uint

.S1, .S2 011110

Opcode

.L unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

.S unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description A bitwise AND is performed between src1 and src2. The result is placed in dst.
The scst5 operands are sign extended to 32 bits.

Execution if (cond) src1 and src2 → dst
else nop



 Bitwise AND AND

3-39  TMS320C62x/C67x Fixed-Point Instruction Set

Delay Slots 0

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L or .S

Instruction Type Single-cycle

Example 1 AND .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 F7A1 302Ah A1 F7A1 302Ah

A2 XXXX XXXXh A2 02A0 2020h

B1 02B6 E724h B1 02B6 E724h

Example 2 AND .L1 15,A1,A3

Before instruction 1 cycle after instruction

A1 32E4 6936h A1 32E4 6936h

A3 XXXX XXXXh A3 0000 0006h

Pipeline



B Branch Using a Displacement

3-40  

Syntax B  (.unit) label

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

cst scst21 .S1, .S2

Opcode

21

z

6 0

cst 0 0 1 0 0 s p

31

creg

29 28 27 7

13 1 1

Description A 21-bit signed constant specified by cst is shifted left by 2 bits and is added
to the address of the first instruction of the fetch packet that contains the
branch instruction. The result is placed in the program fetch counter (PFC).
The assembler/linker automatically computes the correct value for cst by the
following formula:

cst = (label – PCE1) >> 2

If two branches are in the same execute packet and both are taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
uses a displacement and the other uses a register, IRP, or NRP. As long as only
one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) cst  << 2 + PCE1 → PFC
else nop

Notes:

1) PCE1 (program counter) represents the address of the first instruction
in the fetch packet in the E1 stage of the pipeline. PFC is the program
fetch counter.

2) The execute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

3) See section 3.5.2 on page 3-15 for information on branching into the
middle of an execute packet.



 Branch Using a Displacement B

3-41  TMS320C62x/C67x Fixed-Point Instruction Set

Target Instruction
Pipeline 
Stage E1 PS PW PR DP DC E1

Read

Written

Branch
Taken

�

Unit in use .S

Instruction Type Branch

Delay Slots 5

Table 3–9 gives the program counter values and actions for the following code
example.

Example

0000 0000 B .S1 LOOP
0000 0004 ADD .L1 A1, A2, A3
0000 0008 || ADD .L2 B1, B2, B3
0000 000C LOOP: MPY .M1X A3, B3, A4
0000 0010 || SUB .D1 A5, A6, A6
0000 0014 MPY .M1 A3, A6, A5
0000 0018 MPY .M1 A6, A7, A8
0000 001C SHR .S1 A4, 15, A4
0000 0020 ADD .D1 A4, A6, A4

Table 3–9. Program Counter Values for Example Branch Using a Displacement

Cycle
Program Counter
Value Action

Cycle 0 0000 0000h Branch command executes
(target code fetched)

Cycle 1 0000 0004h

Cycle 2 0000 000Ch

Cycle 3 0000 0014h

Cycle 4 0000 0018h

Cycle 5 0000 001Ch

Cycle 6 0000 000Ch Branch target code executes

Cycle 7 0000 0014h

Pipeline



B Branch Using a Register

3-42  

Syntax B  (.unit) src2

.unit = .S2

Opcode map field used... For operand type... Unit

src2 xuint .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

0 0 1 1 0 1 0 0 0 s p

3 5 5 5 6

6

1

11

x0 0 0 0 0src2

Description src2 is placed in the PFC.

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
uses a displacement and the other uses a register, IRP, or NRP. As long as
onlly one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) src2 → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is program fetch counter.

2) The execute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

Target Instruction
Pipeline 
Stage E1 PS PW PR DP DC E1

Read src2

Written

Branch
Taken

�

Unit in use .S2

Instruction Type Branch

Delay Slots 5

Pipeline



 Branch Using a Register B

3-43  TMS320C62x/C67x Fixed-Point Instruction Set

Table 3–10 gives the program counter values and actions for the following
code example. In this example, the B10 register holds the value 1000 000Ch.

Example                  B10 1000 000Ch

1000 0000 B .S2 B10
1000 0004 ADD .L1 A1, A2, A3
1000 0008 || ADD .L2 B1, B2, B3
1000 000C MPY .M1X A3, B3, A4
1000 0010 || SUB .D1 A5, A6, A6
1000 0014 MPY .M1 A3, A6, A5
1000 0018 MPY .M1 A6, A7, A8
1000 001C SHR .S1 A4, 15, A4
1000 0020 ADD .D1 A4, A6, A4

Table 3–10. Program Counter Values for Example Branch Using a Register

Cycle
Program Counter
Value Action

Cycle 0 1000 0000h Branch command executes
(target code fetched)

Cycle 1 1000 0004h

Cycle 2 1000 000Ch

Cycle 3 1000 0014h

Cycle 4 1000 0018h

Cycle 5 1000 001Ch

Cycle 6 1000 000Ch Branch target code executes

Cycle 7 1000 0014h



B IRP Branch Using an Interrupt Return Pointer

3-44  

Syntax B  (.unit) IRP

.unit = .S2

Opcode map field used... For operand type... Unit

src2 xsint .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

0 0 0 0 1 1 0 0 0 s p

3 5 5 5 6

6

1

11

x0 0 0 0 00 0 1 1 0

Description IRP is placed in the PFC. This instruction also moves PGIE to GIE. PGIE is
unchanged.

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
uses a displacement and the other uses a register, IRP, or NRP. As long as only
one branch has a ture condition, the code executes in a well-defined way.

Execution if (cond) IRP → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is the program fetch counter.

2) Refer to the chapter on interrupts for more information on IRP, PGIE, and
GIE.

3) The execute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

Target Instruction
Pipeline 
Stage E1 PS PW PR DP DC E1

Read IRP

Written

Branch
Taken

�

Unit in use .S2

Instruction Type Branch

Pipeline



 Branch Using an Interrupt Return Pointer B IRP

3-45  TMS320C62x/C67x Fixed-Point Instruction Set

Delay Slots 5

Table 3–11 gives the program counter values and actions for the following
code example.

Example Given that an interrupt occurred at

PC = 0000 1000 IRP = 0000 1000

0000 0020 B .S2 IRP
0000 0024 ADD .S1 A0, A2, A1
0000 0028 MPY .M1 A1, A0, A1
0000 002C NOP
0000 0030 SHR .S1 A1, 15, A1
0000 0034 ADD .L1 A1, A2, A1
0000 0038 ADD .L2 B1, B2, B3

Table 3–11. Program Counter Values for B IRP

Cycle
Program Counter
Value (Hex) Action

Cycle 0 0000 0020 Branch command executes
(target code fetched)

Cycle 1 0000 0024

Cycle 2 0000 0028

Cycle 3 0000 002C

Cycle 4 0000 0030

Cycle 5 0000 0034

Cycle 6 0000 1000 Branch target code executes



B NRP Branch Using NMI Return Pointer

3-46  

Syntax B  (.unit) NRP

.unit = .S2

Opcode map field used... For operand type... Unit

src2 xsint .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

0 0 0 0 1 1 0 0 0 s p

3 5 5 5 6

6

1

11

x0 0 0 0 00 0 1 1 1

Description NRP is placed in the PFC. This instruction also sets NMIE. PGIE is unchanged.

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
uses a displacement and the other uses a register, IRP, or NRP. As long as only
one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) NRP → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is program fetch counter.

2) Refer to the chapter on interrupts for more information on NRP and
NMIE.

3) The execute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

Target Instruction
Pipeline 
Stage E1 PS PW PR DP DC E1

Read NRP

Written

Branch
Taken

�

Unit in use .S2

Instruction Type Branch

Pipeline



 Branch Using NMI Return Pointer B NRP

3-47  TMS320C62x/C67x Fixed-Point Instruction Set

Delay Slots 5

Table 3–12 gives the program counter values and actions for the following
code example.

Example Given that an interrupt occurred at

PC = 0000 1000 NRP = 0000 1000

0000 0020 B .S2 NRP
0000 0024 ADD .S1 A0, A2, A1
0000 0028 MPY .M1 A1, A0, A1
0000 002C NOP
0000 0030 SHR .S1 A1, 15, A1
0000 0034 ADD .L1 A1, A2, A1
0000 0038 ADD .L2 B1, B2, B3

Table 3–12. Program Counter Values for B NRP

Cycle
Program Counter
Value (Hex) Action

Cycle 0 0000 0020 Branch command executes
(target code fetched)

Cycle 1 0000 0024

Cycle 2 0000 0028

Cycle 3 0000 002C

Cycle 4 0000 0030

Cycle 5 0000 0034

Cycle 6 0000 1000 Branch target code executes



CLR Clear a Bit Field

3-48  

Syntax CLR  (.unit) src2, csta, cstb, dst
or

CLR (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2 11

src2
src1
dst

xuint
uint
uint

.S1, .S2 111111

Opcode

Constant form:

5

z cstb

6 5 0

dst 0 0 1 0 s p

31

creg

29 28 27 7

13

18 1723 22

src2

5

csta

13

5

12 8

5 2 1 1

1 0

Register form:

5

z

6 5 0

dst 1 0 0 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

src1

13

5

12

6 1 1

x

1

11

1 1 1 0 1 1



 Clear a Bit Field CLR

3-49  TMS320C62x/C67x Fixed-Point Instruction Set

Description The field in src2, specified by csta and cstb, is cleared to zero. csta and cstb
may be specified as constants or as the ten LSBs of the src1 registers, with
cstb being bits 0–4 and csta bits 5–9. csta signifies the bit location of the LSB
in the field and cstb signifies the bit location of the MSB in the field. In other
words, csta and cstb represent the beginning and ending bits, respectively, of
the field to be cleared. The LSB location of src2 is 0 and the MSB location of
src2 is 31. In the example below, csta is 15 and cstb is 23. Only the ten LSBs
are valid for the register version of the instruction. If any of the 22 MSBs are
non-zero, the result is invalid.

src2

dst

0x x x x x x x x x x x x x x x x x x x x x x x1 1 1 1 10 0 0

0x x x x x x x x x x x x x x x x x x x x x x x0 0 0 0 00 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

csta

cstb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution If the constant form is used:

if (cond) src2 clear csta, cstb → dst
else nop

If the register form is used:

if (cond) src2 clear src19..5, src14..0 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example 1 CLR .S1 A1,4,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 XXXX XXXXh A2 07A0 000Ah

Pipeline



CLR Clear a Bit Field

3-50  

Example 2 CLR .S2 B1,B3,B2

Before instruction 1 cycle after instruction

B1 03B6 E7D5h B1 03B6 E7D5h

B2 XXXX XXXXh B2 03B0 0001h

B3 0000 0052h B3 0000 0052h



 Integer Compare for Equality CMPEQ

3-51  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax CMPEQ  (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
uint

.L1, .L2 1010011

src1
src2
dst

scst5
xsint
uint

.L1, .L2 1010010

src1
src2
dst

xsint
slong
uint

.L1, .L2 1010001

src1
src2
dst

scst5
slong
uint

.L1, .L2 1010000

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

Description This instruction compares src1 to src2. If src1 equals src2, then 1 is written to
dst. Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 == src2) 1 → dst
else 0 → dst
}

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Pipeline



CMPEQ Integer Compare for Equality

3-52  

Example 1 CMPEQ .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 4B8h 1208 A1 0000 4B8h

A2 XXXX XXXXh A2 0000 0000h false

B1 0000 4B7h 1207 B1 0000 4B7h

Example 2 CMPEQ .L1 Ch,A1,A2

Before instruction 1 cycle after instruction

A1 0000 000Ch 12 A1 0000 000Ch

A2 XXXX XXXXh A2 0000 0001h true

Example 3 CMPEQ .L2X A1,B3:B2,B1

Before instruction 1 cycle after instruction

A1 F23A 3789h A1 F23A 3789h

B1 XXXX XXXXh B1 0000 0001h true

B3:B2 0000 0FFh F23A 3789h B3:B2 0000 00FFh F23A 3789h



 Signed or Unsigned Integer Compare for Greater Than CMPGT(U)

3-53  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax CMPGT  (.unit) src1, src2, dst
or

CMPGTU (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field
used...

For operand
type... Unit Opfield Mnemonic

src1
src2
dst

sint
xsint
uint

.L1, .L2 1000111 CMPGT

src1
src2
dst

scst5
xsint
uint

.L1, .L2 1000110 CMPGT

src1
src2
dst

xsint
slong
uint

.L1, .L2 1000101 CMPGT

src1
src2
dst

scst5
slong
uint

.L1, .L2 1000100 CMPGT

src1
src2
dst

uint
xuint
uint

.L1, .L2 1001111 CMPGTU

src1
src2
dst

ucst4
xuint
uint

.L1, .L2 1001110 CMPGTU

src1
src2
dst

xuint
ulong
uint

.L1, .L2 1001101 CMPGTU

src1
src2
dst

ucst4
ulong
uint

.L1, .L2 1001100 CMPGTU

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst



CMPGT(U) Signed or Unsigned Integer Compare for Greater Than

3-54  

Description This instruction does a signed or unsigned comparison of src1 to src2. If src1
is greater than src2, then 1 is written to dst. Otherwise, 0 is written to dst. Only
the four LSBs are valid in the 5-bit cst field when the ucst4 operand is used.
If the MSB of the cst field is non-zero, the result is invalid.

Execution if (cond) {
if (src1 > src2) 1 → dst
else 0 → dst
}

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Example 1 CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 01B6h 438 A1 0000 01B6h

A2 XXXX XXXXh A2 0000 0000h false

B1 0000 08BDh 2237 B1 0000 08BDh

Example 2 CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 FFFF FE91h –367 A1 FFFF FE91h

A2 XXXX XXXXh A2 0000 0001h true

B1 FFFF FDC4h –572 B1 FFFF FDC4h

Example 3 CMPGT .L1 8,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0023h 35 A1 0000 0023h

A2 XXXX XXXXh A2 0000 0000h false

Pipeline



 Signed or Unsigned Integer Compare for Greater Than CMPGT(U)

3-55  TMS320C62x/C67x Fixed-Point Instruction Set

Example 4 CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 00EBh 235 A1 0000 00EBh

A2 XXXX XXXXh A2 0000 0000h false

B1 0000 00EBh 235 B1 0000 00EBh

Example 5 CMPGTU .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 0128h 296† A1 0000 0128h

A2 FFFF FFDEh 4294967262 † A2 FFFF FFDEh

A3 XXXX XXXXh A3 0000 0000h false

Example 6 CMPGTU .L1 0Ah,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0005h 5† A1 0000 0005h

A2 XXXX XXXXh A2 0000 0001h true

Example 7 CMPGTU .L1 0Eh,A3:A2,A4

Before instruction 1 cycle after instruction

A3:A2 0000 0000h 0000 000Ah 10‡ A3:A2 0000 0000h 0000 000Ah

A4 XXXX XXXXh A4 0000 0001h true

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer



CMPLT(U) Signed or Unsigned Integer Compare for Less Than

3-56  

Syntax CMPLT  (.unit) src1, src2, dst
or

CMPLTU (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field
used...

For operand
type... Unit Opfield Mnemonic

src1
src2
dst

sint
xsint
uint

.L1, .L2 1010111 CMPLT

src1
src2
dst

scst5
xsint
uint

.L1, .L2 1010110 CMPLT

src1
src2
dst

xsint
slong
uint

.L1, .L2 1010101 CMPLT

src1
src2
dst

scst5
slong
uint

.L1, .L2 1010100 CMPLT

src1
src2
dst

uint
xuint
uint

.L1, .L2 1011111 CMPLTU

src1
src2
dst

ucst4
xuint
uint

.L1, .L2 1011110 CMPLTU

src1
src2
dst

xuint
ulong
uint

.L1, .L2 1011101 CMPLTU

src1
src2
dst

ucst4
ulong
uint

.L1, .L2 1011100 CMPLTU

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst



 Signed or Unsigned Integer Compare for Less Than CMPLT(U)

3-57  TMS320C62x/C67x Fixed-Point Instruction Set

Description This instruction does a signed or unsigned comparison of src1 to src2. If src1
is less than src2, then 1 is written to dst. Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 < src2) 1 → dst
else 0 → dst
}

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Example 1 CMPLT .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 07E2h 2018 A1 0000 07E2h

A2 0000 0F6Bh 3947 A2 0000 0F6Bh

A3 XXXX XXXXh A3 0000 0001h true

Example 2 CMPLT .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 FFFF FED6h –298 A1 FFFF FED6h

A2 0000 000Ch 12 A2 0000 000Ch

A3 XXXX XXXXh A3 0000 0001h true

Example 3 CMPLT .L1 9,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0005h 5 A1 0000 0005h

A2 XXXX XXXXh A2 0000 0000h false

Pipeline



CMPLT(U) Signed or Unsigned Integer Compare for Less Than

3-58  

Example 4 CMPLTU .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 289Ah 10394 † A1 0000 289Ah

A2 FFFF F35Eh 4294964062 † A2 FFFF F35Eh

A3 XXXX XXXXh A3 0000 0001h true

† Unsigned 32-bit integer

Example 5 CMPLTU .L1 14,A1,A2

Before instruction 1 cycle after instruction

A1 0000 000Fh 15† A1 0000 000Fh

A2 XXXX XXXXh A2 0000 0001h true

Example 6 CMPLTU .L1 A1,A5:A4,A2

Before instruction 1 cycle after instruction

A1 003B 8260h 3900000 † A1 003B 8260h

A2 XXXX XXXXh A2 0000 0000h false

A5:A4 0000 0000h 003A 0002h 3801090 ‡ A5:A4 0000 0000h 003A 0002h

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer



 Extract and Sign-Extend a Bit Field EXT

3-59  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax EXT  (.unit) src2, csta, cstb, dst
or

EXT (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
csta
cstb
dst

sint
ucst5
ucst5
sint

.S1, .S2

src2
src1
dst

xsint
uint
sint

.S1, .S2

Opcode

Constant form:

5

z

6 5 0

dst 0 0 1 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

csta

13

5

12

1 1

8

cstb

7

5 2

0 1

Register form:

5

z

6 5 0

dst 1 0 0 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

src1

13

5

12

1 16

x

11

1 0 1 1 1 1

Description The field in src2, specified by csta and cstb, is extracted and sign-extended
to 32 bits. The extract is performed by a shift left followed by a signed shift right.
csta and cstb are the shift left amount and shift right amount, respectively. This
can be thought of in terms of the LSB and MSB of the field to be extracted. Then
csta = 31 – MSB of the field and cstb = csta + LSB of the field. The shift left and
shift right amounts may also be specified as the ten LSBs of the src1 register
with cstb being bits 0–4 and csta bits 5–9. In the example below, csta is 12 and
cstb is 11 + 12 = 23. Only the ten LSBs are valid for the register version of the
instruction. If any of the 22 MSBs are non-zero, the result is invalid.



EXT Extract and Sign-Extend a Bit Field

3-60  

csta

x

cstb – csta

src2

dst

x x x x x x x x 1 1 0 1 x x x x x x x x x x xx x 0 1 0x 1 0

1 1 0 1 0 0 1 1 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x x x 0 0 0 001 1 1 1 10 0 0 x x x x x x x x 00 0 00 0 00

Shifts left by 12 to produce:

Then shifts right by 23 to produce:

1)

2)

3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution If the constant form is used:

if (cond) src2 ext csta, cstb → dst
else nop

If the register form is used:

if (cond) src2 ext src19..5, src14..0 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Pipeline



 Extract and Sign-Extend a Bit Field EXT

3-61  TMS320C62x/C67x Fixed-Point Instruction Set

Example 1 EXT .S1 A1,10,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 XXXX XXXXh A2 FFFF F21Fh

Example 2 EXT .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 03B6 E7D5h A1 03B6 E7D5h

A2 0000 0073h A2 0000 0073h

A3 XXXX XXXXh A3 0000 03B6h



EXTU Extract and Zero-Extend a Bit Field

3-62  

Syntax EXTU  (.unit) src2, csta, cstb, dst
or

EXTU (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2

src2
src1
dst

xuint
uint
uint

.S1, .S2

Opcode

Constant width and offset form:

5

z

6 5 0

dst 0 0 1 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

csta

13

5

12

1 1

cstb

8

5

7

0 0

2

Register width and offset form:

5

z

6 5 0

dst 1 0 0 0 s p

31

creg

29 28 27

13

18 1723 22

src2

5

src1

13

5

12

1 1

1 0 1 0 1 1

6

x

11

Description The field in src2, specified by csta and cstb, is extracted and zero extended
to 32 bits. The extract is performed by a shift left followed by an unsigned shift
right. csta and cstb are the amounts to shift left and shift right, respectively.
This can be thought of in terms of the LSB and MSB of the field to be extracted.
Then csta = 31 – MSB of the field and cstb = csta + LSB of the field. The shift
left and shift right amounts may also be specified as the ten LSBs of the src1
register with cstb being bits 0–4 and csta bits 5–9. In the example below, csta
is 12 and cstb is 11 + 12 = 23. Only the ten LSBs are valid for the register
version of the instruction. If any of the 22 MSBs are non-zero, the result is
invalid.



 Extract and Zero-Extend a Bit Field EXTU

3-63  TMS320C62x/C67x Fixed-Point Instruction Set

0 1 0 1 0 0 1 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x

csta cstb – cst a

x x x x x x x x 1 1 0 1 x x x x x x x x x x xx x 0 1 0x 1 0src2

dst

x x x 0 0 0 001 1 1 1 10 0 0 x x x x x x x x 00 0 00 0 00

Shifts left by 12 to produce:

Then shifts right by 23 to produce:

1)

2)

3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution If the constant form is used:

if (cond) src2 extu csta, cstb → dst
else nop

If the register width and offset form is used:

if (cond) src2 extu src19..5, src14..0 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Pipeline



EXTU Extract and Zero-Extend a Bit Field

3-64  

Example 1 EXTU .S1 A1,10,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 XXXX XXXXh A2 0000 121Fh

Example 2 EXTU .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 03B6 E7D5h A1 03B6 E7D5h

A2 0000 0156h A2 0000 0156h

A3 xxxx xxxxh A3 0000 036Eh



 Multicycle NOP With No Termination Until Interrupt IDLE

3-65  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax IDLE

Opcode

5 0

00 0 0 s p

31

Reserved

18 17 16

14

15

1

14 13 12 11 10 9 8 7 6

0 0 0 0 0 0 0 01 1 1 1

14 3 2

Description This instruction performs an infinite multicycle NOP that terminates upon
servicing an interrupt, or a branch occurs due to an IDLE instruction being in
the delay slots of a branch.

Instruction Type NOP

Delay Slots 0



LDB(U)/LDH(U)/LDW Load From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

3-66  

Syntax Register Offset

LDB  (.unit) *+baseR[offsetR], dst
or

LDH (.unit) *+baseR[offsetR], dst
or

LDW (.unit) *+baseR[offsetR], dst
or

LDBU  (.unit) *+baseR[offsetR], dst
or

LDHU (.unit) *+baseR[offsetR], dst

Unsigned Constant Offset

LDB  (.unit) *+baseR[ucst5], dst
or

LDH (.unit) *+baseR[ucst5], dst
or

LDW (.unit) *+baseR[ucst5], dst
or

LDBU  (.unit) *+baseR[ucst5], dst
or

LDHU (.unit) *+baseR[ucst5], dst

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 9 8 7 6 4 3 2 1 0

mode r y ld/st 0 1 s p

3 5 5 5 4 3

baseR offsetR/ucst5

Description Each of these instructions loads from memory to a general-purpose register
(dst). Table 3–13 summarizes the data types supported by loads. Table 3–14
describes the addressing generator options. The memory address is formed
from a base address register (baseR) and an optional offset that is either a reg-
ister (offsetR) or a 5-bit unsigned constant (ucst5). If an offset is not given, the
assembler assigns an offset of zero.

offsetR and baseR must be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 0, 1, or 2 for LDB(U) , LDH(U), and
LDW, respectively. After scaling, offsetR/ucst5 is added to or subtracted from
baseR. For the preincrement, predecrement, positive offset, and negative off-
set address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the
value of baseR before the addition or subtraction is the address to be accessed
in memory.

The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR (see
section 2.6.1 on page 2-9).



 Load From Memory With a 5-Bit Unsigned Constant Offset or Register Offset LDB(U)/LDH(U)/LDW

3-67  TMS320C62x/C67x Fixed-Point Instruction Set

For LDH(U) and LDB(U)  the values are loaded into the 16 and 8 LSBs of dst,
respectively. For LDH and LDB , the upper 16- and 24-bits, respectively, of dst
values are sign-extended. For LDHU and LDBU  loads, the upper 16- and
24-bits, respectively, of dst are zero-filled. For LDW, the entire 32 bits fills dst.
dst can be in either register file, regardless of the .D unit or baseR or offsetR
used. The s bit determines which file dst will be loaded into: s = 0 indicates dst
will be in the A register file and s = 1 indicates dst will be loaded in the B register
file. The r bit should be set to zero.

Table 3–13. Data Types Supported by Loads

Mnemonic
ld/st
Field Load Data Type SIze

Left
Shift of
Offset

LDB 0 1 0 Load byte 8 0 bits

LDBU 0 0 1 Load byte unsigned 8 0 bits

LDH 1 0 0 Load halfword 16 1 bit

LDHU 0 0 0 Load halfword unsigned 16 1 bit

LDW 1 1 0 Load word 32 2 bits

Table 3–14. Address Generator Options

Mode Field Syntax Modification Performed

0 1 0 1 *+R[offsetR] Positive offset

0 1 0 0 *–R[offsetR] Negative offset

1 1 0 1 *++R[offsetR] Preincrement

1 1 0 0 *––R[offsetR] Predecrement

1 1 1 1 *R++[offsetR] Postincrement

1 1 1 0 *R––[offsetR] Postdecrement

0 0 0 1 *+R[ucst5] Positive offset

0 0 0 0 *–R[ucst5] Negative offset

1 0 0 1 *++R[ucst5] Preincrement

1 0 0 0 *– –R[ucst5] Predecrement

1 0 1 1 *R++[ucst5] Postincrement

1 0 1 0 *R– –[ucst5] Postdecrement



LDB(U)/LDH(U)/LDW Load From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

3-68  

Increments and decrements default to 1 and offsets default to 0 when no
bracketed register or constant is specified. Loads that do no modification to the
baseR can use the syntax *R. Square brackets, [ ], indicate that the ucst5 offset
is left-shifted by 2, 1, or 0 for word, halfword, and byte loads, respectively.
Parentheses, ( ), can be used to set a nonscaled, constant offset. For example,
LDW (.unit) *+baseR (12) dst represents an offset of 12 bytes, whereas LDW
(.unit) *+baseR [12] dst represents an offset of 12 words, or 48 bytes. You must
type either brackets or parentheses around the specified offset if you use the
optional offset parameter.

Word and halfword addresses must be aligned on word (two LSBs are 0) and
halfword (LSB is 0) boundaries, respectively.

Execution if (cond) mem → dst
else nop

Pipeline 
Stage E1 E2 E3 E4 E5

Read baseR
offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 5, TMS320C62x
Pipeline, and Chapter 6, TMS320C67x Pipeline.

Example 1 LDW .D1 *A10,B1

Before LDW 1 cycle after LDW 5 cycles after LDW

B1 0000 0000h B1 0000 0000h B1 21F3 1996h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 100h 21F3 1996h mem 100h 21F3 1996h mem 100h 21F3 1996h

Pipeline



 Load From Memory With a 5-Bit Unsigned Constant Offset or Register Offset LDB(U)/LDH(U)/LDW

3-69  TMS320C62x/C67x Fixed-Point Instruction Set

Example 2 LDB .D1 *–A5[4],A7

Before LDB 1 cycle after LDB 5 cycles after LDB

A5 0000 0204h A5 0000 0204h A5 0000 0204h

A7 1951 1970h A7 1951 1970h A7 FFFF FFE1h

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 200h E1h mem 200h E1h mem 200h E1h

Example 3 LDH .D1 *++A4[A1],A8

Before LDH 1 cycle after LDH 5 cycles after LDH

A1 0000 0002h A1 0000 0002h A1 0000 0002h

A4 0000 0020h A4 0000 0024h A4 0000 0024h

A8 1103 51FFh A8 1103 51FFh A8 FFFF A21Fh

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 24h A21Fh mem 24h A21Fh mem 24h A21Fh

Example 4 LDW .D1 *A4++[1],A6

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A6 1234 4321h A6 1234 4321h A6 0798 F25Ah

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 100h 0798 F25Ah mem 100h 0798 F25Ah mem 100h 0798 F25Ah

mem 104h 1970 19F3h mem 104h 1970 19F3h mem 104h 1970 19F3h



LDB(U)/LDH(U)/LDW Load From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

3-70  

Example 5 LDW .D1 *++A4[1],A6

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A6 1234 5678h A6 1234 5678h A6 0217 6991h

AMR 0000 0000h 0000 0000h AMR 0000 0000h

mem 104h 0217 6991h mem 104h 0217 6991h mem 104h 0217 6991h



 Load From Memory With a 15-Bit Constant Offset LDB(U)/LDH(U)/LDW

3-71  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax LDB  (.unit) *+B14/B15[ucst15], dst
or

LDH (.unit) *+B14/B15[ucst15], dst
or

LDW (.unit) *+B14/B15[ucst15], dst
or

LDBU  (.unit) *+B14/B15[ucst15], dst
or

LDHU (.unit) *+B14/B15[ucst15], dst

.unit = .D2

Opcode

31 29 28 27 23 22

creg z dst

4 3 2 1 0

1 1 s p

3 5 15

6

ld/stucst15

78

y

3

Description Each of these instructions performs a load from memory to a general-purpose
register (dst). Table 3–15 summarizes the data types supported by loads. The
memory address is formed from a base address register (baseR) B14 (y = 0)
or B15 (y = 1) and an offset, which is a 15-bit unsigned constant (ucst15). The
assembler selects this format only when the constant is larger than five bits in
magnitude. This instruction operates only on the .D2 unit.

The offset, ucst15, is scaled by a left shift of 0, 1, or 2 for LDB(U) , LDH(U), and
LDW, respectively. After scaling, ucst15 is added to baseR. Subtraction is not
supported. The result of the calculation is the address sent to memory. The ad-
dressing arithmetic is always performed in linear mode.

For LDH(U) and LDB(U) , the values are loaded into the 16 and 8 LSBs of dst,
respectively. For LDH and LDB , the upper 16 and 24 bits of dst values are sign-
extended, respectively. For LDHU and LDBU  loads, the upper 16 and 24 bits
of dst are zero-filled, respectively. For LDW, the entire 32 bits fills dst. dst can
be in either register file. The s bit determines which file dst will be loaded into:
s = 0 indicates dst is loaded in the A register file, and s = 1 indicates dst is
loaded into the B register file.

Square brackets, [ ], indicate that the ucst15 offset is left-shifted by 2, 1, or 0
for word, halfword, and byte loads, respectively. Parentheses, ( ), can be used
to set a nonscaled, constant offset. For example, LDW (.unit) *+B14/B15(60)
dst represents an offset of 60 bytes, whereas LDW (.unit) *+B14/B15[60] dst
represents an offset of 60 words, or 240 bytes. You must type either brackets
or parentheses around the specified offset if you use the optional offset param-
eter.



LDB(U)/LDH(U)/LDW Load From Memory With a 15-Bit Constant Offset

3-72  

Word and halfword addresses must be aligned on word (two LSBs are 0) and
halfword (LSB is 0) boundaries, respectively.

Table 3–15. Data Types Supported by Loads

Mnemonic
ld/st
Field Load Data Type SIze

Left
Shift of
Offset

LDB 0 1 0 Load byte 8 0 bits

LDBU 0 0 1 Load byte unsigned 8 0 bits

LDH 1 0 0 Load halfword 16 1 bit

LDHU 0 0 0 Load halfword unsigned 16 1 bit

LDW 1 1 0 Load word 32 2 bits

Execution if (cond) mem → dst
else nop

Note:

This instruction executes only on the B side (.D2).

Pipeline 
Stage E1 E2 E3 E4 E5

Read B14 / B15

Written dst

Unit in use .D2

Instruction Type Load

Delay Slots 4

Pipeline



 Load From Memory With a 15-Bit Constant Offset LDB(U)/LDH(U)/LDW

3-73  TMS320C62x/C67x Fixed-Point Instruction Set

Example LDB .D2 *+B14[36],B1

Before LDB 1 cycle after LDB

B1 XXXX XXXXh B1 XXXX XXXXh

B14 0000 0100h B14 0000 0100h

mem  124–127h 4E7A FF12h mem  124–127h 4E7A FF12h

mem  124h 12h mem  124h 12h

5 cycles after LDB

B1 0000 0012h

B14 0000 0100h

mem  124–127h 4E7A FF12h

mem  124h 12h



LMBD Leftmost Bit Detection

3-74  

Syntax LMBD  (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 1101011

src1
src2
dst

cst5
xuint
uint

.L1, .L2 1101010

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

Description The LSB of the src1 operand determines whether to search for a leftmost 1 or
0 in src2. The number of bits to the left of the first 1 or 0 when searching for
a 1 or 0, respectively, is placed in dst.

The following diagram illustrates the operation of LMBD  for several cases.

1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x0 1 x x x x x x x x x x x x x x x x x x x x xx x x x xx x x

x x x x x x x00 0 x x x0 1 x x x x x x x x x xx x xx x xx

When searching for 1 in src2, LMBD  returns 4:

When searching for 0 in src2, LMBD  returns 32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

When searching for 0 in src2, LMBD  returns 0:

Execution if (cond) {
if (src10 == 0) lmb0(src2) → dst
if (src10 == 1) lmb1(src2) → dst
}

else nop



 Leftmost Bit Detection LMBD

3-75  TMS320C62x/C67x Fixed-Point Instruction Set

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Example LMBD .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 0001h A1 0000 0001h

A2 009E 3A81h A2 009E 3A81h

A3 XXXX XXXXh A3 0000 0008h

Pipeline



MPY(U/US/SU) Signed or Unsigned Integer Multiply 16lsb x 16lsb

3-76  

Syntax MPY  (.unit) src1, src2, dst
or

MPYU (.unit) src1, src2, dst
or

MPYUS (.unit) src1, src2, dst
or

MPYSU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

slsb16
xslsb16
sint

.M1, .M2 11001 MPY

src1
src2
dst

ulsb16
xulsb16
uint

.M1, .M2 11111 MPYU

src1
src2
dst

ulsb16
xslsb16
sint

.M1, .M2 11101 MPYUS

src1
src2
dst

slsb16
xulsb16
sint

.M1, .M2 11011 MPYSU

src1
src2
dst

scst5
xslsb16
sint

.M1, .M2 11000 MPY

src1
src2
dst

scst5
xulsb16
sint

.M1, .M2 11110 MPYSU

Opcode
31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

3 5 5 5 5

7 6

0 0src1/cst

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default. The S is needed in the mnemonic
to specify a signed operand when both signed and unsigned operands are
used.

Execution if (cond) lsb16(src1) � lsb16(src2) → dst
else nop



 Signed or Unsigned Integer Multiply 16lsb x 16lsb MPY(U/US/SU)

3-77  TMS320C62x/C67x Fixed-Point Instruction Set

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16�16)

Delay Slots 1

Example 1 MPY .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 0123h 291† A1 0000 0123h

A2 01E0 FA81h –1407 † A2 01E0 FA81h

A3 XXXX XXXXh A3 FFF9 C0A3 –409437

Example 2 MPYU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 0123h 291‡ A1 0000 0123h

A2 0F12 FA81h 64129 ‡ A2 0F12 FA81h

A3 XXXX XXXXh A3 011C C0A3 18661539 §

Example 3 MPYUS .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 1234 FFA1h 65441 ‡ A1 1234 FFA1h

A2 1234 FFA1h –95† A2 1234 FFA1h

A3 XXXX XXXXh A3 FFA1 2341h –6216895

† Signed 16-LSB integer
‡ Unsigned 16-LSB integer
§ Unsigned 32-bit integer

Pipeline



MPY(U/US/SU) Signed or Unsigned Integer Multiply 16lsb x 16msb

3-78  

Example 4 MPY .M1 13,A1,A2

Before instruction 2 cycles after instruction

A1 3497 FFF3h –13† A1 3497 FFF3h

A2 XXXX XXXXh A2 FFFF FF57h –163

Example 5 MPYSU .M1 13,A1,A2

Before instruction 2 cycles after instruction

A1 3497 FFF3h 65523 ‡ A1 3497 FFF3h

A2 XXXX XXXXh A2 000C FF57h 851779

† Signed 16-LSB integer
‡ Unsigned 16-LSB integer



 Signed or Unsigned Integer Multiply 16msb x 16msb MPYH(U/US/SU)

3-79  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax MPYH  (.unit) src1, src2, dst
or

MPYHU (.unit) src1, src2, dst
or

MPYHUS (.unit) src1, src2, dst
or

MPYHSU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

smsb16
xsmsb16
sint

.M1, .M2 00001 MPYH

src1
src2
dst

umsb16
xumsb16
uint

.M1, .M2 00111 MPYHU

src1
src2
dst

umsb16
xsmsb16
sint

.M1, .M2 00101 MPYHUS

src1
src2
dst

smsb16
xumsb16
sint

.M1, .M2 00011 MPYHSU

Opcode

31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

3 5 5 5 5

7 6

0 0src1/cst

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default. The S is needed in the mnemonic
to specify a signed operand when both signed and unsigned operands are
used.

Execution if (cond) msb16(src1) � msb16(src2) → dst
else nop



MPYH(U/US/SU) Signed or Unsigned Integer Multiply 16msb x 16msb

3-80  

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16�16)

Delay Slots 1

Example 1 MPYH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35† A1 0023 0000h

A2 FFA7 1234h –89† A2 FFA7 1234h

A3 XXXX XXXXh A3 FFFF F3D5h –3115

Example 2 MPYHU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35‡ A1 0023 0000h

A2 FFA7 1234h 65447 ‡ A2 FFA7 1234h

A3 XXXX XXXXh A3 0022 F3D5h 2290645 §

Example 3 MPYHSU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35† A1 0023 0000h

A2 FFA7 FFFFh 65447 ‡ A2 FFA7 FFFFh

A3 XXXX XXXXh A3 0022 F3D5h 2290645

† Signed 16-MSB integer
‡ Unsigned 16-MSB integer
§ Unsigned 32-bit integer

Pipeline



 Signed or Unsigned Integer Multiply 16msb x 16lsb MPYHL(U)/MPYHULS/MPYHSLU

3-81  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax MPYHL  (.unit) src1, src2, dst
or

MPYHLU (.unit) src1, src2, dst
or

MPYHULS (.unit) src1, src2, dst
or

MPYHSLU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

smsb16
xslsb16
sint

.M1, .M2 01001 MPYHL

src1
src2
dst

umsb16
xulsb16
uint

.M1, .M2 01111 MPYHLU

src1
src2
dst

umsb16
xslsb16
sint

.M1, .M2 01101 MPYHULS

src1
src2
dst

smsb16
xulsb16
sint

.M1, .M2 01011 MPYHSLU

Opcode

31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

3 5 5 5 5

7 6

0 0src1/cst

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default. The S is needed in the mnemonic
to specify a signed operand when both signed and unsigned operands are
used.

Execution if (cond) msb16(src1) � lsb16(src2) → dst
else nop



MPYHL(U)/MPYHULS/MPYHSLU Signed or Unsigned Integer Multiply 16msb x 16lsb

3-82  

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16�16)

Delay Slots 1

Example MPYHL .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 008A 003Eh 138† A1 008A 003Eh

A2 21FF 00A7h 167‡ A2 21FF 00A7h

A3 XXXX XXXXh A3 0000 5A06h 23046

† Signed 16-MSB integer
‡ Signed 16-LSB integer

Pipeline



 Signed or Unsigned Integer Multiply 16lsb x 16msb MPYLH(U)/MPYLUHS/MPYLSHU

3-83  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax MPYLH  (.unit) src1, src2, dst
or

MPYLHU (.unit) src1, src2, dst
or

MPYLUHS (.unit) src1, src2, dst
or

MPYLSHU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

slsb16
xsmsb16
sint

.M1,
.M2

10001 MPYLH

src1
src2
dst

ulsb16
xumsb16
uint

.M1,
.M2

10111 MPYLHU

src1
src2
dst

ulsb16
xsmsb16
sint

.M1,
.M2

10101 MPYLUHS

src1
src2
dst

slsb16
xumsb16
sint

.M1,
.M2

10011 MPYLSHU

Opcode

31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

3 5 5 5 5

7 6

0 0src1/cst

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default. The S is needed in the mnemonic
to specify a signed operand when both signed and unsigned operands are
used.

Execution if (cond) lsb16(src1) � msb16(src2) → dst
else nop



MPYLH(U)/MPYLUHS/MPYLSHU Signed or Unsigned Integer Multiply 16lsb x 16msb

3-84  

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16�16)

Delay Slots 1

Example MPYLH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0900 000Eh 14† A1 0900 000Eh

A2 0029 00A7h 41‡ A2 0029 00A7h

A3 XXXX XXXXh A3 0000 023Eh 574

† Signed 16-LSB integer
‡ Signed 16-MSB integer

Pipeline



 Move From Register to Register (Pseudo-Operation) MV

3-85  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax MV (.unit) src, dst

.unit = .L1, .L2, .S1, .S2, .D1, .D2

Opcode map field used... For operand type... Unit Opfield

src
dst

xsint
sint

.L1, .L2 0000010

src
dst

sint
sint

.D1, .D2 010010

src
dst

slong
slong

.L1, .L2 0100001

src
dst

xsint
sint

.S1, .S2 000110

Opcode See ADD instruction.

Description This is a pseudo operation that moves a value from one register to another.
The assembler uses the operation ADD (.unit) 0, src, dst to perform this task.

Execution if (cond) 0 + src → dst
else nop

Instruction Type Single-cycle

Delay Slots 0



MVC Move Between the Control File and the Register File

3-86  

Syntax MVC  (.unit) src2, dst

.unit = .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

x0 0 0 0 0src2

Operands when moving from the control file to the register file:

Opcode map field used... For operand type... Unit Opfield

src2
dst

uint
uint

.S2 001111

Description The src2 register is moved from the control register file to the register file. Valid
values for src2 are any register listed in the control register file.

Operands when moving from the register file to the control file:

Opcode map field used... For operand type... Unit Opfield

src2
dst

xuint
uint

.S2 001110

Description The src2 register is moved from the register file to the control register file. Valid
values for src2 are any register listed in the control register file.

