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Preface

Read This First

About This Manual

The TMS320C6000 Optimizing C Compiler User’s Guide explains how to use
these compiler tools:

� Compiler
� Assembly optimizer
� Standalone simulator
� Library-build utility

The TMS320C6000 C compiler accepts American National Standards Insti-
tute (ANSI) standard C source code and produces assembly language source
code for the TMS320C6000 device. This user’s guide discusses the character-
istics of the C compiler. It assumes that you already know how to write C
programs. The C Programming Language (second edition), by Brian W.
Kernighan and Dennis M. Ritchie, describes C based on the ANSI C standard.
You can use the Kernighan and Ritchie (hereafter referred to as K&R) book as
a supplement to this manual.

Before you use the information about the C compiler in this user’s guide, you
should install the C compiler tools.
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Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays are shown
in a special typeface . Examples use a bold version  of the
special typeface for emphasis; interactive displays use a bold version
of the special typeface to distinguish commands that you enter from items
that the system displays (such as prompts, command output, error mes-
sages, etc.).

Here is a sample of C code:

#include <stdio.h>

main()

{
printf(”hello, world\n”);

}

� In syntax descriptions, the instruction, command, or directive is in a bold-
face  typeface and parameters are in italics. Portions of a syntax that are
in bold must be entered as shown; portions of a syntax that are in italics
describe the type of information that should be entered. Syntax that is
entered on a command line is centered in a bounded box:

cl6x  [options] [filenames] [–z [link_options] [object files]]

Syntax used in a text file is left justified in a bounded box:

inline  return-type function-name (parameter declarations) {function}

� Square brackets ( [ and ] ) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
do not enter the brackets themselves. This is an example of a command
that has an optional parameter:

load6x [options] filename.out

The load6x command has two parameters. The first parameter, options, is
optional. The second parameter, filename.out, is required.

� Braces ( { and } ) indicate that you must choose one of the parameters
within the braces; you do not enter the braces themselves. This is an ex-
ample of a command with braces that are not included in the actual syntax
but indicate that you must specify either the –c or –cr option:

lnk6x  {–c | –cr } filenames [–o name.out] –l libraryname
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� The TMS320C6200 core is referred to as TMS320C62x and ’C62x. . The
TMS320C6700 core is referred to as TMS32067x and ’C67x.
TMS320C6000 and ’C6000 can refer to either ’C62x or ’C67x.

Related Documentation From Texas Instruments

The following books describe the TMS320C6000 and related support tools. To
obtain any of these TI documents, call the Texas Instruments Literature
Response Center at (800) 477–8924. When ordering, identify the book by its
title and literature number (located on the title page):

TMS320C6000 Assembly Language Tools User’s Guide  (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C6000 generation of devices.

TMS320C6x C Source Debugger User’s Guide  (literature number
SPRU188) tells you how to invoke the ’C6x simulator and emulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger, including command entry, code
execution, data management, breakpoints, profiling, and analysis.

TMS320C6000 Programmer’s Guide  (literature number SPRU198)
describes ways to optimize C and assembly code for the TMS320C6000
DSPs and includes application program examples.

TMS320C6000 CPU and Instruction Set Reference Guide  (literature
number SPRU189) describes the ’C6000 CPU architecture, instruction
set, pipeline, and interrupts for these digital signal processors.

TMS320C6000 Peripherals Reference Guide  (literature number SPRU190)
describes common peripherals available on the TMS320C6000 digital
signal processors. This book includes information on the internal data
and program memories, the external memory interface (EMIF), the host
port interface (HPI), multichannel buffered serial ports (McBSPs), direct
memory access (DMA), enhanced DMA (EDMA), expansion bus, clock-
ing and phase-locked loop (PLL), and the power-down modes.

TMS320C6000 Technical Brief  (literature number SPRU197) gives an
introduction to the ’C6000 platform of digital signal processors, develop-
ment tools, and third-party support.

Notational Conventions / Related Documentation From Texas Instruments
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Related Documentation

You can use the following books to supplement this user’s guide:

American National Standard for Information Systems—Programming
Language C X3.159-1989 , American National Standards Institute
(ANSI standard for C)

The C Programming Language  (second edition), by Brian W. Kernighan and
Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs, New
Jersey, 1988

Programming in ANSI C , Kochan, Steve G., Hayden Book Company

C: A Reference Manual , by Harbison, Samuel P. , Steele, Guy L. (contributor),
Prentice Hall Computer Books.

Trademarks

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Windows and Windows NT are registered trademarks of Microsoft Corpora-
tion.

320 Hotline On-line is a trademark of Texas Instruments Incorporated.

Related Documentation / Trademarks
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If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax:  (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline Email: dsph@ti.com
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines: 

Multi-Language Support +33 1 30 70 11 69 Fax:  +33 1 30 70 10 32
Email: epic@ti.com

Deutsch +49 8161 80 33 11  or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax:  +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax:  +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax:  +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax:  +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax:  +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax:  +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026  (in Japan) Fax:  +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax:  +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax:  +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: dsph@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the book.
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Introduction

The TMS320C6000 is supported by a set of software development tools,
which includes an optimizing C compiler, an assembly optimizer, an assem-
bler, a linker, and assorted utilities.

This chapter provides an overview of these tools and introduces the features
of the optimizing C compiler. The assembly optimizer is discussed in Chap-
ter 4. The assembler and linker are discussed in detail in the TMS320C6000
Assembly Language Tools User’s Guide.
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1.1 Software Development Tools Overview

Figure 1–1 illustrates the ’C6000 software development flow. The shaded por-
tion of the figure highlights the most common path of software development
for C language programs. The other portions are peripheral functions that
enhance the development process.

Figure 1–1. TMS320C6000 Software Development Flow
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The following list describes the tools that are shown in Figure 1–1:

� The assembly optimizer allows you to write linear assembly code without
being concerned with the pipeline structure or with assigning registers. It
accepts assembly code that has not been register-allocated and is
unscheduled. The assembly optimizer assigns registers and uses loop
optimization to turn linear assembly into highly parallel assembly that
takes advantage of software pipelining. See Chapter 4, Using the
Assembly Optimizer, for information about invoking the assembly opti-
mizer, writing linear assembly code (.sa files), specifying functional units,
and using assembly optimizer directives.

� The C compiler  accepts C source code and produces ’C6000 assembly
language source code. A shell program , an optimizer , and an interlist
utility  are parts of the compiler:

� The shell program enables you to compile, assemble, and link source
modules in one step. If any input file has a .sa extension, the shell pro-
gram invokes the assembly optimizer.