Register addresses for accessing the control registers are in Table 3–16.



 Move Between the Control File and the Register File MVC

3-87  TMS320C62x/C67x Fixed-Point Instruction Set

Table 3–16. Register Addresses for Accessing the Control Registers

Register
Abbreviation Name

Register
Address Read/ Write

AMR Addressing mode register 00000 R, W

CSR Control status register 00001 R, W

IFR Interrupt flag register 00010 R

ISR Interrupt set register 00010 W

ICR Interrupt clear register 00011 W

IER Interrupt enable register 00100 R, W

ISTP Interrupt service table pointer 00101 R, W

IRP Interrupt return pointer 00110 R, W

NRP Nonmaskable interrupt return pointer 00111 R, W

PCE1 Program counter, E1 phase 10000 R

FADCR� Floating-point adder configuration 10010 R, W

FAUCR� Floating-point auxiliary configuration 10011 R, W

FMCR� Floating-point multiplier configuration 10100 R, W

Note: R = Readable by the MVC instruction
W = Writeable by the MVC instruction
��TMSC320C67x only

Execution if (cond) src → dst
else nop

Note:

The MVC instruction executes only on the B side (.S2).

Pipeline 
Stage E1

Read src2

Written dst

Unit in use .S2

Pipeline



MVC Move Between the Control File and the Register File

3-88  

Instruction Type Single-cycle

Any write to the ISR or ICR (by the MVC instruction) effectively has one delay
slot because the results cannot be read (by the MVC instruction) in the IFR until
two cycles after the write to the ISR or ICR.

Delay Slots 0

Example MVC .S2 B1,AMR

Before instruction 1 cycle after instruction

B1 F009 0001h B1 F009 0001h

AMR 0000 0000h AMR 0009 0001h

Note:

The six MSBs of the AMR are reserved and therefore are not written to.



 Move a 16-Bit Signed Constant Into a Register and Sign Extend MVK

3-89  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax MVK  (.unit) cst, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

cst
dst

scst16
sint

.S1, .S2

Opcode

165

z dst

6 0

cst 0 1 0 1 0 s p

31

creg

29 28 27 23 22 7

13 1 1

Description The 16-bit constant is sign extended and placed in dst.

Execution if (cond) scst16 → dst
else nop

Pipeline 
Stage E1

Read

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Note:

To load 32-bit constants, such as 0x1234 5678, use the following pair of
instructions:

MVK 0x5678
MVKLH 0x1234

You could also use:

MVK 0x12345678
MVKH 0x12345678

If you are loading the address of a label, use:

MVK label
MVKH label

Pipeline



MVK Move a 16-Bit Signed Constant Into a Register and Sign Extend

3-90  

Example 1 MVK .S1 293,A1

Before instruction 1 cycle after instruction

A1 XXXX XXXXh A1 0000 0125h 293

Example 2 MVK .S2 125h,B1

Before instruction 1 cycle after instruction

B1 XXXX XXXXh B1 0000 0125h 293

Example 3 MVK .S1 0FF12h,A1

Before instruction 1 cycle after instruction

A1 XXXX XXXXh A1 FFFF FF12h –238



 Move 16-Bit Constant Into the Upper Bits of a Register MVKH/MVKLH

3-91  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax MVKH  (.unit) cst, dst
or

MVKLH  (.unit) cst, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

cst
dst

uscst16
sint

.S1, .S2

Opcode

165

z dst

6 0

cst 1 1 0 1 0 s p

31

creg

29 28 27 23 22 7

13 1 1

Description The 16-bit constant cst is loaded into the upper 16 bits of dst. The 16 LSBs of
dst are unchanged. The assembler encodes the 16 MSBs of a 32-bit constant
into the cst field of the opcode for the MVKH instruction. The assembler
encodes the 16 LSBs of a constant into the cst field of the opcode for the
MVKLH  instruction.

Execution MVKLH if (cond)((cst15..0) << 16) or (dst15..0) → dst
else nop

MVKH if (cond)((cst31..16) << 16) or (dst15..0) → dst
else nop

Pipeline 
Stage E1

Read

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Pipeline



MVKH/MVKLH Move 16-Bit Constant Into the Upper Bits of a Register

3-92  

Note:

To load 32-bit constants, such as 0x1234 5678, use the following pair of
instructions:

MVK 0x5678
MVKLH 0x1234

You could also use:

MVK 0x12345678
MVKH 0x12345678

If you are loading the address of a label, use:

MVK label
MVKH label

Example 1 MVKH .S1 0A329123h,A1

Before instruction 1 cycle after instruction

A1 0000 7634h A1 0A32 7634h

Example 2 MVKLH .S1 7A8h,A1

Before instruction 1 cycle after instruction

A1 FFFF F25Ah A1 07A8 F25Ah



 Negate (Pseudo-Operation) NEG

3-93  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax NEG  (.unit) src, dst

.unit = .L1, .L2, .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src
dst

xsint
sint

.S1, .S2 010110

src
dst

xsint
sint

.L1, .L2 0000110

src
dst

slong
slong

.L1, .L2 0100100

Opcode See SUB instruction.

Description This is a pseudo operation used to negate src and place in dst. The assembler
uses the operation SUB 0, src, dst to perform this task.

Execution if (cond) 0 –s src → dst
else nop

Instruction Type Single-cycle

Delay Slots 0



NOP No Operation

3-94  

Syntax NOP  [count]

Opcode map field used... For operand type... Unit

src ucst4 none

Opcode

14

0

src 0 00 0 0 p

31

reserved

18 17

1

16

4

13

0 0 0 0 0 0 0 0

Description src is encoded as count – 1. For src + 1 cycles, no operation is performed. The
maximum value for count is 9. NOP with no operand is treated like NOP 1 with
src encoded as 0000.

A multicycle NOP will not finish if a branch is completed first. For example, if
a branch is initiated on cycle n and a NOP 5 instruction is initiated on cycle
n + 3, the branch is complete on cycle n + 6 and the NOP is executed only from
cycle n + 3 to cycle n + 5. A single-cycle NOP in parallel with other instructions
does not affect operation.

Execution No operation for count cycles

Instruction Type NOP

Delay Slots 0

Example 1 NOP

MVK .S1 125h,A1

Before NOP

1 cycle after NOP
(No operation
executes)

1 cycle after
      MVK

A1 1234 5678h A1 1234 5678h A1 0000 0125h



 No Operation NOP

3-95  TMS320C62x/C67x Fixed-Point Instruction Set

Example 2 MVK .S1 1,A1

MVKLH .S1 0,A1

NOP 5

ADD .L1 A1,A2,A1

Before NOP 5

1 cycle after ADD
instruction (6 cycles
after NOP 5)

A1 0000 0001h A1 0000 0004h

A2 0000 0003h A2 0000 0003h



NORM Normalize Integer

3-96  

Syntax NORM (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
uint

.L1, .L2 1100011

src2
dst

slong
uint

.L1, .L2 1100000

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The number of redundant sign bits of src2 is placed in dst. Several examples
are shown in the following diagram.

1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x0 1 x x x x x x x x x x x x x x x x x x x x xx x x x xx x x

In this case, NORM returns 3:

In this case, NORM returns 30:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

In this case, NORM returns 0:

In this case, NORM returns 31:

x0 0 0 0 1 x x x x x x x x x x x x x x x x x xx x x x xx x x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

src2

src2

src2

src2

Execution if (cond) norm(src) → dst
else nop



 Normalize Integer NORM

3-97  TMS320C62x/C67x Fixed-Point Instruction Set

Instruction Type Single-cycle

Pipeline 
Stage E1

Read src2

Written dst

Unit in use .L

Delay Slots 0

Example 1 NORM .L1 A1,A2

Before instruction 1 cycle after instruction

A1 02A3 469Fh A1 02A3 469Fh

A2 XXXX XXXXh A2 0000 0005h 5

Example 2 NORM .L1 A1,A2

Before instruction 1 cycle after instruction

A1 FFFF F25Ah A1 FFFF F25Ah

A2 XXXX XXXXh A2 0000 0013h 19

Pipeline



NOT Bitwise NOT (Pseudo-Operation)

3-98  

Syntax NOT  (.unit) src, dst

(.unit) = .L1, .L2, .S1, or .S2

Opcode map field used... For operand type... Unit Opfield

src
dst

xuint
uint

.L1, .L2 1101110

src
dst

xuint
uint

.S1, .S2 001010

Opcode See XOR instruction.

Description This is a pseudo operation used to bitwise NOT the src operand and place the
result in dst. The assembler uses the operation XOR (.unit) –1, src, dst to
perform this task.

Execution if (cond)   –1 xor src → dst
else nop

Instruction Type Single-cycle

Delay Slots 0



 Bitwise OR OR

3-99  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax OR (.unit) src1, src2, dst

.unit = .L1, .L2, .S1, .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 1111111

src1
src2
dst

scst5
xuint
uint

.L1, .L2 1111110

src1
src2
dst

uint
xuint
uint

.S1, .S2 011011

src1
src2
dst

scst5
xuint
uint

.S1, .S2 011010

Opcode

.L unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

.S unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description A bitwise OR is performed between src1 and src2. The result is placed in dst.
The scst5 operands are sign extended to 32 bits.



OR Bitwise OR

3-100  

Execution if (cond) src1 or src2 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L or .S

Instruction Type Single-cycle

Delay Slots 0

Example 1 OR .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 08A3 A49Fh A1 08A3 A49Fh

A2 XXXX XXXXh A2 08FF B7DFh

B1 00FF 375Ah B1 00FF 375Ah

Example 2 OR .L2 –12,B1,B2

Before instruction 1 cycle after instruction

B1 0000 3A41h B1 0000 3A41h

B2 XXXX XXXXh B2 FFFF FFF5h

Pipeline



 Integer Addition With Saturation to Result Size SADD

3-101  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax SADD (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 0010011

src1
src2
dst

xsint
slong
slong

.L1, .L2 0110001

src1
src2
dst

scst5
xsint
sint

.L1, .L2 0010010

src1
src2
dst

scst5
slong
slong

.L1, .L2 0110000

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

Description src1 is added to src2 and saturated if an overflow occurs according to the fol-
lowing rules:

1) If the dst is an int and src1 + src2 > 231 – 1, then the result is 231 – 1.
2) If the dst is an int and src1 + src2 < –231, then the result is –231.
3) If the dst is a long and src1 + src2 > 239 – 1, then the result is 239 – 1.
4) If the dst is a long and src1 + src2 < –239, then the result is –239.

The result is placed in dst. If a saturate occurs, the SAT bit in the control status
register (CSR) is set one cycle after dst is written.

Execution if (cond) src1 +s src2 → dst
else nop



SADD Integer Addition With Saturation to Result Size

3-102  

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Example 1 SADD .L1 A1,A2,A3

Before instruction 1 cycle after instruction 2 cycles after instruction

A1 5A2E 51A3h 1512984995 A1 5A2E 51A3h A1 5A2E 51A3h

A2 012A 3FA2h 19546018 A2 012A 3FA2h A2 012A 3FA2h

A3 XXXX XXXXh A3 5B58 9145h 1532531013 A3 5B58 9145h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

Example 2 SADD .L1 A1,A2,A3

Before instruction 1 cycle after instruction 2 cycles after instruction

A1 4367 71F2h 1130852850 A1 4367 71F2h A1 4367 71F2h

A2 5A2E 51A3h 1512984995 A2 5A2E 51A3h A2 5A2E 51A3h

A3 XXXX XXXXh A3 7FFF FFFFh 2147483647 A3 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Pipeline



 Integer Addition With Saturation to Result Size SADD

3-103  TMS320C62x/C67x Fixed-Point Instruction Set

Example 3 SADD .L1X B2,A5:A4,A7:A6

Before instruction 1 cycle after instruction

A5:A4 0000 0000h 7C83 39B1h 1922644401 † A5:A4 0000 0000h 7C83 39B1h

A7:A6 XXXX XXXXh XXXX XXXXh A7:A6 0000 0000h 8DAD 7953h 2376956243 †

B2 112A 3FA2h 287981474 B2 112A 3FA2h

CSR 0001 0100h CSR 0001 0100h CSR

2 cycles after instruction

A5:A4 0000 0000h 7C83 39B1h

A7:A6 0000 0000h 83C3 7953h

B2 112A 3FA2h

CSR 0001 0100h Not saturated

† Signed 40-bit (long) integer



SAT Saturate a 40-Bit Integer to a 32-Bit Integer

3-104  

Syntax SAT (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src2
dst

slong
sint

.L1, .L2

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 1 0 0 0 0 0 0 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description A 40-bit src2 value is converted to a 32-bit value. If the value in src2 is greater
than what can be represented in 32-bits, src2 is saturated. The result is placed
in dst. If a saturate occurs, the SAT bit in the control status register (CSR) is
set one cycle after dst is written.

Execution if (cond) {
if (src2 > (231 – 1) )

(231 – 1) → dst
else if (src2 < –231)

–231 → dst
else src231..0 → dst
}

else nop

Pipeline 
Stage E1

Read src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Pipeline



 Saturate a 40-Bit Integer to a 32-Bit Integer SAT

3-105  TMS320C62x/C67x Fixed-Point Instruction Set

Example 1 SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction 2 cycles after instruction

A1:A0 0000 001Fh 3413 539Ah A1:A0 0000 001Fh 3413 539Ah A1:A0 0000 001Fh 3413 539Ah

A2 XXXX XXXXh A2 7FFF FFFFh A2 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 2 SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction 2 cycles after instruction

B1:B0 0000 0000h A190 7321h B1:B0 0000 0000h A190 7321h B1:B0 0000 0000h A190 7321h

B5 XXXX XXXXh B5 7FFF FFFFh B5 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 3 SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction 2 cycles after instruction

B1:B0 0000 00FFh A190 7321h B1:B0 0000 00FFh A190 7321h B1:B0 0000 00FFh A190 7321h

B5 XXXX XXXXh B5 A190 7321h B5 A190 7321h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not

saturated



SET Set a Bit Field

3-106  

Syntax SET  (.unit) src2, csta, cstb, dst
or

SET (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2

src2
src1
dst

xuint
uint
uint

.S1, .S2

Opcode

Constant form:

55

z dst cstb

6 5 0

src2 1 0 0 0 1 0 s p

31

creg

29 28 27 23 22 7

13

18 13

1 1

17

5

csta

12 8

5 2

Register form:

55

z dst 1 1 1 0 1 1

6 5 0

src2 1 0 0 0 s p

31

creg

29 28 27 23 22

13

18 13

1 1

17

5

src1

12

6

x

11



 Set a Bit Field SET

3-107  TMS320C62x/C67x Fixed-Point Instruction Set

Description The field in src2, specified by csta and cstb, is set to all 1s. The csta and cstb
operands may be specified as constants or in the ten LSBs of the src1 register,
with cstb being bits 0–4 and csta bits 5–9. csta signifies the bit location of the
LSB of the field and cstb signifies the bit location of the MSB of the field. In other
words, csta and cstb represent the beginning and ending bits, respectively, of
the field to be set to all 1s. The LSB location of src2 is 0 and the MSB location
of src2 is 31. In the example below, csta is 15 and cstb is 23. Only the ten LSBs
are valid for the register version of the instruction. If any of the 22 MSBs are
non-zero, the result is invalid.

src2

dst

0x x x x x x x x x x x x x x x x x x x x x x x1 1 1 1 10 0 0

x x x x x x x x x x x x x x x x x x x x x x x1 11 1 1 11 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

csta

cstb

Execution If the constant form is used:

if (cond) src2 set csta, cstb → dst
else nop

If the register form is used:

if (cond) src2 set src19..5,  src14..0 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Pipeline



SET Set a Bit Field

3-108  

Example 1 SET .S1 A0,7,21,A1

Before instruction 1 cycle after instruction

A0 4B13 4A1Eh A0 4B13 4A1Eh

A1 XXXX XXXXh A1 4B3F FF9Eh

Example 2 SET .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 9ED3 1A31h B0 9ED3 1A31h

B1 0000 C197h B1 0000 C197h

B2 XXXX XXXXh B2 9EFF FA31h



 Arithmetic Shift Left SHL

3-109  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax SHL  (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 110011

src2
src1
dst

slong
uint
slong

.S1, .S2 110001

src2
src1
dst

xuint
uint
ulong

.S1, .S2 010011

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 110010

src2
src1
dst

slong
ucst5
slong

.S1, .S2 110000

src2
src1
dst

xuint
ucst5
ulong

.S1, .S2 010010

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description The src2 operand is shifted to the left by the src1 operand. The result is placed
in dst. When a register is used, the six LSBs specify the shift amount and valid
values are 0–40. When an immediate is used, valid shift amounts are 0–31.

If 39 < src1 < 64, src2 is shifted to the left by 40. Only the six LSBs are valid
for the register version of the instruction. If any of the 26 MSBs are non-zero,
the result is invalid.



SHL Arithmetic Shift Left

3-110  

Execution if (cond) src2 << src1 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example 1 SHL .S1 A0,4,A1

Before instruction 1 cycle after instruction

A0 29E3 D31Ch A0 29E3 D31Ch

A1 XXXX XXXXh A1 9E3D 31C0h

Example 2 SHL .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 4197 51A5h B0 4197 51A5h

B1 0000 0009h B1 0000 0009h

B2 XXXX XXXXh B2 2EA3 4A00h

Example 3 SHL .S2 B1:B0,B2,B3:B2

Before instruction 1 cycle after instruction

B1:B0 0000 0009h 4197 51A5h B1:B0 0000 0009h 4197 51A5h

B2 0000 0022h B2 0000 0000h

B3:B2 XXXX XXXXh XXXX XXXXh B3:B2 0000 0094h 0000 0000h

Pipeline



 Arithmetic Shift Right SHR

3-111  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax SHR  (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 110111

src2
src1
dst

slong
uint
slong

.S1, .S2 110101

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 110110

src2
src1
dst

slong
ucst5
slong

.S1, .S2 110100

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description The src2 operand is shifted to the right by the src1 operand. The sign-extended
result is placed in dst. When a register is used, the six LSBs specify the shift
amount and valid values are 0–40. When an immediate is used, valid shift
amounts are 0–31.

If 39 < src1 < 64, src2 is shifted to the right by 40. Only the six LSBs are valid
for the register version of the instruction. If any of the 26 MSBs are non-zero,
the result is invalid.

Execution if (cond) src2 >>s src1 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Pipeline



SHR Arithmetic Shift Right

3-112  

Delay Slots 0

Example 1 SHR .S1 A0,8,A1

Before instruction 1 cycle after instruction

A0 F123 63D1h A0 F123 63D1h

A1 XXXX XXXXh A1 FFF1 2363h

Example 2 SHR .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 1492 5A41h B0 1492 5A41h

B1 0000 0012h B1 0000 0012h

B2 XXXX XXXXh B2 0000 0524h

Example 3 SHR .S2 B1:B0,B2,B3:B2

Before instruction 1 cycle after instruction

B1:B0 0000 0012h 1492 5A41h B1:B0 0000 0012h 1492 5A41h

B2 0000 0019h B2 0000 090Ah

B3:B2 XXXX XXXXh XXXX XXXXh B3:B2 0000 0000h 0000 090Ah



 Logical Shift Right SHRU

3-113  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax SHRU  (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xuint
uint
uint

.S1, .S2 100111

src2
src1
dst

ulong
uint
ulong

.S1, .S2 100101

src2
src1
dst

xuint
ucst5
uint

.S1, .S2 100110

src2
src1
dst

ulong
ucst5
ulong

.S1, .S2 100100

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description The src2 operand is shifted to the right by the src1 operand. The zero-
extended result is placed in dst. When a register is used, the six LSBs specify
the shift amount and valid values are 0–40. When an immediate is used, valid
shift amounts are 0–31.

If 39 < src1 < 64, src2 is shifted to the right by 40. Only the six LSBs are valid
for the register version of the instruction. If any of the 26 MSBs are non-zero,
the result is invalid.

Execution if (cond) src2 >>z src1 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Pipeline



SHRU Logical Shift Right

3-114  

Delay Slots 0

Example SHRU .S1 A0,8,A1

Before instruction 1 cycle after instruction

A0 F123 63D1h A0 F123 63D1h

A1 XXXX XXXXh A1 00F1 2363h



 Integer Multiply With Left Shift and Saturation SMPY(HL/LH/H)

3-115  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax SMPY  (.unit) src1, src2, dst
or

SMPYHL (.unit) src1, src2, dst
or

SMPYLH (.unit) src1, src2, dst
or

SMPYH (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

slsb16
xslsb15
sint

.M1, .M2 11010 SMPY

src1
src2
dst

smsb16
xslsb16
sint

.M1, .M2 01010 SMPYHL

src1
src2
dst

slsb16
xsmsb16
sint

.M1, .M2 10010 SMPYLH

src1
src2
dst

smsb16
xsmsb16
sint

.M1, .M2 00010 SMPYH

Opcode

31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

3 5 5 5 5

7 6

0 0src1/cst

Description The src1 operand is multiplied by the src2 operand. The result is left shifted
by 1 and placed in dst. If the left-shifted result is 0x8000 0000, then the result
is saturated to 0x7FFF FFFF. If a saturate occurs, the SAT bit in the CSR is set
one cycle after dst is written.



SMPY(HL/LH/H) Integer Multiply With Left Shift and Saturation

3-116  

Execution if (cond) {
if (((src1 � src2) << 1) != 0x8000 0000 )

((src1 � src2) << 1) → dst
else

0x7FFF FFFF → dst
}

else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Single-cycle (16 � 16)

Delay Slots 1

Example 1 SMPY .M1 A1,A2,A3

Before instruction 2 cycle after instruction

A1 0000 0123h 291‡ A1 0000 0123h

A2 01E0 FA81h –1407 ‡ A2 01E0 FA81h

A3 XXXX XXXXh A3 FFF3 8146h –818874

CSR 0001 0100h CSR 0001 0100h Not saturated

Example 2 SMPYHL .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 008A 0000h 138† A1 008A 0000h

A2 0000 00A7h 167‡ A2 0000 00A7h

A3 XXXX XXXXh A3 0000 B40Ch 46092

CSR 0001 0100h CSR 0001 0100h Not saturated

† Signed 16-MSB integer
‡ Signed 16-LSB integer

Pipeline



 Integer Multiply With Left Shift and Saturation SMPY(HL/LH/H)

3-117  TMS320C62x/C67x Fixed-Point Instruction Set

Example 3 SMPYLH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 8000h –32768 ‡ A1 0000 8000h

A2 8000 0000h –32768 † A2 8000 0000h

A3 XXXX XXXXh A3 7FFF FFFFh 2147483647

CSR 0001 0100h CSR 0001 0300h Saturated

† Signed 16-MSB integer
‡ Signed 16-LSB integer



SSHL Shift Left With Saturation

3-118  

Syntax SSHL  (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 100011

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 100010

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description The src2 operand is shifted to the left by the src1 operand. The result is placed
in dst. When a register is used to specify the shift, the five least significant bits
specify the shift amount. Valid values are 0 through 31, and the result of the
shift is invalid if the shift amount is greater than 31. The result of the shift is
saturated to 32 bits. If a saturate occurs, the SAT bit in the CSR is set one cycle
after dst is written.

Execution if (cond) {
if ( bit(31) through bit(31–src1) of src2 are all 1s or all 0s)

dst = src2 << src1;
else if (src2 > 0) 

saturate dst to 0x7FFF FFFF;
else if (src2 < 0) 

          saturate dst to 0x8000 0000;
}

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Pipeline



 Shift Left With Saturation SSHL

3-119  TMS320C62x/C67x Fixed-Point Instruction Set

Example 1 SSHL .S1 A0,2,A1

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 02E3 031Ch A0 02E3 031Ch A0 02E3 031Ch

A1 XXXX XXXXh A1 0B8C 0C70h A1 0B8C 0C70h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

Example 2 SSHL .S1 A0,A1,A2

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 4719 1925h A0 4719 1925h A0 4719 1925h

A1 0000 0006h A1 0000 0006h A1 0000 0006h

A2 XXXX XXXXh A2 7FFF FFFFh A2 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated



SSUB Integer Subtraction With Saturation to Result Size

3-120  

Syntax SSUB  (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 0001111

src1
src2
dst

xsint
sint
sint

.L1, .L2 0011111

src1
src2
dst

scst5
xsint
sint

.L1, .L2 0001110

src1
src2
dst

scst5
slong
slong

.L1, .L2 0101100

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

Description src2 is subtracted from src1 and is saturated to the result size according to the
following rules:

1) If the result is an int and src1 – src2 > 231 – 1, then the result is 231 – 1.
2) If the result is an int and src1 – src2 < –231, then the result is –231.
3) If the result is a long and src1 – src2 > 239 – 1, then the result is 239 – 1.
4) If the result is a long and src1 – src2 < –239, then the result is –239.

The result is placed in dst. If a saturate occurs, the SAT bit in the CSR is set
one cycle after dst is written.

Execution if (cond) src1 –s src2 → dst
else nop



 Integer Subtraction With Saturation to Result Size SSUB

3-121  TMS320C62x/C67x Fixed-Point Instruction Set

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Example 1 SSUB .L2 B1,B2,B3

Before instruction 1 cycle after instruction 2 cycles after instruction

B1 5A2E 51A3h 1512984995 B1 5A2E 51A3h B1 5A2E 51A3h

B2 802A 3FA2h –2144714846 B2 802A 3FA2h B2 802A 3FA2h

B3 XXXX XXXXh B3 7FFF FFFFh 2147483647 B3 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 2 SSUB .L1 A0,A1,A2

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 4367 71F2h 1130852850 A0 4367 71F2h A0 4367 71F2h

A1 5A2E 51A3h 1512984995 A1 5A2E 51A3h A1 5A2E 51A3h

A2 XXXX XXXXh A2 E939 204Fh –382132145 A2 E939 204Fh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

Pipeline



STB/STH/STW Store to Memory With a Register Offset or 5-Bit Unsigned Constant Offset

3-122  

Syntax STB (.unit) src,*+baseR[offsetR]
or

STH (.unit) src, *+baseR[offsetR]
or

STW (.unit) src, *+baseR[offsetR]

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17

creg z src

13 12 9 8 7 6 4 3 2 1 0

mode r y ld/st 0 1 s p

3 5 5 5 4 3

baseR offsetR/ucst5

Description Each of these instructions performs a store to memory from a general-purpose
register (src). Table 3–17 summarizes the data types supported by stores.
Table 3–18 describes the addressing generator options. The memory address
is formed from a base address register (baseR) and an optional offset that is
either a register (offsetR) or a 5-bit unsigned constant (ucst5).

offsetR and baseR must be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 0, 1, or 2 for STB, STH, and STW,
respectively. After scaling, offsetR/ucst5 is added to or subtracted from baseR.
For the preincrement, predecrement, positive offset, and negative offset ad-
dress generator options, the result of the calculation is the address to be ac-
cessed in memory. For postincrement or postdecrement addressing, the value
of baseR before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.6.1 on page 2-9).

For STB and STH the 8 and 16 LSBs of the src register are stored. For STW
the entire 32-bit value is stored. src can be in either register file, regardless of
the .D unit or baseR or offsetR used. The s bit determines which file the source
is read from: s = 0 indicates src will be in the A register file, and s = 1 indicates
src will be in the B register file. The r bit should be set to zero.



 Store to Memory With a Register Offset or 5-Bit Unsigned Constant Offset STB/STH/STW

3-123  TMS320C62x/C67x Fixed-Point Instruction Set

Table 3–17. Data Types Supported by Stores

Mnemonic
ld/st
Field Store Data Type SIze Left Shift of Offset

STB 0 1 1 Store byte 8 0 bits

STH 1 0 1 Store halfword 16 1 bit

STW 1 1 1 Store word 32 2 bits

Table 3–18. Address Generator Options

Mode Field Syntax Modification Performed

0 1 0 1 *+R[offsetR] Positive offset

0 1 0 0 *–R[offsetR] Negative offset

1 1 0 1 *++R[offsetR] Preincrement

1 1 0 0 *––R[offsetR] Predecrement

1 1 1 1 *R++[offsetR] Postincrement

1 1 1 0 *R– –[offsetR] Postdecrement

0 0 0 1 *+R[ucst5] Positive offset

0 0 0 0 *–R[ucst5] Negative offset

1 0 0 1 *++R[ucst5] Preincrement

1 0 0 0 *– –R[ucst5] Predecrement

1 0 1 1 *R++[ucst5] Postincrement

1 0 1 0 *R– –[ucst5] Postdecrement

Increments and decrements default to 1 and offsets default to zero when no
bracketed register or constant is specified. Stores that do no modification to
the baseR can use the syntax *R. Square brackets, [ ], indicate that the ucst5
offset is left-shifted by 2, 1, or 0 for word, halfword, and byte loads, respectively.
Parentheses, ( ), can be used to set a nonscaled, constant offset. For example,
STW (.unit) *+baseR(12) dst represents an offset of 12 bytes whereas STW
(.unit) *+baseR[12] dst represents an offset of 12 words, or 48 bytes. You must
type either brackets or parentheses around the specified offset if you use the
optional offset parameter.

Word and halfword addresses must be aligned on word (two LSBs are 0) and
halfword (LSB is 0) boundaries, respectively.

Execution if (cond) src → mem
else nop



STB/STH/STW Store to Memory With a Register Offset or 5-Bit Unsigned Constant Offset

3-124  

Instruction Type Store

Pipeline 
Stage E1 E2 E3

Read baseR,
offsetR

src

Written baseR

Unit in use .D2

Delay Slots 0
For more information on delay slots for a store, see Chapter 5, TMS320C62x
Pipeline, and Chapter 6, TMS320C67x Pipeline.

Example 1 STB .D1 A1,*A10

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 100h 11h mem 100h 11h mem 100h 34h

Example 2 STH .D1 A1,*+A10(4)

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 104h 1134h mem 104h 1134h mem 104h 7634h

Pipeline



 Store to Memory With a Register Offset or 5-Bit Unsigned Constant Offset STB/STH/STW

3-125  TMS320C62x/C67x Fixed-Point Instruction Set

Example 3 STW .D1 A1,*++A10[1]

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0104h A10 0000 0104h

mem 100h 1111 1134h mem 100h 1111 1134h mem 100h 1111 1134h

mem 104h 0000 1111h mem 104h 0000 1111h mem 104h 9A32 7634h

Example 4 STH .D1 A1,*A10––[A11]

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 2634h A1 9A32 2634h A1 9A32 2634h

A10 0000 0100h A10 0000 00F8h A10 0000 00F8h

A11 0000 0004h A11 0000 0004h A11 0000 0004h

mem F8h 0000h mem F8h 0000h mem F8h 0000h

mem 100h 0000 mem 100h 0000h mem 100h 2634h



STB/STH/STW Store to Memory With a 15-Bit Offset

3-126  

Syntax STB  (.unit) src, *+B14/B15[ucst15]
or

STH (.unit) src, *+B14/B15[ucst15]
or

STW (.unit) src, *+B14/B15[ucst15]

.unit = .D2

Opcode

31 29 28 27 23 22

creg z src

4 3 2 1 0

1 1 s p

3 5 15

6

ld/stucst15

78

y

3

Description These instructions perform stores to memory from a general-purpose register
(src). Table 3–19 summarizes the data types supported by stores. The
memory address is formed from a base address register B14 (y = 0) or B15
(y = 1) and an optional offset that is a 15-bit unsigned constant (ucst15). The
assembler selects this format only when the constant is larger than five bits in
magnitude. This instruction executes only on the .D2 unit.

The offset, ucst15, is scaled by a left-shift of 0, 1, or 2 for STB, STH, and STW,
respectively. After scaling, ucst15 is added to baseR. The result of the calcula-
tion is the address that is sent to memory. The addressing arithmetic is always
performed in linear mode.

For STB and STH the 8 and 16 LSBs of the src register are stored. For STW
the entire 32-bit value is stored. src can be in either register file. The s bit deter-
mines which file the source is read from: s = 0 indicates src is in the A register
file, and s = 1 indicates src is in the B register file.

Square brackets, [ ], indicate that the ucst15 offset is left-shifted by 2, 1, or 0
for word, halfword, and byte loads, respectively. Parentheses, ( ), can be used
to set a nonscaled, constant offset. For example, STW (.unit) *+B14/B15(60)
dst represents an offset of 12 bytes, whereas STW (.unit) *+B14/B15[60]
dst represents an offset of 60 words, or 240 bytes. You must type either brack-
ets or parentheses around the specified offset if you use the optional offset
parameter.

Word and halfword addresses must be aligned on word (two LSBs are 0) and
halfword (LSB is 0) boundaries, respectively.



 Store to Memory With a 15-Bit Offset STB/STH/STW

3-127  TMS320C62x/C67x Fixed-Point Instruction Set

Table 3–19. Data Types Supported by Stores

Mnemonic
ld/st
Field Store Data Type SIze Left Shift of Offset

STB 0 1 1 Store byte 8 0 bits

STH 1 0 1 Store halfword 16 1 bit

STW 1 1 1 Store word 32 2 bits

Execution if (cond) src → mem
else nop

Pipeline 
Stage E1 E2 E3

Read B14/B15,
src

Written

Unit in use .D2

Instruction Type Store

Delay Slots 0

Note:

This instruction executes only on the .D2 unit.

Example STB .D2 B1,*+B14[40]

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

B1 1234 5678h B1 1234 5678h B1 1234 5678h

B14 0000 1000h B14 0000 1000h B14 0000 1000h

mem 1028h 42h mem 1028h 42h mem 1028h 78h

Pipeline



SUB(U) Signed or Unsigned Integer Subtraction Without Saturation

3-128  

Syntax SUB  (.unit) src1, src2, dst
or

SUBU (.unit) src1, src2, dst
or

SUB (.D1 or .D2) src2, src1, dst

.unit = .L1, .L2, .S1, .S2

Opcode map field used... For operand type... Unit Opfield Mnemonic

src1
src2
dst

sint
xsint
sint

.L1, .L2 0000111 SUB

src1
src2
dst

xsint
sint
sint

.L1, .L2 0010111 SUB

src1
src2
dst

sint
xsint
slong

.L1, .L2 0100111 SUB

src1
src2
dst

xsint
sint
slong

.L1, .L2 0110111 SUB

src1
src2
dst

uint
xuint
ulong

.L1, .L2 0101111 SUBU

src1
src2
dst

xuint
uint
ulong

.L1, .L2 0111111 SUBU

src1
src2
dst

scst5
xsint
sint

.L1, .L2 0000110 SUB

src1
src2
dst

scst5
slong
slong

.L1, .L2 010010
0

SUB

src1
src2
dst

sint
xsint
sint

.S1, .S2 010111 SUB

src1
src2
dst

scst5
xsint
sint

.S1, .S2 010110 SUB



 Signed or Unsigned Integer Subtraction Without Saturation SUB(U)

3-129  TMS320C62x/C67x Fixed-Point Instruction Set

Opcode map field used... MnemonicOpfieldUnitFor operand type...

src2
src1
dst

sint
sint
sint

.D1, .D2 010001 SUB

src2
src1
dst

sint
ucst5
sint

.D1, .D2 010011 SUB

Opcode

.L unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

.S unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description for .L1, .L2 and .S1, .S2 Opcodes
src2 is subtracted from src1. The result is placed in dst.

Execution for .L1, .L2 and .S1, .S2 Opcodes
if (cond) src1 – src2 → dst
else nop

Opcode

.D unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

7 6

1 0src2 src1/cst

Description for .D1, .D2 Opcodes
src1 is subtracted from src2. The result is placed in dst.

Execution for .D1, .D2 Opcodes
if (cond) src2 – src1 → dst
else nop



SUB(U) Signed or Unsigned Integer Subtraction Without Saturation

3-130  

Note:

Subtraction with a signed constant on the .L and .S units allows either the first
or the second operand to be the signed 5-bit constant.

SUB  src1,  scst5, dst  is encoded as ADD  –scst5, src2, dst where the src1
register is now src2 and scst5 is now –scst5.

However, the .D unit provides only the second operand as a constant since
it is an unsigned 5-bit constant. ucst5 allows a greater offset for addressing
with the .D unit.

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single-cycle

Delay Slots 0

Example 1 SUB .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 325Ah 12810 A1 0000 325Ah

A2 FFFF FF12h –238 A2 FFFF FF12h

A3 XXXX XXXXh A3 0000 3348h 13128

Example 2 SUBU .L1 A1,A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12810 † A1 0000 325Ah

A2 FFFF FF12h 4294967058 † A2 FFFF FF12h

A5:A4 XXXX XXXXh XXXX XXXXh A5:A4 0000 00FFh 0000 3348h –4294954168 ‡

† Unsigned 32-bit integer
‡ Signed 40-bit (long) integer

Pipeline



 Integer Subtraction Using Addressing Mode SUBAB/SUBAH/SUBAW

3-131  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax SUBAB  (.unit) src2, src1, dst
or

SUBAH  (.unit) src2, src1, dst
or

SUBAW  (.unit) src2, src1, dst

.unit = .D1 or .D2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 Byte: 110001
Halfword: 110101

Word: 111001

src2
src1
dst

sint
ucst5
sint

.D1, .D2 Byte: 110011
Halfword: 110111

Word: 111011

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

7 6

1 0src2 src1/cst

Description src1 is subtracted from src2. The subtraction defaults to linear mode. Howev-
er, if src2 is one of A4–A7 or B4–B7, the mode can be changed to circular mode
by writing the appropriate value to the AMR (see section 2.6.1 on page 2-9).
src1 is left shifted by 1 or 2 for halfword and word data sizes, respectively.
SUBAB , SUBAH , and SUBAW are byte, halfword, and word mnemonics, re-
spectively. The result is placed in dst.

Execution if (cond) src2 –a src1 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

Pipeline



SUBAB/SUBAH/SUBAW Integer Subtraction Using Addressing Mode

3-132  

Example 1 SUBAB .D1 A5,A0,A5

Before instruction 1 cycle after instruction

A0 0000 0004h A0 0000 0004h

A5 0000 4000h A5 0000 400Ch

AMR 0003 0004h AMR 0003 0004h

BK0 = 3 → size = 16
A5 in circular addressing mode using BK0

Example 2 SUBAW .D1 A5,2,A3

Before instruction 1 cycle after instruction

A3 XXXX XXXXh A3 0000 0108h

A5 0000 0100h A5 0000 0100h

AMR 0003 0004h AMR 0003 0004h

BK0 = 3 → size = 16
A5 in circular addressing mode using BK0



 Conditional Integer Subtract and Shift – Used for Division SUBC

3-133  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax SUBC  (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src1
src2
dst

uint
xuint
uint

.L1, .L2

Opcode

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 1 0 0 1 0 1 1 1 1 0 s p

3 5 5 5 7

src2 src1

Description Subtract src2 from src1. If result is greather than or equal to 0, left shift result
by 1, add 1 to it, and place it in dst. If result is less than 0, left shift scr1 by 1,
and place it in dst. This step is commonly used in division.

Execution if (cond) {
if (src1 – src2 � 0) 

( (src1–src2) << 1) + 1 → dst
else src1 << 1 → dst
}

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Pipeline



SUBC Conditional Integer Subtract and Shift – Used for Division

3-134  

Example 1 SUBC .L1 A0,A1,A0

Before instruction 1 cycle after instruction

A0 0000 125Ah 4698 A0 0000 024B4h 9396

A1 0000 1F12h 7954 A1 0000 1F12h

Example 2 SUBC .L1 A0,A1,A0

Before instruction 1 cycle after instruction

A0 0002 1A31h 137777 A0 0000 47E5h 18405

A1 0001 F63Fh 128575 A1 0001 F63Fh



 Two 16-Bit Integer Subtractions on Upper and Lower Register Halves SUB2

3-135  TMS320C62x/C67x Fixed-Point Instruction Set

Syntax SUB2  (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

sint
xsint
sint

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

0 1 0 0 0 1 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description The upper and lower halves of src2 are subtracted from the upper and lower
halves of src1. Any borrow from the lower-half subtraction does not affect the
upper-half subtraction.

Execution if (cond) {
((lsb16(src1) – lsb16(src2)) and FFFFh) or

 ((msb16(src1) – msb16(src2)) << 16) → dst
}

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example SUB2 .S2X B1,A0,B2

Before instruction 1 cycle after instruction

A0 0021 3271h †33  12913 ‡ A0 0021 3271h

B1 003A 1B48h †58  6984 ‡ B1 003A 1B48h

B2 XXXX XXXXh B2 0019 E8D7h 25†  –5929 ‡

† Signed 16-MSB integer
‡ Signed 16-LSB integer

Pipeline



XOR Exclusive OR

3-136  

Syntax XOR (.unit) src2, src1, dst

.unit = .L1 or .L2, .S1 or .S2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 1101111

src1
src2
dst

scst5
xuint
uint

.L1, .L2 1101110

src1
src2
dst

uint
xuint
uint

.S1, .S2 001011

src1
src2
dst

scst5
xuint
uint

.S1, .S2 001010

Opcode

.L unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1/cst

.S unit form:

31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1/cstsrc2

Description A bitwise exclusive-OR is performed between src1 and src2. The result is
placed in dst. The scst5 operands are sign extended to 32 bits.



 Exclusive OR XOR

3-137  TMS320C62x/C67x Fixed-Point Instruction Set

Execution if (cond) src1 xor src2 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L or .S

Instruction Type Single-cycle

Delay Slots 0

Example 1 XOR .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0721 325Ah A1 0721 325Ah

A2 0019 0F12h A2 0019 0F12h

A3 XXXX XXXXh A3 0738 3D48h

Example 2 XOR .L2 B1,0dh,B2

Before instruction 1 cycle after instruction

B1 0000 1023h B1 0000 1023h

B2 XXXX XXXXh B2 0000 102Eh

Pipeline



ZERO Zero a Register (Pseudo-Operation)

3-138  

Syntax ZERO  (.unit) dst

.unit = .L1, .L2, .D1, .D2, .S1, or .S2

Opcode map field used... For operand type... Unit Opfield

dst sint .L1, .L2 0010111

dst sint .D1, .D2 010001

dst sint .S1, .S2 010111

dst slong .L1, .L2 0110111

Description This is a pseudo operation used to fill the dst register with 0s by subtracting
the dst from itself and placing the result in the dst. The assembler uses the
operation SUB (.unit) src1, src2, dst to perform this task where src1 and src2
both equal dst.

Execution if (cond) dst – dst → dst
else nop

Instruction Type Single-cycle

Delay Slots 0



4-1

TMS320C67x Floating-Point Instruction Set

The ’C67x floating-point DSP uses all of the instructions available to the ’C62x,
but it also uses other instructions that are specific to the ’C67x. These specific
instructions are for 32-bit integer multiply, doubleword load, and floating-point
operations, including addition, subtraction, and multiplication. This chapter de-
scribes these ’C67x-specific instructions.

Instructions that are common to both the ’C62x and ’C67x are described in
Chapter 3.

Topic Page

4.1 Instruction Operation and Execution Notations 4-2. . . . . . . . . . . . . . . . . . 

4.2 Mapping Between Instructions and Functional Units 4-4. . . . . . . . . . . . . 

4.3 Overview of IEEE Standard Single- and
Double-Precision Formats 4-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.4 Delay Slots 4-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.5 TMS320C67x Instruction Constraints 4-12. . . . . . . . . . . . . . . . . . . . . . . . . . 

4.6 Individual Instruction Descriptions 4-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 4



Instruction Operation and Execution Notations

 4-2

4.1 Instruction Operation and Execution Notations

Table 4–1 explains the symbols used in the floating-point instruction descriptions.

Table 4–1. Floating-Point Instruction Operation and Execution Notations

Symbol Meaning

abs(x) Absolute value of x

cond Check for either creg equal to 0 or creg not equal to 0

creg 3-bit field specifying a conditional register

cstn n-bit constant field (for example, cst5)

dp Double-precision floating-point register value

dp(x) Convert x to dp

dst_h msb32 of dst

dst_l lsb32 of dst

int 32-bit integer value

int(x) Convert x to integer

lsbn or LSBn n least significant bits (for example, lsb32)

msbn or MSBn n most significant bits (for example, msb32)

nop No operation

R Any general-purpose register

rcp(x) Reciprocal approximation of x

sdint Signed 64-bit integer value (two registers)

sint Signed 32-bit integer value

sp Single-precision floating-point register value that can optionally use
cross path

sp(x) Convert x to sp

sqrcp(x) Square root of reciprocal approximation of x

src1_h msb32 of src1

src1_l lsb32 of src1

src2_h msb32 of src2

src2_l lsb32 of src2



Instruction Operation and Execution Notations

4-3TMS320C67x Floating-Point Instruction Set

Table 4–1. Floating-Point Instruction Operation and Execution Notations (Continued)

Symbol Meaning

ucstn n-bit unsigned constant field (for example, ucstn5)

uint Unsigned 32-bit integer value

dp Double-precision floating-point register value

xsint Signed 32-bit integer value that can optionally use cross path

sp Single-precision floating-point register value

xsp Single-precision floating-point register value that can optionally use
cross path

xuint Unsigned 32-bit integer value that can optionally use cross path

→ Assignment

+ Addition

× Multiplication

– Subtraction

<< Shift left



Mapping Between Instructions and Functional Units

 4-4

4.2 Mapping Between Instructions and Functional Units
Table 4–2 shows the mapping between instructions and functional units and
and Table 4–3 shows the mapping between functional units and instructions.

Table 4–2. Instruction to Functional Unit Mapping

.L Unit .M Unit .S Unit .D Unit

ADDDP MPYDP ABSDP ADDAD

ADDSP MPYI ABSSP LDDW

DPINT MPYID CMPEQDP

DPSP MPYSP CMPEQSP

INTDP CMPGTDP

INTDPU CMPGTSP

INTSP CMPLTDP

INTSPU CMPLTSP

SPINT RCPDP

SPTRUNC RCPSP

SUBDP RSQRDP

SUBSP RSQRSP

SPDP

Table 4–3. Functional Unit to Instruction Mapping 

’C67x Functional Units

Instruction .L Unit .M Unit .S Unit .D Unit Type

ABSDP � 2-cycle DP

ABSSP � Single cycle

ADDAD � Single cycle

ADDDP � ADDDP/
SUBDP

ADDSP � Four cycle

CMPEQDP � DP compare

CMPEQSP � Single cycle

CMPGTDP � DPcompare

CMPGTSP � Single cycle



Mapping Between Instructions and Functional Units

4-5TMS320C67x Floating-Point Instruction Set

Table 4–3. Functional Unit to Instruction Mapping (Continued)

Instruction Type

’C67x Functional Units

Instruction Type.D Unit.S Unit.M Unit.L Unit

CMPLTDP � DP compare

CMPLTSP � Single cycle

DPINT � 4-cycle

DPSP � 4-cycle

DPTRUNC � 4-cycle

INTDP � INTDP

INTDPU � INTDP

INTSP � 4-cycle

INTSPU � 4-cycle

LDDW � Load

MPYDP � MPYDP

MPYI � MPYI

MPYID � MPYID

MPYSP � 4-cycle

RCPDP � 2-cycle DP

RCPSP � Single cycle

RSQRDP � 2-cycle DP

RSQRSP � Single cycle

SPDP � 2-cycle DP

SPINT � 4-cycle

SPTRUNC � 4-cycle

SUBDP � ADDDP/
SUBDP

SUBSP � 4-cycle



Overview of IEEE Standard Single- and Double-Precision Formats

 4-6

4.3 Overview of IEEE Standard Single- and Double-Precision Formats

Floating-point operands are classified as single-precision (SP) and double-
precision (DP). Single-precision floating-point values are 32-bit values stored
in a single register. Double-precision floating-point values are 64-bit values
stored in a register pair. The register pair consists of consecutive even and odd
registers from the same register file. The least significant 32 bits are loaded
into the even register. The most significant 32 bits containing the sign bit and
exponent are loaded into the next register (which is always the odd register).
The register pair syntax places the odd register first, followed by a colon, then
the even register (that is, A1:A0, B1:B0, A3:A2, B3:B2, etc.).

Instructions that use DP sources fall in two categories: instructions that read
the upper and lower 32-bit words on separate cycles, and instructions that
read both 32-bit words on the same cycle. All instructions that produce a
double-precision result write the low 32-bit word one cycle before writing the
high 32-bit word. If an instruction that writes a DP result is followed by an
instruction that uses the result as its DP source and it reads the upper and low-
er words on separate cycles, then the second instruction can be scheduled on
the same cycle that the high 32-bit word of the result is written. The lower result
is written on the previous cycle. This is because the second instruction reads
the low word of the DP source one cycle before the high word of the DP source.

IEEE floating-point numbers consist of normal numbers, denormalized num-
bers, NaNs (not a number), and infinity numbers. Denormalized numbers are
nonzero numbers that are smaller than the smallest nonzero normal number.
Infinity is a value that represents an infinite floating-point number. NaN values
represent results for invalid operations, such as (+infinity + (–infinity)).

Normal single-precision values are always accurate to at least six decimal
places, sometimes up to nine decimal places. Normal double-precision values
are always accurate to at least 15 decimal places, sometimes up to 17 decimal
places.

Table 4–4 shows notations used in discussing floating-point numbers.



Overview of IEEE Standard Single- and Double-Precision Formats

4-7TMS320C67x Floating-Point Instruction Set

Table 4–4. IEEE Floating-Point Notations

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Symbol ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Meaning
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

s ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sign bit
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

e
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Exponent field

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

f ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Fraction (mantissa) field

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

x ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Can have value of 0 or 1 (don’t care)

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

NaN
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Not-a-Number (SNaN or QNaN)
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

SNaN
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Signal NaN

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

QNaN ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Quiet NaN

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

NaN_out ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

QNaN with all bits in the f field= 1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Inf
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Infinity
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

LFPN
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Largest floating-point number

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

SFPN ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Smallest floating-point number

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

LDFPN ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Largest denormalized floating-point number
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁSDFPN

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSmallest denormalized floating-point numberÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

signed Inf
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

+infinity or –infinity

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

signed NaN_out ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NaN_out with s = 0 or 1



Overview of IEEE Standard Single- and Double-Precision Formats

 4-8

Figure 4–1 shows the fields of a single-precision floating-point number repre-
sented within a 32-bit register.

Figure 4–1. Single-Precision Floating-Point Fields
31

e

23 22 030

s f

Legend : s sign bit (0 positive, 1 negative)
e 8-bit exponent ( 0 < e < 255)
f 23-bit fraction 

0 < f < 1*2–1 + 1*2–2 + ... + 1*2–23 or
0 < f < ((223)–1)/(223)

The floating-point fields represent floating-point numbers within two ranges:
normalized (e is between 0 and 255) and denormalized (e is 0).  The following
formulas define how to translate the s, e, and f fields into a single-precision
floating-point number.

Normal

–1s * 2(e–127) * 1.f     0 < e < 255

Denormalized (Subnormal)

–1s * 2–126 * 0.f      e = 0; f nonzero

Table 4–5 shows the s,e, and f values for special single-precision floating-
point numbers.

Table 4–5. Special Single-Precision Values

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Symbol ÁÁÁÁ
ÁÁÁÁ

Sign (s)ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Exponent (e) ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Fraction (f)
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

+0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

–0
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ+Inf

ÁÁÁÁ
ÁÁÁÁ0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ255

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

–Inf
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

255
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

NaN ÁÁÁÁ
ÁÁÁÁ

x ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

255 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

nonzero

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

QNaN ÁÁÁÁ
ÁÁÁÁ

x ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

255 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1xx..x

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

SNaN ÁÁÁÁ
ÁÁÁÁ

x ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

255 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0xx..x and nonzero



Overview of IEEE Standard Single- and Double-Precision Formats

4-9TMS320C67x Floating-Point Instruction Set

Table 4–6 shows hex and decimal values for some single-precision floating-
point numbers.

Table 4–6. Hex and Decimal Representation for Selected Single-Precision Values
ÁÁÁÁÁ
ÁÁÁÁÁSymbol

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁHex Value

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁDecimal ValueÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

NaN_out
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x7FFF FFFF
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

QNaN

ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x0000 0000 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0.0

ÁÁÁÁÁ
ÁÁÁÁÁ

–0 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x8000 0000 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

–0.0

ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x3F80 0000 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

1.0

ÁÁÁÁÁ
ÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x4000 0000 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

2.0
ÁÁÁÁÁ
ÁÁÁÁÁ

LFPN
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x7F7F FFFF
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

3.40282347e+38
ÁÁÁÁÁ
ÁÁÁÁÁSFPN

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ0x0080 0000

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ1.17549435e–38ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

LDFPN
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x007F FFFF
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

1.17549421e–38

ÁÁÁÁÁ
ÁÁÁÁÁ

SDFPN ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x0000 0001 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

1.40129846e–45

Figure 4–2 shows the fields of a double-precision floating-point number repre-
sented within a pair of 32-bit registers.

Figure 4–2. Double-Precision Floating-Point Fields
31

e

20 19 0 31 030

s

Odd register Even register

f f

Legend : s sign bit (0 positive, 1 negative)
e 11-bit exponent ( 0 < e < 2047)
f 52-bit fraction

0 < f < 1*2–1 + 1*2–2 + ... + 1*2–52 or 
0 < f < ((252)–1)/(252)

The floating-point fields represent floating-point numbers within two ranges:
normalized (e is between 0 and 2047) and denormalized (e is 0).  The following
formulas define how to translate the s, e, and f fields into a double-precision
floating-point number.

Normal

–1s * 2(e–1023) * 1.f     0 < e < 2047

Denormalized (Subnormal)

–1s * 2–1022 * 0.f      e = 0; f nonzero



Overview of IEEE Standard Single- and Double-Precision Formats

 4-10

Table 4–7 shows the s,e, and f values for special double-precision floating-
point numbers.

Table 4–7. Special Double-Precision Values
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁSymbol

ÁÁÁÁÁ
ÁÁÁÁÁSign (s)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁExponent (e)

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁFraction (f)ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

+0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

–0 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
0

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

+Inf ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2047 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
0

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

–Inf ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2047 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
0

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NaN ÁÁÁÁÁ
ÁÁÁÁÁ

x ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2047 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
nonzero

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

QNaN
ÁÁÁÁÁ
ÁÁÁÁÁ

x
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2047
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
1xx..x

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁSNaN

ÁÁÁÁÁ
ÁÁÁÁÁx

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ2047

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ0xx..x and nonzero

Table 4–8 shows hex and decimal values for some double-precision floating-
point numbers.

Table 4–8. Hex and Decimal Representation for Selected Double-Precision Values

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Symbol ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Hex Value ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Decimal Value

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NaN_out
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x7FFF FFFF FFFF FFFF
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
QNaN

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ0x0000 0000 0000 0000

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ0.0ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

–0
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x8000 0000 0000 0000
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

–0.0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x3FF0 0000 0000 0000 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
1.0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x4000 0000 0000 0000 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
2.0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

LFPN ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x7FEF FFFF FFFF FFFF ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
1.7976931348623157e+308

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SFPN ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x0010 0000 0000 0000 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
2.2250738585072014e–308

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

LDFPN
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x000F FFFF FFFF FFFF
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
2.2250738585072009e–308

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SDFPN
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0x0000 0000 0000 0001
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
4.9406564584124654e–324



Delay Slots

4-11TMS320C67x Floating-Point Instruction Set

4.4 Delay Slots

The execution of floating-point instructions can be defined in terms of delay
slots and functional unit latency. The number of delay slots is equivalent to the
number of additional cycles required after the source operands are read for the
result to be available for reading. For a single-cycle type instruction, operands
are read on cycle i and produce a result that can be read on cycle i + 1. For
a 4-cycle instruction, operands are read on cycle i and produce a result that
can be read on cycle i + 4. Table 4–9 shows the number of delay slots associat-
ed with each type of instruction.

The double-precision floating-point addition, subtraction, multiplication,
compare, and the 32-bit integer multiply instructions also have a functional unit
latency that is greater than 1. The functional unit latency is equivalent to the
number of cycles that the instruction uses the functional unit read ports. For
example, the ADDDP instruction has a functional unit latency of 2. Operands
are read on cycle i and cycle i + 1. Therefore, a new instruction cannot begin
until cycle i + 2, rather than i + 1. ADDDP produces a result that can be read
on cycle i + 7, because it has six delay slots.

Delay slots are equivalent to an execution or result latency. All of the instruc-
tions that are common to the ’C62x and ’C67x have a functional unit latency
of 1. This means that a new instruction can be started on the functional unit
each cycle. Single-cycle throughput is another term for single-cycle functional
unit latency.

Table 4–9. Delay Slot and Functional Unit Latency Summary

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Instruction Type

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Delay
Slots

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Functional
Unit Latency

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read Cycles †
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Write
Cycles †

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Single cycle ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

i ÁÁÁÁÁ
ÁÁÁÁÁ

i

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

2-cycle DP ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

i ÁÁÁÁÁ
ÁÁÁÁÁ

i, i + 1
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ4-cycle

ÁÁÁÁ
ÁÁÁÁ3

ÁÁÁÁÁ
ÁÁÁÁÁ1

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁi

ÁÁÁÁÁ
ÁÁÁÁÁi + 3ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

INTDP
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

4
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

i
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

i + 3, i + 4

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Load ÁÁÁÁ
ÁÁÁÁ

4 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

i ÁÁÁÁÁ
ÁÁÁÁÁ

i, i + 4‡

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

DP compare ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

2 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

i, i + 1 ÁÁÁÁÁ
ÁÁÁÁÁ

1 + 1
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ADDDP/SUBDP
ÁÁÁÁ
ÁÁÁÁ

6
ÁÁÁÁÁ
ÁÁÁÁÁ

2
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

i, i + 1
ÁÁÁÁÁ
ÁÁÁÁÁ

i + 5, i + 6
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

MPYI
ÁÁÁÁ
ÁÁÁÁ

8
ÁÁÁÁÁ
ÁÁÁÁÁ

4
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

i, i + 1, 1 + 2, i + 3
ÁÁÁÁÁ
ÁÁÁÁÁ

i + 8ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁMPYID

ÁÁÁÁ
ÁÁÁÁ9

ÁÁÁÁÁ
ÁÁÁÁÁ4

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁi, i + 1, 1 + 2, i + 3

ÁÁÁÁÁ
ÁÁÁÁÁi + 8, i + 9ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁMPYDP
ÁÁÁÁ
ÁÁÁÁ9

ÁÁÁÁÁ
ÁÁÁÁÁ4

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁi, i + 1, 1 + 2, i + 3

ÁÁÁÁÁ
ÁÁÁÁÁi + 8, i + 9

† Cycle i is in the E1 pipeline phase.
‡ A write on cycle i + 4 uses a separate write port from other instructions on the .D unit.



TMS320C67x Instruction Constraints

 4-12

4.5 TMS320C67x Instruction Constraints

If an instruction has a multicycle functional unit latency, it locks the functional
unit for the necessary number of cycles. Any new instruction dispatched to that
functional unit during this locking period causes undefined results. If an in-
struction with a multicycle functional unit latency has a condition that is evalu-
ated as false during E1, it still locks the functional unit for subsequent cycles.

An instruction of the following types scheduled on cycle i has the following
constraints:

DP compare No other instruction can use the functional unit on cycles
i and i + 1.

ADDDP/SUBDP No other instruction can use the functional unit on cycles
i and i + 1.

MPYI No other instruction can use the functional unit on cycles
i, i + 1, i + 2, and i + 3.

MPYID No other instruction can use the functional unit on cycles
i, i + 1, i + 2, and i + 3.

MPYDP No other instruction can use the functional unit on cycles
i, i + 1, i + 2, and i + 3.

If a cross path is used to read a source in an instruction with a multicycle func-
tional unit latency, you must ensure that no other instructions executing on the
same side uses the cross path.

An instruction of the following types scheduled on cycle i using a cross path
to read a source, has the following constraints:

DP compare No other instruction on the same side can used the cross
path on cycles i and i + 1.

ADDDP/SUBDP No other instruction on the same side can use the cross
path on cycles i and i + 1.

MPYI No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.

MPYID No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.

MPYDP No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.

Other hazards exist because instructions have varying numbers of delay slots,
and need the functional unit read and write ports of varying numbers of cycles.
A read or write hazard exists when two instructions on the same functional unit
attempt to read or write, respectively, to the register file on the same cycle.



TMS320C67x Instruction Constraints

4-13TMS320C67x Floating-Point Instruction Set

An instruction of the following types scheduled on cycle i has the following
constraints:

2-cycle DP A single-cycle instruction cannot be scheduled on that
functional unit on cycle i + 1 due to a write hazard on cycle
i + 1.

Another 2-cycle DP instruction cannot be scheduled on
that functional unit on cycle i + 1 due to a write hazard on
cycle   i + 1.

4-cycle A single-cycle instruction cannot be scheduled on that
functional unit on cycle i + 3 due to a write hazard on cycle
i + 3.

A multiply (16 �16-bit) instruction cannot be scheduled
on that functional unit on cycle i + 2 due to a write hazard
on cycle i + 3.

INTDP A single-cycle instruction cannot be scheduled on that
functional unit on cycle i + 3 or i + 4 due to a write hazard
on cycle i + 3 or i + 4, respectively.

An INTDP instruction cannot be scheduled on that func-
tional unit on cycle i + 1 due to a write hazard on cycle
 i + 1.

A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 1 due to a write hazard on cycle 
i + 1.

MPYI A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A MPYDP instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A multiply (16 � 16-bit) instruction cannot be scheduled
on that functional unit on cycle i + 6 due to a write hazard
on cycle i + 7.

MPYID A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A MPYDP instruction cannot be scheduled on that func-
tional unit on cycles i + 4, i + 5, or i + 6.

A multiply (16 �16-bit) instruction cannot be scheduled
on that functional unit on cycle i + 7 or i + 8 due to a write
hazard on cycle i + 8 or i + 9, respectively.



TMS320C67x Instruction Constraints

 4-14

MPYDP A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A MPYI instruction cannot be scheduled on that function-
al unit on cycle i + 4, i + 5, or i + 6.

A MPYID instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A multiply (16×16-bit) instruction cannot be scheduled
on that functional unit on cycle i + 7 or i + 8 due to a write
hazard on cycle i + 8 or i + 9, respectively.

ADDDP/SUBDP A single-cycle instruction cannot be scheduled on that
functional unit on cycle i + 5 or i + 6 due to a write hazard
on cycle i + 5 or i + 6, respectively.

A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 2 or i + 3 due to a write hazard on
cycle i + 5 or i + 6, respectively.

An INTDP instruction cannot be scheduled on that func-
tional unit on cycle i + 2 or i + 3 due to a write hazard on
cycle i + 5 or i + 6, respectively.

All of the above cases deal with double-precision floating-point instructions or
the MPYI or MPYID instructions except for the 4-cycle case. A 4-cycle instruc-
tion consists of both single- and double-precision floating-point instructions.
Therefore, the 4-cycle case is important for the following single-precision float-
ing-point instructions:

� ADDSP
� SUBSP
� SPINT
� SPTRUNC
� INTSP
� MPYSP

The .S and .L units share their long write port with the load port for the 32 most
significant bits of an LDDW load. Therefore, the LDDW instruction and the .S
or .L unit writing a long result cannot write to the same register file on the same
cycle. The LDDW writes to the register file on pipeline phase E5. Instructions
that use a long result and use the .L and .S unit write to the register file on pipe-
line phase E1. Therefore, the instruction with the long result must be sched-
uled later than four cycles following the LDDW instruction if both instructions
use the same side.



Individual Instruction Descriptions

4-15TMS320C67x Floating-Point Instruction Set

4.6 Individual Instruction Descriptions

This section gives detailed information on the floating-point instruction set for
the ’C67x. Each instruction presents the following information:

� Assembler syntax
� Functional units
� Operands
� Opcode
� Description
� Execution
� Pipeline
� Instruction type
� Delay slots
� Examples



ABSDP Double-Precision Floating-Point Absolute Value

4-16

Syntax ABSDP  (.unit) src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
dst

dp
dp

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc2 rsv

Description The absolute value of src2 is placed in dst. The 64-bit double-precision oper-
and is read in one cycle by using the src2 port for the 32 MSBs and the src1
port for the 32 LSBs.

Execution if (cond) abs(src2) → dst
else nop

The absolute value of src2 is determined as follows:

1) If src2 ��0, then src2 → dst
2) If src2 � 0, then –src2 → dst

Notes:

1) If scr2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is denormalized, +0 is placed in dst and the INEX and DEN2 bits
are set.

4) If src2 is +infinity or –infinity, +infinity is placed in dst and the INFO bit is
set.

Pipeline 
Stage E1 E2

Read src2_l
src2_h

Written dst_l dst_h

Unit in use .S

Pipeline



 Double-Precision Floating-Point Absolute Value ABSDP

4-17  TMS320C67x Floating-Point Instruction Set

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type 2-cycle DP

Delay Slots 1

Functional Unit
Latency

1

Example ABSDP .S1 A1:A0,A3:A2

Before instruction 2 cycles after instruction

A1:A0 c004 0000h 0000 0000h –2.5 A1:A0 c004 0000h 0000 0000h –2.5

A3:A2 XXXX XXXXh XXXX XXXXh A3:A2 4004 0000h 0000 0000h 2.5



ABSSP Single-Precision Floating-Point Absolute Value

4-18

Syntax ABSSP  (.unit) src2, dst

.unit = . S1 or .S2

Opcode map field used... For operand type... Unit

src2
dst

xsp
sp

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc2 0 0 0 0 0

Description The absolute value in src2 is placed in dst.

Execution if (cond) abs(src2) → dst
else nop

The absolute value of src2 is determined as follows:

1) If src2 � 0, then src2 → dst
2) If src2 ��0, then –src2 → dst

Notes:

1) If scr2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is denormalized, +0 is placed in dst and the INEX and DEN2 bits
are set.

4) If src2 is +infinity or –infinity, +infinity is placed in dst and the INFO bit is
set.

Pipeline 
Stage E1

Read src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Pipeline



 Single-Precision Floating-Point Absolute Value ABSSP

4-19  TMS320C67x Floating-Point Instruction Set

Functional Unit
Latency

1

Example ABSSP .S1X B1,A5

Before instruction 1 cycle after instruction

B1 c020 0000h –2.5 B1 c020 0000h –2.5

A5 XXXX XXXXh A5 4020 0000h 2.5



ADDAD Integer Addition Using Doubleword Addressing Mode

4-20

Syntax ADDAD  (.unit) src2, src1, dst

.unit = . D1 or .D2

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 111100

src2
src1
dst

sint
ucst5
sint

.D1, .D2 111101

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

op 0 0 0 s p

3 5 5 5 6

7 6

1 0src2 src1/cst

Description src1 is added to src2 using the doubleword addressing mode specified for
src2. The addition defaults to linear mode. However, if src2 is one of A4–A7
or B4–B7, the mode can be changed to circular mode by writing the appropri-
ate value to the AMR (see section 2.6.1 on page 2-9). src1 is left shifted by 3
due to doubleword data sizes. The result is placed in dst. (See the ADDAB/
ADDAH/ADDAW  instruction, page 3-34, for byte, halfword, and word ver-
sions.)

Note:

There is no SUBAD instruction.

Execution if (cond) src2 +(src1 �� 3) → dst
else nop

Pipeline 
Stage E1

Read src1
src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

Pipeline



 Integer Addition Using Doubleword Addressing Mode ADDAD

4-21  TMS320C67x Floating-Point Instruction Set

Functional Unit
Latency

1

Example ADDAD .D1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 1234h 4660 A1 0000 1234h 4660

A2 0000 0002h    2 A2 0000 0002h    2

A3 XXXX XXXXh A3 0000 1244h 4676



ADDDP Double-Precision Floating-Point Addition

4-22

Syntax ADDDP  (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src1
src2
dst

dp
xdp
dp

.L1, .L2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 0 0 1 1 0 0 0 1 1 0 s p

3 5 5 5 7

src2 src1

Description src2 is added to src1. The result is placed in dst.

Execution if (cond) src1 + src2 → dst
else nop



 Double-Precision Floating-Point Addition ADDDP

4-23  TMS320C67x Floating-Point Instruction Set

Notes:

1) If rounding is performed, the INEX bit is set.

2) If one source is SNaN or QNaN, the result is NaN_out. If either source
is SNaN, the INVAL bit is set, also.

3) If one source is +infinity and the other is –infinity, the result is NaN_out
and the INVAL bit is set.

4) If one source is signed infinity and the other source is anything except
NaN or signed infinity of the opposite sign, the result is signed infinity and
the INFO bit is set.

5) If overflow occurs, the INEX and OVER bits are set and the results are
rounded as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +infinity +LFPN +infinity +LFPN

– –infinity –LFPN –LFPN –infinity

6) If underflow occurs, the INEX and UNDER bits are set and the results
are rounded as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +0 +0 +SFPN +0

– –0 –0 –0 –SFPN

7) If the sources are equal numbers of opposite sign, the result is +0 unless
the rounding mode is –infinity, in which case the result is –0.

8) If the sources are both 0 with the same sign or both are denormalized
with the same sign, the sign of the result is negative for negative sources
and positive for positive sources.

9) A signed denormalized source is treated as a signed 0 and the DENn bit
is set. If the other source is not NaN or signed infinity, the INEX bit is set.



ADDDP Double-Precision Floating-Point Addition

4-24

Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7

Read src1_l
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .L .L

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type ADDDP/SUBDP

Delay Slots 6

Functional Unit
Latency

2

Example ADDDP .L1X B1:B0,A3:A2,A5:A4

Before instruction 7 cycles after instruction

B1:B0 4021 3333h 3333 3333h 8.6 B1:B0 4021 3333h 4021 3333h 8.6

A3:A2 C004 0000h 0000 0000h –2.5 A3:A2 C004 0000h 0000 0000h –2.5

A5:A4 XXXX XXXXh XXXX XXXXh A5:A4 4018 6666h 6666 6666h 6.1

Pipeline



 Single-Precision Floating-Point Addition ADDSP

4-25  TMS320C67x Floating-Point Instruction Set

Syntax ADDSP (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sp

.L1, .L2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 0 0 1 0 0 0 0 1 1 0 s p

3 5 5 5 7

src2 src1

Description src2 is added to src1. The result is placed in dst.

Execution if (cond) src1 + src2 → dst
else nop



ADDSP Single-Precision Floating-Point Addition

4-26

Notes:

1) If rounding is performed, the INEX bit is set.

2) If one source is SNaN or QNaN, the result is NaN_out. If either source
is SNaN, the INVAL bit is set also.

3) If one source is +infinity and the other is –infinity, the result is NaN_out
and the INVAL bit is set.

4) If one source is signed infinity and the other source is anything except
NaN or signed infinity of the opposite sign, the result is signed infinity and
the INFO bit is set.

5) If overflow occurs, the INEX and OVER bits are set and the results are
rounded as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +infinity +LFPN +infinity +LFPN

– –infinity –LFPN –LFPN –infinity

6) If underflow occurs, the INEX and UNDER bits are set and the results
are rounded as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +0 +0 +SFPN +0

– –0 –0 –0 –SFPN

7) If the sources are equal numbers of opposite sign, the result is +0 unless
the rounding mode is –infinity, in which case the result is –0.

8) If the sources are both 0 with the same sign or both are denormalized
with the same sign, the sign of the result is negative for negative sources
and positive for positive sources.

9) A signed denormalized source is treated as a signed 0 and the DENn bit
is set. If the other source is not NaN or signed infinity, the INEX bit is also
set.



 Single-Precision Floating-Point Addition ADDSP

4-27  TMS320C67x Floating-Point Instruction Set

Pipeline 
Stage E1 E2 E3 E4

Read src1
src2

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

Example ADDSP .L1 A1,A2,A3

Before instruction 4 cycles after instruction

A1 C020 0000h –2.5 A1 C020 0000h –2.5

A2 4109 999Ah 8.6 A2 4109 999Ah 8.6

A3 XXXX XXXXh A3 40C3 3334h 6.1

Pipeline



CMPEQDP Double-Precision Floating-Point Compare for Equality

4-28

Syntax CMPEQDP  (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

dp
xdp
sint

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 0 1 0 0 0 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description This instruction compares src1 to src2. If src1 equals src2, 1 is written to dst.
Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 == src2) 1 → dst
else 0 → dst
}

else nop

Special cases of inputs:

Input FAUCR Fields

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 0

don’t care NaN 0 1 0

NaN NaN 0 1 0

+/–denormalized +/–0 1 0 0

+/–0 +/–denormalized 1 0 0

+/–0 +/–0 1 0 0

+/–denormalized +/–denormalized 1 0 0

+infinity +infinity 1 0 0

+infinity other 0 0 0

–infinity –infinity 1 0 0

–infinity other 0 0 0



 Double-Precision Floating-Point Compare for Equality CMPEQDP

4-29  TMS320C67x Floating-Point Instruction Set

Notes:

1) In the case of NaN compared with itself, the result is false.

2) No configuration bits besides those in the preceding table are set, except
the NaNn and DENn bits when appropriate.

Pipeline 
Stage E1 E2

Read src1_l
src2_l

src1_h
src2_h

Written dst

Unit in use .S .S

Instruction Type DP compare

Delay Slots 1

Functional Unit
Latency

2

Example CMPEQDP .S1 A1:A0,A3:A2,A4

Before instruction 2 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 3333 3333h 8.6

A3:A2 c004 0000h 0000 0000h –2.5 A3:A2 c004 0000h 0000 0000h –2.5

A4 XXXX XXXXh A4 0000 0000h false

Pipeline



CMPEQSP Single-Precision Floating-Point Compare for Equality

4-30

Syntax CMPEQSP  (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sint

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 1 1 0 0 0 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description This instruction compares src1 to src2. If src1 equals src2, 1 is written to dst.
Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 == src2) 1 → dst
else 0 → dst
}

else nop

Special cases of inputs:

Input Configuration Register

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 0

don’t care NaN 0 1 0

NaN NaN 0 1 0

+/–denormalized +/–0 1 0 0

+/–0 +/–denormalized 1 0 0

+/–0 +/–0 1 0 0

+/–denormalized +/–denormalized 1 0 0

+infinity +infinity 1 0 0

+infinity other 0 0 0

–infinity –infinity 1 0 0

–infinity other 0 0 0



 Single-Precision Floating-Point Compare for Equality CMPEQSP

4-31  TMS320C67x Floating-Point Instruction Set

Notes:

1) In the case of NaN compared with itself, the result is false.

2) No configuration bits besides those shown in the preceding table are set,
except for the NaNn and DENn bits when appropriate.

Pipeline 
Stage E1

Read src1
src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

Example CMPEQSP .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 C020 0000h –2.5 A1 C020 0000h –2.5

A2 4109 999Ah 8.6 A2 4109 999Ah 8.6

A3 XXXX XXXXh A3 0000 0000h false

Pipeline



CMPGTDP Double-Precision Floating-Point Compare for Greater Than

4-32

Syntax CMPGTDP  (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

dp
xdp
sint

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 0 1 0 0 1 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description This instruction compares src1 to src2. If src1 is greater than src2, 1 is written
to dst. Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 > src2) 1 → dst
else 0 → dst
}

else nop

Special cases of inputs:

Input Configuration Register

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 1

don’t care NaN 0 1 1

NaN NaN 0 1 1

+/–denormalized +/–0 0 0 0

+/–0 +/–denormalized 0 0 0

+/–0 +/–0 0 0 0

+/–denormalized +/–denormalized 0 0 0

+infinity +infinity 0 0 0

+infinity other 1 0 0

–infinity –infinity 0 0 0

–infinity other 0 0 0



 Double-Precision Floating-Point Compare for Greater Than CMPGTDP

4-33  TMS320C67x Floating-Point Instruction Set

Note:

No configuration bits besides those shown in the preceding table are set, ex-
cept the NaNn and DENn bits when appropriate.

Pipeline 
Stage E1 E2

Read src1_l
src2_l

src1_h
src2_h

Written dst

Unit in use .S .S

Instruction Type DP compare

Delay Slots 1

Functional Unit
Latency

2

Example CMPGTDP .S1 A1:A0,A3:A2,A4

Before instruction 2 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 3333 3333h 8.6

A3:A2 c004 0000h 0000 0000h –2.5 A3:A2 c004 0000h 0000 0000h –2.5

A4 XXXX XXXXh A4 0000 0001h true

Pipeline



CMPGTSP Single-Precision Floating-Point Compare for Greater Than

4-34

Syntax CMPGTSP  (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sint

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 1 1 0 0 1 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description This instruction compares src1 to src2. If src1 is greater than src2, 1 is written
to dst. Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 > src2) 1 → dst
else 0 → dst
}

else nop

Special cases of inputs:

Input Configuration Register

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 1

don’t care NaN 0 1 1

NaN NaN 0 1 1

+/–denormalized +/–0 0 0 0

+/–0 +/–denormalized 0 0 0

+/–0 +/–0 0 0 0

+/–denormalized +/–denormalized 0 0 0

+infinity +infinity 0 0 0

+infinity other 1 0 0

–infinity –infinity 0 0 0

–infinity other 0 0 0



 Single-Precision Floating-Point Compare for Greater Than CMPGTSP

4-35  TMS320C67x Floating-Point Instruction Set

Note:

No configuration bits besides those shown in the preceding table are set, ex-
cept for the NaNn and DENn bits when appropriate.

Pipeline 
Stage E1

Read src1
src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

Example CMPGTSP .S1X A1,B2,A3

Before instruction 1 cycle after instruction

A1 C020 0000h –2.5 A1 C020 0000h –2.5

B2 4109 999Ah 8.6 B2 4109 999Ah 8.6

A3 XXXX XXXXh A3 0000 0000h false

Pipeline



CMPLTDP Double-Precision Floating-Point Compare for Less Than

4-36

Syntax CMPLTDP  (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

dp
xdp
sint

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 0 1 0 1 0 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description This instruction compares src1 to src2. If src1 is less than src2, 1 is written to
dst. Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 � src2) 1 → dst
else 0 → dst
}

else nop

Special cases of inputs:

Input Configuration Register

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 1

don’t care NaN 0 1 1

NaN NaN 0 1 1

+/–denormalized +/–0 0 0 0

+/–0 +/–denormalized 0 0 0

+/–0 +/–0 0 0 0

+/–denormalized +/–denormalized 0 0 0

+infinity +infinity 0 0 0

+infinity other 0 0 0

–infinity –infinity 0 0 0

–infinity other 1 0 0



 Double-Precision Floating-Point Compare for Less Than CMPLTDP

4-37  TMS320C67x Floating-Point Instruction Set

Note:

No configuration bits besides those shown in the preceding table are set, ex-
cept for the NaNn and DENn bits when appropriate.

Pipeline 
Stage E1 E2

Read src1_l
src2_l

src1_h
src2_h

Written dst

Unit in use .S .S

Instruction Type DP compare

Delay Slots 1

Functional Unit
Latency

2

Example CMPLTDP .S1X A1:A0,B3:B2,A4

Before instruction 2 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 4021 3333h 8.6

B3:B2 c004 0000h 0000 0000h –2.5 B3:B2 c004 0000h 0000 0000h –2.5

A4 XXXX XXXXh A4 0000 0000h false

Pipeline



CMPLTSP Single-Precision Floating-Point Compare for Less Than

4-38

Syntax CMPLTSP  (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sint

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 s p

3 5 5 5 6

6

1

11

xsrc1src2

Description This instruction compares src1 to src2. If src1 is less than src2, 1 is written to
dst. Otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 � src2) 1 → dst
else 0 → dst
}

else nop

Special cases of inputs:

Input Configuration Register

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 1

don’t care NaN 0 1 1

NaN NaN 0 1 1

+/–denormalized +/–0 0 0 0

+/–0 +/–denormalized 0 0 0

+/–0 +/–0 0 0 0

+/–denormalized +/–denormalized 0 0 0

+infinity +infinity 0 0 0

+infinity other 0 0 0

–infinity –infinity 0 0 0

–infinity other 1 0 0



 Single-Precision Floating-Point Compare for Less Than CMPLTSP

4-39  TMS320C67x Floating-Point Instruction Set

Note:

No configuration bits besides those shown in the preceding table are set, ex-
cept for the NaNn and DENn bits when appropriate.

Pipeline 
Stage E1

Read src1
src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

Example CMPGTSP .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 C020 0000h –2.5 A1 C020 0000h –2.5

A2 4109 999Ah 8.6 A2 4109 999Ah 8.6

A3 XXXX XXXXh A3 0000 0001h true

Pipeline



DPINT Convert Double-Precision Floating-Point Value to Integer

4-40

Syntax DPINT  (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src2
dst

dp
sint

.L1, .L2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 0 0 0 1 0 0 0 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The 64-bit double-precision value in src2 is converted to an integer and placed
in dst. The operand is read in one cycle by using the src2 port for the 32 MSBs
and the src1 port for the 32 LSBs.

Execution if (cond) int(src2) → dst
else nop

Notes:

1) If src2 is NaN, the maximum signed integer (7FFF FFFFh or
8000 0000h) is placed in dst and the INVAL bit is set.

2) If src2 is signed infinity or if overflow occurs, the maximum signed integer
(7FFF FFFFh or 8000 0000h) is placed in dst and the INEX and OVER
bits are set. Overflow occurs if src2 is greater than 231 – 1 or less than
–231.

3) If src2 is denormalized, 0000 0000h is placed in dst and the INEX and
DEN2 bits are set.

4) If rounding is performed, the INEX bit is set.

Pipeline 
Stage E1 E2 E3 E4

Read src2_l
src2_h

Written dst

Unit in use .L

Instruction Type 4-cycle

Pipeline



 Convert Double-Precision Floating-Point Value to Integer DPINT

4-41  TMS320C67x Floating-Point Instruction Set

Delay Slots 3

Functional Unit
Latency

1

Example DPINT .L1 A1:A0,A4

Before instruction 4 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 3333 3333h 8.6

A4 XXXX XXXXh A4 0000 0009h 9



DPSP Convert Double-Precision Floating-Point Value to Single-Precision Floating-Point Value

4-42

Syntax DPSP  (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src2
dst

dp
sp

.L1, .L2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 0 0 0 1 0 0 1 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The double-precision 64-bit value in src2 is converted to a single-precision val-
ue and placed in dst. The operand is read in one cycle by using the src2 port
for the 32 MSBs and the src1 port for the 32 LSBs.

Execution if (cond) sp(src2) → dst
else nop



 Convert Double-Precision Floating-Point Value to Single-Precision Floating-Point Value DPSP

4-43  TMS320C67x Floating-Point Instruction Set

Notes:

1) If rounding is performed, the INEX bit is set.

2) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

3) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

4) If src2 is a signed denormalized number, signed 0 is placed in dst and
the INEX and DEN2 bits are set.

5) If src2 is signed infinity, the result is signed infinity and the INFO bit is set.

6) If overflow occurs, the INEX and OVER bits are set and the results are
set as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +infinity +LFPN +infinity +LFPN

– –infinity –LFPN –LFPN –infinity

7) If underflow occurs, the INEX and UNDER bits are set and the results
are set as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +0 +0 +SFPN +0

– –0 –0 –0 –SFPN



DPSP Convert Double-Precision Floating-Point Value to Single-Precision Floating-Point Value

4-44

Pipeline 
Stage E1 E2 E3 E4

Read src2_l
src2_h

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

Example DPSP .L1 A1:A0,A4

Before instruction 4 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 4021 3333h 8.6

A4 XXXX XXXXh A4 4109 999Ah 8.6

Pipeline



 Convert Double-Precision Floating-Point Value to Integer With Truncation DPTRUNC

4-45  TMS320C67x Floating-Point Instruction Set

Syntax DPTRUNC  (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src2
dst

dp
sint

.L1, .L2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 0 0 0 0 0 0 1 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The 64-bit double-precision value in src2 is converted to an integer and placed
in dst. This instruction operates like DPINT except that the rounding modes in
the FADCR are ignored; round toward zero (truncate) is always used. The
64-bit operand is read in one cycle by using the src2 port for the 32 MSBs and
the src1 port for the 32 LSBs.

Execution if (cond) int(src2) → dst
else nop

Notes:

1) If src2 is NaN, the maximum signed integer (7FFF FFFFh or
8000 0000h) is placed in dst and the INVAL bit is set.

2) If src2 is signed infinity or if overflow occurs, the maximum signed integer
(7FFF FFFFh or 8000 0000h) is placed in dst and the INEX and OVER
bits are set. Overflow occurs if src2 is greater than 231 – 1 or less than
–231.

3) If src2 is denormalized, 0000 0000h is placed in dst and the INEX and
DEN2 bits are set.

4) If rounding is performed, the INEX bit is set.