� The optimizer modifies code to improve the efficiency of C programs.

� The interlist utility interweaves C source statements with assembly
language output.

See Chapter 2, Using the C Compiler, for information about how to invoke
the C compiler, the optimizer, and the interlist utility using the shell pro-
gram.

� The assembler  translates assembly language source files into machine
language object files. The machine language is based on common object
file format (COFF). The TMS320C6000 Assembly Language Tools User’s
Guide explains how to use the assembler.

� The linker  combines object files into a single executable object module.
As it creates the executable module, it performs relocation and resolves
external references. The linker accepts relocatable COFF object files and
object libraries as input. See Chapter 5, Linking C Code, for information
about invoking the linker. See the TMS320C6000 Assembly Language
Tools User’s Guide for a complete description of the linker.

� The archiver  allows you to collect a group of files into a single archive file,
called a library. Additionally, the archiver allows you to modify a library by
deleting, replacing, extracting, or adding members. One of the most useful
applications of the archiver is building a library of object modules. The
TMS320C6000 Assembly Language Tools User’s Guide explains how to
use the archiver.
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� You can use the library-build utility  to build your own customized run-
time-support library (see Chapter 10, Library-Build Utility). Standard run-
time-support library functions are provided as source code in rts.src. The
object code for the runtime-support functions is compiled for little-endian
mode in rts6201.lib  and rts6701.lib, and big-endian mode in rts6201e.lib
and rts6701e.lib.

The runtime-support libraries  contain the ANSI standard runtime-sup-
port functions, compiler-utility functions, floating-point arithmetic func-
tions, and C I/O functions that are supported by the ’C6000 compiler. See
Chapter 8, Runtime Environment.

� The ’C6000 debugger accepts executable COFF files as input, but most
EPROM programmers do not. The hex conversion utility  converts a
COFF object file into TI-Tagged, ASCII-hex, Intel, Motorola-S, or Tektronix
object format. You can download the converted file to an EPROM pro-
grammer. The TMS320C6000 Assembly Language Tools User’s Guide
explains how to use the hex conversion utility.

� The cross-reference lister  uses object files to produce a cross-reference
listing showing symbols, their definitions, and their references in the linked
source files. The TMS320C6000 Assembly Language Tools User’s Guide
explains how to use the cross-reference utility.

� The main product of this development process is a module that can be
executed in a TMS320C6000 device. You can use one of several debug-
ging tools to refine and correct your code. Available products include:

� An instruction-accurate and clock-accurate software simulator
� An XDS emulator

For information about these debugging tools, see the TMS320C6000 C
Source Debugger User’s Guide.
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1.2 C Compiler Overview

The ’C6000 C compiler is a full-featured optimizing compiler that translates
standard ANSI C programs into ’C6000 assembly language source. The fol-
lowing subsections describe the key features of the compiler.

1.2.1 ANSI Standard

The following features pertain to ANSI standards:

� ANSI-standard C

The ’C6000 compiler fully conforms to the ANSI C standard as defined by
the ANSI specification and described in the second edition of Kernighan
and Ritchie’s The C Programming Language (K&R). The ANSI C stan-
dard includes extensions to C that provide maximum portability and in-
creased capability.

� ANSI-standard runtime support

The compiler tools come with a complete runtime library. All library
functions conform to the ANSI C library standard. The library includes
functions for standard input and output, string manipulation, dynamic
memory allocation, data conversion, timekeeping, trigonometry, and ex-
ponential and hyperbolic functions. Functions for signal handling are not
included, because these are target-system specific. For more information,
see Chapter 8, Runtime Environment.

1.2.2 Output Files

The following features pertain to output files created by the compiler:

� Assembly source output

The compiler generates assembly language source files that you can
inspect easily, enabling you to see the code generated from the C source
files.

� COFF object files

Common object file format (COFF) allows you to define your system’s
memory map at link time. This maximizes performance by enabling you to
link C code and data objects into specific memory areas. COFF also sup-
ports source-level debugging.

� Code to initialize data into ROM

For stand-alone embedded applications, the compiler enables you to link
all code and initialization data into ROM, allowing C code to run from reset.
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1.2.3 Compiler Interface

The following features pertain to interfacing with the compiler:

� Compiler shell program

The compiler tools include a shell program that you use to compile,
assembly optimize, assemble, and link programs in a single step. For
more information, see section 2.1, About the Shell Program, on page 2-2.

� Flexible assembly language interface

The compiler has straightforward calling conventions, so you can write
assembly and C functions that call each other. For more information, see
Chapter 8, Runtime Environment.

1.2.4 Compiler Operation

The following features pertain to the operation of the compiler:

� Integrated preprocessor

The C preprocessor is integrated with the parser, allowing for faster compi-
lation. Stand-alone preprocessing or preprocessed listing is also avail-
able. For more information, see section 2.5, Controlling the Preprocessor,
on page 2-23.

� Optimization

The compiler uses a sophisticated optimization pass that employs several
advanced techniques for generating efficient, compact code from C
source. General optimizations can be applied to any C code, and ’C6000-
specific optimizations take advantage of the features specific to the
’C6000 architecture. For more information about the C compiler’s
optimization techniques, see Chapter 3, Optimizing Your Code.
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1.2.5 Utilities

The following features pertain to the compiler utilities:

� Source interlist utility

The compiler tools include a utility that interlists your original C source
statements into the assembly language output of the compiler. This utility
provides you with a method for inspecting the assembly code generated
for each C statement. For more information, see section 2.12, Using the
Interlist Utility, on page 2-42.

� Library-build utility

The library-build utility (mk6x) lets you custom-build object libraries from
source for any combination of runtime models or target CPUs. For more
information, see Chapter 10, Library-Build Utility.

� Stand-alone simulator

The stand-alone simulator (load6x) loads and runs an executable COFF
.out file. When used with the C I/O libraries, the stand-alone simulator sup-
ports all C I/O functions with standard output to the screen. For more
information, see Chapter 6, Using the Stand-Alone Simulator.
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Using the C Compiler

Translating your source program into code that the ’C6000 can execute is a
multistep process. You must compile, assemble, and link your source files to
create an executable object file. The ’C6000 compiler tools contain a special
shell program, cl6x, that enables you to execute all of these steps with one
command. This chapter provides a complete description of how to use the
shell program to compile, assemble, and link your programs.