Pipeline 
Stage E1 E2 E3 E4

Read src2_l
src2_h

Written dst

Unit in use .L

Instruction Type 4-cycle

Pipeline



DPTRUNC Convert Double-Precision Floating-Point Value to Integer With Truncation

4-46

Delay Slots 3

Functional Unit
Latency

1

Example DPTRUNC .L1 A1:A0,A4

Before instruction 4 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 3333 3333h 8.6

A4 XXXX XXXXh A4 0000 0008h 8



 Convert Integer to Double-Precision Floating-Point Value INTDP(U)

4-47  TMS320C67x Floating-Point Instruction Set

Syntax INTDP  (.unit) src2, dst
or

INTDPU (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
dp

.L1, .L2 0111001

src2
dst

xuint
dp

.L1, .L2 0111011

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The integer value in src2 is converted to a double-precision value and placed
in dst.

Execution if (cond) dp(src2) → dst
else nop

You cannot set configuration bits with this instruction.

Pipeline 
Stage E1 E2 E3 E4 E5

Read src2

Written dst_l dst_h

Unit in use .L

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type INTDP

Delay Slots 4

Functional Unit
Latency

1

Pipeline



INTDP(U) Convert Integer to Double-Precision Floating-Point Value

4-48

Example 1 INTDP .L1x  B4,A1:A0

Before instruction 5 cycles after instruction

B4 1965 1127h 426053927 B4 1965 1127h 426053927

A1:A0 XXXX XXXXh XXXX XXXXh A1:A0 41B9 6511h 2700 0000h 4.2605393 E08

Example 2 INTDPU .L1 A4,A1:A0

Before instruction 5 cycles after instruction

A4 FFFF FFDEh 4294967262 A4 FFFF FFDEh 4294967262

A1:A0 XXXX XXXXh XXXX XXXXh A1:A0 41EF FFFFh FBC0 0000h 4.2949673 E09



 Convert Integer to Single-Precision Floating-Point Value INTSP(U)

4-49  TMS320C67x Floating-Point Instruction Set

Syntax INTSP  (.unit) src2, dst
or

INTSPU (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
sp

.L1, .L2 1001010

src2
dst

xuint
sp

.L1, .L2 1001001

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The integer value in src2 is converted to single-precision value and placed in
dst.

Execution if (cond) sp(src2) → dst
else nop

The only configuration bit that can be set is the INEX bit and only if the mantissa
is rounded.

Pipeline 
Stage E1 E2 E3 E4

Read src2

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

Pipeline



INTSP(U) Convert Integer to Single-Precision Floating-Point Value

4-50

Example 1 INTSP .L1 A1,A2

Before instruction 4 cycles after instruction

A1 1965 1127h 426053927 A1 1965 1127h 426053927

A2 XXXX XXXXh A2 4DCB 2889h 4.2605393 E08

Example 2 INTSPU .L1X B1,A2

Before instruction 4 cycles after instruction

B1 FFFF FFDEh 4294967262 B1 C020 0000h 4294967262

A2 XXXX XXXXh A2 4F80 0000h 4.2949673 E09



 Load Doubleword From Memory With an Unsigned Constant Offset or Register Offset LDDW

4-51  TMS320C67x Floating-Point Instruction Set

Syntax LDDW  (.unit) *+baseR[offsetR/ucst5], dst

.unit = .D1 or .D2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 9 8 7 6 4 3 2 1 0

mode r y ld/st 0 1 s p

3 5 5 5 4 3

baseR offsetR/ucst5

Description This instruction loads a doubleword to a pair of general-purpose registers
(dst). Table 4–10 describes the addressing generator options. The memory
address is formed from a base address register (baseR) and an optional offset
that is either a register (offsetR) or a 5-bit unsigned constant (ucst5).

offsetR and baseR must be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and the register
file used: y = 0 selects the .D1 unit and the baseR and offsetR from the A regis-
ter file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file. The s bit determines the register file into which the dst is loaded: s = 0 indi-
cates that dst is in the A register file, and s = 1 indicates that dst is in the B regis-
ter file. The r bit has a value of 1 for the LDDW instruction and a value of 0 for
all other load and store instructions. The dst field must always be an even value
because LDDW loads register pairs. Therefore, bit 23 is always zero. Further-
more, the value of the ld/st field is110.

The bracketed offsetR/ucst5 is scaled by a left-shift of 3 to correctly represent
doublewords. After scaling, offsetR/ucst5 is added to or subtracted from
baseR. For the preincrement, predecrement, positive offset, and negative off-
set address generator options, the result of the calculation is the address to
be accessed in memory. For postincrement or postdecrement addressing, the
shifted value of baseR before the addition or subtraction is the address to be
accessed in memory.

Increments and decrements default to 1 and offsets default to 0 when no
bracketed register, bracketed constant, or constant enclosed in parentheses
is specified. Square brackets, [  ], indicate that ucst5 is left shifted by 3. Paren-
theses, (  ), indicate that ucst5 is not left shifted. In other words, parentheses
indicate a byte offset rather than a doubleword offset. You must type either
brackets or parathesis around the specified offset if you use the optional offset
parameter.

The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR (see sec-
tion 2.6.1 on page 2-9).



LDDW Load Doubleword From Memory With an Unsigned Constant Offset or Register Offset

4-52

The destination register pair must consist of a consecutive even and odd regis-
ter pair from the same register file. The instruction can be used to load a
double-precision floating-point value (64 bits), a pair of single-precision float-
ing-point words (32 bits), or a pair of 32-bit integers. The least significant
32 bits are loaded into the even register and the most significant 32 bits
(containing the sign bit and exponent) are loaded into the next register (which
is always the odd register). The register pair syntax places the odd register
first, followed by a colon, then the even register (that is, A1:A0, B1:B0, A3:A2,
B3:B2, etc.).

All 64 bits of the double-precision floating point value are stored in big- or little-
endian byte order, depending on the mode selected. When LDDW is used to
load two 32-bit single-precision floating-point values or two 32-bit integer val-
ues, the order is dependent on the endian mode used. In little-endian mode,
the first 32-bit word in memory is loaded into the even register. In big-endian
mode, the first 32-bit word in memory is loaded into the odd register. Regard-
less of the endian mode, the double word address must be on a doubleword
boundary (the three LSBs are zero).

Table 4–10 summarizes the address generation options supported.

Table 4–10. Address Generator Options

Mode Field Syntax Modification Performed

0 1 0 1 *+R[offsetR] Positive offset

0 1 0 0 *–R[offsetR] Negative offset

1 1 0 1 *++R[offsetR] Preincrement

1 1 0 0 *––R[offsetR] Predecrement

1 1 1 1 *R++[offsetR] Postincrement

1 1 1 0 *R––[offsetR] Postdecrement

0 0 0 1 *+R[ucst5] Positive offset

0 0 0 0 *–R[ucst5] Negative offset

1 0 0 1 *++R[ucst5] Preincrement

1 0 0 0 *– –R[ucst5] Predecrement

1 0 1 1 *R++[ucst5] Postincrement

1 0 1 0 *R– –[ucst5] Postdecrement

Execution if (cond) mem → dst
else nop



 Load Doubleword From Memory With an Unsigned Constant Offset or Register Offset LDDW

4-53  TMS320C67x Floating-Point Instruction Set

Pipeline 
Stage E1 E2 E3 E4 E5

Read baseR
offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4

Functional Unit
Latency

1

Example 1 LDDW .D2 *+B10[1],A1:A0

Before instruction 5 cycles after instruction

A1:A0 XXXX XXXXh XXXX XXXXh A1:A0 4021 3333h 3333 3333h 8.6

B10 0000 0010h 16 B10 0000 0010h 16

mem 0x18 3333 3333h 4021 3333h 8.6 mem 0x18 3333 3333h 4021 3333h 8.6

Little-endian mode

Example 2 LDDW .D1 *++A10[1],A1:A0

Before instruction 1 cycle after instruction

A1:A0 XXXX XXXXh XXXX XXXXh A1:A0 XXXX XXXXh XXXX XXXXh

A10 0000 0010h 16 A10 0000 0018h 24

mem 0x18 4021 3333h 3333 3333h 8.6 mem 0x18 4021 3333h 3333 3333h 8.6

5 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6

A10 0000 0018h 24

mem 0x18 4021 3333h 3333 3333h 8.6

Big-endian mode

Pipeline



MPYDP Double-Precision Floating-Point Multiply

4-54

Syntax MPYDP  (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit

src1
src2
dst

dp
dp
dp

.M1, .M2

Opcode
31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x 0 1 1 1 0 0 0 0 s p

3 5 5 5 5

7 6

0 0src1

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.

Execution if (cond) src1 � src2 → dst
else nop

Notes:

1) If one source is SNaN or QNaN, the result is a signed NaN_out. If either
source is SNaN, the INVAL bit is set also. The sign of NaN_out is the
exclusive-or of the input signs.

2) Signed infinity multiplied by signed infinity or a normalized number (other
than signed 0) returns signed infinity. Signed infinity multiplied by
signed 0 returns a signed NaN_out and sets the INVAL bit.

3) If one or both sources are signed 0, the result is signed 0 unless the other
source is NaN or signed infinity, in which case the result is signed
NaN_out.

4) If signed 0 is multiplied by signed infinity, the result is signed NaN_out
and the INVAL bit is set.

5) A denormalized source is treated as signed 0 and the DENn bit is set.
The INEX bit is set except when the other source is signed infinity, signed
NaN, or signed 0. Therefore, a signed infinity multiplied by a denormal-
ized number gives a signed NaN_out and sets the INVAL bit.

6) If rounding is performed, the INEX bit is set.



 Double-Precision Floating-Point Multiply MPYDP

4-55  TMS320C67x Floating-Point Instruction Set

Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Read src1_l
src2_l

src1_l
src2_h

src1_h
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .M .M .M .M

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type MPYDP

Delay Slots 9

Functional Unit
Latency

4

Example MPYDP .M1 A1:A0,A3:A2,A5:A4

Before instruction 10 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 4021 3333h 8.6

A3:A2 C004 0000h 0000 0000 –2.5 A3:A2 C004 0000h 0000 0000h –2.5

A5:A4 XXXX XXXXh XXXX XXXXh A5:A4 C035 8000h 0000 0000h –21.5

Pipeline



MPYI 32-Bit Integer Multiply – Result Is Lower 32 Bits

4-56

Syntax MPYI  (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.M1, .M2 00100

src1
src2
dst

cst5
xsint
sint

.M1, .M2 00110

Opcode
31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

3 5 5 5 5

7 6

0 0src1/cst

Description The src1 operand is multiplied by the src2 operand. The lower 32 bits of the
result are placed in dst.

Execution if (cond) lsb32(src1 � src2) → dst
else nop

Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9

Read src1
src2

src1
src2

src1
src2

src1
src2

Written dst

Unit in use .M .M .M .M

Instruction Type MPYI

Delay Slots 8

Functional Unit
Latency

4

Example MPYI .M1X A1,B2,A3

Before instruction 9 cycles after instruction

A1 0034 5678h 3430008 A1 0034 5678h 3430008

B2 0011 2765h 1124197 B2 0011 2765h 1124197

A3 XXXX XXXXh A3 CBCA 6558h –875928232

Pipeline



 32-Bit Integer Multiply – Result Is 64 Bits MPYID

4-57  TMS320C67x Floating-Point Instruction Set

Syntax MPYID  (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sdint

.M1, .M2 01000

src1
src2
dst

cst5
xsint
sdint

.M1, .M2 01100

Opcode
31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x op 0 0 0 s p

3 5 5 5 5

7 6

0 0src1/cst

Description The src1 operand is multiplied by the src2 operand. The 64-bit result is placed
in the dst register pair.

Execution if (cond) lsb32(src1 � src2) → dst_l
msb32(src1 � src2) → dst_h

else nop

Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Read src1
src2

src1
src2

src1
src2

src1
src2

Written dst_l dst_h

Unit in use .M .M .M .M

Instruction Type MPYID

Delay Slots 9 (8 if dst_l is src of next instruction)

Functional Unit
Latency

4

Pipeline



MPYID 32-Bit Integer Multiply – Result Is 64 Bits

4-58

Example MPYID .M1 A1,A2,A5:A4

Before instruction 10 cycles after instruction

A1 0034 5678h 3430008 A1 0034 5678h 3430008

A2 0011 2765h 1124197 A2 0011 2765h 1124197

A5:A4 XXXX XXXXh XXXX XXXXh A5:A4 0000 0381h CBCA 6558h 3856004703576



 Single-Precision Floating-Point Multiply MPYSP

4-59  TMS320C67x Floating-Point Instruction Set

Syntax MPYSP  (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sp

.M1, .M2

Opcode
31 29 28 27 23 22 18 17

creg z dst src2

13 12 11 5 4 3 2 1 0

x 1 1 1 0 0 0 0 0 s p

3 5 5 5 5

7 6

0 0src1

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.

Execution if (cond) src1 � src2 → dst
else nop

Notes:

1) If one source is SNaN or QNaN, the result is a signed NaN_out. If either
source is SNaN, the INVAL bit is set also. The sign of NaN_out is the
exclusive-or of the input signs.

2) Signed infinity multiplied by signed infinity or a normalized number (other
than signed 0) returns signed infinity. Signed infinity multiplied by
signed 0 returns a signed NaN_out and sets the INVAL bit.

3) If one or both sources are signed 0, the result is signed 0 unless the other
source is NaN or signed infinity, in which case the result is signed
NaN_out.

4) If signed 0 is multiplied by signed infinity, the result is signed NaN_out
and the INVAL bit is set.

5) A denormalized source is treated as signed 0 and the DENn bit is set.
The INEX bit is set except when the other source is signed infinity, signed
NaN, or signed 0. Therefore, a signed infinity multiplied by a denormal-
ized number gives a signed NaN_out and sets the INVAL bit.

6) If rounding is performed, the INEX bit is set.



MPYSP Single-Precision Floating-Point Multiply

4-60

Pipeline 
Stage E1 E2 E3 E4

Read src1
src2

Written dst

Unit in use .M

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

Example MPYSP .M1X A1,B2,A3

Before instruction 4 cycles after instruction

A1 C020 0000h –2.5 A1 C020 0000h –2.5

B2 4109 999Ah 8.6 B2 4109 999Ah 8.6

A3 XXXX XXXXh A3 C1AC 0000h –21.5

Pipeline



 Double-Precision Floating-Point Reciprocal Approximation RCPDP

4-61  TMS320C67x Floating-Point Instruction Set

Syntax RCPDP  (.unit) src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
dst

dp
dp

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 0 1 1 0 1 0 0 0 s p

3 5 5 5 6

6

1

11

xrsvsrc2

Description The 64-bit double-precision floating-point reciprocal approximation value of
src2 is placed in dst. The operand is read in one cycle by using the src1 port
for the 32 LSBs and the src2 port for the 32 MSBs.

The RCPDP instruction provides the correct exponent, and the mantissa is
accurate to the eighth binary position (therefore, mantissa error is less than
2–8). This estimate can be used as a seed value for an algorithm to compute
the reciprocal to greater accuracy. The Newton-Rhapson algorithm can further
extend the mantissa’s precision:

x[n+1] = x[n](2 – v*x[n])

where v = the number whose reciprocal is to be found.

x[0], the seed value for the algorithm, is given by RCPDP. For each iteration,
the accuracy doubles. Thus, with one iteration, accuracy is 16 bits in the
mantissa; with the second iteration, the accuracy is 32 bits; with the third itera-
tion, the accuracy is the full 52 bits.

Execution if (cond) rcp(src2) → dst
else nop



RCPDP Double-Precision Floating-Point Reciprocal Approximation

4-62

Notes:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a signed denormalized number, signed infinity is placed in dst
and the DIV0, INFO, OVER, INEX, and DEN2 bits are set.

4) If src2 is signed 0, signed infinity is placed in dst and the DIV0 and INFO
bits are set.

5) If src2 is signed infinity, signed 0 is placed in dst.

6) If the result underflows, signed 0 is placed in dst and the INEX and
UNDER bits are set. Underflow occurs when 21022 � src2 � infinity.

Pipeline 
Stage E1 E2

Read src2_l
src2_h

Written dst_l dst_h

Unit in use .S

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type 2-cycle DP

Delay Slots 1

Functional Unit
Latency

1

Example RCPDP .S1 A1:A0,A3:A2

Before instruction 2 cycles after instruction

A1:A0 4010 0000h 0000 0000h A1:A0 4010 0000h 0000 0000h 4.00

A3:A2 XXXX XXXXh XXXX XXXXh A3:A2 3FD0 0000h 0000 0000h 0.25

Pipeline



 Single-Precision Floating-Point Reciprocal Approximation RCPSP

4-63  TMS320C67x Floating-Point Instruction Set

Syntax RCPSP  (.unit) src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
dst

xsp
sp

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 s p

3 5 5 5 6

6

1

11

x00000src2

Description The single-precision floating-point reciprocal approximation value of src2 is
placed in dst.

The RCPSP instruction provides the correct exponent, and the mantissa is
accurate to the eighth binary position (therefore, mantissa error is less than
2–8). This estimate can be used as a seed value for an algorithm to compute
the reciprocal to greater accuracy. The Newton-Rhapson algorithm can further
extend the mantissa’s precision:

x[n+1] = x[n](2 – v*x[n])

where v = the number whose reciprocal is to be found.

x[0], the seed value for the algorithm, is given by RCPSP. For each iteration,
the accuracy doubles. Thus, with one iteration, accuracy is 16 bits in the
mantissa; with the second iteration, the accuracy is the full 23 bits.

Execution if (cond) rcp(src2) → dst
else nop



RCPSP Single-Precision Floating-Point Reciprocal Approximation

4-64

Notes:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a signed denormalized number, signed infinity is placed in dst
and the DIV0, INFO, OVER, INEX, and DEN2 bits are set.

4) If src2 is signed 0, signed infinity is placed in dst and the DIV0 and INFO
bits are set.

5) If src2 is signed infinity, signed 0 is placed in dst.

6) If the result underflows, signed 0 is placed in dst and the INEX and
UNDER bits are set. Underflow occurs when 2126 � src2 � infinity.

Pipeline 
Stage E1

Read src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

Example MPYSP .S1 A1,A2

Before instruction 1 cycle after instruction

A1 4080 0000h 4.0 A1 4080 0000h 4.0

A2 XXXX XXXXh A2 3E80 0000h 0.25

Pipeline



 Double-Precision Floating-Point Square-Root Reciprocal Approximation RSQRDP

4-65  TMS320C67x Floating-Point Instruction Set

Syntax RSQRDP  (.unit) src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
dst

dp
dp

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 0 1 1 1 0 0 0 0 s p

3 5 5 5 6

6

1

11

xrsvsrc2

Description The 64-bit double-precision floating-point square-root reciprocal approxima-
tion value of src2 is placed in dst. The operand is read in one cycle by using
the src1 port for the 32 LSBs and the src2 port for the 32 MSBs.

The RSQRDP instruction provides the correct exponent, and the mantissa is
accurate to the eighth binary position (therefore, mantissa error is less than
2–8). This estimate can be used as a seed value for an algorithm to compute
the reciprocal square root to greater accuracy.

The Newton-Rhapson algorithm can further extend the mantissa’s precision:

x[n+1] = x[n](1.5 – (v/2)*x[n]*x[n])

where v = the number whose reciprocal square root is to be found.

x[0], the seed value for the algorithm is given by RSQRDP. For each iteration
the accuracy doubles. Thus, with one iteration, the accuracy is 16 bits in the
mantissa; with the second iteration, the accuracy is 32 bits; with the third itera-
tion, the accuracy is the full 52 bits.

Execution if (cond) sqrcp(src2) → dst
else nop



RSQRDP Double-Precision Floating-Point Square-Root Reciprocal Approximation

4-66

Notes:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a negative, nonzero, nondenormalized number, NaN_out is
placed in dst and the INVAL bit is set.

4) If src2 is a signed denormalized number, signed infinity is placed in dst
and the DIV0, INEX, and DEN2 bits are set.

5) If src2 is signed 0, signed infinity is placed in dst and the DIV0 and INFO
bits are set. The Newton-Rhapson approximation cannot be used to cal-
culate the square root of 0 because infinity multiplied by 0 is invalid.

6) If src2 is positive infinity, positive 0 is placed in dst.

Pipeline 
Stage E1 E2

Read src2_l
src2_h

Written dst_l dst_h

Unit in use .S

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type 2-cycle DP

Delay Slots 1

Functional Unit
Latency

1

Pipeline



 Double-Precision Floating-Point Square-Root Reciprocal Approximation RSQRDP

4-67  TMS320C67x Floating-Point Instruction Set

Example RCPDP .S1 A1:A0,A3:A2

Before instruction 2 cycles after instruction

A1:A0 4010 0000h 0000 0000h 4.0 A1:A0 4010 0000h 0000 0000h 4.0

A3:A2 XXXX XXXXh XXXX XXXXh A3:A2 3FE0 0000h 0000 0000h 0.5



RSQRSP Single-Precision Floating-Point Square-Root Reciprocal Approximation

4-68

Syntax RSQRSP  (.unit) src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
dst

xsp
sp

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 s p

3 5 5 5 6

6

1

11

x0 0 0 0 0src2

Description The single-precision floating-point square-root reciprocal approximation value
of src2 is placed in dst.

The RSQRSP instruction provides the correct exponent, and the mantissa is
accurate to the eighth binary position (therefore, mantissa error is less than
2–8). This estimate can be used as a seed value for an algorithm to compute
the reciprocal square root to greater accuracy.

The Newton-Rhapson algorithm can further extend the mantissa’s precision:

x[n+1] = x[n](1.5 – (v/2)*x[n]*x[n])

where v = the number whose reciprocal square root is to be found.

x[0], the seed value for the algorithm, is given by RSQRSP. For each iteration,
the accuracy doubles. Thus, with one iteration, accuracy is 16 bits in the
mantissa; with the second iteration, the accuracy is the full 23 bits.

Execution if (cond) sqrcp(src2) → dst
else nop



 Single-Precision Floating-Point Square-Root Reciprocal Approximation RSQRSP

4-69  TMS320C67x Floating-Point Instruction Set

Notes:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a negative, nonzero, nondenormalized number, NaN_out is
placed in dst and the INVAL bit is set.

4) If src2 is a signed denormalized number, signed infinity is placed in dst
and the DIV0, INEX, and DEN2 bits are set.

5) If src2 is signed 0, signed infinity is placed in dst and the DIV0 and INFO
bits are set. The Newton-Rhapson approximation cannot be used to cal-
culate the square root of 0 because infinity multiplied by 0 is invalid.

6) If src2 is positive infinity, positive 0 is placed in dst.

Pipeline 
Stage E1

Read src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

Example 1 RSQRSP .S1 A1,A2

Before instruction 1 cycle after instruction

A1 4080 0000h 4.0 A1 4080 0000h 4.0

A2 XXXX XXXXh A2 3F00 0000h 0.5

Pipeline



RSQRSP Single-Precision Floating-Point Square-Root Reciprocal Approximation

4-70

Example 2 RSQRSP .S2X A1,B2

Before instruction 1 cycle after instruction

A1 4109 999Ah 8.6 A1 4109 999Ah 8.6

B2 XXXX XXXXh B2 3EAE 8000h 0.34082031



 Convert Single-Precision Floating-Point Value to Double-Precision Floating-Point Value SPDP

4-71  TMS320C67x Floating-Point Instruction Set

Syntax SPDP  (.unit) src2, dst

.unit = .S1 or .S2

Opcode map field used... For operand type... Unit

src2
dst

xsp
dp

.S1, .S2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 s p

3 5 5 5 6

6

1

11

x0 0 0 0 0src2

Description The single-precision value in src2 is converted to a double-precision value and
placed in dst.

Execution if (cond) dp(src2) → dst
else nop

Notes:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a signed denormalized number, signed 0 is placed in dst and
the INEX and DEN2 bits are set.

4) If src2 is signed infinity, INFO bit is set.

5) No overflow or underflow can occur.

Pipeline 
Stage E1 E2

Read src2

Written dst_l dst_h

Unit in use .S

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Pipeline



SPDP Convert Single-Precision Floating-Point Value to Double-Precision Floating-Point Value

4-72

Instruction Type 2-cycle DP

Delay Slots 1

Functional Unit
Latency

1

Example SPDP .S1X B2,A1:A0

Before instruction 2 cycles after instruction

B2 4109 999Ah 8.6 B2 4109 999Ah 8.6

A1:A0 XXXX XXXXh XXXX XXXXh A1:A0 4021 3333h 4000 0000h 8.6



 Convert Single-Precision Floating-Point Value to Integer SPINT

4-73  TMS320C67x Floating-Point Instruction Set

Syntax SPINT  (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src2
dst

xsp
sint

.L1, .L2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 0 0 0 1 0 1 0 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The single-precision value in src2 is converted to an integer and placed in dst.

Execution if (cond) int(src2) → dst
else nop

Notes:

1) If src2 is NaN, the maximum signed integer (7FFF FFFFh or
8000 0000h) is placed in dst and the INVAL bit is set.

2) If src2 is signed infinity or if overflow occurs, the maximum signed integer
(7FFF FFFFh or 8000 0000h) is placed in dst and the INEX and OVER
bits are set. Overflow occurs if src2 is greater than 231 – 1 or less than
–231.

3) If src2 is denormalized, 0000 0000h is placed in dst and INEX and DEN2
bits are set.

4) If rounding is performed, the INEX bit is set.

Pipeline 
Stage E1 E2 E3 E4

Read src2

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

Pipeline



SPINT Convert Single-Precision Floating-Point Value to Integer

4-74

Example SPINT .L1 A1,A2

Before instruction 4 cycles after instruction

A1 4109 9999Ah 8.6 A1 4109 999Ah 8.6

A2 XXXX XXXXh A2 0000 0009h 9



 Convert Single-Precision Floating-Point Value to Integer With Truncation SPTRUNC

4-75  TMS320C67x Floating-Point Instruction Set

Syntax SPTRUNC  (.unit) src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit

src2
dst

xsp
sint

.L1, .L2

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x 0 0 0 1 0 1 1 1 1 0 s p

3 5 5 5 7

src2 0 0 0 0 0

Description The single-precision value in src2 is converted to an integer and placed in dst.
This instruction operates like SPINT except that the rounding modes in the
FADCR are ignored, and round toward zero (truncate) is always used.

Execution if (cond) int(src2) → dst
else nop

Notes:

1) If src2 is NaN, the maximum signed integer (7FFF FFFFh or
8000 0000h) is placed in dst and the INVAL bit is set.

2) If src2 is signed infinity or if overflow occurs, the maximum signed integer
(7FFF FFFFh or 8000 0000h) is placed in dst and the INEX and OVER
bits are set. Overflow occurs if src2 is greater than 231 – 1 or less than
–231.

3) If src2 is denormalized, 0000 0000h is placed in dst and INEX and DEN2
bits are set.

4) If rounding is performed, the INEX bit is set.

Pipeline 
Stage E1 E2 E3 E4

Read src2

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Pipeline



SPTRUNC Convert Single-Precision Floating-Point Value to Integer With Truncation

4-76

Functional Unit
Latency

1

Example SPTRUNC .L1X B1,A2

Before instruction 4 cycles after instruction

B1 4109 9999Ah 8.6 B1 4109 999Ah 8.6

A2 XXXX XXXXh A2 0000 0008h 8



 Double-Precision Floating-Point Subtract SUBDP

4-77  TMS320C67x Floating-Point Instruction Set

Syntax SUBDP  (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

dp
xdp
dp

.L1, .L2 0011001

src1
src2
dst

xdp
dp
dp

.L1, .L2 0011101

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1

Execution if (cond) src1 – src2 → dst
else nop



SUBDP Double-Precision Floating-Point Subtract

4-78

Notes:

1) If rounding is performed, the INEX bit is set.

2) If one source is SNaN or QNaN, the result is NaN_out. If either source
is SNaN, the INVAL bit is set also.

3) If both sources are +infinity or –infinity, the result is NaN_out and the
INVAL bit is set.

4) If one source is signed infinity and the other source is anything except
NaN or signed infinity of the same sign, the result is signed infinity and
the INFO bit is set.

5) If overflow occurs, the INEX and OVER bits are set and the results are
set as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +infinity +LFPN +infinity +LFPN

– –infinity –LFPN –LFPN –infinity

6) If underflow occurs, the INEX and UNDER bits are set and the results
are set as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +0 +0 +SFPN +0

– –0 –0 –0 –SFPN

7) If the sources are equal numbers of the same sign, the result is +0 unless
the rounding mode is –infinity, in which case the result is –0.

8) If the sources are both 0 with opposite signs or both denormalized with
opposite signs, the sign of the result is the same as the sign of src1.

9) A signed denormalized source is treated as a signed 0 and the DENn bit
is set. If the other source is not NaN or signed infinity, the INEX bit is also
set.



 Double-Precision Floating-Point Subtract SUBDP

4-79  TMS320C67x Floating-Point Instruction Set

Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7

Read src1_l
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .L .L

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type ADDDP/SUBDP

Delay Slots 6

Functional Unit
Latency

2

Example SUBDP .L1X B1:B0,A3:A2,A5:A4

Before instruction 7 cycles after instruction

B1:B0 4021 3333h 3333 3333h 8.6 B1:B0 4021 3333h 3333 3333h 8.6

A3:A2 C004 0000h 0000 0000h –2.5 A3:A2 C004 0000h 0000 0000h –2.5

A5:A4 XXXX XXXXh XXXX XXXXh A5:A4 4026 3333h 3333 3333h 11.1

Pipeline



SUBSP Single-Precision Floating-Point Subtract

4-80

Syntax SUBSP  (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sp
xsp
sp

.L1, .L2 0010001

src1
src2
dst

xsp
sp
sp

.L1, .L2 0010101

Opcode
31 29 28 27 23 22 18 17

creg z dst

13 12 11 5 4 3 2 1 0

x op 1 1 0 s p

3 5 5 5 7

src2 src1

Execution if (cond) src1 – src2 → dst
else nop



 Single-Precision Floating-Point Subtract SUBSP

4-81  TMS320C67x Floating-Point Instruction Set

Notes:

1) If rounding is performed, the INEX bit is set.

2) If one source is SNaN or QNaN, the result is NaN_out. If either source
is SNaN, the INVAL bit is set also.

3) If both sources are +infinity or –infinity, the result is NaN_out and the
INVAL bit is set.

4) If one source is signed infinity and the other source is anything except
NaN or signed infinity of the same sign, the result is signed infinity and
the INFO bit is set.

5) If overflow occurs, the INEX and OVER bits are set and the results are
set as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +infinity +LFPN +infinity +LFPN

– –infinity –LFPN –LFPN –infinity

6) If underflow occurs, the INEX and UNDER bits are set and the results
are set as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity –Infinity

+ +0 +0 +SFPN +0

– –0 –0 –0 –SFPN

7) If the sources are equal numbers of the same sign, the result is +0 unless
the rounding mode is –infinity, in which case the result is –0.

8) If the sources are both 0 with opposite signs or both denormalized with
opposite signs, the sign of the result is the same as the sign of src1.

9) A signed denormalized source is treated as a signed 0 and the DENn bit
is set. If the other source is not NaN or signed infinity, the INEX bit is also
set.



SUBSP Single-Precision Floating-Point Subtract

4-82

Pipeline 
Stage E1 E2 E3 E4

Read src1
src2

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

Example SUBSP .L1X A2,B1,A3

Before instruction 4 cycles after instruction

A2 4109 999Ah A2 4109 999Ah 8.6

B1 C020 0000h B1 C020 0000h –2.5

A3 XXXX XXXXh A3 4131 999Ah 11.1

Pipeline



5-1 August 1996

 TMS320C62x Pipeline

The ’C62x pipeline provides flexibility to simplify programming and improve
performance. Two factors provide this flexibility:

� Control of the pipeline is simplified by eliminating pipeline interlocks.

� Increased pipelining eliminates traditional architectural bottlenecks in
program fetch, data access, and multiply operations. This provides single-
cycle throughput.

This chapter starts with a description of the pipeline flow. Highlights are:

� The pipeline can dispatch eight parallel instructions every cycle.

� Parallel instructions proceed simultaneously through each pipeline
phase.

� Serial instructions proceed through the pipeline with a fixed relative phase
difference between instructions.

� Load and store addresses appear on the CPU boundary during the same
pipeline phase, eliminating read-after-write memory conflicts.

All instructions require the same number of pipeline phases for fetch and
decode, but require a varying number of execute phases. This chapter
contains a description of the number of execution phases for each type of
instruction. The ’C62x generally requires fewer execution phases than the
’C67x because the ’C62x executes only fixed-point instructions.

Finally, the chapter contains performance considerations for the pipeline.
These considerations include the occurrence of fetch packets that contain
multiple execute packets, execute packets that contain multicycle NOPs, and
memory considerations for the pipeline. For more information about fully
optimizing a program and taking full advantage of the pipeline, see the
TMS320C62x/C67x Programmer’s Guide.

Topic Page

5.1 Pipeline Operation Overview 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.2 Pipeline Execution of Instruction Types 5-11. . . . . . . . . . . . . . . . . . . . . . . . 

5.3 Performance Considerations 5-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 5



Pipeline Operation Overview

 5-2

5.1 Pipeline Operation Overview

The pipeline phases are divided into three stages:

� Fetch
� Decode
� Execute

All instructions in the ’C62x instruction set flow through the fetch, decode, and
execute stages of the pipeline. The fetch stage of the pipeline has four phases
for all instructions, and the decode stage has two phases for all instructions.
The execute stage of the pipeline requires a varying number of phases,
depending on the type of instruction. The stages of the ’C62x pipeline are
shown in Figure 5–1.

Figure 5–1. Fixed-Point Pipeline Stages

Fetch Decode Execute

5.1.1 Fetch

The fetch phases of the pipeline are:

� PG: Program address generate
� PS: Program address send
� PW: Program access ready wait
� PR: Program fetch packet receive

The ’C62x uses a fetch packet (FP) of eight instructions. All eight of the instruc-
tions proceed through fetch processing together, through the PG, PS, PW, and
PR phases. Figure 5–2(a) shows the fetch phases in sequential order from left
to right. Figure 5–2(b) is a functional diagram of the flow of instructions through
the fetch phases. During the PG phase, the program address is generated in
the CPU. In the PS phase, the program address is sent to memory. In the PW
phase, a memory read occurs. Finally, in the PR phase, the fetch packet is re-
ceived at the CPU. Figure 5–2(c) shows fetch packets flowing through the
phases of the fetch stage of the pipeline. In Figure 5–2(c), the first fetch packet
(in PR) is made up of four execute packets, and the second and third fetch
packets (in PW and PS) contain two execute packets each. The last fetch
packet (in PG) contains a single execute packet of eight instructions.



Pipeline Operation Overview

5-3 TMS320C62x Pipeline

Figure 5–2. Fetch Phases of the Pipeline

PRPWPSPG

PW

Memory

PS

PR

PG

Registers

units
Functional

(a) (b)

CPU

PR

PW

PS

PG

256

MVKLDWLDWSHLADDMVKLDWLDW

NOP

MVK

MV

BSADD

SMPYH

SADD

SHR

SMPY

SHR

SMPYH

LDW

LDW

LDW

LDW

MVKBSMPYSMPYHMVMVKLHLDWLDW

Fetch

SMPYH

Decode

(c)



Pipeline Operation Overview

 5-4

5.1.2 Decode

The decode phases of the pipeline are:

� DP: Instruction dispatch
� DC: Instruction decode

In the DP phase of the pipeline, the fetch packets are split into execute pack-
ets. Execute packets consist of one instruction or from two to eight parallel
instructions. During the DP phase, the instructions in an execute packet are
assigned to the appropriate functional units. In the DC phase, the the source
registers, destination registers, and associated paths are decoded for the
execution of the instructions in the functional units.

Figure 5–3(a) shows the decode phases in sequential order from left to right.
Figure 5–3(b) shows a fetch packet that contains two execute packets as they
are processed through the decode stage of the pipeline. The last six instruc-
tions of the fetch packet (FP) are parallel and form an execute packet (EP).
This EP is in the dispatch phase (DP) of the decode stage. The arrows indicate
each instruction’s assigned functional unit for execution during the same cycle.
The NOP instruction in the eighth slot of the FP is not dispatched to a functional
unit because there is no execution associated with it.

The first two slots of the fetch packet (shaded below) represent an execute
packet of two parallel instructions that were dispatched on the previous cycle.
This execute packet contains two MPY instructions that are now in decode
(DC) one cycle before execution. There are no instructions decoded for the .L,
.S, and .D functional units for the situation illustrated.

Figure 5–3. Decode Phases of the Pipeline

(b)

DCDP
(a)

DP
3232323232323232

NOP†ADDKSTWSTWADD

DCMPYHMPYH

.L1 .S1 .D1.M1 .L2.S2.D2 .M2

Decode

ADD

Functional
units

† NOP is not dispatched to a functional unit.



Pipeline Operation Overview

5-5 TMS320C62x Pipeline

5.1.3 Execute

The execute portion of the fixed-point pipeline is subdivided into five phases
(E1–E5). Different types of instructions require different numbers of these
phases to complete their execution. These phases of the pipeline play an im-
portant role in your understanding the device state at CPU cycle boundaries.
The execution of different types of instructions in the pipeline is described in
section 5.2, Pipeline Execution of Instruction Types. Figure 5–4(a) shows the
execute phases of the pipeline in sequential order from left to right.
Figure 5–4(b) shows the portion of the functional block diagram in which
execution occurs.

Figure 5–4. Execute Phases of the Pipeline and Functional Block Diagram of the 
TMS320C62x

E4E3E2E1 E5(a)

(b)

Register file A Register file B
Data 2Data 1 3232

3232

(byte addressable)
Internal data memory

Data address 2Data address 1
98

76543210

16 161616

Data memory interface control

32

.L1
SADD

.S1
B

.M1
SMPY

0135 4 268 71012 11 91415 13 0123456789101112131415

.L2
SADD

.S2
SUBSMPYH

.M2

E1

.D1
STH

.D2
STH

Execute



Pipeline Operation Overview

 5-6

5.1.4 Summary of Pipeline Operation

Figure 5–5 shows all the phases in each stage of the ’C62x pipeline in sequen-
tial order, from left to right.

Figure 5–5. Fixed-Point Pipeline Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5

Fetch Decode Execute

Figure 5–6 shows an example of the pipeline flow of consecutive fetch packets
that contain eight parallel instructions. In this case, where the pipeline is full,
all instructions in a fetch packet are in parallel and split into one execute packet
per fetch packet. The fetch packets flow in lockstep fashion through each
phase of the pipeline.

For example, examine cycle 7 in Figure 5–6. When the instructions from FP n
reach E1, the instructions in the execute packet from FPn +1 are being
decoded. FP n + 2 is in dispatch while FPs n + 3, n + 4, n + 5, and n + 6 are
each in one of four phases of program fetch. See section 5.3, Performance
Considerations, on page 5-18 for additional detail on code flowing through the
pipeline.

Figure 5–6. Pipeline Operation: One Execute Packet per Fetch Packet

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁClock cycleÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Fetch
packet

ÁÁÁ
ÁÁÁ
ÁÁÁ

1

ÁÁÁ
ÁÁÁ
ÁÁÁ

2

ÁÁÁ
ÁÁÁ
ÁÁÁ

3

ÁÁÁ
ÁÁÁ
ÁÁÁ

4

ÁÁÁ
ÁÁÁ
ÁÁÁ

5

ÁÁÁ
ÁÁÁ
ÁÁÁ

6

ÁÁÁ
ÁÁÁ
ÁÁÁ

7

ÁÁÁ
ÁÁÁ
ÁÁÁ

8

ÁÁÁ
ÁÁÁ
ÁÁÁ

9

ÁÁÁ
ÁÁÁ
ÁÁÁ

10

ÁÁÁ
ÁÁÁ
ÁÁÁ

11

ÁÁÁ
ÁÁÁ
ÁÁÁ

12

ÁÁÁ
ÁÁÁ
ÁÁÁ

13

ÁÁÁÁ
ÁÁÁÁ

n PG PS PW PR DP DC E1 E2 E3 E4 E5ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁn+1 ÁÁÁPG PS PW PR DP DC E1 E2 E3 E4 E5ÁÁÁÁÁÁÁ

ÁÁÁÁn+2
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁPG PS PW PR DP DC E1 E2 E3 E4 E5ÁÁÁÁ

ÁÁÁÁ
n+3 ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2 E3 E4

ÁÁÁÁ
ÁÁÁÁ

n+4 ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2 E3

ÁÁÁÁ
ÁÁÁÁ

n+5 ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2

ÁÁÁÁ
ÁÁÁÁ

n+6 ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1

ÁÁÁÁn+7 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPG PS PW PR DP DCÁÁÁÁ
ÁÁÁÁ

n+8
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP

ÁÁÁÁ
ÁÁÁÁ

n+9 ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR

ÁÁÁÁ
ÁÁÁÁ

n+10ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW



Pipeline Operation Overview

5-7 TMS320C62x Pipeline

Table 5–1 summarizes the pipeline phases and what happens in each.

Table 5–1. Operations Occurring During Fixed-Point Pipeline Phases

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Stage

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Phase

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

Symbol

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

During This Phase

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Instruction
Type

Completed

Program
fetch

Program address
generate

PG The address of the fetch packet is determined.

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Program address
send

ÁÁÁ
ÁÁÁ
ÁÁÁ

PSÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The address of the fetch packet is sent to
memory.

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁProgram wait PW A program memory access is performed.

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Program data
receive

ÁÁÁ
ÁÁÁ
ÁÁÁ

PRÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The fetch packet is at the CPU boundary. ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁProgram 

decode
Dispatch DP The next execute packet in the fetch packet is de-

termined and sent to the appropriate functional
units to be decoded.

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Decode ÁÁÁ
ÁÁÁ

DCÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Instructions are decoded in functional units. ÁÁÁÁÁÁ
ÁÁÁÁÁÁExecute Execute 1 E1 For all instruction types, the conditions for the

instructions are evaluated and operands are
read.

For load and store instructions, address genera-
tion is performed and address modifications are
written to a register file.†

For branch instructions, branch fetch packet in
PG phase is affected.†

For single-cycle instructions, results are written
to a register file.†

Single cycle

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Execute 2 ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E2ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

For load instructions, the address is sent to
memory. For store instructions, the address and
data are sent to memory.†

Single-cycle instructions that saturate results set
the SAT bit in the control status register (CSR) if
saturation occurs.†

For multiply instructions, results are written to a
register file.†

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Multiply

Execute 3 E3 Data memory accesses are performed. Any mul-
tiply instruction that saturates results sets the
SAT bit in the control status register (CSR) if sat-
uration occurs.†

Store

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Execute 4 ÁÁÁ
ÁÁÁ
ÁÁÁ

E4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

For load instructions, data is brought to the CPU
boundary.†

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁExecute 5 E5 For load instructions, data is written into a regis-

ter.†
Load

† This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction
does not write any results or have any pipeline operation after E1.