This chapter also describes the preprocessor, inline function expansion fea-
tures, and interlist utility:

Topic Page

2.1 About the Shell Program 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2 Invoking the C Compiler Shell 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3 Changing the Compiler’s Behavior With Options 2-6. . . . . . . . . . . . . . . . 

2.4 Changing the Compiler’s Behavior
With Environment Variables 2-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.5 Controlling the Preprocessor 2-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.6 Understanding Diagnostic Messages 2-28. . . . . . . . . . . . . . . . . . . . . . . . . . 

2.7 Other Messages 2-31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.8 Generating Cross-Reference Listing Information (–px Option) 2-32. . . 

2.9 Generating a Raw Listing File (–pl Option) 2-33. . . . . . . . . . . . . . . . . . . . . 

2.10 Using Inline Function Expansion 2-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.11 Interrupt Flexibility Options (–mi n Option) 2-41. . . . . . . . . . . . . . . . . . . . . 

2.12 Using the Interlist Utility 2-42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 2
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2.1 About the Shell Program

The compiler shell program (cl6x) lets you compile, assemble, and optionally
link in one step. The shell runs one or more source modules through the
following:

� The compiler , which includes the parser, optimizer, and code generator,
accepts C source code and produces ’C6000 assembly language source
code.

� The assembler  generates a COFF object file.

� The linker  links your files to create an executable object file. The linker is
optional with the shell. You can compile and assemble various files with
the shell and link them later. See Chapter 5, Linking C Code, for
information about linking the files in a separate step.

By default, the shell compiles and assembles files; however, you can also link
the files using the –z shell option. Figure 2–1 illustrates the path the shell takes
with and without using the linker.
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Figure 2–1. The Shell Program Overview
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For a complete description of the assembler and the linker, see the
TMS320C6000 Assembly Language Tools User’s Guide.
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2.2 Invoking the C Compiler Shell

To invoke the compiler shell, enter:

cl6x  [options] [filenames] [–z [link_options] [object files]]

cl6x Command that runs the compiler and the assembler

options Options that affect the way the shell processes input files.
The options are listed in Table 2–1 on page 2-7.

filenames One or more C source files, assembly language source
files, linear assembly files, or object files

–z Option that invokes the linker. See Chapter 5, Linking C
Code, for more information about invoking the linker.

link_options Options that control the linking process

object files Name of the additional object files for the linking process

The –z option and its associated information (linker options and object files)
must follow all filenames and compiler options on the command line. You can
specify all other options (except linker options) and filenames in any order on
the command line. For example, if you want to compile two files named
symtab.c and file.c, assemble a third file named seek.asm, assembly optimize
a fourth file named find.sa, and suppress progress messages (–q), you enter:

cl6x –q symtab file seek.asm find.sa

As cl6x encounters each source file, it prints the C filenames in square
brackets ( [ ] ), assembly language filenames in angle brackets ( < > ), and lin-
ear assembly files in braces ( { } ). This example uses the –q option to suppress
the additional progress information that cl6x produces. Entering this command
produces these messages:

[symtab]
[file]
<seek.asm>
{find.sa}
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The normal progress information consists of a banner for each compiler pass
and the names of functions as they are processed. The example below shows
the output from compiling a single file (symtab) without  the –q option:

% cl6x symtab
[symtab]
TMS320C6x ANSI C Compiler Version xx
Copyright (c) 1996–1999 Texas Instruments Incorporated
   ”symtab.c”      ==> symtab
TMS320C6x ANSI C Codegen Version xx
Copyright (c) 1996–1999 Texas Instruments Incorporated
   ”symtab.c”:     ==> symtab
TMS320C6x COFF Assembler Version xx
Copyright (c) 1996–1999 Texas Instruments Incorporated
 PASS 1
 PASS 2

No Errors, No Warnings
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2.3 Changing the Compiler’s Behavior With Options

Options control the operation of both the shell and the programs it runs. This
section provides a description of option conventions and an option summary
table. It also provides detailed descriptions of the most frequently used op-
tions, including options used for type-checking and assembling.

The following apply to the compiler options:

� Options are either single letters or 2-letter pairs.

� Options are not case sensitive.

� Options are preceded by a hyphen.

� Single-letter options without parameters can be combined. For example,
–sgq is equivalent to –s –g –q.

� The following 2-letter pair options that have the same first letter can be
combined. For example, –pe, –pf, and –pk can be combined as –pefk.

� Options that have parameters, such as –uname and –idirectory, cannot be
combined. They must be specified separately.

� Options with parameters can have a space between the option and pa-
rameter or be right next to each other.

� Files and options can occur in any order except the –z option. The –z op-
tion must follow all other compiler options and precede any linker options.

You can define default options for the shell by using the C_OPTION
environment variable. For a detailed description of the C_OPTION environ-
ment variable, see section 2.4.1, Setting Default Shell Options (C_OPTION
and C6X_C_OPTION), on page 2-21.

Table 2–1 summarizes all options (including linker options). Use the page
references in the table for more complete descriptions of the options.

For an online summary of the options, enter cl6x with no parameters on the
command line.
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Table 2–1. Shell Options Summary

(a) Options that control the compiler shell

Option Effect Page

–@filename Interprets contents of a file as an extension to the
command line

2-15

–c Disables linking (negates –z) 2-15,
5-5

–dname[=def ] Predefines name 2-15

–g Enables symbolic debugging 2-15

–idirectory Defines #include search path 2-15,
2-25

–k Keeps the assembly language (.asm) file 2-15

–n Compiles or assembly optimizes only 2-16

–q Suppresses progress messages (quiet) 2-16

–qq Suppresses all messages (super quiet) 2-16

–s Interlists optimizer comments (if available) and
assembly source statements; otherwise interlists C
and assembly source statements

2-16

–ss Interlists optimizer comments with C source and
assembly statements

2-17,
3-26

–uname Undefines name 2-17

–z Enables linking 2-17
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Table 2–1. Shell Options Summary (Continued)

(b) Options that change the default file extensions

Option Effect Page

–ea[.]extension Sets a default extension for assembly source files 2-18

–el[.]extension Sets a default extension for assembly optimizer
source files

2-18

–eo[.]extension Sets a default extension for object files 2-18

(c) Options that specify files

Option Effect Page

–fafilename Changes how assembler source files are identified 2-18

–fcfilename Changes how C source files are identified 2-18

–flfilename Changes how assembly optimizer source files are
identified

2-18

–fofilename Changes how object code is identified 2-18

(d) Options that specify directories

Option Effect Page

–fbdirectory Specifies an absolute listing file directory 2-19

–ffdirectory Specifies an assembly listing file and cross-refer-
ence listing file directory

2-19

–frdirectory Specifies an object file directory 2-19

–fsdirectory Specifies an assembly file directory 2-19

–ftdirectory Specifies a temporary file directory 2-19
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Table 2–1.  Shell Options Summary (Continued)

(e) Options that are machine-specific

Option Effect Page

–ma Indicates that a specific aliasing technique is used 3-21

–me Produces object code in big-endian format. 2-16

–mg Allows you to profile optimized code 3-30

–mhn Allows speculative execution 3-10

–min Specifies an interrupt threshold value 2-41

–mln Changes near and far assumptions on four levels
(–ml0, –ml1, –and ml2, and –ml3)

2-16

–mrn Make calls to runtime-support functions near (–mr0)
or far (–mr0)

7-10

–msn Controls code size on three levels (–ms0, –ms1,
and –ms2)

3-14

–mt Indicates that specific aliasing techniques are not
used

3-22,
4-55

–mu Turns off software pipelining 3-5

–mvn Selects target version 3-12

–mw Embed software pipelined loop information in the
.asm file

3-5

–mz NEW
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Table 2–1.  Shell Options Summary (Continued)

(f) Options that control the parser

Option Effect Page

–pi Disables definition-controlled inlining (but –o3 opti-
mizations still perform automatic inlining)

2-36

–pk Allows K&R compatibility 7-23

–pl Generates a raw listing file 2-33

–pm Combines source files to perform program-level
optimization

3-17

–pr Enables relaxed mode; ignores strict ANSI
violations

7-25

–ps Enables strict ANSI mode 7-25

–px Generates a cross-reference listing file 2-32

(g) Parser options that control preprocessing

Option Effect Page

–ppa Continues compilation after preprocessing 2-26

–ppc Performs preprocessing only. Writes preprocessed
output, keeping the comments, to a file with the
same name as the input but with a .pp extension

2-26

–ppd Performs preprocessing only, but instead of writing
preprocessed output, writes a list of dependency
lines suitable for input to a standard make utility

2-27

–ppf Generates a preprocessing output file 2-27

–ppi Performs preprocessing only, but instead of writing
preprocessed output, writes a list of files included
with the #include directive

2-27

–ppl Performs preprocessing only. Writes preprocessed
output with line-control information (#line directives)
to a file with the same name as the input but with a
.pp extension

2-26

–ppo Performs preprocessing only. Writes preprocessed
output to a file with the same name as the input but
with a .pp extension

2-26
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Table 2–1. Shell Options Summary (Continued)

(h) Parser options that control diagnostics

Option Effect Page

–pdel num Sets the error limit to num. The compiler abandons
compiling after this number of errors. (The default is
100.)

2-29

–pden Displays a diagnostic’s identifiers along with its text 2-29

–pdf outfile Writes diagnostics to outfile rather than standard
error

2-29

–pdr Issues remarks (nonserious warnings) 2-29

–pds num Suppresses the diagnostic identified by num 2-30

–pdse num Categorizes the diagnostic identified by num as an
error

2-30

–pdsr num Categorizes the diagnostic identified by num as a re-
mark

2-30

–pdsw num Categorizes the diagnostic identified by num as a
warning

2-30

–pdv Provides verbose diagnostics that display the
original source with line-wrap

2-30

–pdw Suppresses warning diagnostics (errors are still
issued)

2-30
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Table 2–1. Shell Options Summary (Continued)

(i) Options that control optimization

Option Effect Page

–o0 Optimizes register usage 3-2

–o1 Uses –o0 optimizations and optimizes locally 3-2

–o2 or –o Uses –o1 optimizations and optimizes globally 3-2

–o3 Uses –o2 optimizations and optimizes the file 3-3

–oisize Sets automatic inlining size (–o3 only) 3-25

–ol0 or –oL0 Informs the optimizer that your file alters a standard
library function

3-15

–ol1 or –oL1 Informs the optimizer that your file declares a stan-
dard library function

3-15

–ol2 or –oL2 Informs the optimizer that your file does not declare
or alter library functions. Overrides the –ol0 and –ol1
options (default).

3-15

–on0 Disables the optimization information file 3-16

–on1 Produces an optimization information file 3-16

–on2 Produces a verbose optimization information file 3-16

–op0 Specifies that the module contains functions and
variables that are called or modified from outside the
source code provided to the compiler

3-17

–op1 Specifies that the module contains variables modi-
fied from outside the source code provided to the
compiler but does not use functions called from out-
side the source code

3-17

–op2 Specifies that the module contains no functions or
variables that are called or modified from outside the
source code provided to the compiler (default)

3-17

–op3 Specifies that the module contains functions that
are called from outside the source code provided to
the compiler but does not use variables modified
from outside the source code

3-17

–os Interlists optimizer comments with assembly state-
ments

3-26
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Table 2–1. Shell Options Summary (Continued)

(j) Options that control the definition-controlled inline function expansion

Option Effect Page

–x0 Disables intrinsic operators, the inline keyword, and
automatic inlining

2-36

–x1 Disables the inline keyowrd and automatic inlining 2-36

–x2 or –x Defines the symbol _INLINE and invokes the opti-
mizer with –o2

2-36

(k) Options that control the assembler

Option Effect Page

–aa Enables absolute listing 2-20

–adname Sets the name symbol.

–ahcfilename Copies the specified file for the assembly module 2-20

–ahifilename Includes the specified file for the assembly module 2-20

–al Generates an assembly listing file

–as Puts labels in the symbol table 2-20

–auname Undefines the predefined constant name

–ax Generates the cross-reference file 2-20
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Table 2–1. Shell Options Summary (Continued)

(l) Options that control the linker

Options Effect Page

–a Generates absolute executable output 5-6

–ar Generates relocatable executable output 5-6

–b Disables merge of symbolic debugging information. 5-6

–c Autoinitializes variables at runtime 5-2,
8-35

–cr Initializes variables at loadtime 5-2,
8-35

–e global_symbol Defines entry point 5-6

–f fill_value Defines fill value 5-6

–g global_symbol Keeps a global_symbol global (overrides –h) 5-6

–h Makes global symbols static 5-6

–heap size Sets heap size (bytes) 5-6

–i directory Defines library search path 5-6

–l libraryname Supplies library or command filename 5-2

–m filename Names the map file 5-6

–n Ignores all fill specifications in MEMORY directives 5-7

–o name.out Names the output file 5-2

–q Suppresses progress messages (quiet) 5-7

–r Generates relocatable nonexecutable output 5-7

–s Strips symbol table information and line number en-
tries from the output module

5-7

–stack size Sets stack size (bytes) 5-6

–u symbol Undefines symbol 5-7

–w Displays a message when an undefined output sec-
tion is created

5-7

–x Forces rereading of libraries 5-7
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2.3.1 Frequently Used Options

Following are detailed descriptions of options that you will probably use fre-
quently:

–@filename Appends the contents of a file to the command line. You can
use this option to avoid limitations on command line length
or C style comments imposed by the host operating system.
Use a # or ; at the beginning of a line in the command file to
include comments. You can also include comments by de-
limiting them with /* and /*.