Pipeline Operation Overview

 5-8

Figure 5–7 shows a ’C62x functional block diagram laid out vertically by
stages of the pipeline.

Figure 5–7. Functional Block Diagram of TMS320C62x Based on Pipeline Phases

DP

PR

PW

PS

PG

3232323232323232

256

SMPYHSMPYHLDWLDW

BSUBSMPY

SMPYH

SMPYH

SMPYH

SADDSADD

SADD

STH

LDW

STH

LDW

BSUBSMPYSMPYHSADDSADDSTHSTH

BSUBSMPYSMPYHSADDSADDSTHSTH

Register file A Register file B
Data 2Data 1 3232

3232

(byte addressable)
Internal data memory

Data address 2Data address 1
98

76543210

16 161616

Data memory interface control

DCLDW SHRSMPYH MVLDWSMPYHSHR

32

E1
.L1

SADD
.S1
B

.D1.M1
SMPY

0135 4 268 71012 11 91415 13 0123456789101112131415

.L2
SADD

.S2
MVK

.D2
SMPYH

.M2

Fetch

Decode

Execute

SADD

SADD

SADD

SHR SHR

SHR SHR



Pipeline Operation Overview

5-9 TMS320C62x Pipeline

The pipeline operation is based on CPU cycles. A CPU cycle is the period dur-
ing which a particular execute packet is in a particular pipeline phase. CPU
cycle boundaries always occur at clock cycle boundaries.

As code flows through the pipeline phases, it is processed by different parts
of the ’C62x. Figure 5–7 shows a full pipeline with a fetch packet in every
phase of fetch. One execute packet of eight instructions is being dispatched
at the same time that a 7-instruction execute packet is in decode. The arrows
between DP and DC correspond to the functional units identified in the code
in Example 5–1.

Example 5–1. Execute Packet in Figure 5–7

        SADD    .L1     A2,A7,A2        ; E1 Phase
||      SADD    .L2     B2,B7,B2
||      SMPYH   .M2X    B3,A3,B2
||      SMPY    .M1X    B3,A3,A2
||      B       .S1     LOOP1
||      MVK     .S2     117,B1

        LDW     .D2     *B4++,B3        ; DC Phase
||      LDW     .D1     *A4++,A3
||      MV      .L2X    A1,B0
||      SMPYH   .M1     A2,A2,A0
||      SMPYH   .M2     B2,B2,B10
||      SHR     .S1     A2,16,A5
||      SHR     .S2     B2,16,B5

LOOP1:

        STH     .D1     A5,*A8++[2]     ; DP, PW, and PG
Phases
||      STH     .D2     B5,*B8++[2]
||      SADD    .L1     A2,A7.A2
||      SADD    .L2     B2,B7,B2
||      SMPYH   .M2X    B3,A3,B2
||      SMPY    .M1X    B3,A3,A2
|| [B1] B       .S1     LOOP1
|| [B1] SUB     .S2     B1,1,B1

        LDW     .D2     *B4++,B3        : PR and PS Phases
||      LDW     .D1     *A4++,A3
||      SADD    .L1     A0,A1,A1
||      SADD    .L2     B10,B0,B0
||      SMPYH   .M1     A2,A2,A0
||      SMPYH   .M2     B2,B2,B10
||      SHR     .S1     A2,16,A5
||      SHR     .S2     B2,16,B5



Pipeline Operation Overview

 5-10

In the DC phase portion of Figure 5–7, one box is empty because a NOP was
the eighth instruction in the fetch packet in DC and no functional unit is needed
for a NOP. Finally, the figure shows six functional units processing code during
the same cycle of the pipeline.

Registers used by the instructions in E1 are shaded in Figure 5–7. The multi-
plexers used for the input operands to the functional units are also shaded in
the figure. The bold crosspaths are used by the MPY instructions.

Most ’C62x instructions are single-cycle instructions, which means they have
only one execution phase (E1). A small number of instructions require more
than one execute phase. The types of instructions, each of which require differ-
ent numbers of execute phases, are described in section 5.2, Pipeline Execu-
tion of Instruction Types.



Pipeline Execution of Instruction Types

5-11 TMS320C62x Pipeline

5.2 Pipeline Execution of Instruction Types

The pipeline operation of the ’C62x instructions can be categorized into six
instruction types. Five of these are shown in Table 5–2 (NOP is not included
in the table), which is a mapping of operations occurring in each execution
phase for the different instruction types. The delay slots associated with each
instruction type are listed in the bottom row.

Table 5–2. Execution Stage Length Description for Each Instruction Type
ÁÁÁÁ
ÁÁÁÁ

ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁInstruction TypeÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Single Cycle
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Multiply
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Store
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Load
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Branch

Execution
phases

E1 Compute result
and write to 
register

Read operands
and start 
computations

Compute 
address

Compute 
address

Target code
in PG‡

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁ
ÁÁ
ÁÁ
ÁÁ

E2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Compute result
and write to 
register

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Send address
and data to
memory

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Send address to
memory

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁE3 Access memory Access memory

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁ
ÁÁ
ÁÁ

E4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Send data back
to CPU

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E5 Write data into
register

Delay
slots

0 1 0† 4† 5‡

† See section 5.2.3 and 5.2.4 for more information on execution and delay slots for stores and loads.
‡ See section 5.2.5 for more information on branches.

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false,
the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.

The execution of instructions can be defined in terms of delay slots. A delay
slot is a CPU cycle that occurs after the first execution phase (E1) of an instruc-
tion. Results from instructions with delay slots are not available until the end
of the last delay slot. For example, a multiply instruction has one delay slot,
which means that one CPU cycle elapses before the results of the multiply are
available for use by a subsequent instruction. However, results are available
from other instructions finishing execution during the same CPU cycle in which
the multiply is in a delay slot.



Pipeline Execution of Instruction Types

 5-12

5.2.1 Single-Cycle Instructions

Single-cycle instructions complete execution during the E1 phase of the pipe-
line. Figure 5–8 shows the fetch, decode, and execute phases of the pipeline
that single-cycle instructions use.

Figure 5–8. Single-Cycle Instruction Phases

PG PS PW PR DP DC E1

Figure 5–9 shows the single-cycle execution diagram. The operands are read,
the operation is performed, and the results are written to a register, all during
E1. Single-cycle instructions have no delay slots.

Figure 5–9. Single-Cycle Execution Block Diagram

(data)
Operands

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Register file

Write results

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Functional
unit

.L, .S, .M,
or .D

E1

5.2.2 Multiply Instructions

Multiply instructions use both the E1 and E2 phases of the pipeline to complete
their operations. Figure 5–10 shows the pipeline phases the multiply instruc-
tions use.

Figure 5–10. Multiply Instruction Phases

PG PS PW PR DP DC E1 E2 1 delay slot



Pipeline Execution of Instruction Types

5-13 TMS320C62x Pipeline

Figure 5–11 shows the operations occurring in the pipeline for a multiply. In the
E1 phase, the operands are read and the multiply begins. In the E2 phase, the
multiply finishes, and the result is written to the destination register. Multiply
instructions have one delay slot.

Figure 5–11.Multiply Execution Block Diagram

(data)
Operands

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Register file

Write results

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Functional
unit

.M

E1

E2

5.2.3 Store Instructions

Store instructions require phases E1 through E3 to complete their operations.
Figure 5–12 shows the pipeline phases the store instructions use.

Figure 5–12. Store Instruction Phases

PG PS PW PR DP DC E1 E2 E3

A
dd

re
ss

m
od

ifi
ca

tio
n

Figure 5–13 shows the operations occurring in the pipeline phases for a store.
In the E1 phase, the address of the data to be stored is computed. In the E2
phase, the data and destination addresses are sent to data memory. In the E3
phase, a memory write is performed. The address modification is performed
in the E1 stage of the pipeline. Even though stores finish their execution in the
E3 phase of the pipeline, they have no delay slots.



Pipeline Execution of Instruction Types

 5-14

Figure 5–13. Store Execution Block Diagram

Memory

E2

E3

Memory controller

Register file

E1

.D

Data

E2

Address

Functional
unit

When you perform a load and a store to the same memory location, these rules
apply (i = cycle):

� When a load is executed before a store, the old value is loaded and the
new value is stored.
i LDW
i + 1 STW

� When a store is executed before a load, the new value is stored and the
new value is loaded.
i STW
i + 1 LDW

� When the instructions are executed in parallel, the old value is loaded first
and then the new value is stored, but both occur in the same phase.
i STW
i || LDW

There is additional explanation of why stores have zero delay slots in section
5.2.4.



Pipeline Execution of Instruction Types

5-15 TMS320C62x Pipeline

5.2.4 Load Instructions

Data loads require all five of the pipeline execute phases to complete their op-
erations. Figure 5–14 shows the pipeline phases the load instructions use.

Figure 5–14. Load Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5

4 delay slots

A
dd

re
ss

m
od

ifi
ca

tio
n

Figure 5–15 shows the operations occurring in the pipeline phases for a load.
In the E1 phase, the data address pointer is modified in its register. In the E2
phase, the data address is sent to data memory. In the E3 phase, a memory
read at that address is performed.

Figure 5–15. Load Execution Block Diagram

E5

Address

E3

Memory

E2

E4
Memory controller

Register file

E1

.D

Functional
unit

Data

In the E4 stage of a load, the data is received at the CPU core boundary. Final-
ly, in the E5 phase, the data is loaded into a register. Because data is not written
to the register until E5, load instructions have four delay slots. Because pointer
results are written to the register in E1, there are no delay slots associated with
the address modification.



Pipeline Execution of Instruction Types

 5-16

In the following code, pointer results are written to the A4 register in the first
execute phase of the pipeline and data is written to the A3 register in the fifth
execute phase.

LDW  .D1  *A4++,A3

Because a store takes three execute phases to write a value to memory and
a load takes three execute phases to read from memory, a load following a
store accesses the value placed in memory by that store in the cycle after the
store is completed. This is why the store is considered to have zero delay slots.

5.2.5 Branch Instructions

Although branch takes one execute phase, there are five delay slots between
the execution of the branch and execution of the target code. Figure 5–16
shows the pipeline phases used by the branch instruction and branch target
code. The delay slots are shaded.

Figure 5–16. Branch Instruction Phases

Branch
target

PG PS PW PR DP DC E1

5 delay slots

PG PS PW PR DP DC E1



Pipeline Execution of Instruction Types

5-17 TMS320C62x Pipeline

Figure 5–17 shows a branch execution block diagram. If a branch is in the E1
phase of the pipeline (in the .S2 unit in the figure), its branch target is in the
fetch packet that is in PG during that same cycle (shaded in the figure).
Because the branch target has to wait until it reaches the E1 phase to begin
execution, the branch takes five delay slots before the branch target code
executes.

Figure 5–17. Branch Execution Block Diagram

DP

PR

PW

PS

PG

3232323232323232

256

NOPMVSMPYHSMPYHSHRSHRLDWLDW

B

LDW

SUB

LDW

SMPY

SMPYH

SMPYH

SMPYH

SADD

SHR

SADD

SHR

STH

SADD

STH

SADD

BSUBSMPYSMPYHSADDSADDSTHSTH

MVKBSADDSADDSMPYSMPYH

DCLDWLDW

E1

.L1 .S1
MVK

.D1.M1
SMPY

.S2
B

.D2
SMPYH

.M2

Fetch

Decode

Execute

.L2



Performance Considerations

 5-18

5.3 Performance Considerations
The ’C62x pipeline is most effective when it is kept as full as the algorithms in
the program allow it to be. It is useful to consider some situations that can affect
pipeline performance.

A fetch packet (FP) is a grouping of eight instructions. Each FP can be split into
from one to eight execute packets (EPs). Each EP contains instructions that
execute in parallel. Each instruction executes in an independent functional
unit. The effect on the pipeline of combinations of EPs that include varying
numbers of parallel instructions, or just a single instruction that executes seri-
ally with other code, is considered here.

In general, the number of execute packets in a single FP defines the flow of
instructions through the pipeline. Another defining factor is the instruction
types in the EP. Each type of instruction has a fixed number of execute cycles
that determines when this instruction’s operations are complete. Section 5.3.2
covers the effect of including a multicycle NOP in an individual EP.

Finally, the effect of the memory system on the operation of the pipeline is con-
sidered. The access of program and data memory is discussed, along with
memory stalls.

5.3.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet

Again referring to Figure 5–6 on page 5-6, pipeline operation is shown with
eight instructions in every fetch packet. Figure 5–18, however, shows the pipe-
line operation with a fetch packet that contains multiple execute packets. Code
for Figure 5–18 might have this layout:

instruction A ; EP k FP n
|| instruction B ;

instruction C ; EP k + 1 FP n
|| instruction D 
|| instruction E 

instruction F ; EP k + 2 FP n
|| instruction G 
|| instruction H 

instruction I ; EP k + 3 FP n + 1
|| instruction J 
|| instruction K 
|| instruction L 
|| instruction M 
|| instruction N 
|| instruction O 
|| instruction P 

... continuing with EPs k + 4 through k + 8, which have
eight instructions in parallel, like k + 3.



Performance Considerations

5-19 TMS320C62x Pipeline

Figure 5–18. Pipeline Operation: Fetch Packets With Different Numbers of Execute
Packets

Clock cycle
Fetch
packet

(FP)

Execute
packet

(EP) 1 2 3 4 5 6 7 8 9 10 11 12 13
n k PG PS PW PRÉÉÉ

ÉÉÉ
DP DC E1 E2 E3 E4 E5

n k+1 ÉÉÉDP DC E1 E2 E3 E4 E5

n k+2
ÉÉÉ
ÉÉÉ

DP DC E1 E2 E3 E4 E5

n+1 k+3 PG PS PW PR DP DC E1 E2 E3 E4

n+2 k+4 PG PS PW Pipeline PR DP DC E1 E2 E3

n+3 k+5 PG PS stall PW PR DP DC E1 E2

n+4 k+6 PG PS PW PR DP DC E1

n+5 k+7 PG PS PW PR DP DC

n+6 k+8 PG PS PW PR DP

In Figure 5–18, fetch packet n, which contains three execute packets, is
shown followed by six fetch packets (n + 1 through n + 6), each with one
execute packet (containing eight parallel instructions). The first fetch packet
(n) goes through the program fetch phases during cycles 1–4. During these
cycles, a program fetch phase is started for each of the fetch packets that
follow.

In cycle 5, the program dispatch (DP) phase, the CPU scans the p-bits and
detects that there are three execute packets (k through k + 2) in fetch packet
n. This forces the pipeline to stall, which allows the DP phase to start for
execute packets k + 1 and k + 2 in cycles 6 and 7. Once execute packet k + 2
is ready to move on to the DC phase (cycle 8), the pipeline stall is released.

The fetch packets n + 1 through n + 4 were all stalled so the CPU could have
time to perform the DP phase for each of the three execute packets (k through
k + 2) in fetch packet n. Fetch packet n + 5 was also stalled in cycles 6 and 7:
it was not allowed to enter the PG phase until after the pipeline stall was
released in cycle 8. The pipeline continues operation as shown with fetch
packets n + 5 and n + 6 until another fetch packet containing multiple execu-
tion packets enters the DP phase, or an interrupt occurs.



Performance Considerations

 5-20

5.3.2 Multicycle NOPs

The NOP instruction has an optional operand, count, that allows you to issue
a single instruction for multicycle NOPs. A NOP 2, for example, fills in extra
delay slots for the instructions in its execute packet and for all previous execute
packets. If a NOP 2 is in parallel with an MPY instruction, the MPY’s results
will be available for use by instructions in the next execute packet.

Figure 5–19 shows how a multicycle NOP can drive the execution of other
instructions in the same execute packet. Figure 5–19(a) shows a NOP in an
execute packet (in parallel) with other code. The results of the LD, ADD, and
MPY will all be available during the proper cycle for each instruction. Hence
NOP has no effect on the execute packet.

Figure 5–19(b) shows the replacement of the single-cycle NOP with a multi-
cycle NOP (NOP 5) in the same execute packet. The NOP 5 will cause no op-
eration to perform other than the operations from the instructions inside its
execute packet. The results of the LD, ADD, and MPY cannot be used by any
other instructions until the NOP 5 period has completed.

Figure 5–19. Multicycle NOP in an Execute Packet

Execute packet

Cycle

i + 5

i + 4

i + 3

i + 2

i + 1

i

Can use LD result

Can use MPY results

Can use ADD results

NOPMPYADDLD(a)

Execute packet

Cycle

i + 5

i + 4

i + 3

i + 2

i + 1

i

All values available on i + 5

NOP 5MPYADDLD

(b)



Performance Considerations

5-21 TMS320C62x Pipeline

Figure 5–20 shows how a multicycle NOP can be affected by a branch. If the
delay slots of a branch finish while a multicycle NOP is still dispatching NOPs
into the pipeline, the branch overrides the multicycle NOP and the branch
target begins execution five delay slots after the branch was issued.

Figure 5–20. Branching and Multicycle NOPs

EP7
Normal

Cycle #

11

10

9

8

7

6

5

4

3

2

1

Target

E1

DC

DP

PR

PW

PS

PG

Branch

E1

EP6

EP5

EP4

EP3

EP2

EP1

NOP5ADDMPYLD

EP without branch

EP without branch

. . .B

EP without branch

EP without branch

Branch will execute here

Pipeline Phase

�

�

�

�

�

Branch
EP7

See Figure 5–19(b)

† Delay slots of the branch

In one case, execute packet 1 (EP1) does not have a branch. The NOP 5 in
EP6 will force the CPU to wait until cycle 11 to execute EP7.

In the other case, EP1 does have a branch. The delay slots of the branch
coincide with cycles 2 through 6. Once the target code reaches E1 in cycle 7,
it executes.



Performance Considerations

 5-22

5.3.3 Memory Considerations

The ’C62x has a memory configuration typical of a DSP, with program memory
in one physical space and data memory in another physical space. Data loads
and program fetches have the same operation in the pipeline, they just use dif-
ferent phases to complete their operations. With both data loads and program
fetches, memory accesses are broken into multiple phases. This enables the
’C62x to access memory at a high speed. These phases are shown in
Figure 5–21.

Figure 5–21. Pipeline Phases Used During Memory Accesses

Program memory accesses use these pipeline phases

Data load accesses use these pipeline phases

PG PS PW PR DP

E1 E2 E3 E4 E5

To understand the memory accesses, compare data loads and instruction
fetches/dispatches. The comparison is valid because data loads and program
fetches operate on internal memories of the same speed on the ’C62x and per-
form the same types of operations (listed in Table 5–3) to accommodate those
memories. Table 5–3 shows the operation of program fetches pipeline versus
the operation of a data load.

Table 5–3. Program Memory Accesses Versus Data Load Accesses

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Operation

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Program
Memory
Access
Phase

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Data
Load

 Access
Phase

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Compute address ÁÁÁÁ
ÁÁÁÁ

PG ÁÁÁÁÁ
ÁÁÁÁÁ

E1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Send address to memory
ÁÁÁÁ
ÁÁÁÁ

PS
ÁÁÁÁÁ
ÁÁÁÁÁ

E2
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Memory read/write
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PW
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Program memory: receive fetch packet at CPU boundary
Data load: receive data at CPU boundary

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PR ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Program memory: send instruction to functional units
Data load: send data to register

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

DP ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E5

Depending on the type of memory and the time required to complete an ac-
cess, the pipeline may stall to ensure proper coordination of data and instruc-
tions. This is discussed in section 5.3.3.1, Memory Stalls.



Performance Considerations

5-23 TMS320C62x Pipeline

In the instance where multiple accesses are made to a single ported memory,
the pipeline will stall to allow the extra access to occur. This is called a memory
bank hit and is discussed in section 5.3.3.2, Memory Bank Hits.

5.3.3.1 Memory Stalls

A memory stall occurs when memory is not ready to respond to an access from
the CPU. This access occurs during the PW phase for a program memory
access and during the E3 phase for a data memory access. The memory stall
causes all of the pipeline phases to lengthen beyond a single clock cycle, caus-
ing execution to take additional clock cycles to finish. The results of the
program execution are identical whether a stall occurs or not. Figure 5–22
illustrates this point.

Figure 5–22. Program and Data Memory Stalls

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clock cycle

ÁÁÁ
ÁÁÁ
ÁÁÁ

Fetch
packet

(FP)

ÁÁÁ
ÁÁÁ
ÁÁÁ

1

ÁÁ
ÁÁ
ÁÁ

2

ÁÁÁ
ÁÁÁ
ÁÁÁ

3

ÁÁÁ
ÁÁÁ
ÁÁÁ

4

ÁÁ
ÁÁ
ÁÁ

5

ÁÁÁ
ÁÁÁ
ÁÁÁ

6

ÁÁÁ
ÁÁÁ
ÁÁÁ

7 8 9

ÁÁÁ
ÁÁÁ
ÁÁÁ

10

ÁÁ
ÁÁ
ÁÁ

11

ÁÁÁ
ÁÁÁ
ÁÁÁ

12

ÁÁÁ
ÁÁÁ
ÁÁÁ

13

ÁÁ
ÁÁ
ÁÁ

14

ÁÁÁ
ÁÁÁ
ÁÁÁ

15

ÁÁÁ
ÁÁÁ
ÁÁÁ

16
ÁÁÁ
ÁÁÁ

n PG PS PW PR DP DC E1 E2 ÉÉ
ÉÉ

E3 E4 E5

ÁÁÁ
ÁÁÁ

n+1ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2 E3 E4

ÁÁÁn+2ÁÁÁÁÁ PG PS PW PR DP Program DC E1 E2 E3ÁÁÁ
ÁÁÁ

n+3
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR memory stall DP DC Data E1 E2
ÁÁÁ
ÁÁÁ

n+4ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS
ÉÉÉ
ÉÉÉ

PW PR DP memory stall DC E1

ÁÁÁ
ÁÁÁ

n+5ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

PG PS PW PR DP DC

ÁÁÁ
ÁÁÁ

n+6ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP

ÁÁÁn+7ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ PG PS PW PRÁÁÁ
ÁÁÁ

n+8
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

PG PS PWÁÁÁ
ÁÁÁ

n+9ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

PG PS

ÁÁÁ
ÁÁÁ

n+10ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG



Performance Considerations

 5-24

5.3.3.2 Memory Bank Hits

Most ’C62x devices use an interleaved memory bank scheme, as shown in
Figure 5–23. Each number in the diagram represents a byte address. A load
byte (LDB ) instruction from address 0 loads byte 0 in bank 0. A load halfword
(LDH) from address 0 loads the halfword value in bytes 0 and 1, which are also
in bank 0. An LDW from address 0 loads bytes 0 through 3 in banks 0 and 1.

Figure 5–23. 4-Bank Interleaved Memory

6 7

14 15

8N + 6 8N + 7

Bank 3Bank 2

8N + 58N + 4

1312

542 3

10 11

8N + 2 8N + 3

Bank 1Bank 0

8N + 18N

98

10

Because each of these banks is single-ported memory, only one access to
each bank is allowed per cycle. Two accesses to a single bank in a given cycle
result in a memory stall that halts all pipeline operation for one cycle, while the
second value is read from memory. Two memory operations per cycle are
allowed without any stall, as long as they do not access the same bank.

Consider the code in Example 5–2. Because both loads are trying to access
the same bank at the same time, one load must wait. The first LDW accesses
bank 0 on cycle i + 2 (in the E3 phase) and the second LDW accesses bank
0 on cycle i + 3 (in the E3 phase). See Table 5–4 for identification of cycles and
phases. The E4 phase for both LDW instructions is in cycle i + 4. To eliminate
this extra phase, the loads must access data from different banks (B4 address
would need to be in bank 1). For more information on programming topics, see
the TMS320C62x/C67x Programmer’s Guide.

Example 5–2. Load From Memory Banks

LDW .D1 *A4++,A5 ; load 1, A4 address is in bank 0
|| LDW .D2 *B4++,B5 ; load 2, B4 address is in bank 0



Performance Considerations

5-25 TMS320C62x Pipeline

Table 5–4. Loads in Pipeline From Example 5–2

i i + 1 i + 2 i + 3 i + 4 i + 5

LDW .D1
Bank 0

E1 E2 E3 � E4 E5

LDW .D2
Bank 0

E1 E2 � E3 E4 E5

† Stall due to memory bank hit

For devices that have more than one memory space (see Figure 5–24), an
access to bank 0 in one space does not interfere with an access to bank 0 in
another memory space, and no pipeline stall occurs.

Figure 5–24. 4-Bank Interleaved Memory With Two Memory Spaces

6 7

14 15

8N + 6 8N + 7

Bank 3Bank 2

8N + 58N + 4

1312

542 3

10 11

8N + 2 8N + 3

Bank 1Bank 0

8N + 18N

98

10

8M + 6 8M + 78M + 58M + 48M + 2 8M + 38M + 18M

Memory
space 0

Memory
space 1

Bank 3Bank 2Bank 1Bank 0

The internal memory of the ’C62x family varies from device to device. See the
TMS320C6201/C6701 Peripherals Reference Guide to determine the
memory spaces in your particular device.



6-1 August 1996

 TMS320C67x Pipeline

The ’C67x pipeline provides flexibility to simplify programming and improve
performance. Two factors provide this flexibility:

� Control of the pipeline is simplified by eliminating pipeline interlocks.

� Increased pipelining eliminates traditional architectural bottlenecks in
program fetch, data access, and multiply operations. This provides single-
cycle throughput.

This chapter starts with a description of the pipeline flow. Highlights are:

� The pipeline can dispatch eight parallel instructions every cycle.

� Parallel instructions proceed simultaneously through each pipeline
phase.

� Serial instructions proceed through the pipeline with a fixed relative phase
difference between instructions.

� Load and store addresses appear on the CPU boundary during the same
pipeline phase, eliminating read-after-write memory conflicts.

All instructions require the same number of pipeline phases for fetch and
decode, but require a varying number of execute phases. This chapter con-
tains a description of the number of execution phases for each type of instruc-
tion. The TMS320C67x generally has more execution phases than the ’C62x
because it processes floating-point instructions.

Finally, the chapter contains performance considerations for the pipeline.
These considerations include the occurrence of fetch packets that contain
multiple execute packets, execute packets that contain multicycle NOPs, and
memory considerations for the pipeline. For more information about fully opti-
mizing a program and taking full advantage of the pipeline, see the
TMS320C62x/C67x Programmer’s Guide.

Topic Page

6.1 Pipeline Operation Overview 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.2 Pipeline Execution of Instruction Types 6-13. . . . . . . . . . . . . . . . . . . . . . . . 

6.3 Functional Unit Hazards 6-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.4 Performance Considerations 6-52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 6



Pipeline Operation Overview

 6-2

6.1 Pipeline Operation Overview

The pipeline phases are divided into three stages:

� Fetch
� Decode
� Execute

All instructions in the ’C67x instruction set flow through the fetch, decode, and
execute stages of the pipeline. The fetch stage of the pipeline has four phases
for all instructions, and the decode stage has two phases for all instructions.
The execute stage of the pipeline requires a varying number of phases,
depending on the type of instruction. The stages of the ’C67x pipeline are
shown in Figure 6–1.

Figure 6–1. Floating-Point Pipeline Stages

Fetch ExecuteDecode

6.1.1 Fetch

The fetch phases of the pipeline are:

� PG: Program address generate
� PS: Program address send
� PW: Program access ready wait
� PR: Program fetch packet receive

The ’C67x uses a fetch packet (FP) of eight instructions. All eight of the instruc-
tions proceed through fetch processing together, through the PG, PS, PW, and
PR phases. Figure 6–2(a) shows the fetch phases in sequential order from left
to right. Figure 6–2(b) shows a functional diagram of the flow of instructions
through the fetch phases. During the PG phase, the program address is gener-
ated in the CPU. In the PS phase, the program address is sent to memory. In
the PW phase, a memory read occurs.

Finally, in the PR phase, the fetch packet is received at the CPU. Figure 6–2(c)
shows fetch packets flowing through the phases of the fetch stage of the pipe-
line. In Figure 6–2(c), the first fetch packet (in PR) is made up of four execute
packets, and the second and third fetch packets (in PW and PS) contain two
execute packets each. The last fetch packet (in PG) contains a single execute
packet of eight single-cycle instructions.



Pipeline Operation Overview

6-3 TMS320C67x Pipeline

Figure 6–2. Fetch Phases of the Pipeline

PRPWPSPG

PW

Memory

PS

PR

PG

Registers

units
Functional

(a) (b)

CPU

PR

PW

PS

PG

256

MVKLDWLDWSHLADDMVKLDWLDW

NOP

MVK

MV

BSADD

SMPYH

SADD

SHR

SMPY

SHR

SMPYH

LDW

LDW

LDW

LDW

MVKBSMPYSMPYHMVMVKLHLDWLDW

Fetch

SMPYH

Decode

(c)



Pipeline Operation Overview

 6-4

6.1.2 Decode

The decode phases of the pipeline are:

� DP: Instruction dispatch
� DC: Instruction decode

In the DP phase of the pipeline, the fetch packets are split into execute pack-
ets. Execute packets consist of one instruction or from two to eight parallel
instructions. During the DP phase, the instructions in an execute packet are
assigned to the appropriate functional units. In the DC phase, the the source
registers, destination registers, and associated paths are decoded for the
execution of the instructions in the functional units.

Figure 6–3(a) shows the decode phases in sequential order from left to right.
Figure 6–3(b) shows a fetch packet that contains two execute packets as they
are processed through the decode stage of the pipeline. The last six instruc-
tions of the fetch packet (FP) are parallel and form an execute packet (EP).
This EP is in the dispatch phase (DP) of the decode stage. The arrows indicate
each instruction’s assigned functional unit for execution during the same cycle.
The NOP instruction in the eighth slot of the FP is not dispatched to a functional
unit because there is no execution associated with it.

The first two slots of the fetch packet (shaded below) represent an execute
packet of two parallel instructions that were dispatched on the previous cycle.
This execute packet contains two MPY instructions that are now in decode
(DC) one cycle before execution. There are no instructions decoded for the .L,
.S, and .D functional units for the situation illustrated.

Figure 6–3. Decode Phases of the Pipeline

(b)

DCDP
(a)

DP
3232323232323232

NOP†ADDKSTWSTWADD

DC MPYHMPYH

.L1 .S1 .D1.M1 .L2.S2.D2 .M2

Decode

ADD

Functional
units

† NOP is not dispatched to a functional unit.



Pipeline Operation Overview

6-5 TMS320C67x Pipeline

6.1.3 Execute

The execute portion of the floating-point pipeline is subdivided into ten phases
(E1–E10), as compared to the fixed-point pipeline’s five phases. Different
types of instructions require different numbers of these phases to complete
their execution. These phases of the pipeline play an important role in your un-
derstanding the device state at CPU cycle boundaries. The execution of differ-
ent types of instructions in the pipeline is described in section 6.2, Pipeline
Execution of Instruction Types. Figure 6–4(a) shows the execute phases of
the pipeline in sequential order from left to right. Figure 6–4(b) shows the por-
tion of the functional block diagram in which execution occurs.

Figure 6–4. Execute Phases of the Pipeline and Functional Block Diagram of the
TMS320C67x

E4E3E2E1 E5(a)

(b)

Register file A Register file B
Data 2Data 1 3232

3232

(byte addressable)
Internal data memory

Data address 2Data address 1
98

76543210

16 161616

Data memory interface control

32

.L1
SADD

.S1
B

.M1
SMPY

0135 4 268 71012 11 91415 13 0123456789101112131415

.L2
SADD

.S2
SUBSMPYH

.M2

Execute E1

.D1
STH

.D2
STH

E9E8E7E6 E10



Pipeline Operation Overview

 6-6

6.1.4 Summary of Pipeline Operation

Figure 6–5 shows all the phases in each stage of the ’C67x pipeline in sequen-
tial order, from left to right.

Figure 6–5. Floating-Point Pipeline Phases

Fetch ExecuteDecode

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Figure 6–6 shows an example of the pipeline flow of consecutive fetch packets
that contain eight parallel instructions. In this case, where the pipeline is full,
all instructions in a fetch packet are in parallel and split into one execute packet
per fetch packet. The fetch packets flow in lockstep fashion through each
phase of the pipeline.

For example, examine cycle 7 in Figure 6–6. When the instructions from FP n
reach E1, the instructions in the execute packet from FPn +1 are being
decoded. FP n + 2 is in dispatch while FPs n + 3, n + 4, n + 5, and n + 6 are
each in one of four phases of program fetch. See section 6.4, Performance
Considerations, on page 6-52 for additional detail on code flowing through the
pipeline.

Figure 6–6. Pipeline Operation: One Execute Packet per Fetch Packet

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clock cycle
ÁÁÁÁ
ÁÁÁÁ

Fetch
packet
ÁÁ
ÁÁ1
ÁÁÁ
ÁÁÁ2
ÁÁ
ÁÁ3
ÁÁÁ
ÁÁÁ4
ÁÁÁ
ÁÁÁ5
ÁÁ
ÁÁ6
ÁÁÁ
ÁÁÁ7
ÁÁ
ÁÁ8
ÁÁÁ
ÁÁÁ9
ÁÁ
ÁÁ10
ÁÁÁ
ÁÁÁ11
ÁÁ
ÁÁ12
ÁÁÁ
ÁÁÁ13
ÁÁ
ÁÁ14
ÁÁÁ
ÁÁÁ15
ÁÁÁ
ÁÁÁ16
ÁÁ
ÁÁ17ÁÁÁÁ

ÁÁÁÁ
n PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

ÁÁÁÁ
ÁÁÁÁ

n+1 ÁÁ
ÁÁ

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

ÁÁÁÁ
ÁÁÁÁ

n+2 ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9

ÁÁÁÁ
ÁÁÁÁ

n+3 ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8

ÁÁÁÁn+4 ÁÁÁÁÁÁÁÁÁÁPG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7ÁÁÁÁ
ÁÁÁÁn+5

ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁPG PS PW PR DP DC E1 E2 E3 E4 E5 E6ÁÁÁÁ

ÁÁÁÁ
n+6
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

PG PS PW PR DP DC E1 E2 E3 E4 E5

ÁÁÁÁ
ÁÁÁÁ

n+7 ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2 E3 E4

ÁÁÁÁ
ÁÁÁÁ

n+8 ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

PG PS PW PR DP DC E1 E2 E3

ÁÁÁÁ
ÁÁÁÁ

n+9 ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2

ÁÁÁÁn+10ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ PG PS PW PR DP DC E1



Pipeline Operation Overview

6-7 TMS320C67x Pipeline

Table 6–1 summarizes the pipeline phases and what happens in each.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 6–1. Operations Occurring During Floating-Point Pipeline Phases 
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Stage

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Phase

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

Symbol

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

During This Phase

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Instruction
Type

Completed

Program
fetch

Program
address
generation

PG The address of the fetch packet is determined.

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Program
address sent

ÁÁÁ
ÁÁÁ
ÁÁÁ

PS
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The address of the fetch packet is sent to the memory.
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Program
wait

PW A program memory access is performed.

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Program
data receive

ÁÁÁ
ÁÁÁ
ÁÁÁ

PR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The fetch packet is at the CPU boundary.
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Program
decode

Dispatch DP The next execute packet of the fetch packet is determined
and sent to the appropriate functional unit to be decoded.

Decode DC Instructions are decoded in functional units.

Execute Execute 1 E1 For all instruction types, the conditions for the instructions
are evaluated and operands are read.

For load and store instructions, address generation is
performed and address modifications are written to the
register file.†

For branch instructions, branch fetch packet in PG phase
is affected.†

For single-cycle instructions, results are written to a regis-
ter file.†

For DP compare, ADDDP/SUBDP, and MPYDP instruc-
tions, the lower 32-bits of the sources are read. For all oth-
er instructions, the sources are read.†

For 2-cycle DP instructions, the lower 32 bits of the result
are written to a register file.†

Single-cycle

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction
does not write an y results or have any pipeline operation after E1.



Pipeline Operation Overview

 6-8

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 6–1. Operations Occurring During Floating-Point Pipeline Phases (Continued)

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Instruction
Type

Completed

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDuring This Phase

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁSymbol

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁPhase

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁStage

Execute 2 E2 For load instructions, the address is sent to memory. For
store instructions, the address and data are sent to
memory.†

Single-cycle instructions that saturate results set the SAT
bit in the SCR if saturation occurs.†

For multiply, 2-cycle DP, and DP compare instructions,
results are written to a register file.†

For DP compare and ADDDP/SUBDP instructions, the
upper 32 bits of the source are read.†

For the MPYDP instruction, the lower 32 bits of src1 and
the upper 32 bits of src2 are read.†

For MPYI and MPYID instructions, the sources are read.†

Multiply
2-cycle DP

DP compare

Execute 3 E3 Data memory accesses are performed. Any multiply in-
struction that saturates results sets the SAT bit in the CSR
if saturation occurs.†

For MPYDP instruction, the upper 32 bits of src1 and the
lower 32 bits of src2 are read.†

For MPYI and MPYID instructions, the sources are read.†

Store

Execute 4 E4 For load instructions, data is brought to the CPU bound-
ary

For the MPYI and MPYID instructions, the sources are
read.†

For the MPYDP instruction, the upper 32 bits of the
sources are read.†

For MPYI and MPYID instructions, the sources are read.†

For 4-cycle instructions, results are written to a register
file.†

For INTDP instruction, the lower 32 bits of the result are
written to a register file.†

4-cycle

Execute 5 E5 For load instructions, data is written into a register file.†

For the INTDP instruction, the upper 32 bits of the result
are written to a register file.†

Load INTDP

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction
does not write an y results or have any pipeline operation after E1.



Pipeline Operation Overview

6-9 TMS320C67x Pipeline

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 6–1. Operations Occurring During Floating-Point Pipeline Phases (Continued)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Instruction
Type

Completed

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDuring This Phase

ÁÁÁ
ÁÁÁ
ÁÁÁSymbol

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁPhase

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁStage

Execute 6 E6 For ADDDP/SUBDP instructions, the lower 32 bits of the
result are written to a register file.†

Execute 7 E7 For ADDDP/SUBDP instructions, the upper 32 bits of the
result are written to a register file.†

ADDDP/
SUBDP

Execute 8 E8 Nothing is read or written.

Execute 9 E9 For the MPYI instruction, the result is written to a register
file.†

For MPYDP and MPYID instructions, the lower 32 bits of
the result are written to a register file.†

MPYI

Execute 10 E10 For MPYDP and MPYID instructions, the upper 32 bits of
the result are written to a register file.

MPYDP
MPYID

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction
does not write an y results or have any pipeline operation after E1.



Pipeline Operation Overview

 6-10

Figure 6–7 shows a ’C67x functional block diagram laid out vertically by
stages of the pipeline.

Figure 6–7. Functional Block Diagram of TMS320C67x Based on Pipeline Phases

CMPLTSP

DP

PR

PW

PS

PG

3232323232323232

256

ABSSPSUBLDDW

MVK

CMPLTSP

ABSSP

B

ADDSP

SUBSP

SUB

ZERO

LDDW

LDDW

ABSSP CMPLTSPADDSPMVLDDW

BMPYSPSUBSPLDDW

Register file A Register file B
Data 2Data 1 3232

3232

(byte addressable)
Internal data memory

Data address 2Data address 1
98

76543210

16 161616

Data memory interface control

DCMPYSP ADDSPLDDWMPYSP

32

E1
.L1

ADDSP
.S1

ABSSP
.D1.M1

MPYSP

0135 4 268 71012 11 91415 13 0123456789101112131415

.L2
SUBSP

.S2.D2
MPYSP

.M2

Fetch

Decode

Execute

ADDSP

SUBSP

ADDSP

ADDSP

SUBSP MVK

ADDSP MPYSP CMPLTSP

ADDSP ABSSP

LDDW

MPYSP

MPYSP

MPYSP

MPYSP

MPYSP

MPYSP

MPYSP

MPYSP

ZERO



Pipeline Operation Overview

6-11 TMS320C67x Pipeline

The pipeline operation is based on CPU cycles. A CPU cycle is the period dur-
ing which a particular execute packet is in a particular pipeline phase. CPU
cycle boundaries always occur at clock cycle boundaries.

As code flows through the pipeline phases, it is processed by different parts
of the ’C67x. Figure 6–7 shows a full pipeline with a fetch packet in every
phase of fetch. One execute packet of eight instructions is being dispatched
at the same time that a 7-instruction execute packet is in decode. The arrows
between DP and DC correspond to the functional units identified in the code
in Example 6–1.

In the DC phase portion of Figure 6–7, one box is empty because a NOP was
the eighth instruction in the fetch packet in DC, and no functional unit is needed
for a NOP. Finally, the figure shows six functional units processing code during
the same cycle of the pipeline.

Registers used by the instructions in E1 are shaded in Figure 6–7. The multi-
plexers used for the input operands to the functional units are also shaded in
the figure. The bold crosspaths are used by the MPY and SUBSP instructions.

Many ’C67x instructions are single-cycle instructions, which means they have
only one execution phase (E1). The other instructions require more than one
execute phase. The types of instructions, each of which require different num-
bers of execute phases, are described in section 6.2, Pipeline Execution of
Instruction Types.