–c Suppresses the linker and overrides the –z option, which
specifies linking. Use this option when you have –z specified
in the C_OPTION environment variable and you do not want
to link. For more information, see section 5.3, Disabling the
Linker (–c Shell Option), on page 5-5.

–dname[=def] Predefines the constant name for the preprocessor. This is
equivalent to inserting #define name def  at the top of each
C source file. If the optional [=def] is omitted, the name is set
to 1.

–g Generates symbolic debugging directives that are used by
the C source-level debugger and enables assembly source
debugging in the assembler. The –g option disables many
code generator optimizations, because they disrupt the de-
bugger. You can use the –g option with the –o option to maxi-
mize the amount of optimization that is compatible with de-
bugging (see section 3.10.1, Debugging Optimized Code
(–g and –o Options), on page 3-29).

–idirectory Adds directory to the list of directories that the compiler
searches for #include files. You can use this option a maxi-
mum of 32 times to define several directories; be sure to
separate –i options with spaces. If you do not specify a direc-
tory name, the preprocessor ignores the –i option. For more
information, see section 2.5.2.1, Changing the #include File
Search Path With the –i Option, on page 2-25. 

–k Retains the assembly language output from the compiler or
assembly optimizer. Normally, the shell deletes the output
assembly language file after assembly is complete.
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–me Produces code in big-endian format. By default, little-endian
code is produced.

–mln Generates large-memory model code on four levels (–ml0,
–ml1, –ml2, and –ml3):

� –ml0 defaults aggregate data (structs and arrays) to far
� –ml1 defaults all function calls to far
� –ml2 defaults all aggregate data and calls to far
� –ml3 defaults all data and calls to far

If no level is specified, all data and functions default to near.
Near data is accessed via the data page pointer more effi-
ciently while near calls are executed more efficiently using a
PC relative branch.

Use these options if you have too much static and extern
data to fit within a 15-bit scaled offset from the beginning of
the .bss section, or if you have calls where the called function
is more than �1024 words away from the call site. The linker
issues an error message when these situations occur. See
section 7.3.4, The near and far Keywords, on page 7-9, and
section 8.1.5, Memory Models, on page 8-6, for more
information.

–mv Selects the target CPU version (For more information about
the –mv option, see page 3-12.)

–n Compiles or assembly optimizes only. The specified source
files are compiled or assembly optimized but not assembled
or linked. This option overrides –z. The output is assembly
language output from the compiler.

–q Suppresses banners and progress information from all the
tools. Only source filenames and error messages are output.

–qq Suppresses all output except error messages

–s Invokes the interlist utility, which interweaves optimizer
comments or C source with assembly source. If the opti-
mizer is invoked (–on option), optimizer comments are interl-
isted with the assembly language output of the compiler. If
the optimizer is not invoked, C source statements are interl-
isted with the assembly language output of the compiler,
which allows you to inspect the code generated for each C
statement. The –s option implies the –k option.
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–ss Invokes the interlist utility, which interweaves original C
source with compiler-generated assembly language. If the
optimizer is invoked (–on option), this option might reorga-
nize your code substantially. For more information, see sec-
tion 2.12, Using the Interlist Utility, on page 2-42.

–uname Undefines the predefined constant name. This option over-
rides any –d options for the specified constant.

–z Runs the linker on the specified object files. The –z option
and its parameters follow all other options on the command
line. All arguments that follow –z are passed to the linker. For
more information, see section 5.1, Invoking the Linker as an
Individual Program, on page 5-2.

2.3.2 Specifying Filenames

The input files that you specify on the command line can be C source files,
assembly source files, linear assembly files, or object files. The shell uses file-
name extensions to determine the file type.

Extension File Type

.c or none (.c is assumed) C source

.sa Linear assembly

.asm, .abs, or .s* (extension begins with s) Assembly source

.obj Object

Files without extensions are assumed to be C source files. The conventions
for filename extensions allow you to compile C files and optimize and
assemble assembly files with a single command.

For information about how you can alter the way that the shell interprets indi-
vidual filenames, see section 2.3.3 on page 2-18. For information about how
you can alter the way that the shell interprets and names the extensions of as-
sembly source and object files, see section 2.3.5 on page 2-19.

You can use wildcard characters to compile or assemble multiple files. Wild-
card specifications vary by system; use the appropriate form listed in your op-
erating system manual. For example, to compile all of the C files in a directory,
enter the following:

cl6x *.c
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2.3.3 Changing How the Shell Program Interprets Filenames (–fa, –fc, –fl, and –fo 
Options)

You can use options to change how the shell interprets your filenames. If the
extensions that you use are different from those recognized by the shell, you
can use the –fa, –fc, –fl, and –fo options to specify the type of file. You can in-
sert an optional space between the option and the filename. Select the
appropriate option for the type of file you want to specify:

–fafilename for an assembly language source file

–fcfilename for a C source file

–flfilename for a linear assembly file

–fofilename for an object file

For example, if you have a C source file called file.s and an assembly language
source file called assy, use the –fa and –fc options to force the correct
interpretation:

cl6x –fc file.s –fa assy

You cannot use the –fa, –fc, –fl, and –fo options with wildcard specifications.

2.3.4 Changing How the Shell Program Interprets and Names Extensions (–ea, –el,
and –eo Options)

You can use options to change how the shell program interprets filename ex-
tensions and names the extensions of the files that it creates. The –ea, –el, and
–eo options must precede the filenames they apply to on the command line.
You can use wildcard specifications with these options. An extension can be
up to nine characters in length. Select the appropriate option for the type of
extension you want to specify:

–ea[.] new extension for an assembly language file

–el[.] new extension for an assembly optimizer file

–eo[.] new extension for an object file

The following example assembles the file fit.rrr and creates an object file
named fit.o:

cl6x –ea .rrr –eo .o fit.rrr

The period (.) in the extension and the space between the option and the
extension are optional. You can also write the example above as:

cl6x –earrr –eoo fit.rrr
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2.3.5 Specifying Directories

By default, the shell program places the object, assembly, and temporary files
that it creates into the current directory. If you want the shell program to place
these files in different directories, use the following options:

–fbdirectory Specifies the destination directory for absolute listing files. The de-
fault is to use the same directory as the object file directory. To
specify an absolute listing file directory, type the directory’s path-
name on the command line after the –fb option:

cl6x –fb d:\abso_list

–ffdirectory Specifies the destination directory for assembly listing files and
cross-reference listing files. The default is to use the same directo-
ry as the object file directory. To specify an assembly/cross-refer-
ence listing file directory, type the directory’s pathname on the
command line after the –ff option:

cl6x –ff d:\listing

–frdirectory Specifies a directory for object files. To specify an object file direc-
tory, type the directory’s pathname on the command line after the
–fr option:

cl6x –fr d:\object

–fsdirectory Specifies a directory for assembly files. To specify an assembly file
directory, type the directory’s pathname on the command line after
the –fs option:

cl6x –fs d:\assembly

–ftdirectory Specifies a directory for temporary intermediate files. The –ft op-
tion overrides the TMP environment variable. (For more informa-
tion, see section 2.4.2, Specifying a Temporary File Directory
(C6x_TMP and TMP), on page 2-22.) To specify a temporary direc-
tory, type the directory’s pathname on the command line after the
–ft option:

cl6x –ft c:\temp
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2.3.6 Options That Control the Assembler

Following are assembler options that you can use with the shell:

–aa Invokes the assembler with the –a assembler option, which
creates an absolute listing. An absolute listing shows the ab-
solute addresses of the object code.

–adname –dname [=value] sets the name symbol. This is equivalent to
inserting name .set  [value] at the beginning of the assembly
file. If value is omitted, the symbol is set to 1.

–ahc filename Invokes the assembler with the –hc assembler option to tell
the assembler to copy the specified file for the assembly
module. The file is inserted before source file statements.
The copied file appears in the assembly listing files.

–ahi filename Invokes the assembler with the –hi assembler option to tell
the assembler to include the specified file for the assembly
module. The file is included before source file statements.
The included file does not appear in the assembly listing files.

–al Invokes the assembler with the –l (lowercase L) assembler
option to produce an assembly listing file.

–as Invokes the assembler with the –s assembler option to put la-
bels in the symbol table. Label definitions are written to the
COFF symbol table for use with symbolic debugging.

–auname Undefines the predefined constant name, which overrides
any –ad options for the specified constant.

–ax Invokes the assembler with the –x assembler option to pro-
duce a symbolic cross-reference in the listing file.

For more information about assembler options, see the TMS320C6000
Assembly Language Tools User’s Guide.
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2.4 Changing the Compiler’s Behavior With Environment Variables

You can define environment variables that set certain software tool parame-
ters you normally use. An environment variable is a special system symbol that
you define and associate to a string in your system initialization file. The
compiler uses this symbol to find or obtain certain types of information.

When you use environment variables, default values are set, making each
individual invocation of the compiler simpler because these parameters are
automatically specified. When you invoke a tool, you can use command-line
options to override many of the defaults that are set with environment vari-
ables.

2.4.1 Setting Default Shell Options (C_OPTION and C6X_C_OPTION)

You might find it useful to set the compiler, assembler, and linker shell default
options using the C6X_C_OPTION or C_OPTION environment variable. If you
do this, the shell uses the default options and/or input filenames that you name
with C_OPTION every time you run the shell.

Setting the default options with the C_OPTION environment variable is useful
when you want to run the shell consecutive times with the same set of options
and/or input files. After the shell reads the command line and the input file-
names, it looks for the C6X_C_OPTION environment variable first and then
reads and processes it. If it does not find the C6X_C_OPTION, it reads the
C_OPTION environment variable and processes it.

The table below shows how to set C_OPTION the environment variable.
Select the command for your operating system:

Operating System Enter

UNIX with C shell setenv C_OPTION ” option1 [option2  . . .]”

UNIX with Bourne or Korn
shell

C_OPTION=” option1 [option2 . . .]”
export C_OPTION

Windows� set C_OPTION=option1[;option2 . . .]

Environment variable options are specified in the same way and have the
same meaning as they do on the command line. For example, if you want to
always run quietly (the –q option), enable C source interlisting (the –s option),
and link (the –z option) for Windows, set up the C_OPTION environment vari-
able as follows:

set C_OPTION=–qs –z
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In the following examples, each time you run the compiler shell, it runs the
linker. Any options following –z on the command line or in C_OPTION are
passed to the linker. This enables you to use the C_OPTION environment vari-
able to specify default compiler and linker options and then specify additional
compiler and linker options on the shell command line. If you have set –z in
the environment variable and want to compile only, use the –c option of the
shell. These additional examples assume C_OPTION is set as shown above:

cl6x *c ; compiles and links
cl6x –c *.c ; only compiles
cl6x *.c –z lnk.cmd ; compiles and links using a

; command file
cl6x –c *.c –z lnk.cmd ; only compiles (–c overrides –z)

For more information about shell options, see section 2.3, Changing the
Compiler’s Behavior With Options, on page 2-6. For more information about
linker options, see section 5.4, Linker Options, on page 5-6.

2.4.2 Specifying a Temporary File Directory (C6X_TMP and TMP)

The compiler shell program creates intermediate files as it processes your
program. By default, the shell puts intermediate files in the current directory.
However, you can name a specific directory for temporary files by using the
C6X_TMP or TMP environment variable.

The shell looks for the C6X_TMP environment variable before it looks for the
TMP environment variable. Using the C6X_TMP or TMP environment vari-
ables allows use of a RAM disk or other file systems. It also allows source files
to be compiled from a remote directory without writing any files into the direc-
tory where the source resides. This is useful for protected directories.

The table below shows how to set the TMP environment variable. Select the
command for your operating system:

Operating System Enter

UNIX with C shell setenv TMP ” pathname”

UNIX with Bourne or Korn
shell

TMP=” pathname”
export TMP

Windows set TMP=pathname

Note: For UNIX workstations, be sure to enclose the directory name within quotes.