Pipeline Operation Overview

 6-12

Example 6–1. Execute Packet in Figure 6–7

        LDDW    .D1     *A0––[4],B5:B4  ; E1 Phase
||      ADDSP   .L1     A9,A10,A12
||      SUBSP   .L2X    B12,A2,B12
||      MPYSP   .M1X    A6,B13,A11
||      MPYSP   .M2     B5,B13,B11
||      ABSSP   .S1     A12,A15

        LDDW    .D1     *A0++[5],A7:A6  ; DC Phase
||      ADDSP   .L1     A12,A11,A12
||      ADDSP   .L2     B10,B11,B12
||      MPYSP   .M1X    A4,B6,A9
||      MPYSP   .M2X    A7,B6,B9
||      CMPLTSP .S1     A15,A8,A1
||      ABSSP   .S2     B12,B15
 
LOOP:
  [!B2] LDDW    .D1     *A0++[2],A5:A4  ; DP and PS Phases
||[B2]  ZERO    .D2     B0
||      SUBSP   .L1     A12,A2,A12
||      ADDSP   .L2     B9,B12,B12
||      MPYSP   .M1X    A5,B7,A10
||      MPYSP   .M2     B4,B7,B10
||[B0]  B       .S1     LOOP
||[!B1] CMPLTSP .S2     B15,B8,B1
  [!B2] LDDW    .D1     *A0––[4],B5:B4  ; PR and PG Phases
||[B0]  SUB     .D2     B0,2,B0
||      ADDSP   .L1     A9,A10,A12
||      SUBSP   .L2X    B12,A2,B12
||      MPYSP   .M1X    A6,B13,A11
||      MPYSP   .M2     B5,B13,B11
||      ABSSP   .S1     A12,A15
||[A1]  MVK     .S2     1,B2

  [!B2] LDDW    .D1     *A0++[5],A7:A6  ; PW Phase
||[B1]  MV      .D2     B1,B2
||      ADDSP   .L1     A12,A11,A12
||      ADDSP   .L2     B10,B11,B12
||      MPYSP   .M1X    A4,B6,A9
||[!A1] CMPLTSP .S1     A15,A8,A1
||      ABSSP   .S2     B12,B15



Pipeline Execution of Instruction Types

6-13 TMS320C67x Pipeline

6.2 Pipeline Execution of Instruction Types

The pipeline operation of the ’C67x instructions can be categorized into four-
teen instruction types. Thirteen of these are shown in Table 6–2 (NOP is not
included in the table), which is a mapping of operations occurring in each
execution phase for the different instruction types. The delay slots and func-
tional unit latency associated with each instruction type are listed in the bottom
row.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 6–2. Execution Stage Length Description for Each Instruction Type 

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Instruction Type
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Single Cycle ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

16�16 Multiply ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Store ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Load ÁÁÁÁÁ
ÁÁÁÁÁ

Branch

Execution
phases

E1 Compute result
and write to
register

Read operands
and start
computations

Compute
address

Compute
address

Target code
in PG‡

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

E2ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Compute result
and write to
register

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Send address
and data to
memory

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Send address to
memory

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E3 Access memory Access memory

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

E4ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Send data back
to CPU

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁE5 Write data into

register

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ

E6ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁE7

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ

E8
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

E9

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ

E10ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁDelay slots 0 1 0† 4† 5‡

Functional
unit latency

1 1 1 1 1

† See sections 6.3.7 (page 6-40) and 6.3.8 (page 6-42) for more information on execution and delay slots for stores and loads.
‡ See section 6.3.9 (page 6-44) for more information on branches.

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false,
the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.



Pipeline Execution of Instruction Types

 6-14

Table 6–2. Execution Stage Length Description for Each Instruction Type (Continued)

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Instruction Type
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
2-Cycle DP ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
4-Cycle ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
INTDP ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
DP Compare

Execution
phases

E1 Compute the lower
results and write to
register

Read sources and
start computation

Read sources and
start computation

Read lower sources
and start computa-
tion

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E2 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Compute the upper
results and write to
register

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue
computation

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue
computation

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read upper
sources, finish com-
putation, and write
results to register

E3 Continue
computation

Continue
computation

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Complete computa-
tion and write results
to register

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue computa-
tion and write lower
results to register

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁE5 Complete computa-

tion and write upper
results to register

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ

E6 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁE7

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ

E8
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

E9

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ

E10 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Delay slots 1 3 4 1

Functional
unit latency

1 1 1 2

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false,
the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.



Pipeline Execution of Instruction Types

6-15 TMS320C67x Pipeline

Table 6–2. Execution Stage Length Description for Each Instruction Type (Continued)

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Instruction Type
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ADDDP/SUBDP ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MPYI ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MPYID ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MPYDP

Execution
phases

E1 Read lower sources
and start
computation

Read sources and
start computation

Read sources and
start computation

Read lower sources
and start
computation

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

E2ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read upper sources
and continue
computation

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read sources and
continue
computation

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read sources and
continue
computation

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read lower src1 and
upper src2 and con-
tinue computation

E3 Continue
computation

Read sources and
continue
computation

Read sources and
continue
computation

Read lower src2 and
upper src1 and con-
tinue computation

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E4ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue
computation

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read sources and
continue
computation

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read sources and
continue
computation

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Read upper sources
and continue com-
putation

E5 Continue
computation

Continue
computation

Continue
computation

Continue
computationÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E6
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Compute the lower
results and write to
register

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue
computation

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue
computation

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue
computation

E7 Compute the upper
results and write to
register

Continue
computation

Continue
computation

Continue
computation

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

E8ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue
computation

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue
computation

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Continue
computation

E9 Complete computa-
tion and write results
to register

Continue computa-
tion and write lower
results to register

Continue computa-
tion and write lower
results to register

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

E10
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Complete computa-
tion and write upper
results to register

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Complete computa-
tion and write upper
results to register

Delay slots 6 8 9 9

Functional
unit latency

2 4 4 4

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as
false, the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.



Pipeline Execution of Instruction Types

 6-16

The execution of instructions can be defined in terms of delay slots. A delay
slot is a CPU cycle that occurs after the first execution phase (E1) of an instruc-
tion. Results from instructions with delay slots are not available until the end
of the last delay slot. For example, a multiply instruction has one delay slot,
which means that one CPU cycle elapses before the results of the multiply are
available for use by a subsequent instruction. However, results are available
from other instructions finishing execution during the same CPU cycle in which
the multiply is in a delay slot.

If an instruction has a multicycle functional unit latency, it locks the functional
unit for the necessary number of cycles. Any new instruction dispatched to that
functional unit during this locking period causes undefined results. If an in-
struction with a multicycle functional unit latency has a condition that is evalu-
ated as false during E1, it still locks the functional unit for subsequent cycles.

An instruction of the following types scheduled on cycle i has the following
constraints:

DP compare No other instruction can use the functional unit on cycles
i and i + 1.

ADDDP/SUBDP No other instruction can use the functional unit on cycles
i and i + 1.

MPYI No other instruction can use the functional unit on cycles
i, i + 1, i + 2, and i + 3.

MPYID No other instruction can use the functional unit on cycles
i, i + 1, i + 2, and i + 3.

MPYDP No other instruction can use the functional unit on cycles
i, i + 1, i + 2, and i + 3.

If a cross path is used to read a source using an instruction with multicycle
functional unit latency, ensure that no other instructions executing on the same
side use the cross path.



Pipeline Execution of Instruction Types

6-17 TMS320C67x Pipeline

An instruction of the following types scheduled on cycle i, using a cross path
to read a source, has the following constraints:

DP compare No other instruction on the same side can use the cross
path on cycles i and i + 1.

ADDDP/SUBDP No other instruction on the same side can use the cross
path on cycles i and i + 1.

MPYI No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.

MPYID No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.

MPYDP No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.

Other hazards exist because instructions have varying numbers of delay slots,
and the instructions need the functional unit read and write ports for varying
numbers of cycles. A read or write hazard occurs when two instructions on the
same functional unit attempt to read or write, respectively, to the register file
on the came cycle.

An instruction scheduled on cycle i has the following constraints:

2-cycle DP A single-cycle instruction cannot be scheduled on the
same functional unit on cycle i + 1 due to a write hazard
on cycle i + 1.

Another 2-cycle DP instruction cannot be scheduled on
the same functional unit on cycle i + 1 due to a write haz-
ard on cycle i + 1.

4-cycle A single-cycle instruction cannot be scheduled on the
same functional unit on cycle i + 3 due to a write hazard
on cycle i + 3.

A multiply (16 � 16-bit) instruction cannot be scheduled
on the same functional unit on cycle i + 2 due to a write
hazard on cycle i + 3.

INTDP A single-cycle instruction cannot be scheduled on the
same functional unit on cycle i + 3 or i + 4 due to a write
hazard on cycle i + 3 or i + 4, respectively.

An INTDP instruction cannot be scheduled on the same
functional unit on cycle i + 1 due to a write hazard on cycle
i + 1.

A 4-cycle instruction cannot be scheduled on the same
functional unit on cycle i + 1 due to a write hazard on cycle
i + 1.



Pipeline Execution of Instruction Types

 6-18

MPYI A 4-cycle instruction cannot be scheduled on the same
functional unit on cycle i + 4, i + 5, or i + 6.

A MPYDP instruction cannot be scheduled on the same
functional unit on cycle i + 4, i + 5, or i + 6.

A multiply (16 ��16-bit) instruction cannot be scheduled
on the same functional unit on cycle i + 6 due to a write
hazard on cycle i + 7.

MPYID A 4-cycle instruction cannot be scheduled on the same
functional unit on cycle i + 4, i + 5, or i + 6.

A MPYDP instruction cannot be scheduled on the same
functional unit on cycle i + 4, i + 5, or i + 6.

A multiply (16 ��16-bit) instruction cannot be scheduled
on the same functional unit on cycle i + 7 or i + 8 due to
a write hazard on cycle i + 8 or i + 9, respectively.

MPYDP A 4-cycle instruction cannot be scheduled on the same
functional unit on cycle i + 4, i + 5, or i + 6.

A MPYI instruction cannot be scheduled on the same
functional unit on cycle i + 4, i + 5, or i + 6.

A MPYID instruction cannot be scheduled on the same
functional unit on cycle i + 4, i + 5, or i + 6.

A multiply (16 � 16-bit) instruction cannot be scheduled
on the same functional unit on cycle i + 7 or i + 8 due to
a write hazard on cycle i + 8 or i + 9, respectively.

ADDDP/SUBDP A single-cycle instruction cannot be scheduled on the
same functional unit on cycle i + 5 or i + 6 due to a write
hazard on cycle i + 5 or i + 6, respectively.

A 4-cycle instruction cannot be scheduled on the same
functional unit on cycle i + 2 or i + 3 due to a write hazard
on cycle i + 5 or i + 6, respectively.

An INTDP instruction cannot be scheduled on the same
functional unit on cycle i + 2 or i + 3 due to a write hazard
on cycle i + 5 or i + 6, respectively.

The 4-cycle case is important for the following single-precision floating-point
instructions:

� ADDSP
� SUBSP
� SPINT
� SPTRUNC
� INTSP
� MPYSP



Pipeline Execution of Instruction Types

6-19 TMS320C67x Pipeline

All of the preceding cases deal with double-precision floating-point instruc-
tions or the MPYI or MPYID instructions except for the 4-cycle case. A 4-cycle
instruction consists of both single- and double-precision floating-point instruc-
tions. Therefore, the 4-cycle case is important for the following single-
precision floating-point instructions:

The .S and .L units share their long write port with the load port for the 32 most
significant bits of an LDDW load. Therefore, the LDDW instruction and the .S
or .L unit writing a long result cannot write to the same register file on the same
cycle. The LDDW writes to the register file on pipeline phase E5. Instructions
that use a long result and use the .L and .S unit write to the register file on pipe-
line phase E1. Therefore, the instruction with the long result must be sched-
uled later than four cycles following the LDDW instruction if both instructions
use the same side.



Functional Unit Hazards

 6-20

6.3 Functional Unit Hazards

If you wish to optimize your instruction pipeline, consider the instructions that
are executed on each unit. Sources and destinations are read and written dif-
ferently for each instruction. If you analyze these differences, you can make
further optimization improvements by considering what happens during the
execution phases of instructions that use the same functional unit in each exe-
cution packet.

The following sections provide information about what happens during each
execute phase of the instructions within a category for each of the functional
units.



Functional Unit Hazards

6-21 TMS320C67x Pipeline

6.3.1 .S-Unit Hazards

Table 6–3 shows the instruction hazards for single-cycle instructions execut-
ing on the .S unit.

Table 6–3. Single-Cycle .S-Unit Instruction Hazards

Instruction Execution

Cycle 1 2

Single-cycle RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle �

DP compare �

2-cycle DP �

Branch �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle �

Load �

Store �

INTDP �

ADDDP/SUBDP �

16 � 16 multiply �

4-cycle �

MPYI �

MPYID �

MPYDP �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle



Functional Unit Hazards

 6-22

Table 6–4 shows the instruction hazards for DP compare instructions execut-
ing on the .S unit.

Table 6–4. DP Compare .S-Unit Instruction Hazards

Instruction Execution

Cycle 1 2 3

DP compare R RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle Xrw �

DP compare Xr �

2-cycle DP Xrw �

Branch† Xr �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr �

Load Xr �

Store Xr �

INTDP Xr �

ADDDP/SUBDP Xr �

16 ��16 multiply Xr �

4-cycle Xr �

MPYI Xr �

MPYID Xr �

MPYDP Xr �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xr Next instruction cannot enter E1 during cycle–read/decode hazard
Xrw Next instruction cannot enter E1 during cycle–read/decode/write hazard
† The branch on register instruction is the only branch instruction that reads a 

general-purpose register



Functional Unit Hazards

6-23 TMS320C67x Pipeline

Table 6–5 shows the instruction hazards for 2-cycle DP instructions executing
on the .S unit.

Table 6–5. 2-Cycle DP .S-Unit Instruction Hazards

Instruction Execution

Cycle 1 2 3

2-cycle RW W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle Xw �

DP compare � �

2-cycle DP Xw �

Branch � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single cycle � �

Load � �

Store � �

INTDP � �

ADDDP/SUBDP � �

16 � 16 multiply � �

4-cycle � �

MPYI � �

MPYID � �

MPYDP � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xw Next instruction cannot enter E1 during cycle–write hazard



Functional Unit Hazards

 6-24

Table 6–6 shows the instruction hazards for branch instructions executing on
the .S unit.

Table 6–6. Branch .S-Unit Instruction Hazards

Instruction Execution

Cycle 1 2 3 4 5 6 7 8

Branch† R

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � � � � � �

DP compare � � � � � � �

2-cycle DP � � � � � � �

Branch � � � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � � � � � � �

Load � � � � � � �

Store � � � � � � �

INTDP � � � � � � �

ADDDP/SUBDP � � � � � � �

16 � 16 multiply � � � � � � �

4-cycle � � � � � � �

MPYI � � � � � � �

MPYID � � � � � � �

MPYDP � � � � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
� Next instruction can enter E1 during cycle
† The branch on register instruction is the only branch instruction that  reads a 

general-purpose register



Functional Unit Hazards

6-25 TMS320C67x Pipeline

6.3.2 .M-Unit Hazards

Table 6–7 shows the instruction hazards for 16 ��16 multiply instructions
executing on the .M unit.

Table 6–7. 16 ��16 Multiply .M-Unit Instruction Hazards

Instruction Execution

Cycle 1 2 3

16 ��16 multiply R W

Instruction Type Subsequent Same-Unit Instruction Executable

16 ��16 multiply � �

4-cycle � �

MPYI � �

MPYID � �

MPYDP � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � �

Load � �

Store � �

DP compare � �

2-cycle DP � �

Branch � �

4-cycle � �

INTDP � �

ADDDP/SUBDP � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle



Functional Unit Hazards

 6-26

Table 6–8 shows the instruction hazards for 4-cycle instructions executing on
the .M unit.

Table 6–8. 4-Cycle .M-Unit Instruction Hazards

Instruction Execution

Cycle 1 2 3 4 5

4-cycle R W

Instruction Type Subsequent Same-Unit Instruction Executable

16 � 16 multiply � Xw � �

4-cycle � � � �

MPYI � � � �

MPYID � � � �

MPYDP � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � � � �

Load � � � �

Store � � � �

DP compare � � � �

2-cycle DP � � � �

Branch � � � �

4-cycle � � � �

INTDP � � � �

ADDDP/SUBDP � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xw Next instruction cannot enter E1 during cycle–write hazard



Functional Unit Hazards

6-27 TMS320C67x Pipeline

Table 6–9 shows the instruction hazards for MPYI instructions executing on
the .M unit.

Table 6–9. MPYI .M-Unit Instruction Hazards

Instruction Execution

Cycle 1 2 3 4 5 6 7 8 9 10

MPYI R R R R W

Instruction Type Subsequent Same-Unit Instruction Executable

16 � 16 multiply Xr Xr Xr � � � Xw � �

4-cycle Xr Xr Xr Xu Xw Xu � � �

MPYI Xr Xr Xr � � � � � �

MPYID Xr Xr Xr � � � � � �

MPYDP Xr Xr Xr Xu Xu Xu � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr Xr Xr � � � � � �

Load Xr Xr Xr � � � � � �

Store Xr Xr Xr � � � � � �

DP compare Xr Xr Xr � � � � � �

2-cycle DP Xr Xr Xr � � � � � �

Branch Xr Xr Xr � � � � � �

4-cycle Xr Xr Xr � � � � � �

INTDP Xr Xr Xr � � � � � �

ADDDP/SUBDP Xr Xr Xr � � � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xr Next instruction cannot enter E1 during cycle–read/decode hazard
Xw Next instruction cannot enter E1 during cycle–write hazard
Xu Next instruction cannot enter E1 during cycle–other resource conflict



Functional Unit Hazards

 6-28

Table 6–10 shows the instruction hazards for MPYID instructions executing on
the .M unit.

Table 6–10. MPYID .M-Unit Instruction Hazards

Instruction Execution

Cycle 1 2 3 4 5 6 7 8 9 10 11

MPYID R R R R W W

Instruction Type Subsequent Same-Unit Instruction Executable

16 � 16 multiply Xr Xr Xr � � � Xw Xw � �

4-cycle Xr Xr Xr Xu Xw Xw � � � �

MPYI Xr Xr Xr � � � � � � �

MPYID Xr Xr Xr � � � � � � �

MPYDP Xr Xr Xr Xu Xu Xu � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr Xr Xr � � � � � � �

Load Xr Xr Xr � � � � � � �

Store Xr Xr Xr � � � � � � �

DP compare Xr Xr Xr � � � � � � �

2-cycle DP Xr Xr Xr � � � � � � �

Branch Xr Xr Xr � � � � � � �

4-cycle Xr Xr Xr � � � � � � �

INTDP Xr Xr Xr � � � � � � �

ADDDP/SUBDP Xr Xr Xr � � � � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xr Next instruction cannot enter E1 during cycle–read/decode hazard
Xw Next instruction cannot enter E1 during cycle–write hazard
Xu Next instruction cannot enter E1 during cycle–other resource conflict



Functional Unit Hazards

6-29 TMS320C67x Pipeline

Table 6–11 shows the instruction hazards for MPYDP instructions executing
on the .M unit.

Table 6–11. MPYDP .M-Unit Instruction Hazards

Instruction Execution

Cycle 1 2 3 4 5 6 7 8 9 10 11

MPYDP R R R R W W

Instruction Type Subsequent Same-Unit Instruction Executable

16 � 16 multiply Xr Xr Xr � � � Xw Xw � �

4-cycle Xr Xr Xr Xu Xw Xw � � � �

MPYI Xr Xr Xr Xu Xu Xu � � � �

MPYID Xr Xr Xr Xu Xu Xu � � � �

MPYDP Xr Xr Xr � � � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr Xr Xr � � � � � � �

Load Xr Xr Xr � � � � � � �

Store Xr Xr Xr � � � � � � �

DP compare Xr Xr Xr � � � � � � �

2-cycle DP Xr Xr Xr � � � � � � �

Branch Xr Xr Xr � � � � � � �

4-cycle Xr Xr Xr � � � � � � �

INTDP Xr Xr Xr � � � � � � �

ADDDP/SUBDP Xr Xr Xr � � � � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xr Next instruction cannot enter E1 during cycle–read/decode hazard
Xw Next instruction cannot enter E1 during cycle–write hazard
Xu Next instruction cannot enter E1 during cycle–other resource conflict



Functional Unit Hazards

 6-30

6.3.3 .L-Unit Hazards

Table 6–12 shows the instruction hazards for single-cycle instructions
executing on the .L unit.

Table 6–12. Single-Cycle .L-Unit Instruction Hazards

Instruction Execution

Cycle 1 2

Single-cycle RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle �

4-cycle �

INTDP �

ADDDP/SUBDP �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle �

DP compare �

2-cycle DP �

4-cycle �

Load �

Store �

Branch �

16 � 16 multiply �

MPYI �

MPYID �

MPYDP �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle



Functional Unit Hazards

6-31 TMS320C67x Pipeline

Table 6–13 shows the instruction hazards for 4-cycle instructions executing on
the .L unit.

Table 6–13. 4-Cycle .L-Unit Instruction Hazards

Instruction Execution

Cycle 1 2 3 4 5

4-cycle R W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � Xw �

4-cycle � � � �

INTDP � � � �

ADDDP/SUBDP � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � � � �

DP compare � � � �

2-cycle DP � � � �

4-cycle � � � �

Load � � � �

Store � � � �

Branch � � � �

16 � 16 multiply � � � �

MPYI � � � �

MPYID � � � �

MPYDP � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xw Next instruction cannot enter E1 during cycle–write hazard



Functional Unit Hazards

 6-32

Table 6–14 shows the instruction hazards for INTDP instructions executing on
the .L unit.

Table 6–14. INTDP .L-Unit Instruction Hazards

Instruction Execution

Cycle 1 2 3 4 5 6

INTDP R W W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � Xw Xw �

4-cycle Xw � � � �

INTDP Xw � � � �

ADDDP/SUBDP � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � � � � �

DP compare � � � � �

2-cycle DP � � � � �

4-cycle � � � � �

Load � � � � �

Store � � � � �

Branch � � � � �

16 � 16 multiply � � � � �

MPYI � � � � �

MPYID � � � � �

MPYDP � � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xw Next instruction cannot enter E1 during cycle–write hazard



Functional Unit Hazards

6-33 TMS320C67x Pipeline

Table 6–15 shows the instruction hazards for ADDDP/SUBDP  instructions
executing on the .L unit.

Table 6–15. ADDDP/SUBDP .L-Unit Instruction Hazards

Instruction Execution

Cycle 1 2 3 4 5 6 7 8

ADDDP/SUBDP R R W W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle Xr � � � Xw Xw �

4-cycle Xr Xw Xw � � � �

INTDP Xrw Xw Xw � � � �

ADDDP/SUBDP Xr � � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr � � � � � �

DP compare Xr � � � � � �

2-cycle DP Xr � � � � � �

4-cycle Xr � � � � � �

Load Xr � � � � � �

Store Xr � � � � � �

Branch Xr � � � � � �

16 � 16 multiply Xr � � � � � �

MPYI Xr � � � � � �

MPYID Xr � � � � � �

MPYDP Xr � � � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xr Next instruction cannot enter E1 during cycle–read/decode hazard
Xw Next instruction cannot enter E1 during cycle–write hazard
Xrw Next instruction cannot enter E1 during cycle–read/decode/write hazard



Functional Unit Hazards

 6-34

6.3.4 D-Unit Instruction Hazards

Table 6–16 shows the instruction hazards for load instructions executing on
the .D unit.

Table 6–16. Load .D-Unit Instruction Hazards

Instruction Execution

Cycle 1 2 3 4 5 6

Load RW W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � � � �

Load � � � � �

Store � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

16 � 16 multiply � � � � �

MPYI � � � � �

MPYID � � � � �

MPYDP � � � � �

Single-cycle � � � � �

DP compare � � � � �

2-cycle DP � � � � �

Branch � � � � �

4-cycle � � � � �

INTDP � � � � �

ADDDP/SUBDP � � � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle



Functional Unit Hazards

6-35 TMS320C67x Pipeline

Table 6–17 shows the instruction hazards for store instructions executing on
the .D unit.

Table 6–17. Store .D-Unit Instruction Hazards

Instruction Execution

Cycle 1 2 3 4

Store RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � �

Load � � �

Store � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

16 � 16 multiply � � �

MPYI � � �

MPYID � � �

MPYDP � � �

Single-cycle � � �

DP compare � � �

2-cycle DP � � �

Branch � � �

4-cycle � � �

INTDP � � �

ADDDP/SUBDP � � �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle



Functional Unit Hazards

 6-36

Table 6–18 shows the instruction hazards for single-cycle instructions
executing on the .D unit.

Table 6–18. Single-Cycle .D-Unit Instruction Hazards

Instruction Execution

Cycle 1 2

Single-cycle RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle �

Load �

Store �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

16 � 16 multiply �

MPYI �

MPYID �

MPYDP �

Single-cycle �

DP compare �

2-cycle DP �

Branch �

4-cycle �

INTDP �

ADDDP/SUBDP �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle



Functional Unit Hazards

6-37 TMS320C67x Pipeline

Table 6–19 shows the instruction hazards for LDDW instructions executing on
the .D unit.

Table 6–19. LDDW Instruction With Long Write Instruction Hazards

Instruction Execution

Cycle 1 2 3 4 5 6

LDDW RW W

Instruction Type Subsequent Same-Unit Instruction Executable

Instruction with
long result

� � � Xw �

Legend : E1 phase of the single-cyle instruction
R Sources read for the instruction
W Destinations written for the instruction
� Next instruction can enter E1 during cycle
Xw Next instruction cannot enter E1 during cycle–write hazard



Functional Unit Hazards

 6-38

6.3.5 Single-Cycle Instructions

Single-cycle instructions complete execution during the E1 phase of the pipe-
line (see Table 6–20). Figure 6–8 shows the fetch, decode, and execute
phases of the pipeline that single-cycle instructions use. Figure 6–9 is the
single-cycle execution diagram. The operands are read, the operation is per-
formed, and the results are written to a register, all during E1. Single-cycle
instructions have no delay slots.

Table 6–20. Single-Cycle Execution

Pipeline 
Stage E1

Read src1
src2

Written dst

Unit in use .L, .S., .M, or
.D

Figure 6–8. Single-Cycle Instruction Phases

PG PS PW PR DP DC E1

Figure 6–9. Single-Cycle Execution Block Diagram

(data)
Operands

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Register file

Write results

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Functional
unit

.L, .S, .M,
or .D

E1



Functional Unit Hazards

6-39 TMS320C67x Pipeline

6.3.6 16 � 16-Bit Multiply Instructions

The 16 � 16-bit multiply instructions use both the E1 and E2 phases of the
pipeline to complete their operations (see Table 6–21). Figure 6–10 shows the
pipeline phases the multiply instructions use. Figure 6–11 shows the opera-
tions occurring in the pipeline for a multiply. In the E1 phase, the operands are
read and the multiply begins. In the E2 phase, the multiply finishes, and the
result is written to the destination register. Multiply instructions have one delay
slot.

Table 6–21. 16 � 16-Bit Multiply Execution

Pipeline 
Stage E1 E2

Read src1
src2

Written dst

Unit in use .M

Figure 6–10. Multiply Instruction Phases

PG PS PW PR DP DC E1 E2
1

delay
slot

Figure 6–11.Multiply Execution Block Diagram

(data)
Operands

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Register file

Write results

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Functional
unit

.M

E1

E2



Functional Unit Hazards

 6-40

6.3.7 Store Instructions

Store instructions require phases E1 through E3 to complete their operations
(see Table 6–22). Figure 6–12 shows the pipeline phases the store instruc-
tions use. Figure 6–13 shows the operations occurring in the pipeline phases
for a store. In the E1 phase, the address of the data to be stored is computed.
In the E2 phase, the data and destination addresses are sent to data memory.
In the E3 phase, a memory write is performed. The address modification is per-
formed in the E1 stage of the pipeline. Even though stores finish their execu-
tion in the E3 phase of the pipeline, they have no delay slots.

Table 6–22. Store Execution

Pipeline 
Stage E1 E2 E3

Read baseR,
offsetR

src

Written baseR

Unit in use .D2

Figure 6–12. Store Instruction Phases

PG PS PW PR DP DC E1 E2 E3
A

dd
re

ss
m

od
ifi

ca
tio

n



Functional Unit Hazards

6-41 TMS320C67x Pipeline

Figure 6–13. Store Execution Block Diagram

Memory

E2

E3

Memory controller

Register file

E1

.D

Data

E2

Address

Functional
unit

When you perform a load and a store to the same memory location, these rules
apply (i = cycle):

� When a load is executed before a store, the old value is loaded and the
new value is stored.
i LDW
i + 1 STW

� When a store is executed before a load, the new value is stored and the
new value is loaded.
i STW
i + 1 LDW

� When the instructions are executed in parallel, the old value is loaded first
and then the new value is stored, but both occur in the same phase.
i STW
i || LDW

There is additional explanation of why stores have zero delay slots in section
6.3.8.



Functional Unit Hazards

 6-42

6.3.8 Load Instructions

Data loads require five of the pipeline execute phases to complete their opera-
tions (see Table 6–23). Figure 6–14 shows the pipeline phases the load
instructions use.

Table 6–23. Load Execution

Pipeline 
Stage E1 E2 E3 E4 E5

Read baseR
offsetR

Written baseR dst

Unit in use .D

Figure 6–14. Load Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5

4 delay slots

A
dd

re
ss

m
od

ifi
ca

tio
n

Figure 6–15 shows the operations occurring in the pipeline phases for a load.
In the E1 phase, the data address pointer is modified in its register. In the E2
phase, the data address is sent to data memory. In the E3 phase, a memory
read at that address is performed.



Functional Unit Hazards

6-43 TMS320C67x Pipeline

Figure 6–15. Load Execution Block Diagram

E5

Address

E3

Memory

E2

E4
Memory controller

Register file

E1

.D

Functional
unit

Data

In the E4 stage of a load, the data is received at the CPU core boundary. Final-
ly, in the E5 phase, the data is loaded into a register. Because data is not written
to the register until E5, load instructions have four delay slots. Because pointer
results are written to the register in E1, there are no delay slots associated with
the address modification.

In the following code, pointer results are written to the A4 register in the first
execute phase of the pipeline and data is written to the A3 register in the fifth
execute phase.

LDW  .D1  *A4++,A3

Because a store takes three execute phases to write a value to memory and
a load takes three execute phases to read from memory, a load following a
store accesses the value placed in memory by that store in the cycle after the
store is completed. This is why the store is considered to have zero delay slots.



Functional Unit Hazards

 6-44

6.3.9 Branch Instructions

Although branch takes one execute phase, there are five delay slots between
the execution of the branch and execution of the target code (see Table 6–24).
Figure 6–16 shows the pipeline phases used by the branch instruction and
branch target code. The delay slots are shaded.

Table 6–24. Branch Execution

Pipeline 
Stage E1 PS PW PR DP DC E1

Read src2

Written

Branch
Taken

�

Unit in use .S2

Figure 6–16. Branch Instruction Phases

Branch
target

PG PS PW PR DP DC E1

PG PS PW PR DP DC E1

5 delay slots



Functional Unit Hazards

6-45 TMS320C67x Pipeline

Figure 6–17 shows a branch execution block diagram. If a branch is in the E1
phase of the pipeline (in the .S2 unit in the figure), its branch target is in the
fetch packet that is in PG during that same cycle (shaded in the figure).
Because the branch target has to wait until it reaches the E1 phase to begin
execution, the branch takes five delay slots before the branch target code
executes.

Figure 6–17. Branch Execution Block Diagram

DP

PR

PW

PS

PG

3232323232323232

256

NOPMVSMPYHSMPYHSHRSHRLDWLDW

B

LDW

SUB

LDW

SMPY

SMPYH

SMPYH

SMPYH

SADD

SHR

SADD

SHR

STH

SADD

STH

SADD

BSUBSMPYSMPYHSADDSADDSTHSTH

MVKBSADDSADDSMPYSMPYH

DCLDWLDW

E1

.L1 .S1
MVK

.D1.M1
SMPY

.S2
B

.D2
SMPYH

.M2

Fetch

Decode

Execute

.L2



Functional Unit Hazards

 6-46

6.3.10 2-Cycle DP Instructions

Two-cycle DP instructions use the E1 and E2 phases of the pipeline to com-
plete their operations (see Table 6–25). The following instructions are two-
cycle DP instructions:

� ABSDP
� RCPDP
� RSQDP
� SPDP

The lower and upper 32 bits of the DP source are read on E1 using the src1
and src2 ports, respectively. The lower 32 bits of the DP source are written on
E1 and the upper 32 bits of the DP source are written on E2. The 2-cycle DP
instructions are executed on the .S units. The status is written to the FAUCR
on E1. Figure 6–18 shows the pipeline phases the 2-cycle DP instructions use.

Table 6–25. 2-Cycle DP Execution

Pipeline 
Stage E1 E2

Read src2_l
src2_h

Written dst_l dst_h

Unit in use .S

Figure 6–18. 2-Cycle DP Instruction Phases

PG PS PW PR DP DC E1 E2
1

delay
slot



Functional Unit Hazards

6-47 TMS320C67x Pipeline

6.3.11 4-Cycle Instructions

Four-cycle instructions use the E1 through E4 phases of the pipeline to com-
plete their operations (see Table 6–26). The following instructions are 4-cycle
instructions:

� ADDSP
� DPINT
� DPSP
� DPTRUNC
� INTSP
� MPYSP
� SPINT
� SPTRUNC
� SUBSP

The sources are read on E1 and the results are written on E4. The 4-cycle in-
structions are executed on the .M or .L units. The status is written to the FMCR
or FADCR on E4. Figure 6–19 shows the pipeline phases the 4-cycle instruc-
tions use.

Table 6–26. 4-Cycle Execution

Pipeline 
Stage E1 E2 E3 E4

Read src1
src2

Written dst

Unit in use .L or .M

Figure 6–19. 4-Cycle Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4

3 delay slots

6.3.12 INTDP Instruction

The INTDP instruction uses the E1 through E5 phases of the pipeline to com-
plete its operations (see Table 6–27). src2 is read on E1, the lower 32 bits of
the result are written on E4, and the upper 32 bits of the result are written on
E5. The INTDP instruction is executed on the .L units. The status is written to
the FADCR on E4. Figure 6–20 shows the pipeline phases the INTDP instruc-
tions use.



Functional Unit Hazards

 6-48

Table 6–27. INTDP Execution

Pipeline 
Stage E1 E2 E3 E4 E5

Read src2

Written dst_l dst_h

Unit in use .L

Figure 6–20. INTDP Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5

4 delay slots

6.3.13 DP Compare Instructions

The DP compare instructions use the E1 and E2 phases of the pipeline to com-
plete their operations (see Table 6–28). The lower 32 bits of the sources are
read on E1, the upper 32 bits of the sources are read on E2, and the results
are written on E2. The following instructions are DP compare instructions:

� CMPEQDP
� CMPLTDP
� CMPGTDP

The DP compare instructions are executed on the .S unit. The functional unit
latency for DP compare instructions is 2. The status is written to the FAUCR
on E2. Figure 6–21 shows the pipeline phases the DP compare instructions
use.

Table 6–28. DP Compare Execution

Pipeline 
Stage E1 E2

Read src1_l
src2_l

src1_h
src2_h

Written dst

Unit in use .S .S

Figure 6–21. DP Compare Instruction Phases

PG PS PW PR DP DC E1 E2
1

delay
slot



Functional Unit Hazards

6-49 TMS320C67x Pipeline

6.3.14 ADDDP/SUBDP Instructions

The ADDDP/SUBDP instructions use the E1 through E7 phases of the pipeline
to complete their operations (see Table 6–29). The lower 32 bits of the result
are written on E6, and the upper 32 bits of the result are written on E7. The
ADDDP/SUBDP instructions are executed on the .L unit. The functional unit
latency for ADDDP/SUBDP instructions is 2. The status is written to the
FADCR on E6. Figure 6–22 shows the pipeline phases the ADDDP/SUBDP
instructions use.

Table 6–29. ADDDP/SUBDP Execution

Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7

Read src1_l
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .L .L

Figure 6–22. ADDDP/SUBDP Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7

6 delay slots



Functional Unit Hazards

 6-50

6.3.15 MPYI Instructions

The MPYI instruction uses the E1 through E9 phases of the pipeline to com-
plete its operations (see Table 6–30). The sources are read on cycles E1
through E4 and the result is written on E9. The MPYI instruction is executed
on the .M unit. The functional unit latency for the MPYI instruction is 4.
Figure 6–23 shows the pipeline phases the MPYI instructions use.

Table 6–30. MPYI Execution

Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9

Read src1
src2

src1
src2

src1
src2

src1
src2

Written dst

Unit in use .M .M .M .M

Figure 6–23. MPYI Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9

8 delay slots

6.3.16 MPYID Instructions

The MPYID instruction uses the E1 through E10 phases of the pipeline to com-
plete its operations (see Table 6–31). The sources are read on cycles E1
through E4, the lower 32 bits of the result are written on E9, and the upper
32 bits of the result are written on E10. The MPYID instruction is executed on
the .M unit. The functional unit latency for the MPYID instruction is 4.
Figure 6–24 shows the pipeline phases the MPYID instructions use.

Table 6–31. MPYID Execution

Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Read src1
src2

src1
src2

src1
src2

src1
src2

Written dst_l dst_h

Unit in use .M .M .M .M



Functional Unit Hazards

6-51 TMS320C67x Pipeline

Figure 6–24. MPYID Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

9 delay slots

6.3.17 MPYDP Instructions

The MPYDP instruction uses the E1 through E10 phases of the pipeline to
complete its operations (see Table 6–32). The lower 32 bits of src1 are read
on E1 and E2, and the upper 32 bits of src1 are read on E3 and E4. The lower
32 bits of src2 are read on E1 and E3, and the upper 32 bits of src2 are read
on E2 and E4. The lower 32 bits of the result are written on E9, and the upper
32 bits of the result are written on E10. The MPYDP instruction is executed on
the .M unit. The functional unit latency for the MPYDP instruction is 4. The
status is written to the FMCR on E9. Figure 6–25 shows the pipeline phases
the MPYDP instructions use.

Table 6–32. MPYDP Execution

Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Read src1_l
src2_l

src1_l
src2_h

src1_h
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .M .M .M .M

Figure 6–25. MPYDP Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

9 delay slots



Performance Considerations

 6-52

6.4 Performance Considerations
The ’C67x pipeline is most effective when it is kept as full as the algorithms in
the program allow it to be. It is useful to consider some situations that can affect
pipeline performance.

A fetch packet (FP) is a grouping of eight instructions. Each FP can be split into
from one to eight execute packets (EPs). Each EP contains instructions that
execute in parallel. Each instruction executes in an independent functional
unit. The effect on the pipeline of combinations of EPs that include varying
numbers of parallel instructions, or just a single instruction that executes seri-
ally with other code, is considered here.

In general, the number of execute packets in a single FP defines the flow of
instructions through the pipeline. Another defining factor is the instruction
types in the EP. Each type of instruction has a fixed number of execute cycles
that determines when this instruction’s operations are complete. Section 6.4.2
covers the effect of including a multicycle NOP in an individual EP.

Finally, the effect of the memory system on the operation of the pipeline is con-
sidered. The access of program and data memory is discussed, along with
memory stalls.

6.4.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet

Again referring to Figure 6–6 on page 6-6, pipeline operation is shown with
eight instructions in every fetch packet. Figure 6–26, however, shows the pipe-
line operation with a fetch packet that contains multiple execute packets. Code
for Figure 6–26 might have this layout:

instruction A ; EP k FP n
|| instruction B ;

instruction C ; EP k + 1 FP n
|| instruction D 
|| instruction E 

instruction F ; EP k + 2 FP n
|| instruction G 
|| instruction H 

instruction I ; EP k + 3 FP n + 1
|| instruction J 
|| instruction K 
|| instruction L 
|| instruction M 
|| instruction N 
|| instruction O 
|| instruction P 

... continuing with EPs k + 4 through k + 8, which have
eight instructions in parallel, like k + 3.



Performance Considerations

6-53 TMS320C67x Pipeline

Figure 6–26. Pipeline Operation: Fetch Packets With Different Numbers of Execute
Packets

Clock cycle
Fetch
packet

(FP)

Execute
packet

(EP) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
n k PG PS PW PR ÉÉ

ÉÉ
DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

n k+1 ÉÉDP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

n k+2
ÉÉÉ
ÉÉÉ

DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9

n+1 k+3 PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8

n+2 k+4 PG PS PW Pipeline PR DP DC E1 E2 E3 E4 E5 E6 E7

n+3 k+5 PG PS stall PW PR DP DC E1 E2 E3 E4 E5 E6

n+4 k+6 PG PS PW PR DP DC E1 E2 E3 E4 E5

n+5 k+7 PG PS PW PR DP DC E1 E2 E3 E4

n+6 k+8 PG PS PW PR DP DC E1 E2 E3

In Figure 6–26, fetch packet n, which contains three execute packets, is
shown followed by six fetch packets (n + 1 through n + 6), each with one
execute packet (containing eight parallel instructions). The first fetch packet
(n) goes through the program fetch phases during cycles 1–4. During these
cycles, a program fetch phase is started for each of the fetch packets that
follow.

In cycle 5, the program dispatch (DP) phase, the CPU scans the p-bits and de-
tects that there are three execute packets (k through k + 2) in fetch packet n.
This forces the pipeline to stall, which allows the DP phase to start for execute
packets k + 1 and k + 2 in cycles 6 and 7. Once execute packet k + 2 is ready
to move on to the DC phase (cycle 8), the pipeline stall is released.

The fetch packets n + 1 through n + 4 were all stalled so the CPU could have
time to perform the DP phase for each of the three execute packets (k through
k + 2) in fetch packet n. Fetch packet n + 5 was also stalled in cycles 6 and 7:
it was not allowed to enter the PG phase until after the pipeline stall was
released in cycle 8. The pipeline continues operation as shown with fetch
packets n + 5 and n + 6 until another fetch packet containing multiple execu-
tion packets enters the DP phase, or an interrupt occurs.



Performance Considerations

 6-54

6.4.2 Multicycle NOPs

The NOP instruction has an optional operand, count, that allows you to issue
a single instruction for multicycle NOPs. A NOP 2, for example, fills in extra
delay slots for the instructions in its execute packet and for all previous execute
packets. If a NOP 2 is in parallel with an MPY instruction, the MPY’s results
will be available for use by instructions in the next execute packet.

Figure 6–27 shows how a multicycle NOP can drive the execution of other
instructions in the same execute packet. Figure 6–27(a) shows a NOP in an
execute packet (in parallel) with other code. The results of the LD, ADD, and
MPY will all be available during the proper cycle for each instruction. Hence
NOP has no effect on the execute packet.

Figure 6–27(b) shows the replacement of a single-cycle NOP with a multi-
cycle NOP (NOP 5) in the same execute packet. The NOP 5 will cause no op-
eration to perform other than the operations from the instructions inside its
execute packet. The results of the LD, ADD, and MPY cannot be used by any
other instructions until the NOP 5 period has completed.