For example, to set up a directory named temp for intermediate files on your
hard drive for Windows, enter:

set TMP=c:\temp 
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2.5 Controlling the Preprocessor

This section describes specific features that control the ’C6000 preprocessor,
which is part of the parser. A general description of C preprocessing is in sec-
tion A12 of K&R. The ’C6000 C compiler includes standard C preprocessing
functions, which are built into the first pass of the compiler. The preprocessor
handles:

� Macro definitions and expansions

� #include files

� Conditional compilation

� Various other preprocessor directives (specified in the source file as lines
beginning with the # character)

The preprocessor produces self-explanatory error messages. The line
number and the filename where the error occurred are printed along with a
diagnostic message.

2.5.1 Predefined Macro Names

The compiler maintains and recognizes the predefined macro names listed in
Table 2–2.

Table 2–2. Predefined Macro Names

Macro Name Description

_TMS320C6000 Always defined

_TMS320C6200 Defined if target is fixed-point

_TMS320C6700 Defined if target is floating-point

_LITTLE_ENDIAN Defined if little-endian mode is selected (the –me option is not
used); otherwise, it is undefined

_BIG_ENDIAN Defined if big-endian mode is selected (the –me option is
used); otherwise, it is undefined

_LARGE_MODEL Defined if large-model mode is selected (the –ml option is
used); otherwise, it is undefined

_SMALL_MODEL Defined if small-model mode is selected (the –ml option is not
used); otherwise, it is undefined

_ _LINE_ _† Expands to the current line number

† Specified by the ANSI standard
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Table 2–2. Predefined Macro Names (Continued)

Macro Name Description

_ _FILE_ _† Expands to the current source filename

_ _DATE_ _† Expands to the compilation date in the form mmm dd yyyy

_ _TIME_ _† Expands to the compilation time in the form hh:mm:ss

_INLINE Expands to 1 under the –x or –x2 option; undefined otherwise

_ _STDC_ _† Defined to indicate that compiler conforms to ANSI C Stan-
dard. See section 7.1, Characteristics of TMS320C6000 C,
on page 7-2, for exceptions to ANSI C conformance.

† Specified by the ANSI standard

You can use the names listed in Table 2–2 in the same manner as any other
defined name. For example,

printf ( ”%s %s” , __TIME__ , __DATE__);

translates to a line such as:

printf (”%s %s” , ”13:58:17”, ”Jan 14 1997”);

2.5.2 The Search Path for #include Files

The #include preprocessor directive tells the compiler to read source
statements from another file. When specifying the file, you can enclose the file-
name in double quotes or in angle brackets. The filename can be a complete
pathname, partial path information, or a filename with no path information.

� If you enclose the filename in double quotes (“ ”), the compiler searches
for the file in the following directories in this order:

1) The directory that contains the current source file. The current source
file refers to the file that is being compiled when the compiler
encounters the #include directive.

2) Directories named with the –i option

3) Directories set with the C_DIR or C6X_DIR environment variable

� If you enclose the filename in angle brackets (< >), the compiler searches
for the file in the following directories in this order:

1) Directories named with the –i option
2) Directories set with the C_DIR or C6X_DIR environment variable

See section 2.5.2.1, Changing the #include File Search Path (–i Option) for in-
formation on using the –i option. See the code generation tools CD-ROM insert
for information on the C_DIR environment variable.
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2.5.2.1 Changing the #include File Search Path (–i Option )

The –i option names an alternate directory that contains #include files. The for-
mat of the –i option is:

–i directory1 [–i directory2 ...]

You can use up to 32 –i options per invocation of the compiler; each –i option
names one directory. In C source, you can use the #include directive without
specifying any directory information for the file; instead, you can specify the
directory information with the –i option. For example, assume that a file called
source.c is in the current directory. The file source.c contains the following
directive statement:

   #include ”alt.h”

Assume that the complete pathname for alt.h is:

UNIX /6xtools/files/alt.h

Windows c:\6xtools\files\alt.h

The table below shows how to invoke the compiler. Select the command for
your operating system:

Operating System Enter

UNIX cl6x  –i/6xtools/files source.c

Windows cl6x  –ic:\6xtools\files source.c

Note: Specifying Path Information in Angle Brackets

If you specify the path information in angle brackets, the compiler applies that
information relative to the path information specified with –i options and the
C_DIR or C6X_DIR environment variable.

For example, if you set up C_DIR with the following command:

setenv C_DIR ” /usr/include;/usr/ucb”

or invoke the compiler with the following command:

cl6x –i/usr/include file.c

and file.c contains this line:

#include <sys/proc.h>

the result is that the included file is in the following path:

/usr/include/sys/proc.h
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2.5.3 Generating a Preprocessed Listing File (–ppo Option)

The –ppo option allows you to generate a preprocessed version of your source
file, with an extension of .pp. The compiler’s preprocessing functions perform
the following operations on the source file:

� Each source line ending in a backslash (\) is joined with the following line.

� Trigraph sequences are expanded.

� Comments are removed.

� #include files are copied into the file.

� Macro definitions are processed.

� All macros are expanded.

� All other preprocessing directives, including #line directives and condi-
tional compilation, are expanded.

2.5.4 Continuing Compilation After Preprocessing (–ppa Option)

If you are preprocessing, the preprocessor performs preprocessing only. By
default, it does not compile your source code. If you want to override this fea-
ture and continue to compile after your source code is preprocessed, use the
–ppa option along with the other preprocessing options. For example, use
–ppa with –ppo to perform preprocessing, write preprocessed output to a file
with a .pp extension, and then compile your source code.

2.5.5 Generating a Preprocessed Listing File With Comments (–ppc Option)

The –ppc option performs all of the preprocessing functions except removing
comments and generates a preprocessed version of your source file with a .pp
extension. Use the –ppc option instead of the –ppo option if you want to keep
the comments.

2.5.6 Generating a Preprocessed Listing File With Line-Control Information 
(–ppl Option)

By default, the preprocessed output file contains no preprocessor directives.
If you want to include the #line directives, use the –ppl option. The –ppl option
performs preprocessing only and writes preprocessed output with line-control
information (#line directives) to a file with the same name as the source file but
with a .pp extension.
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2.5.7 Directing Preprocessed Output to a File (–ppf outfile  Option)

The –ppf outfile option writes preprocessed output to outfile rather than to a
file with the same name as the source file but with a .pp extension. Use this
option with any of the other preprocessing options except –ppa.

2.5.8 Generating Preprocessed Output for a Make Utility (–ppd Option)

The –ppd option performs preprocessing only, but instead of writing prepro-
cessed output, writes a list of dependency lines suitable for input to a standard
make utility. The list is written to a file with the same name as the source file
but with a .pp extension.