Figure 6–27. Multicycle NOP in an Execute Packet

Execute packet

Cycle

i + 5

i + 4

i + 3

i + 2

i + 1

i

Can use LD result

Can use MPY results

Can use ADD results

NOPMPYADDLD
(a)

Execute packet

Cycle

i + 5

i + 4

i + 3

i + 2

i + 1

i

All values available on i + 5

NOP 5MPYADDLD(b)



Performance Considerations

6-55 TMS320C67x Pipeline

Figure 6–28 shows how a multicycle NOP can be affected by a branch. If the
delay slots of a branch finish while a multicycle NOP is still dispatching NOPs
into the pipeline, the branch overrides the multicycle NOP and the branch tar-
get begins execution five delay slots after the branch was issued.

Figure 6–28. Branching and Multicycle NOPs

EP7
Normal

Cycle #

11

10

9

8

7

6

5

4

3

2

1

Target

E1

DC

DP

PR

PW

PS

PG

Branch

E1

EP6

EP5

EP4

EP3

EP2

EP1

NOP5ADDMPYLD

EP without branch

EP without branch

. . .B

EP without branch

EP without branch

Branch will execute here

Pipeline Phase

�

�

�

�

�

Branch
EP7

See Figure 6–27(b)

† Delay slots of the branch

In one case, execute packet 1 (EP1) does not have a branch. The NOP 5 in
EP6 will force the CPU to wait until cycle 11 to execute EP7.

In the other case, EP1 does have a branch. The delay slots of the branch coin-
cide with cycles 2 through 6. Once the target code reaches E1 in cycle 7, it
executes.



Performance Considerations

 6-56

6.4.3 Memory Considerations

The ’C67x has a memory configuration typical of a DSP, with program memory
in one physical space and data memory in another physical space. Data loads
and program fetches have the same operation in the pipeline, they just use dif-
ferent phases to complete their operations. With both data loads and program
fetches, memory accesses are broken up into multiple phases. This enables
the ’C67x to access memory at a high speed. These phases are shown in
Figure 6–29.

Figure 6–29. Pipeline Phases Used During Memory Accesses

Program memory accesses use these pipeline phases

Data load accesses use these pipeline phases

PG PS PW PR DP

E1 E2 E3 E4 E5

To understand the memory accesses, compare data loads and instruction
fetches/dispatches. The comparison is valid because data loads and program
fetches operate on internal memories of the same speed on the ’C67x and per-
form the same types of operations (listed in Table 6–33) to accommodate
those memories. Table 6–33 shows the operation of program fetches pipeline
versus the operation of a data load.

Table 6–33. Program Memory Accesses Versus Data Load Accesses

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Operation

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Program
Memory
Access
Phase

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Data
Load

 Access
Phase

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Compute address ÁÁÁÁ
ÁÁÁÁ

PG ÁÁÁÁÁ
ÁÁÁÁÁ

E1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Send address to memory
ÁÁÁÁ
ÁÁÁÁ

PS
ÁÁÁÁÁ
ÁÁÁÁÁ

E2
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Memory read/write
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PW
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Program memory: receive fetch packet at CPU boundary
Data load: receive data at CPU boundary

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PR ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Program memory: send instruction to functional units
Data load: send data to register

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

DP ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E5

Depending on the type of memory and the time required to complete an
access, the pipeline may stall to ensure proper coordination of data and
instructions. This is discussed in section 6.4.3.1, Memory Stalls.



Performance Considerations

6-57 TMS320C67x Pipeline

In the instance where multiple accesses are made to a single ported memory,
the pipeline will stall to allow the extra access to occur. This is called a memory
bank hit and is discussed in section 6.4.3.2, Memory Bank Hits.

6.4.3.1 Memory Stalls

A memory stall occurs when memory is not ready to respond to an access from
the CPU. This access occurs during the PW phase for a program memory
access and during the E3 phase for a data memory access. The memory stall
causes all of the pipeline phases to lengthen beyond a single clock cycle,
causing execution to take additional clock cycles to finish. The results of the
program execution are identical whether a stall occurs or not. Figure 6–30
illustrates this point.

Figure 6–30. Program and Data Memory Stalls

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clock cycle

ÁÁÁ
ÁÁÁ
ÁÁÁ

Fetch
packet

(FP)

ÁÁÁ
ÁÁÁ
ÁÁÁ

1

ÁÁ
ÁÁ
ÁÁ

2

ÁÁÁ
ÁÁÁ
ÁÁÁ

3

ÁÁÁ
ÁÁÁ
ÁÁÁ

4

ÁÁ
ÁÁ
ÁÁ

5

ÁÁÁ
ÁÁÁ
ÁÁÁ

6

ÁÁÁ
ÁÁÁ
ÁÁÁ

7 8 9

ÁÁÁ
ÁÁÁ
ÁÁÁ

10

ÁÁ
ÁÁ
ÁÁ

11

ÁÁÁ
ÁÁÁ
ÁÁÁ

12

ÁÁÁ
ÁÁÁ
ÁÁÁ

13

ÁÁ
ÁÁ
ÁÁ

14

ÁÁÁ
ÁÁÁ
ÁÁÁ

15

ÁÁÁ
ÁÁÁ
ÁÁÁ

16
ÁÁÁ
ÁÁÁ

n PG PS PW PR DP DC E1 E2 ÉÉ
ÉÉ

E3 E4 E5

ÁÁÁ
ÁÁÁ

n+1ÁÁÁ
ÁÁÁ

PG PS PW PR DP DC E1 E2 E3 E4

ÁÁÁn+2ÁÁÁÁÁ PG PS PW PR DP Program DC E1 E2 E3ÁÁÁ
ÁÁÁ

n+3
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR memory stall DP DC Data E1 E2
ÁÁÁ
ÁÁÁ

n+4ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

PG PS
ÉÉÉ
ÉÉÉ

PW PR DP memory stall DC E1

ÁÁÁ
ÁÁÁ

n+5ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

PG PS PW PR DP DC

ÁÁÁ
ÁÁÁ

n+6ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG PS PW PR DP

ÁÁÁn+7ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ PG PS PW PRÁÁÁ
ÁÁÁ

n+8
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

PG PS PWÁÁÁ
ÁÁÁ

n+9ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ

PG PS

ÁÁÁ
ÁÁÁ

n+10ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

PG



Performance Considerations

 6-58

6.4.3.2 Memory Bank Hits

Most ’C67x devices use an interleaved memory bank scheme, as shown in
Figure 6–31. Each number in the diagram represents a byte address. A load
byte (LDB ) instruction from address 0 loads byte 0 in bank 0. A load halfword
(LDH) instruction from address 0 loads the halfword value in bytes 0 and 1,
which are also in bank 0. A load word (LDW) instruction from address 0 loads
bytes 0 through 3 in banks 0 and 1. A load double-word (LDDW) instruction
from address 0 loads bytes 0 through 7 in banks 0 through 3.

Figure 6–31. 8-Bank Interleaved Memory

16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N16N

0 1

16 17

Bank 0

2 3

18 19

Bank 1

4 5

20 21

Bank 2

6 7

22 23

Bank 3

8 9

24 25

Bank 4

10 11

26 27

Bank 5

12 13

28 29

Bank 6

14 15

30 31

Bank 7

+ + + + + + + + + + + + + + +1 2 3 4 5 6 7 8 9 01 11 12 13 14 15

Because each of these banks is single-ported memory, only one access to
each bank is allowed per cycle. Two accesses to a single bank in a given cycle
result in a memory stall that halts all pipeline operation for one cycle, while the
second value is read from memory. Two memory operations per cycle are
allowed without any stall, as long as they do not access the same bank.

Consider the code in Example 6–2. Because both loads are trying to access
the same bank at the same time, one load must wait. The first LDW accesses
bank 0 on cycle i + 2 (in the E3 phase) and the second LDW accesses bank
0 on cycle i + 3 (in the E3 phase). See Table 6–34 for identification of cycles
and phases. The E4 phase for both LDW instructions is in cycle i + 4. To elimi-
nate this extra phase, the loads must access data from different banks (B4
address would need to be in bank 1). For more information on programming
topics, see the TMS320C62x/C67x Programmer’s Guide.

Example 6–2. Load From Memory Banks

LDW .D1 *A4++,A5 ; load 1, A4 address is in bank 0
|| LDW .D2 *B4++,B5 ; load 2, B4 address is in bank 0



Performance Considerations

6-59 TMS320C67x Pipeline

Table 6–34. Loads in Pipeline From Example 6–2

i i + 1 i + 2 i + 3 i + 4 i + 5

LDW .D1
Bank 0

E1 E2 E3 – E4 E5

LDW .D2
Bank 0

E1 E2 – E3 E4 E5

For devices that have more than one memory space (see Figure 6–32), an
access to bank 0 in one space does not interfere with an access to bank 0 in
another memory space, and no pipeline stall occurs.

The internal memory of the ’C67x family varies from device to device. See the
TMS320C62x/C67x Peripherals Reference Guide to determine the memory
spaces in your particular device.

Figure 6–32. 8-Bank Interleaved Memory With Two Memory Spaces

Bank 7Bank 6Bank 5Bank 4Bank 3Bank 2Bank 1

+1M

Bank 0

16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N 16N16N

0 1

16 17

Bank 0

2 3

18 19

Bank 1

4 5

20 21

Bank 2

6 7

22 23

Bank 3

8 9

24 25

Bank 4

10 11

26 27

Bank 5

12 13

28 29

Bank 6

14 15

30 31

Bank 7

+ + + + + + + + + + + + + + +1 2 3 4 5 6 7 8 9 01 11 12 13 14 15

16 16M 16M 16M 16M 16M 16M 16M 16M 16M 16M 16M 16M 16M 16M16M + + + + + + + + + + + + + +2 3 4 5 6 7 8 9 01 11 12 13 14 15

Memory space 1

Memory space 0



7-1

Interrupts

This chapter describes CPU interrupts, including reset and the nonmaskable
interrupt (NMI). It details the related CPU control registers and their functions
in controlling interrupts. It also describes interrupt processing, the method the
CPU uses to detect automatically the presence of interrupts and divert
program execution flow to your interrupt service code. Finally, the chapter
describes the programming implications of interrupts.

Topic Page

7.1 Overview of Interrupts 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.2 Globally Enabling and Disabling Interrupts
(Control Status Register–CSR) 7-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.3 Individual Interrupt Control 7-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.4 Interrupt Detection and Processing 7-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.5 Performance Considerations 7-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.6 Programming Considerations 7-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 7



Overview of Interrupts

 7-2

7.1 Overview of Interrupts

Typically, DSPs work in an environment that contains multiple external
asynchronous events. These events require tasks to be performed by the DSP
when they occur. An interrupt is an event that stops the current process in the
CPU so that the CPU can attend to the task needing completion because of
the event. These interrupt sources can be on chip or off chip, such as timers,
analog-to-digital converters, or other peripherals.

Servicing an interrupt involves saving the context of the current process, com-
pleting the interrupt task, restoring the registers and the process context, and
resuming the original process. There are eight registers that control servicing
interrupts.

An appropriate transition on an interrupt pin sets the pending status of the
interrupt within the interrupt flag register (IFR). If the interrupt is properly
enabled, the CPU begins processing the interrupt and redirecting program
flow to the interrupt service routine.

7.1.1 Types of Interrupts and Signals Used

There are three types of interrupts on the ’C62x/C67x CPUs. These three
types are differentiated by their priorities, as shown in Table 7–1. The reset
interrupt has the highest priority and corresponds to the RESET signal. The
nonmaskable interrupt is the interrupt of second highest priority and corre-
sponds to the NMI signal. The lowest priority interrupts are interrupts 4–15.
They correspond to the INT4–INT15 signals. RESET, NMI, and some of the
INT4–INT15 signals are mapped to pins on ’C62x/C67x devices. Some of the
INT4–INT15 interrupt signals are used by internal peripherals and some may
be unavailable or can be used under software control. Check your data sheet
to see your device’s interrupt specifications.



Overview of Interrupts

7-3Interrupts

Table 7–1. Interrupt Priorities

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Priority

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Interrupt
Name

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Highest ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Reset

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNMIÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁINT4ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT5
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT6

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT7

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT8

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁINT9ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT10
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT11
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT12

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT13

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁINT14ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Lowest
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INT15

7.1.1.1 Reset (RESET)

Reset is the highest priority interrupt and is used to halt the CPU and return
it to a known state. The reset interrupt is unique in a number of ways:

� RESET is an active-low signal. All other interrupts are active-high signals.

� RESET must be held low for 10 clock cycles before it goes high again to
reinitialize the CPU properly.

� The instruction execution in progress is aborted and all registers are
returned to their default states.

� The reset interrupt service fetch packet must be located at address 0.

� RESET is not affected by branches.

7.1.1.2 Nonmaskable Interrupt (NMI)

NMI is the second-highest priority interrupt and is generally used to alert the
CPU of a serious hardware problem such as imminent power failure.

For NMI processing to occur, the nonmaskable interrupt enable (NMIE) bit in
the interrupt enable register must be set to 1. If NMIE is set to 1, the only condi-
tion that can prevent NMI processing is if the NMI occurs during the delay slots
of a branch (whether the branch is taken or not).

NMIE is cleared to 0 at reset to prevent interruption of the reset. It is cleared
at the occurrence of an NMI to prevent another NMI from being processed. You
cannot manually clear NMIE, but you can set NMIE to allow nested NMIs.
While NMI is cleared, all maskable interrupts (INT4–INT15) are disabled.



Overview of Interrupts

 7-4

7.1.1.3 Maskable Interrupts (INT4–INT15)

The ’C62x/C67x CPUs have twelve interrupts that are maskable. These have
lower priority than the NMI and reset interrupts. These interrupts can be
associated with external devices, on-chip peripherals, software control, or not
be available.

Assuming that a maskable interrupt does not occur during the delay slots of
a branch (this includes conditional branches that do not complete execution
due to a false condition), the following conditions must be met to process a
maskable interrupt:

� The global interrupt enable bit (GIE) bit in the control status register (CSR) is
set to1.

� The NMIE bit in the interrupt enable register (IER) is set to1.

� The corresponding interrupt enable (IE) bit in the IER is set to1.

� The corresponding interrupt occurs, which sets the corresponding bit in
the IFR to 1 and there are no higher priority interrupt flag (IF) bits set in the
IFR.

7.1.1.4 Interrupt Acknowledgment (IACK and INUMx)

The IACK and INUMx signals alert hardware external to the ’C62x and C67x
that an interrupt has occurred and is being processed. The IACK signal indi-
cates that the CPU has begun processing an interrupt. The INUMx signals
(INUM3–INUM0) indicate the number of the interrupt (bit position in the IFR)
that is being processed.

For example:

INUM3 = 0 (MSB)
INUM2 = 1
INUM1 = 1
INUM0 = 1 (LSB)

Together, these signals provide the 4-bit value 0111, indicating INT7 is being
processed.



Overview of Interrupts

7-5Interrupts

7.1.2 Interrupt Service Table (IST)

When the CPU begins processing an interrupt, it references the interrupt
service table (IST). The IST is a table of fetch packets that contain code for
servicing the interrupts. The IST consists of 16 consecutive fetch packets.
Each interrupt service fetch packet (ISFP) contains eight instructions. A simple
interrupt service routine may fit in an individual fetch packet.

The addresses and contents of the IST are shown in Figure 7–1. Because
each fetch packet contains eight 32-bit instruction words (or 32 bytes), each
address in the table is incremented by 32 bytes (20h) from the one adjacent
to it.

Figure 7–1. Interrupt Service Table

Interrupt service table
(IST)

000h

020h

040h

060h

080h

0A0h

0C0h

0E0h

100h

120h

140h

160h

180h

1A0h

1C0h

1E0h

Program memory

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP



Overview of Interrupts

 7-6

7.1.2.1 Interrupt Service Fetch Packet (ISFP)

An ISFP is a fetch packet used to service an interrupt. Figure 7–2 shows an
ISFP that contains an interrupt service routine small enough to fit in a single
fetch packet (FP). To branch back to the main program, the FP contains a
branch to the interrupt return pointer instruction (B IRP). This is followed by a
NOP 5 instruction to allow the branch target to reach the execution stage of
the pipeline.

Note:

If the NOP 5 was not in the routine, the CPU would execute the next five
execute packets that are associated with the next ISFP.

Figure 7–2. Interrupt Service Fetch Packet

Instr3

Interrupt service table
(IST)

Instr2

Instr4

Instr5

Instr6

B IRP

NOP 5

ISFP for INT6

000h

020h

040h

060h

080h

0A0h

0C0h

0E0h

100h

120h

140h

160h

180h

1A0h

1C0h

1E0h

0C0h

0C4h

0C8h

0CCh

0D0h

0D4h

0D8h

0DCh

The interrupt service
routine for INT6 is short
enough to be contained
in a single fetch packet.

Program memory

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

Instr1

If the interrupt service routine for an interrupt is too large to fit in a single FP,
a branch to the location of additional interrupt service routine code is required.
Figure 7–3 shows that the interrupt service routine for INT4 was too large for
a single FP, and a branch to memory location 1234h is required to complete
the interrupt service routine.



Overview of Interrupts

7-7Interrupts

Figure 7–3. IST With Branch to Additional Interrupt Service Code Located Outside the IST

IST

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

Additional ISFP for INT4

1220h

The interrupt service routine
for INT4 includes this

7-instruction extension of
the interrupt ISFP. Instr1

Instr2

B 1234h

Instr4

Instr5

Instr6

Instr7

Instr8

ISFP for INT4

080h

084h

088h

08Ch

090h

094h

098h

09Ch

Program memory

–

–

–

–

–

Instr9

Instr11

1224h

1228h

122Ch

1230h

1234h

1238h

123Ch

B IRP

000h

020h

040h

060h

080h

0A0h

0C0h

0E0h

100h

120h

140h

160h

180h

1A0h

1C0h

1E0h

Additional ISFP for INT4

1240h Instr12

Instr13

Instr14

Instr15

–

–

–

1244h

1248h

124Ch

1250h

1254h

1258h

125Ch

–

Note:

The instruction B 1234h branches into the middle of a fetch packet (at 1220h)
and processes code starting at address 1234h. The CPU ignores code from
address 1220–1230h, even if it is in parallel to code at address 1234h.



Overview of Interrupts

 7-8

7.1.2.2 Interrupt Service Table Pointer Register (ISTP)

The interrupt service table pointer (ISTP) register is used to locate the interrupt
service routine. One field, ISTB identifies the base portion of the address of
the IST; another field, HPEINT, identifies the specific interrupt and locates the
specific fetch packet within the IST. Figure 7–4 shows the fields of the ISTP.
Table 7–2 describes the fields and how they are used.

Figure 7–4. Interrupt Service Table Pointer (ISTP)

31 0

R, +0

0

R, W, +0

10

HPEINTISTB 0000

59 4

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+0 Value is cleared at reset

Table 7–2. Interrupt Service Table Pointer (ISTP) Field Descriptions

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Bits
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Field
Name

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description

ÁÁÁÁ
ÁÁÁÁ

0–4 ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Set to 0 (fetch packets must be aligned on 8-word (32-byte) boundaries).

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

5–9 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

HPEINT ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Highest priority enabled interrupt. This field gives the number (related bit position in the IFR)
of the highest priority interrupt (as defined in Table 7–1) that is enabled by its bit in the IER.
Thus, the ISTP can be used for manual branches to the highest priority enabled interrupt.
If no interrupt is pending and enabled, HPEINT contains the value 00000b. The corre-
sponding interrupt need not be enabled by NMIE (unless it is NMI) or by GIE.

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

10–31
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ISTB
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Interrupt service table base portion of the IST address. This field is set to 0 on reset. Thus,
upon startup the IST must reside at address 0. After reset, you can relocate the IST by writ-
ing a new value to ISTB. If relocated, the first ISFP (corresponding to RESET) is never
executed via interrupt processing, because reset sets the ISTB to 0. See Example 7–1.



Overview of Interrupts

7-9Interrupts

The reset fetch packet must be located at address 0, but the rest of the IST can
be at any program memory location that is on a 256-word boundary. The loca-
tion of the IST is determined by the interrupt service table base (ISTB) field of
the ISTP. Example 7–1 shows the relationship of the ISTB to the table location.

Example 7–1. Relocation of Interrupt Service Table

IST

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

0

820h

840h

860h

880h

8A0h

8C0h

8E0h

900h

920h

940h

96h0

980h

9A0h

9C0h

9E0h

Program memory

800h

RESET ISFP

1) Copy the IST, located between 0h and 200h, to the memory loca-
tion between 800h and A00h.

2) Write 800h to the ISTP register: MVK 800h, A2
MVC A2, ISTP

ISTP = 800h = 1000 0000 0000b

RESET ISFP

Assume: IFR = BBC0h = 1011 1011 1100 0000b
 IER = 1230h = 0001 0010 0011 0001b

2 enabled interrupts pending: INT9 and INT12

The 1s in the IFR indicate pending interrupts; the 1s in the IER indi-
cate the interrupts that are enabled. INT9 has a higher priority
than INT12, so HPEINT is encoded with the value for INT9, 01001b.

HPEINT corresponds to bits 9–5 of the ISTP:
ISTP = 1001 0010 0000b = 920h = address of INT9

(b) How the ISTP directs the CPU to the appropriate ISFP in the
relocated IST

  

(a) Relocating the IST to 800h



Overview of Interrupts

 7-10

7.1.3 Summary of Interrupt Control Registers

Table 7–3 lists the eight interrupt control registers on the ’C62x and ’C67x
devices. The control status register (CSR) and the interrupt enable register
(IER) enable or disable interrupt processing. The interrupt flag register (IFR)
identifies pending interrupts. The interrupt set register (ISR) and interrupt clear
register (ICR) can be used in manual interrupt processing.

There are three pointer registers. ISTP points to the interrupt service table.
NRP and IRP are the return pointers used when returning from a nonmaskable
or a maskable interrupt, respectively. More information on all the registers can
be found at the locations listed in the table.

Table 7–3. Interrupt Control Registers

Abbreviation Name Description
Page

Number

CSR Control status register Allows you to globally set or disable interrupts 7-11

IER Interrupt enable register Allows you to enable interrupts 7-13

IFR Interrupt flag register Shows the status of interrupts 7-14

ISR Interrupt set register Allows you to set flags in the IFR manually 7-14

ICR Interrupt clear register Allows you to clear flags in the IFR manually 7-14

ISTP Interrupt service table pointer Pointer to the beginning of the interrupt service
table

7-8

NRP Nonmaskable interrupt return
pointer

Contains the return address used on return from
a nonmaskable interrupt. This return is accom-
plished via the B NRP instruction.

7-16

IRP Interrupt return pointer Contains the return address used on return from
a maskable interrupt. This return is accom-
plished via the B IRP instruction.

7-17



Globally Enabling and Disabling Interrupts

7-11Interrupts

7.2 Globally Enabling and Disabling Interrupts
(Control Status Register–CSR)

The control status register (CSR) contains two fields that control interrupts:
GIE and PGIE, as shown in Figure 7–5 and Table 7–4. The other fields of the
registers serve other purposes and are discussed in section 2.6.2 on page
2-11.

Figure 7–5. Control Status Register (CSR)
31 24

CPU ID

1623

Revision ID

R

15

PWRD SAT EN PCC DCC

10 9 8 7 5 4 2 1 0

PGIE GIE

R, W, +0 R, +x R, W, +0R, C, +0

Legend : R Readable by the MVC instruction
W Writeable by the MVC instruction
+x Value undefined after reset
+0 Value is zero after reset
C Clearable using the MVC instruction

Table 7–4. Control Status Register (CSR) Interrupt Control Field Descriptions

Bit
Field
Name Description

0 GIE Global interrupt enable; globally enables or disables all
maskable interrupts.
GIE = 1: maskable interrupts globally enabled
GIE = 0: maskable interrupts globally disabled

1 PGIE Previous GIE; saves the value of GIE when an interrupt is
taken. This value is used on return from an interrupt.

The global interrupt enable (GIE) allows you to enable or disable all maskable
interrupts by controlling the value of a single bit. GIE is bit 0 of the control status
register (CSR).

� GIE = 1 enables the maskable interrupts so that they are processed.
� GIE = 0 disables the maskable interrupts so that they are not processed.

Bit 1 of the CSR is PGIE and contains the previous value of GIE. During pro-
cessing of a maskable interrupt, PGIE is loaded with GIE and GIE is cleared.
GIE is cleared during a maskable interrupt to keep another maskable interrupt
from occurring before the device state has been saved. Upon return from an
interrupt, by way of the B IRP instruction, the PGIE value is copied back to GIE
and remains unchanged. The purpose of PGIE is to allow proper clearing of
GIE when an interrupt has already been detected for processing.

Globally Enabling and Disabling Interrupts (Control Status Register–CSR)



Globally Enabling and Disabling Interrupts

 7-12

Suppose the CPU begins processing an interrupt. Just as the interrupt proces-
sing begins, GIE is being cleared by you writing a 0 to bit 0 of the CSR with the
MVC instruction. GIE is cleared by the MVC instruction prior to being copied
to PGIE. Upon returning from the interrupt, PGIE is copied back to GIE, result-
ing in GIE being cleared as directed by your code.

Example 7–2 shows how to disable maskable interrupts globally and
Example 7–3 shows how to enable maskable interrupts globally.

Example 7–2. Code Sequence to Disable Maskable Interrupts Globally 

MVC CSR,B0 ; get CSR
AND -2,B0,B0 ; get ready to clear GIE
MVC B0,CSR ; clear GIE

Example 7–3. Code Sequence to Enable Maskable Interrupts Globally 

MVC CSR,B0 ; get CSR
OR 1,B0,B0 ; get ready to set GIE
MVC B0,CSR ; set GIE

Globally Enabling and Disabling Interrupts (Control Status Register–CSR)



Individual Interrupt Control

7-13Interrupts

7.3 Individual Interrupt Control

Servicing interrupts effectively requires individual control of all three types of
interrupts: reset, nonmaskable, and maskable. Enabling and disabling individ-
ual interrupts is done with the interrupt enable register (IER). The status of
pending interrupts is stored in the interrupt flag register (IFR). Manual interrupt
processing can be accomplished through the use of the interrupt set register
(ISR) and interrupt clear register (ICR). The interrupt return pointers restore
context after servicing nonmaskable and maskable interrupts.

7.3.1 Enabling and Disabling Interrupts (Interrupt Enable Register–IER)

You can enable and disable individual interrupts by setting and clearing bits
in the IER that correspond to the individual interrupts. An interrupt can trigger
interrupt processing only if the corresponding bit in the IER is set. Bit 0, corre-
sponding to reset, is not writeable and is always read as 1, so the reset inter-
rupt is always enabled. You cannot disable the reset interrupt. Bits IE4–IE15
can be written as 1 or 0, enabling or disabling the associated interrupt, respec-
tively. The IER is shown in Figure 7–6.

Figure 7–6. Interrupt Enable Register (IER)
31 16

Reserved

15 0

IE15 IE14 IE13 IE12 IE11 IE10 IE9 IE8 IE7 IE6 IE5 IE4

R, W, +0

NMIE 1

R, +1

Rsv Rsv

Legend : R = Readable by the MVC instruction
W = Writeable by the MVC instruction
Rsv = Reserved
+1 = Value after reset
+0 = Value after reset

When NMIE = 0, all nonreset interrupts are disabled, preventing interruption
of an NMI. NMIE is cleared at reset to prevent any interruption of processor
initialization until you enable NMI. After reset, you must set NMIE to enable the
NMI and to allow INT15–INT4 to be enabled by GIE and the appropriate IER
bit. You cannot manually clear the NMIE; the bit is unaffected by a write of 0.
NMIE is also cleared by the occurrence of an NMI. If cleared, NMIE is set only
by completing a B NRP instruction or by a write of 1 to NMIE. Example 7–4 and
Example 7–5 show code for enabling and disabling individual interrupts,
respectively.



Individual Interrupt Control

 7-14

Example 7–4. Code Sequence to Enable an Individual Interrupt (INT9)

MVK 200h,B1 ; set bit 9
MVC IER,B0 ; get IER
OR B1,B0,B0 ; get ready to set IE9
MVC B0,IER ; set bit 9 in IER

Example 7–5. Code Sequence to Disable an Individual Interrupt (INT9)

MVK FDFFh,B1 ; clear bit 9
MVC IER,B0
AND B1,B0,B0 ; get ready to clear IE9
MVC B0,IER ; clear bit 9 in IER

7.3.2 Status of, Setting, and Clearing Interrupts
(Interrupt Flag, Set, and Clear Registers–IFR, ISR, ICR)

The interrupt flag register (IFR) contains the status of INT4–INT15 and NMI.
Each interrupt’s corresponding bit in the IFR is set to 1 when that interrupt oc-
curs; otherwise, the bits have a value of 0. If you want to check the status of
interrupts, use the MVC instruction to read the IFR. Figure 7–7 shows the IFR.

Figure 7–7. Interrupt Flag Register (IFR)

31 16

Reserved

R, +0

15 0

IF15 IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 IF6 IF5 IF4 Rsv Rsv NMIF 0

R, +0

Legend : R = Readable by the MVC instruction
+0 = Cleared at reset
rsv = Reserved

The interrupt set register (ISR), shown in Figure 7–8, and the interrupt clear
register (ICR), shown in Figure 7–9, allow you to set or clear maskable inter-
rupts manually in the IFR. Writing a 1 to IS4–IS15 of the ISR causes the corre-
sponding interrupt flag to be set in the IFR. Similarly, writing a 1 to a bit of the
ICR causes the corresponding interrupt flag to be cleared. Writing a 0 to any
bit of either the ISR or the ICR has no effect. Incoming interrupts have priority
and override any write to the ICR. You cannot set or clear any bit in the ISR
or ICR to affect NMI or reset.



Individual Interrupt Control

7-15Interrupts

Note:

Any write to the ISR or ICR (by the MVC instruction) effectively has one delay
slot because the results cannot be read (by the MVC instruction) in the IFR
until two cycles after the write to the ISR or ICR.

Any write to the ICR is ignored by a simultaneous write to the same bit in the
ISR.

Example 7–6 and Example 7–7 show code examples to set and clear individu-
al interrupts.

Figure 7–8. Interrupt Set Register (ISR)

31 16

Reserved

15 0

IS15 IS14 IS13 IS12 IS11 IS10 IS9 IS8 IS7 IS6 IS5 IS4

W

Rsv Rsv Rsv Rsv

Legend : W = Writeable by the MVC instruction
Rsv = Reserved

Figure 7–9. Interrupt Clear Register (ICR)

31 16

Reserved

15 0

IC15 IC14 IC13 IC12 IC11 IC10 IC9 IC8 IC7 IC6 IC5 IC4 Rsv RsvRsv Rsv

W

Legend : W = Writeable by the MVC instruction
Rsv = Reserved

Example 7–6. Code to Set an Individual Interrupt (INT6) and Read the Flag Register

MVK 40h,B3
MVC B3,ISR
NOP
MVC IFR,B4

Example 7–7. Code to Clear an Individual Interrupt (INT6) and Read the Flag Register

MVK 40h,B3
MVC B3,ICR
NOP
MVC IFR,B4



Individual Interrupt Control

 7-16

7.3.3 Returning From Interrupt Servicing

After RESET goes high, the control registers are brought to a known value and
program execution begins at address 0h. After nonmaskable and maskable
interrupt servicing, use a branch to the corresponding return pointer register
to continue the previous program execution.

7.3.3.1 CPU State After RESET

After RESET, the control registers and bits will contain the corresponding val-
ues:
� AMR, ISR, ICR, IFR, and ISTP = 0h
� IER = 1h
� IRP and NRP = undefined
� Bits 15–0 of the CSR = 100h in little-endian mode 

= 000h in big-endian mode

7.3.3.2 Returning From Nonmaskable Interrupts (NMI Return Pointer Register–NRP)

The NMI return pointer register (NRP) contains the return pointer that directs
the CPU to the proper location to continue program execution after NMI
processing. A branch using the address in the NRP (B NRP) in your interrupt
service routine returns to the program flow when NMI servicing is complete.
Example 7–8 shows how to return from an NMI.

Example 7–8. Code to Return From NMI

B NRP ; return, sets NMIE
NOP 5 ; delay slots

The NRP contains the 32-bit address of the first execute packet in the program
flow that was not executed because of a nonmaskable interrupt. Although you
can write a value to this register, any subsequent interrupt processing may
overwrite that value. Figure 7–10 shows the NRP register.

Figure 7–10. NMI Return Pointer (NRP)
31 16

NRP

R, W, +x

15 0
NRP

R, W, +x

Legend : R = Readable by the MVC instruction
W = Writeable by the MVC instruction
+x = value undefined after reset



Individual Interrupt Control

7-17Interrupts

7.3.3.3 Returning From Maskable Interrupts (Interrupt Return Pointer Register–IRP)

The interrupt return pointer register (IRP) contains the return pointer that
directs the CPU to the proper location to continue program execution after pro-
cessing a maskable interrupt. A branch using the address in the IRP (B IRP)
in your interrupt service routine returns to the program flow when interrupt
servicing is complete. Example 7–9 shows how to return from a maskable
interrupt.

Example 7–9. Code to Return from a Maskable Interrupt

B IRP ; return, moves PGIE to GIE
NOP 5 ; delay slots

The IRP contains the 32-bit address of the first execute packet in the program
flow that was not executed because of a maskable interrupt. Although you can
write a value to this register, any subsequent interrupt processing may over-
write that value. Figure 7–11 shows the IRP register.

Figure 7–11.Interrupt Return Pointer (IRP)

31 16
IRP

R, W, +x

15 0
IRP

R, W, +x

Legend : R = Readable by the MVC instruction
W = Writeable by the MVC instruction
+x = Value undefined after reset



Interrupt Detection and Processing

 7-18

7.4 Interrupt Detection and Processing

When an interrupt occurs, it sets a flag in the IFR. Depending on certain condi-
tions, the interrupt may or may not be processed. This section discusses the
mechanics of setting the flag bit, the conditions for processing an interrupt, and
the order of operation for detecting and processing an interrupt. The similari-
ties and differences between reset and nonreset interrupts are also discussed.

7.4.1 Setting the Nonreset Interrupt Flag

Figure 7–12 and Figure 7–13 show the processing of a nonreset interrupt
(INTm) for the ’C62x and ’C67x, respectively. The flag (IFm) for INTm in the
IFR is set following the low-to-high transition of the INTm signal on the CPU
boundary. This transition is detected on a clock-cycle by clock-cycle basis and
is not affected by memory stalls that might extend a CPU cycle. Once there is
a low-to-high transition on an external interrupt pin (cycle 1), it takes two clock
cycles for the signal to reach the CPU boundary (cycle 3). When the interrupt
signal enters the CPU, it is has been detected (cycle 4). Two clock cycles after
detection, the interrupt’s corresponding flag bit in the IFR is set (cycle 6).

In Figure 7–12 and Figure 7–13, IFm is set during CPU cycle 6. You could at-
tempt to clear bit IFm by using an MVC instruction to write a 1 to bit m of the
ICR in execute packet n + 3 (during CPU cycle 4). However, in this case, the
automated write by the interrupt detection logic takes precedence and IFm re-
mains set.

Figure 7–12 and Figure 7–13 assume INTm is the highest priority pending in-
terrupt and is enabled by GIE and NMIE as necessary. If it is not the highest
priority pending interrupt, IFm remains set until either you clear it by writing a1
to bit m of the ICR, or the processing of INTm occurs.

7.4.2 Conditions for Processing a Nonreset Interrupt

In clock cycle 4 of Figure 7–12 and Figure 7–13, a nonreset interrupt in need
of processing is detected. For this interrupt to be processed, the following
conditions must be valid on the same clock cycle and are evaluated every
clock cycle:

� IFm is set during CPU cycle 6. (This determination is made in CPU cycle
4 by the interrupt logic.)

� There is not a higher priority IFm bit set in the IFR.

� The corresponding bit in the IER is set (IEm = 1).



Interrupt Detection and Processing

7-19Interrupts

� GIE = 1

� NMIE = 1

� The five previous execute packets (n through n + 4) do not contain a
branch (even if the branch is not taken) and are not in the delay slots of
a branch.

Any pending interrupt will be taken as soon as pending branches are
completed.

Figure 7–12. TMS320C62x Nonreset Interrupt Detection and Processing:
  Pipeline Operation

ISFP

n+10
n+9
n+8
n+7
n+6

Annulled Instructions

E5E4E3E2E1DCDPPRPWPSPG

PG
PSPG
PWPS
PRPW

PG
PS

DPPRPW
PG
PSPG

E5E4
E5

E3
E4
E5

DC
E1
E2
E3
E4

DP
DC
E1
E2
E3

PR
DP
DC
E1
E2

PW
PR
DP
DC
E1

PS
PW
PR
DP
DC

E5E4E3E2E1

n+5
n+4
n+3
n+2
n+1

n
Execute packet

INUM

IACK

IFm

External INTm

Clock cycle

0000000000m000000

17161514131211109876543210

Cycles 6–12: Nonreset
interrupt processing is

disabled.

17161514131211109876543210

�

�

CPU cycle

at pin

0

PG
PS
PW
PR
DP
DC

PG
PS
PW
PR
DP
DC E5E4E3E2E1

n+11

Contains no branch

† IFm is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of INTm.
‡ After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable interrupts are

disabled when GIE = 0.



Interrupt Detection and Processing

 7-20

Figure 7–13. TMS320C67x Nonreset Interrupt Detection and Processing:
  Pipeline Operation

21 22201917 18161514

000000000

E10

22212019

‡

18171615

E1DC

14

1211108 976

†

4 53

00000

E10

E10

E9

E9

E8E7

E8

E10

E9

E8

E8

E7

E6

E9

E8

E7

E7

E6

E5

E4

E6

E5

m0000

E7

E6

E5

E6

E5

E4

E4

E3

E3

E2

E1

E2

E5

E4

E3

E3

E2

E1

E4

E3

E2

E2

E1

E1

DC

DP

DC

DP

PR

PW

DC

DP

PR

21CPU cycle

IFm

0

External
INTm at

pin

00

IACK

INUM 0

E2

E1

DC

E1

DC

DP

DP

PR

PW

PS

PR

PW

PS

PG

n

n+1

n+2

n+3

n+4

n+5

n+6

DC

DP

PR

PW

PS

PG

Execute
packet

PR

1211

PWPS

1098

PG

DP

PW

PR

PS

PG

PR

PS

PW

PS

PG

PG

PW

PS

PG

76543

PGn+7

n+9

n+8

n+10

n+11

21

ISFP

CPU cycle 0

13

0

E10

13

DP

E9

Cycles 6–14: Nonreset
interrupt processing is disabled

Annulled Instructions

Contains no branch

E8E7E6E4 E5E3E2

† IFm is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of INTm.
‡ After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable interrupts are

disabled when GIE = 0.



Interrupt Detection and Processing

7-21Interrupts

7.4.3 Actions Taken During Nonreset Interrupt Processing

During CPU cycles 6–12 of Figure 7–12 and cycles 6–14 of Figure 7–13, the
following interrupt processing actions occur:

� Processing of subsequent nonreset interrupts is disabled.

� For all interrupts except NMI, PGIE is set to the value of GIE and then GIE
is cleared.

� For NMI, NMIE is cleared.

� The next execute packets (from n + 5 on) are annulled.�If an execute pack-
et is annulled during a particular pipeline stage, it does not modify any CPU
state. Annulling also forces an instruction to be annulled in future pipeline
stages.

� The address of the first annulled execute packet (n+5) is loaded in to the
NRP (in the case of NMI) or IRP (for all other interrupts).

� A branch to the address held in ISTP (the pointer to the ISFP for INTm)
is forced into the E1 phase of the pipeline during cycle 7 for the ’C62x and
cycle 9 for the ’C67x.

� During cycle 7, IACK is asserted and the proper INUMx signals are
asserted to indicate which interrupt is being processed. The timings for
these signals in Figure 7–12 and Figure 7–13 represent only the signals’
characteristics inside the CPU. The external signals may be delayed and
be longer in duration to handle external devices. Check the data sheet for
your specific device for particular timing values.

� IFm is cleared during cycle 8.



Interrupt Detection and Processing

 7-22

7.4.4 Setting the RESET  Interrupt Flag for the TMS320C62x/C67x

RESET must be held low for a minimum of ten clock cycles. Four clock cycles
after RESET goes high, processing of the reset vector begins. The flag for
RESET (IF0) in the IFR is set by the low-to-high transition of the RESET signal
on the CPU boundary. In Figure 7–14, IF0 is set during CPU cycle 15. This
transition is detected on a clock-cycle by clock-cycle basis and is not affected
by memory stalls that might extend a CPU cycle.

Figure 7–14. RESET Interrupt Detection and Processing: Pipeline Operation

Reset ISFP

n+7
n+6

Pipeline flush

E1DCDPPRPWPSPG

PG
PS

PW
PR
DP
DC

E1

n+5
n+4
n+3
n+2

n+1
n

Execute
packet

INUM

IACK

IF0

RESET

Clock cycle

0000000000000000

17161514131211109876543210

Cycles 15–21:
Nonreset interrupt

processing is disabled

17161514131211109876543210

�

�

CPU cycle

at pin

0

PG

PS
PW
PR
DP

DC
E2E1

00000

2221201918

0

2221201918

† IF0 is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of RESET.
‡ After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable interrupts are

disabled when GIE = 0.



Interrupt Detection and Processing

7-23Interrupts

7.4.5 Actions Taken During RESET  Interrupt Processing

A low signal on the RESET pin is the only requirement to process a reset. Once
RESET makes a high-to-low transition, the pipeline is flushed and CPU regis-
ters are returned to their reset values. GIE, NMIE, and the ISTB in the ISTP
are cleared. For the CPU state after reset, see section 7.3.3.1 on page 7-16.

During CPU cycles 15–21 of Figure 7–14, the following reset processing
actions occur:

� Processing of subsequent nonreset interrupts is disabled because GIE
and NMIE are cleared.

� A branch to the address held in ISTP (the pointer to the ISFP for INT0) is
forced into the E1 phase of the pipeline during cycle 16.

� During cycle 16, IACK is asserted and the proper INUMx signals are
asserted to indicate a reset is being processed.

� IF0 is cleared during cycle 17.

Note:

Code that starts running after reset must explicitly enable GIE, NMIE, and
IER to allow interrupts to be processed.



Performance Considerations

 7-24

7.5 Performance Considerations

The interaction of the ’C62x/C67x CPU and sources of interrupts present per-
formance issues for you to consider when you are developing your code.

7.5.1 General Performance

� Overhead . Overhead for all CPU interrupts is seven cycles for the ’C62x
and nine cycles for the ’C67x. You can see this in Figure 7–12 and
Figure 7–13, where no new instructions are entering the E1 pipeline
phase during CPU cycles 6 through 12 for the ’C62x and CPU cycles 6
through 14 for the ’C67x.

� Latency . Interrupt latency is 11 cycles for the ’C62x and 13 cycles for the
’C67x (21 cycles for RESET). In Figure 7–13, although the interrupt is
active in cycle 2, execution of interrupt service code does not begin until
cycle 13 for the ’C62x and cycle 15 for the ’C67x.

� Frequency . The logic clears the nonreset interrupt (IFm) on cycle 8, with
any incoming interrupt having highest priority. Thus, an interrupt can be
recognized every second cycle. Also, because a low-to-high transition is
necessary, an interrupt can occur only every second cycle. However, the
frequency of interrupt processing depends on the time required for inter-
rupt service and whether you reenable interrupts during processing,
thereby allowing nested interrupts. Effectively, only two occurrences of a
specific interrupt can be recognized in two cycles.

7.5.2 Pipeline Interaction

Because the serial or parallel encoding of fetch packets does not affect the DC
and subsequent phases of the pipeline, no conflicts between code parallelism
and interrupts exist. There are three operations or conditions that can affect,
or are affected by, interrupts:

� Branches. Nonreset interrupts are delayed if any execute packets n
through n + 4 in Figure 7–12 or Figure 7–13 contain a branch or are in the
delay slots of a branch.

� Memory stalls. Memory stalls delay interrupt processing, because they
inherently extend CPU cycles.

� Multicycle NOPs.  Multicycle NOPs (including IDLE) operate like other
instructions when interrupted, except when an interrupt causes annul-
ment of any but the first cycle of a multicycle NOP. In that case, the address
of the next execute packet in the pipeline is saved in the NRP or the IRP.
This prevents returning to an IDLE instruction or a multicycle NOP that
was interrupted.



Programming Considerations

7-25Interrupts

7.6 Programming Considerations

The interaction of the ’C62x/’C67x CPUs and sources of interrupts present
programming issues for you to consider when you are developing your code.

7.6.1 Single Assignment Programming

Example 7–10 shows code without single assignment and Example 7–11
shows code using the single assignment programming method.

To avoid unpredictable operation, you must employ the single assignment
method in code that can be interrupted. When an interrupt occurs, all instruc-
tions entering E1 prior to the beginning of interrupt processing are allowed to
complete execution (through E5). All other instructions are annulled and
refetched upon return from interrupt. The instructions encountered after the
return from the interrupt do not experience any delay slots from the instructions
prior to processing the interrupt. Thus, instructions with delay slots prior to the
interrupt can appear, to the instructions after the interrupt, to have fewer delay
slots than they actually have.

For example, suppose that register A1 contains 0 and register A0 points to a
memory location containing a value of 10 before reaching the code in
Example 7–10. The ADD instruction, which is in a delay slot of the LDW, sums
A2 with the value in A1 (0) and the result in A3 is just a copy of A2. If an interrupt
occurred between the LDW and ADD, the LDW would complete the update
of A1 (10), the interrupt would be processed, and the ADD would sum A1 (10)
with A2 and place the result in A3 (equal to A2 + 10). Obviously, this situation
produces incorrect results.

In Example 7–11, the single assignment method is used. The register A1 is
assigned only to the ADD input and not to the result of the LDW. Regardless
of the value of A6 with or without an interrupt, A1 does not change before it is
summed with A2. Result A3 is equal to A2.

Example 7–10. Code Without Single Assignment: Multiple Assignment of A1

LDW .D1 *A0,A1
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A1,A4,A5 ; uses new A1

Example 7–11. Code Using Single Assignment

LDW .D1 *A0,A6
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A6,A4,A5 ; uses A6



Programming Considerations

 7-26

7.6.2 Nested Interrupts

Generally, when the CPU enters an interrupt service routine, interrupts are
disabled. However, when the interrupt service routine is for one of the
maskable interrupts (INT4–INT15), an NMI can interrupt processing of the
maskable interrupt. In other words, an NMI can interrupt a maskable interrupt,
but neither an NMI nor a maskable interrupt can interrupt an NMI.

There may be times when you want to allow an interrupt service routine to be
interrupted by another (particularly higher priority) interrupt. Even though the
processor by default does not allow interrupt service routines to be interrupted
unless the source is an NMI, it is possible to nest interrupts under software
control. The process requires you to save the original IRP (or NRP) and IER
to memory or registers (either registers not used, or registers saved if they are
used by subsequent interrupts), and if you desire, to set up a new set of inter-
rupt enables once the ISR is entered, and save the CSR. Then you could set
the GIE bit, which would reenable interrupts inside the interrupt service
routine.

7.6.3 Manual Interrupt Processing

You can poll the IFR and IER to detect interrupts manually and then branch to
the value held in the ISTP as shown below in Example 7–12.

The code sequence begins by copying the address of the highest priority inter-
rupt from the ISTP to the register B2. The next instruction extracts the number
of the interrupt, which is used later to clear the interrupt. The branch to the in-
terrupt service routine comes next with a parallel instruction to set up the ICR
word.

The last five instructions fill the delay slots of the branch. First, the 32-bit return
address is stored in the B2 register and then copied to the interrupt return
pointer (IRP). Finally, the number of the highest priority interrupt, stored in B1,
is used to shift the ICR word in B1 to clear the interrupt.

Example 7–12. Manual Interrupt Processing

MVC ISTP,B2 ; get related ISFP address
EXTU B2,23,27,B1 ; extract HPEINT

[B1] B B2 ; branch to interrupt
|| [B1] MVK 1,A0 ; setup ICR word

[B1] MVK RET_ADR,B2 ; create return address
[B1] MVKH RET_ADR,B2 ;
[B1] MVC B2,IRP ; save return address
[B1] SHL A0,B1,B1 ; create ICR word
[B1] MVC B1,ICR ; clear interrupt flag
RET_ADR: (Post interrupt service routine Code)



Programming Considerations

7-27Interrupts

7.6.4 Traps

A trap behaves like an interrupt, but is created and controlled with software.
The trap condition can be stored in any one of the conditional registers: A1,
A2, B0, B1, or B2. If the trap condition is valid, a branch to the trap handler rou-
tine processes the trap and the return.

Example 7–13 and Example 7–14 show a trap call and the return code
sequence, respectively. In the first code sequence, the address of the trap han-
dler code is loaded into register B0 and the branch is called. In the delay slots
of the branch, the context is saved in the B0 register, the GIE bit is cleared to
disable maskable interrupts, and the return pointer is stored in the B1 register.
If the trap handler were within the 21-bit offset for a branch using a displace-
ment, the MVKH instructions could be eliminated, thus shortening the code
sequence.

The trap is processed with the code located at the address pointed to by the
label TRAP_HANDLER. If the B0 or B1 registers are needed in the trap han-
dler, their contents must be stored to memory and restored before returning.
The code shown in Example 7–14 should be included at the end of the trap
handler code to restore the context prior to the trap and return to the
TRAP_RETURN address.

Example 7–13. Code Sequence to Invoke a Trap

[A1] MVK TRAP_HANDLER,B0 ; load 32-bit trap address
[A1] MVKH TRAP_HANDLER,B0
[A1] B B0 ; branch to trap handler
[A1] MVC CSR,B0 ; read CSR
[A1] AND -2,B0,B1 ; disable interrupts: GIE = 0
[A1] MVC B1,CSR ; write to CSR
[A1] MVK TRAP_RETURN,B1 ; load 32-bit return address
[A1] MVKH TRAP_RETURN,B1
TRAP_RETURN: (post-trap code)

Note: A1 contains the trap condition.

Example 7–14. Code Sequence for Trap Return

B B1 ; return
MVC B0,CSR ; restore CSR
NOP 4 ; delay slots



A-1

Appendix A

Glossary

A
address:  The location of a word in memory.

addressing mode: The method by which an instruction calculates the location
of an object in memory.

ALU: arithmetic logic unit. The part of the CPU that performs arithmetic and
logic operations.

annul: To cause an instruction to not complete its execution.

B
bootloader: A built-in segment of code that transfers code from an external

source to program memory at power-up.

C
clock cycles: Cycles based on the input from the external clock.

code: A set of instructions written to perform a task; a computer program or
part of a program.

CPU cycle: The period during which a particular execute packet is in a par-
ticular pipeline stage. CPU cycle boundaries always occur on clock cycle
boundaries; however, memory stalls can cause CPU cycles to extend
over multiple clock cycles.

D
data memory: A memory region used for storing and manipulating data.

delay slot: A CPU cycle that occurs after the first execution phase (E1) of
an instruction in which results from the instruction are not available.

Appendix A



Glossary

A-2  

E

execute packet (EP): A block of instructions that execute in parallel.

external interrupt: A hardware interrupt triggered by a specific value on a
pin.

F

fetch packet (FP): A block of program data containing up to eight instruc-
tions.

G

global interrupt enable (GIE): A bit in the control status register (CSR)
used to enable or disable maskable interrupts.

H

hardware interrupt: An interrupt triggered through physical connections
with on-chip peripherals or external devices.

I

interrupt: A condition causing program flow to be redirected to a location in
the interrupt service table (IST).

interrupt service fetch packet (ISFP):  See also fetch packet (FP). A fetch
packet used to service interrupts. If eight instructions are insufficient, the
user must branch out of this block for additional interrupt service. If the
delay slots of the branch do not reside within the ISFP, execution contin-
ues from execute packets in the next fetch packet (the next ISFP).

interrupt service table (IST): Sixteen contiguous ISFPs, each correspond-
ing to a condition in the interrupt flag register (IFR). The IST resides in
memory accessible by the program memory system. The IST must be
aligned on a 256-word boundary (32 fetch packets × 8 words/fetch
packet). Although only 16 interrupts are defined, space in the IST is re-
served for 32 for future expansion. The IST’s location is determined by
the interrupt service table pointer (ISTP) register.



 Glossary

A-3  Glossary

L
latency: The delay between when a condition occurs and when the device

reacts to the condition. Also, in a pipeline, the necessary delay between
the execution of two instructions to ensure that the values used by the
second instruction are correct.

LSB: least significant bit. The lowest-order bit in a word.

M
maskable interrupt : A hardware interrupt that can be enabled or disabled

through software.

memory stall: When the CPU is waiting for a memory load or store to finish.

MSB: most significant bit. The highest-order bit in a word.

N
nested interrupt: A higher-priority interrupt that must be serviced before

completion of the current interrupt service routine.

nonmaskable interrupt: An interrupt that can be neither masked nor manu-
ally disabled.

O
overflow: A condition in which the result of an arithmetic operation exceeds

the capacity of the register used to hold that result.

P
pipeline: A method of executing instructions in an assembly-line fashion.

program memory: A memory region used for storing and executing programs.

R
register: A group of bits used for holding data or for controlling or specifying

the status of a device.

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

Glossary



Glossary

A-4  

S

shifter: A hardware unit that shifts bits in a word to the left or to the right.

sign extension: An operation that fills the high order bits of a number with
the sign bit.

W

wait state : A period of time that the CPU must wait for external program,
data, or I/O memory to respond when reading from or writing to that ex-
ternal memory. The CPU waits one extra cycle for every wait state.

Z

zero fill: A method of filling the low- or high-order bits with zeros when load-
ing a 16-bit number into a 32-bit field.

Glossary



Index

Index-1

Index

[  ] in code 3-16

|| in code 3-15

1X and 2X cross paths. See cross paths

1X and 2X paths. See crosspaths

40-bit data, conflicts 3-18

40-bit data 2-4 to 2-6

8-bank interleaved memory 6-58

8-bank interleaved memory with two memory
spaces 6-59

A
ABS instruction 3-28

ABSDP instruction 4-16 to 4-17

ABSSP instruction 4-18 to 4-19

ADD instruction 3-30 to 3-33, 7-25

add instructions
using circular addressing 3-22
using linear addressing 3-21

ADD2 instruction 3-37

ADDAB instruction 3-22, 3-34 to 3-35

ADDAD instruction 4-20 to 4-21

ADDAH instruction 3-22, 3-34 to 3-35

ADDAW instruction 3-22, 3-34 to 3-35

ADDDP instruction 4-22 to 4-24

ADDDP instruction
.L-unit instruction hazards 6-33
execution 6-49
figure of phases 6-49
pipeline operation 6-49

ADDK instruction 3-36

address A-1

address generation for load/store 3-23

address paths 2-7

addressing mode
circular mode 3-21
definition A-1
linear mode 3-21

addressing mode register (AMR) 2-8, 2-9
field encoding, table 2-9
figure 2-9

ADDSP instruction 4-25 to 4-27
ADDU instruction 3-30 to 3-33
AMR. See addressing mode register (AMR)
AND instruction 3-38 to 3-39
architecture 1-7
assembler conflict detectability for writes 3-20

B
B instruction

using a displacement 3-40 to 3-41
using a register 3-42 to 3-43

B IRP instruction 3-44 to 3-45, 7-6, 7-11, 7-17
B NRP instruction 3-46 to 3-47, 7-13, 7-16
base + index addressing syntax 3-23
BK field (BK1,BK2) 2-9
block size field 2-9
block size calculations 2-10
branch instruction

.S-unit instruction hazards 6-24
execution block diagram 5-17, 6-45
figure of phases 5-16, 6-44
pipeline operation 5-16, 6-44
using a displacement 3-40 to 3-41
using a register 3-42 to 3-43

branching
and multicycle NOPs 5-21, 6-55
performance considerations 7-24
to additional interrupt service routine 7-6
to the middle of an execute packet 3-15



Index

Index-2  

C
circular addressing

block size calculations 2-10
block size specification 3-21
registers that perform 2-9

clearing
an individual interrupt 7-14
interrupts 7-14

clock cycle 5-9, 6-11

CLR instruction 3-48 to 3-50

CMPEQ instruction 3-51 to 3-52

CMPEQDP instruction 4-28 to 4-29

CMPEQSP instruction 4-30 to 4-31

CMPGT instruction 3-53 to 3-55

CMPGTDP instruction 4-32 to 4-33

CMPGTSP instruction 4-34 to 4-35

CMPGTU instruction 3-53 to 3-55

CMPLT instruction 3-56 to 3-58

CMPLTDP instruction 4-36 to 4-37

CMPLTSP instruction 4-38 to 4-39

CMPLTU instruction 3-56 to 3-58

code, definition A-1

conditional operations 3-16

conditional registers 3-16

conflict detectability 3-20

contraints
on crosspaths 3-17
on floatin-point instructions 6-16 to 6-19
on floating-point instructions 4-12 to 4-15
on general-purpose registers 3-19 to 3-21
on instructions using the same functional

unit 3-17
on LDDW instruction 4-14
on loads and stores 3-18
on long data 3-18
on register reads 3-19
on resources 3-17

control
individual interrupts 7-13
of interrupts 7-11

control register
file extension (’C67x) 2-13
interrupt 7-10
list of 2-8
register addresses for accessing 3-87

control status register (CSR) 7-10
description 2-8, 2-11
figure 2-11, 7-11
interrupt control fields 7-11

CPU
control register file 2-8
cycle 5-9, 5-11, 6-11, 6-16
data paths

TMS320C62x 2-2
TMS320C67x 2-3

functional units 2-6
general-purpose register files 2-4
introduction 1-8
load and store paths 2-7
TMS320C62x block diagram 5-5
TMS320C67x block diagram 6-5

CPU data paths 2-1
relationship to register files 2-7
TMS320C62x 2-2
TMS320C67x 2-3

CPU ID field (CSR) 2-11
creg opcode field defined 3-16
cross paths 2-7, 3-17
CSR. See control status register (CSR)

D
.D functional unit

load hazard 6-34
store hazard 6-35
LDDW instruction with long write hazard 6-37
single-cycle 6-36

.D functional units 2-6

.D unit hazards
LDDW instruction with long write

instruction 6-37
load instruction 6-34
single-cycle instruction 6-36
store instruction 6-35

DA1 and DA2. See data address paths
data address paths 2-7
data address pointer 5-15, 6-42
data format (IEEE standard) 4-6
data load accesses, versus program memory

accesses 5-22, 6-56
data paths. See CPU data paths
data storage format, 40-bit 2-5
DC pipeline phase 5-4, 6-4



Index

Index-3

DCC field (CSR) 2-11

decode pipeline stage 5-4, 6-4

decoding instructions 5-4, 6-4

delay slots
description 5-11, 6-16
fixed-point instructions 3-12
floating-point instructions 4-11
stores 5-16, 6-43

DEN1,DEN2 fields
FADCR 2-14 to 2-16
FAUCR 2-16 to 2-18
FMCR 2-18 to 2-20

detection of interrupts 7-18

digital signal processors (DSPs) 1-1

direct memory access (DMA) controller 1-9

disabling an individual interrupt 7-14

disabling maskable interrupts globally 7-12

DIV0 fields (FAUCR) 2-16 to 2-18

double-precision data format 4-6

DP compare instructions
.S-unit instruction hazards 6-22
execution 6-48
figure of phases 6-48
pipeline operation 6-48

DP pipeline phase 5-4, 5-19, 6-4, 6-53

DPINT instruction 4-40 to 4-41

DPSP instruction 4-42 to 4-44

DPTRUNC instruction 4-45 to 4-46

E
E1 phase program counter (PCE1) 2-12

E1–E5 (or E10) pipeline phases 6-5

E1–E5 pipeline phases 5-5

EMIF. See external memory interface (EMIF)

EN field (CSR) 2-11

enabling an individual interrupt 7-14

enabling maskable interrupts globally 7-12

execute packet
multicycle NOPs in 5-20, 6-54
parallel operations 3-13
performance considerations (’C67x) 6-52
pipeline operation 5-18

execute phases of the pipeline 5-22, 6-56
figure 5-5, 6-5

execution notations
fixed-point instructions 3-2
floating-point instructions 4-2

execution table
ADDDP/SUBDP 6-49
INTDP 6-48
MPYDP 6-51
MPYI 6-50
MPYID 6-50

EXT instruction 3-59 to 3-61
external memory interface (EMIF) 1-9
EXTU instruction 3-62 to 3-64

F
FADCR. See floating-point adder configuration

register (FADCR)
FAUCR. See floating-point auxiliary configuration

register (FAUCR)
fetch packet (FP) 3-13, 5-18, 6-52, 7-6
fetch phases of the pipeline 5-22
fetch pipeline phase 5-2, 6-56
fetch pipline phase

TMS320C62x 5-3
TMS320C67x 6-2, 6-3

fixed-point instruction set 3-1 to 3-139
flag, interrupt 7-18, 7-22
floating-point instruction constraints 4-12
floating-point instruction set 4-1 to 4-83
floating-point adder configuration register

(FADCR) 2-13, 2-14 to 2-16
floating-point auxiliary configuration register

(FAUCR) 2-13, 2-16 to 2-18
floating-point multiplier configuration register

(FMCR) 2-13, 2-18 to 2-20
floating-point field definitions

double-precision 4-9
single-precision 4-8

floating-point operands
double precision 4-6
single precision 4-6

FMCR. See floating-point multiplier configuration
register (FMCR)

4-cycle instructions
.L-unit instruction hazards 6-31
.M-unit instruction hazards 6-26
execution 6-47



Index

Index-4  

figure of phases 6-47
pipeline operation 6-47

Functional Unit Hazards 6-20

functional unit to instruction mapping 3-5, 4-4

functional units 2-6
constraints on instructions 3-17
fixed-point operations 2-6
floating-point operations 2-6
list of 2-6
operations performed on 2-6

G
general-purpose register files

cross paths 2-7
data address paths 2-7
description 2-4
memory, load, and store paths 2-7

GIE bit 2-11, 7-4, 7-11, 7-19, 7-21

H
host port interface 1-9

HPEINT bit 7-8

I
IACK signal 7-4, 7-21, 7-23

ICR. See interrupt clear register (ICR)

IDLE instruction 3-65

IEEE standard formats 4-6

IEm bit 7-18

IER. See interrupt enable register (IER)

IFm bits 7-21, 7-23

IFR. See interrupt flag register (IFR)

individual interrupt control 7-13

INEX fields
FADCR 2-14 to 2-16
FAUCR 2-16 to 2-18
FMCR 2-18 to 2-20

INFO fields
FADCR 2-14
FAUCR 2-16
FMCR 2-18

instruction constraints 4-12

instruction descriptions
fixed-point instruction set 3-24
floating-point instruction set 4-15

constraints 4-12
instruction operation

fixed-point, notations for 3-2
floating-point, notations for 4-2

instruction to functional unit mapping 3-4, 4-4
instruction types

2-cycle DP instructions 6-46
4-cycle instructions 6-47
ADDDP instructions 6-49
ADDDP/SUBDP instructions 4-22 to 4-25, 4-77
branch instructions 5-16, 6-44
DP compare instructions 6-48
execution phases 5-11, 6-13
INTDP 4-47 to 4-49
INTDP instructions 6-47
load instructions 5-15, 6-42
MPYDP 4-54 to 4-56
MPYDP instructions 6-51
MPYI 4-56
MPYI instructions 6-50
MPYID 4-57 to 4-59
MPYID instructions 6-50
multiply instructions 5-12, 6-39
operation phases 6-7
pipeline execution 5-11, 6-13
single-cycle 5-12, 6-38
store instructions 5-13, 6-40
SUBDP instructions 6-49

INT4–INT15 interrupt signals 7-4
INTDP instruction 4-47 to 4-48

execution 6-48
figure of phases 6-48
.L-unit instruction hazards 6-32
pipeline operation 6-47

INTDPU instruction 4-47 to 4-48
interleaved memory bank scheme 5-24, 6-58

4-bank memory 5-24, 5-25
8-bank memory

single memory space 6-58
with two memory spaces 6-59

interrupt clear register (ICR) 2-8, 7-10, 7-14
figure 7-15
writing to 7-14

interrupt control 7-11
individual 7-13

interrupt control registers 7-10



Index

Index-5

interrupt detection and processing 7-18 to 7-23
actions taken during nonreset 7-21
actions taken during RESET 7-23
figure 7-22

interrupt enable register (IER) 2-8, 7-4, 7-10, 7-13
polling 7-26

interrupt flag, setting 7-18, 7-22
interrupt flag register (IFR)

description 2-8, 7-10
figure 7-14
maskable interrupts 7-4
overview 7-2
polling 7-26
reading from 7-15
writing to 7-14

interrupt performance
frequency 7-24
latency 7-24
overhead 7-24

interrupt pipeline interaction
branching 7-24
code parallelism 7-24
memory stalls 7-24
multicycle NOPs 7-24

interrupt return pointer (IRP) 2-8, 7-10, 7-17, 7-26
interrupt service fetch packet (ISFP) 7-6
interrupt service table (IST)

figure 7-5
relocation of 7-9

interrupt service table pointer (ISTP) 2-8, 7-21,
7-23, 7-26
description 7-10
description of fields 7-8
figure 7-8
overview 7-8

interrupt set register (ISR) 2-8, 7-10, 7-14
figure 7-15

interrupts
branching 7-21, 7-23
clearing 7-14
control 7-13 to 7-17
detection 7-18 to 7-23
globally disabling 7-11 to 7-12
globally enabling 7-11 to 7-12
list of control registers 7-10
nesting 7-26
overview 7-2 to 7-10
performance considerations 7-24
priorities 7-3

processing 7-18 to 7-23
programming considerations 7-25 to 7-28
setting 7-14
signals used 7-2
traps 7-27
types of 7-2

INTSP instruction 4-49 to 4-50
INTSPU instruction 4-49 to 4-50
INUM3–INUM0 signals 7-4, 7-21, 7-23
INVAL fields

FADCR 2-14 to 2-16
FAUCR 2-16 to 2-18
FMCR 2-18 to 2-20

invoking a trap 7-27
IRP. See interrupt return pointer (IRP)
ISFP. See interrupt service fetch packet (ISFP)
ISR. See interrupt set register (ISR)
IST. See interrupt service table (IST)
ISTB field 7-8, 7-9
ISTP. See interrupt service table pointer (ISTP)

L
.L functional units 2-6, 2-13
.L unit hazards

ADDDP instruction 6-33
4-cycle .L-unit instruction hazards 6-31
INTDP instruction 6-32
single-cycle instruction 6-30
SUBDP instruction 6-33

latency
fixed-point instructions 3-12
floating-point instructions 4-11

LDB instruction
15-bit constant offset 3-71 to 3-73
5-bit unsigned constant offset or register

offset 3-66 to 3-70
using circular addressing 3-21

LDBU instruction
15-bit constant offset 3-71 to 3-73
5-bit unsigned constant offset or register

offset 3-66 to 3-70
LDDW instruction 4-51 to 4-53

instruction with long write instruction
hazards 6-37

LDH instruction
15-bit constant offset 3-71 to 3-73
5-bit unsigned constant offset or register

offset 3-66 to 3-70



Index

Index-6  

using circular addressing 3-21

LDHU instruction
15-bit constant offset 3-71 to 3-73
5-bit unsigned constant offset or register

offset 3-66 to 3-70

LDW instruction 7-25
15-bit constant offset 3-71 to 3-73
5-bit unsigned constant offset or register

offset 3-66 to 3-70
using circular addressing 3-21

linear addressing mode 3-21

LMBD instruction 3-74 to 3-75

load, paths 2-7

load address generation, syntax 3-23

load and store paths, CPU 2-7

load from memory banks, example 5-24, 6-58

load instructions
conflicts 3-18
.D-unit instruction hazards 6-34
execution block diagram 5-15, 6-43
figure of phases 6-42
phases 5-15
pipeline operation 5-15, 6-42
syntax for indirect addressing 3-23
types 5-15
using circular addressing 3-21
using linear addressing 3-21

load or store to the same memory location,
rules 5-14, 6-41

load paths 2-7

loads, and memory banks 5-24, 6-58

long (40-bit) data 3-18

long (40-bit) data, register pairs 2-4 to 2-6

M
.M functional units 2-6, 2-13

.M unit hazards
4-cycle instruction 6-26
MPYDP instruction 6-29
MPYI instruction 6-27
MPYID instruction hazards 6-28
multiply instruction 6-25

mapping
functional unit to instruction 3-5, 4-4
instruction to functional unit 3-4, 4-4

maskable interrupt
description 7-4
return from 7-17

memory
considerations 5-22
internal 1-8
paths 2-7
pipeline phases used during access 5-22, 6-56
stalls 5-23, 6-57

memory bank hits 5-24, 6-58
memory paths 2-7
memory stalls 5-23, 6-57
million instructions per second (MIPS) 1-4
MPY instruction 3-76 to 3-78
MPYDP instruction 4-54 to 4-55

.M-unit instruction hazards 6-29
execution 6-51
figure of phases 6-51
pipeline operation 6-51

MPYH instruction 3-79 to 3-80
MPYHL instruction 3-81 to 3-82
MPYHLU instruction 3-81 to 3-82
MPYHSLU instruction 3-81 to 3-82
MPYHSU instruction 3-79 to 3-80
MPYHU instruction 3-79 to 3-80
MPYHULS instruction 3-81 to 3-82
MPYHUS instruction 3-79 to 3-80
MPYI instruction 4-56

.M-unit instruction hazards 6-27
execution 6-50
figure of phases 6-50
pipeline operation 6-50

MPYID instruction 4-57 to 4-58
.M-unit instruction hazards 6-28
execution 6-50
figure of phases 6-51
pipeline operation 6-50

MPYLH instruction 3-83 to 3-84
MPYLHU instruction 3-83 to 3-84
MPYLSHU instruction 3-83 to 3-84
MPYLUHS instruction 3-83 to 3-84
MPYSP instruction 4-59 to 4-60
MPYSU instruction 3-76 to 3-78
MPYU instruction 3-76 to 3-78
MPYUS instruction 3-76 to 3-78
multicycle NOPs 5-20, 6-54

in execute packets 5-20, 6-54



Index

Index-7

multiply execution, execution block diagram 5-13

multiply instructions
.M-unit instruction hazards 6-25
execution 6-39
execution block diagram 6-39
figure of phases 5-12, 6-39
pipeline operation 5-12, 6-39

MV instruction 3-85

MVC instruction 2-8, 3-86 to 3-88, 7-18
writing to IFR or ICR 7-14

MVK instruction 3-89 to 3-90

MVKH instruction 3-91 to 3-92

MVKLH instruction 3-91 to 3-92

N
NEG instruction 3-93

nesting interrupts 7-26

NMI. See nonmaskable interrupt (NMI)

NMIE bit 7-4, 7-13, 7-19

nonmaskable interrupt (NMI) 7-3, 7-21, 7-26
return from 7-16

nonmaskable interrupt return pointer (NRP) 2-8,
7-10, 7-16
figure 7-16

NOP instruction 3-94 to 3-95, 5-4, 6-4, 7-6

NORM instruction 3-96 to 3-97

NOT instruction 3-98

notations
for fixed-point instructions 3-2 to 3-3
for floating-point instructions 4-2

NRP. See nonmaskable interrupt return pointer
(NRP)

O
opcode map 3-9

figure 3-10 to 3-11
symbols and meanings 3-9

operands, examples 3-25

OR instruction 3-99 to 3-100

overview, TMS320 family 1-2

P
p-bit 3-13
parallel code, example 3-15
parallel fetch packets 3-14
parallel operations 3-13
partially serial fetch packets 3-15
PCC field (CSR) 2-11
PCE1. See program counter (PCE1)
performance considerations, pipeline 5-18, 6-52
peripherals 1-9
PG pipeline phase 5-2, 6-2
PGIE bit 2-11, 7-11, 7-21
pipeline

decode stage 5-2, 5-4, 6-2, 6-4
execute stage 5-2, 5-5, 6-2, 6-5
execution 5-11, 6-13
factors that provide programming flexibility 5-1,

6-1
fetch stage 5-2, 6-2
operation overview 5-2, 6-2
performance considerations 5-18, 6-52
phases 5-2, 5-6, 6-2, 6-6
stages 5-2, 6-2

pipeline execution 5-11, 6-13
pipeline operation

2-cycle DP instructions 6-46
4-cycle instructions 6-47
ADDDP instructions 6-49
branch instructions 5-16, 6-44
description 5-6 to 5-10, 6-6 to 6-12
DP compare instructions 6-48
fetch packets with different numbers of execute

packets 5-19, 6-53
INTDP instructions 6-47
load instructions 5-15, 6-42
MPYDP instructions 6-51
MPYI instructions 6-50
MPYID instructions 6-50
multiple execute packets in a fetch packet 5-18,

6-52
multiply instructions 5-12, 6-39
one execute packet per fetch packet 5-6, 6-6
single-cycle instructions 5-12, 6-38
store instructions 5-13, 6-40
SUBDP instructions 6-49

pipeline phases
functional block diagram 5-8, 6-10



Index

Index-8  

operations occurring during 5-7
used during memory accesses 5-22, 6-56

PR pipeline phase 5-2, 6-2

program access ready wait. See PW pipeline phase

program address generate. See PG pipeline phase

program address send. See PS pipeline phase

program counter (PCE1) 2-8, 2-12, 3-40
figure 2-12

program fetch counter (PFC) 3-40

program fetch packet receive. See PR pipeline
phase

program memory accesses, versus data load
accesses 5-22, 6-56

PS pipeline phase 5-2, 6-2

push, definition A-3

PW pipeline phase 5-2, 6-2

PWRD field (CSR) 2-11

R
RCPDP instruction 4-61 to 4-62

RCPSP instruction 4-63 to 4-64

register files
cross paths 2-7
data address paths 2-7
general-purpose 2-4
memory, load, and store paths 2-7
relationship to data paths 2-7

register storage scheme, 40-bit data, figure 2-5

registers
AMR. See addressing mode register (AMR)
CSR. See control status register (CSR)
FADCR. See floating-point adder configuration

register (FADCR)
FAUCR. See floating-point auxiliary configuration

register (FAUCR)
FMCR. See floating-point multiplier configuration

register (FMCR)
ICR. See interrupt clear register (ICR)
IER. See interrupt enable register (IER)
IFR. See interrupt flag register (IFR)
IRP. See interrupt return pointer (IRP)
ISR. See interrupt set register (ISR)
ISTP. See interrupt service table pointer (ISTP)
NRP. See nonmaskable interrupt return pointer

(NRP)
PCE1. See program counter (PCE1)

read constraints 3-19
write constraints 3-19

relocation of the interrupt service table (IST) 7-9
reset interrupt 7-3
RESET signal

as an interrupt 7-3
CPU state after 7-16

resource constraints 3-17
using the same functional unit 3-17

returning from a trap 7-27
returning from interrupt servicing 7-16
returning from maskable interrupt 7-17
returning from NMI 7-16
RSQRDP instruction 4-65 to 4-67
RSQRSP instruction 4-68 to 4-70

S
.S functional units 2-6
.S unit hazards

2-cycle DP instruction 6-23
branch instruction 6-24
DP compare instruction 6-22
single-cycle instruction 6-21

SADD instruction 3-101 to 3-103
SAT field (CSR) 2-11
SAT instruction 3-104 to 3-105
serial fetch packets 3-14
serial ports 1-9
SET instruction 3-106 to 3-108
setting an individual interrupt, example 7-15
setting interrupts 7-14
setting the interrupt flag 7-18, 7-22
SHL instruction 3-109 to 3-110
SHR instruction 3-111 to 3-112
SHRU instruction 3-113 to 3-114
single-cycle instructions

.L-unit instruction hazards 6-30

.S-unit instruction hazards 6-21

.D-unit instruction hazards 6-36
execution 6-38
execution block diagram 6-38
figure of phases 6-38
pipeline operation 6-38

single-cycle instructions
execution block diagram 5-12
figure of phases 5-12



Index

Index-9

pipeline operation 5-12
SMPY instruction 3-115 to 3-117
SMPYH instruction 3-115 to 3-117
SMPYHL instruction 3-115 to 3-117
SMPYLH instruction 3-115 to 3-117
SPDP instruction 4-71 to 4-72
SPINT instruction 4-73 to 4-74
SPTRUNC instruction 4-75 to 4-76
SSHL instruction 3-118 to 3-119
SSUB instruction 3-120
STB instruction

15-bit offset 3-126 to 3-127
register offset or 5-bit unsigned constant

offset 3-122 to 3-125
using circular addressing 3-21

STH instruction
15-bit offset 3-126 to 3-127
register offset or 5-bit unsigned constant

offset 3-122 to 3-125
using circular addressing 3-21

store address generation, syntax 3-23
store instructions

conflicts 3-18
.D-unit instruction hazards 6-35
execution block diagram 5-14, 6-41
figure of phases 5-13, 6-40
pipeline operation 5-13, 6-40
syntax for indirect addressing 3-23
using circular addressing 3-21
using linear addressing 3-21

store or load to the same memory location,
rules 5-14, 6-41

store paths 2-7
STW instruction

15-bit offset 3-126 to 3-127
register offset or 5-bit unsigned constant

offset 3-122 to 3-125
using circular addressing 3-21

SUB instruction 3-128 to 3-130
SUB2 instruction 3-135
SUBAB instruction 3-22, 3-131 to 3-132
SUBAH instruction 3-22, 3-131 to 3-132
SUBAW instruction 3-22, 3-131 to 3-132
SUBC instruction 3-133 to 3-134
SUBDP instruction 4-77 to 4-79

.L-unit instruction hazards 6-33
execution 6-49

figure of phases 6-49
pipeline operation 6-49

SUBSP instruction 4-80 to 4-82
subtract instructions

using circular addressing 3-22
using linear addressing 3-21

SUBU instruction 3-128 to 3-130

T
timers 1-9
TMS320 family

advantages 1-2
applications 1-2 to 1-3
history 1-2
overview 1-2

TMS320C62x devices
architecture 1-7 to 1-10
block diagram 1-7
features 1-5
options 1-5 to 1-6
performance 1-4

TMS320C67x devices
architecture 1-7 to 1-10
block diagram 1-7
features 1-5
options 1-5 to 1-6
performance 1-4

traps 7-27
2-cycle DP instructions

.S-unit instruction hazards 6-23
execution 6-46
figure of phases 6-46
pipeline operation 6-46

V
VelociTI architecture 1-1
VLIW (very long instruction word) architecture 1-1

X
XOR instruction 3-136 to 3-137

Z
ZERO instruction 3-138


	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks
	If You Need Assistance

	Contents
	Figures
	Tables
	Examples
	Introduction
	TMS320 Family Overview
	History of TMS320 DSPs
	Typical Applications for the TMS320 Family

	Overview of the TMS320C6x Generation of Digital Signal Processors
	Features and Options of the TMS320C62x/C67x
	TMS320C62x/C67x Architecture
	Central Processing Unit (CPU)
	Internal Memory
	Peripherals


	CPU Data Paths and Control
	General-Purpose Register Files
	Functional Units
	Register File Cross Paths
	Memory, Load, and Store Paths
	Data Address Paths
	TMS320C62x/C67x Control Register File
	Addressing Mode Register (AMR)
	Control Status Register (CSR)
	E1 Phase Program Counter (PCE1)

	TMS320C67x Extensions to the Control Register File
	Floating-Point Adder Configuration Register (FADCR)
	Floating-Point Auxiliary Configuration Register (FAUCR)
	Floating-Point Multiplier Configuration Register (FMCR)


	TMS320C62x/C67x Fixed-Point Instruction Set
	Instruction Operation and Execution Notations
	Mapping Between Instructions and Functional Units
	TMS320C62x/C67x Opcode Map
	Delay Slots
	Parallel Operations
	Example Parallel Code
	Branching Into the Middle of an Execute Packet

	Conditional Operations
	Resource Constraints
	Constraints on Instructions Using the Same Functional Unit
	Constraints on Cross Paths (1X and 2X)
	Constraints on Loads and Stores
	Constraints on Long (40-Bit) Data
	Constraints on Register Reads
	Constraints on Register Writes

	Addressing Modes
	Linear Addressing Mode
	LD/ST Instructions
	ADDA/SUBA Instructions

	Circular Addressing Mode
	LD/ST Instructions
	ADDA/SUBS Instructions

	Syntax for Load/Store Address Generation

	Individual Instruction Descriptions
	EXAMPLE
	ABS
	ADD(U)
	ADDAB/ADDAH/ADDAW
	ADDK
	ADD2
	AND
	B
	B IRP
	B NRP
	CLR
	CMPEQ
	CMPGT(U)
	CMPLT(U)
	EXT
	EXTU
	IDLE
	LDB(U)/LDH(U)/LDW
	LMBD
	MPY(U/US/SU)
	MPYH(U/US/SU)
	MPYHL(U)/MPYHULS/MPYHSLU
	MV
	MVC
	MVK
	MVKH/MVKLH
	NEG
	NOP
	NORM
	NOT
	OR
	SADD
	SAT
	SET
	SHL
	SHR
	SHRU
	SMPY(HL/LH/H)
	SSHL
	SSUB
	STB/STH/STW
	SUB(U)
	SUBAB/SUBAH/SUBAW
	SUBC
	SUB2
	XOR
	ZERO


	TMS320C67x Floating-Point Instruction Set
	Instruction Operation and Execution Notations
	Mapping Between Instructions and Functional Units
	Overview of IEEE Standard Single- and Double-Precision Formats
	Delay Slots
	TMS320C67x Instruction Constraints
	Individual Instruction Descriptions
	ABSDP
	ABSSP
	ADDAD
	ADDDP
	ADDSP
	CMPEQDP
	CMPEQSP
	CMPGTDP
	CMPGTSP
	CMPLTDP
	CMPLTSP
	DPINT
	DPSP
	DPTRUNC
	INTDP(U)
	INTSP(U)
	LDDW
	MPYDP
	MPYI
	MPYID
	MPYSP
	RCPDP
	RCPSP
	RSQRDP
	RSQRSP
	SPDP
	SPINT
	SPTRUNC
	SUBDP
	SUBSP


	TMS320C62x Pipeline
	Pipeline Operation Overview
	Fetch
	Decode
	Execute
	Summary of Pipeline Operation

	Pipeline Execution of Instruction Types
	Single-Cycle Instructions
	Multiply Instructions
	Store Instructions
	Load Instructions
	Branch Instructions

	Performance Considerations
	Pipeline Operation With Multiple Execute Packets in a Fetch Packet
	Multicycle NOPs
	Memory Considerations
	Memory Stalls
	Memory Bank Hits



	TMS320C67x Pipeline
	Pipeline Operation Overview
	Fetch
	Decode
	Execute
	Summary of Pipeline Operation

	Pipeline Execution of Instruction Types
	Functional Unit Hazards
	.S-Unit Hazards
	.M-Unit Hazards
	.L-Unit Hazards
	D-Unit Instruction Hazards
	Single-Cycle Instructions
	16 x 16-Bit Multiply Instructions
	Store Instructions
	Load Instructions
	Branch Instructions
	2-Cycle DP Instructions
	4-Cycle Instructions
	INTDP Instruction
	DP Compare Instructions
	ADDDP/SUBDP Instructions
	MPYI Instructions
	MPYID Instructions
	MPYDP Instructions

	Performance Considerations
	Pipeline Operation With Multiple Execute Packets in a Fetch Packet
	Multicycle NOPs
	Memory Considerations
	Memory Stalls
	Memory Bank Hits



	Interrupts
	Overview of Interrupts
	Types of Interrupts and Signals Used
	Reset (RESET\)
	Nonmaskable Interrupt (NMI)
	Maskable Interrupts (INT4-INT15)
	Interrupt Acknowlegdment (IACK and INUMx)

	Interrupt Service Table (IST)
	Interrupt Service Fetch Packet (ISFP)
	Interrupt Service Table Pointer Register (ISTP)

	Summary of Interrupt Control Registers

	Globally Enabling and Disabling Interrupts (Control Status Register–CSR)
	Individual Interrupt Control
	Enabling and Disabling Interrupts (Interrupt Enable Register–IER)
	Status of, Setting, and Clearing Interrupts (Interrupt Flag, Set, and Clear Registers–IFR, ISR, ICR)
	Returning From Interrupt Servicing
	CPU State After RESET\
	Returning From Nonmaskable Interrupts (NMI Return Pointer Register - NRP)
	Returning From Maskable Interrupts (Interrupt Return Pointer Register - IRP)


	Interrupt Detection and Processing
	Setting the Nonreset Interrupt Flag
	Conditions for Processing a Nonreset Interrupt
	Actions Taken During Nonreset Interrupt Processing
	Setting the RESET Interrupt Flag for the TMS320C62x/C67x
	Actions Taken During RESET Interrupt Processing

	Performance Considerations
	General Performance
	Pipeline Interaction

	Programming Considerations
	Single Assignment Programming
	Nested Interrupts
	Manual Interrupt Processing
	Traps


	Glossary
	Index