2.5.9 Generating a List of Files Included With the #include Directive (–ppi Option)

The –ppi option performs preprocessing only, but instead of writing prepro-
cessed output, writes a list of files included with the #include directive. The list
is written to a file with the same name as the source file but with a .pp extension.
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2.6 Understanding Diagnostic Messages

One of the compiler’s primary functions is to report diagnostics for the source
program. When the compiler detects a suspect condition, it displays a mes-
sage in the following format:

” file.c”, line n: diagnostic severity: diagnostic message

” file.c” The name of the file involved

line  n: The line number where the diagnostic applies

diagnostic severity The severity of the diagnostic message (a description
of each severity category follows)

diagnostic message The text that describes the problem

Diagnostic messages have an associated severity, as follows:

� A fatal error  indicates a problem of such severity that the compilation can-
not continue. Examples of problems that can cause a fatal error include
command-line errors, internal errors, and missing include files. If multiple
source files are being compiled, any source files after the current one will
not be compiled.

� An error indicates a violation of the syntax or semantic rules of the C lan-
guage. Compilation continues, but object code is not generated.

� A warning indicates something that is valid but questionable. Compilation
continues and object code is generated (if no errors are detected).

� A remark  is less serious than a warning. It indicates something that is valid
and probably intended, but may need to be checked. Compilation contin-
ues and object code is generated (if no errors are detected). By default,
remarks are not issued. Use the –pdr shell option to enable remarks.

Diagnostics are written to standard error with a form like the following example:

”test.c”, line 5: error: a break statement may only be used 
within a loop or switch

break;
^

By default, the source line is omitted. Use the –pdv shell option to enable the
display of the source line and the error position. The above example makes
use of this option.

The message identifies the file and line involved in the diagnostic, and the
source line itself (with the position indicated by the ^ character) follows the
message. If several diagnostics apply to one source line, each diagnostic has
the form shown; the text of the source line is displayed several times, with an
appropriate position indicated each time.
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Long messages are wrapped to additional lines, when necessary.

You can use a command-line option (–pden) to request that the diagnostic’s
numeric identifier be included in the diagnostic message. When displayed, the
diagnostic identifier also indicates whether the diagnostic can have its severity
overridden on the command line. If the severity can be overridden, the diag-
nostic identifier includes the suffix –D (for discretionary); otherwise, no suffix
is present. For example:

”Test_name.c”, line 7: error #64–D: declaration does not 
declare anything

struct {};
^

”Test_name.c”, line 9: error #77: this declaration has no 
storage class or type specifier

xxxxx;
^

Because an error is determined to be discretionary based on the error severity
associated with a specific context, an error can be discretionary in some cases
and not in others. All warnings and remarks are discretionary.

2.6.1 Controlling Diagnostics

The C compiler provides diagnostic options that allow you to modify how the
parser interprets your code. You can use these options to control diagnostics:

–pdel num Sets the error limit to num, which can be any decimal value.
The compiler abandons compiling after this number of errors.
(The default is 100.)

–pden Displays a diagnostic’s numeric identifier along with its text.
Use this option in determining which arguments you need to
supply to the diagnostic suppression options (–pds, –pdse,
–pdsr, and –pdsw).

This option also indicates whether a diagnostic is discretion-
ary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix –D;
otherwise, no suffix is present. See section 2.6, Understand-
ing Diagnostic Messages, on page 2-28 for more information.

–pdf Produces a diagnostics information file with the same name
as the corresponding source file with an .err extension

–pdr Issues remarks (nonserious warnings), which are suppressed
by default
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–pds  num Suppresses the diagnostic identified by num. To determine the
numeric identifier of a diagnostic message, use the –pden op-
tion first in a separate compile. Then use –pds num to sup-
press the diagnostic. You can suppress only discretionary
diagnostics.

–pdse  num Categorizes the diagnostic identified by num as an error. To
determine the numeric identifier of a diagnostic message, use
the –pden option first in a separate compile. Then use –pdse
num to recategorize the diagnostic as an error. You can alter
the severity of discretionary diagnostics only.

–pdsr  num Categorizes the diagnostic identified by num as a remark. To
determine the numeric identifier of a diagnostic message, use
the –pden option first in a separate compile. Then use –pdsr
num to recategorize the diagnostic as a remark. You can alter
the severity of discretionary diagnostics only.

–pdsw  num Categorizes the diagnostic identified by num as a warning. To
determine the numeric identifier of a diagnostic message, use
the –pden option first in a separate compile. Then use –pdsw
num to recategorize the diagnostic as a warning. You can alter
the severity of discretionary diagnostics only.

–pdv Provides verbose diagnostics that display the original source
with line-wrap and indicate the position of the error in the
source line

–pdw Suppresses warning diagnostics (errors are still issued)

2.6.2 How You Can Use Diagnostic Suppression Options

The following example demonstrates how you can control diagnostic mes-
sages issued by the compiler.

Consider the following code segment:

int one();
int i;
int main()
{

switch (i){
case  1;

return one ();
break;

default:
return 0;
break;

}
}



Other Messages

2-31Using the C Compiler

If you invoke the compiler with the –q option, this is the result:

”err.c”, line 9: warning: statement is unreachable
”err.c”, line 12: warning: statement is unreachable

Because it is standard programming practice to include break statements at
the end of each case arm to avoid the fall-through condition, these warnings
can be ignored. Using the –pden option, you can find out the diagnostic identifi-
er for these warnings. Here is the result:

[err.c]
”err.c”, line 9: warning #111–D: statement is unreachable
”err.c”, line 12: warning #111–D: statement is unreachable

Next, you can use the diagnostic identifier of 111 as the argument to the –pdsr
option to treat this warning as a remark. This compilation now produces no
diagnostic messages (because remarks are disabled by default).

Although this type of control is useful, it can also be extremely dangerous. The
compiler often emits messages that indicate a less than obvious problem. Be
careful to analyze all diagnostics emitted before using the suppression op-
tions.

2.7 Other Messages

Other error messages that are unrelated to the source, such as incorrect com-
mand-line syntax or inability to find specified files, are usually fatal. They are
identified by the symbol >> preceding the message.

Understanding Diagnostic Messages / Other Messages
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2.8 Generating Cross-Reference Listing Information (–px Option)

The –px option generates a cross-reference listing file that contains reference
information for each identifier in the source file. (The –px option is separate
from –ax, which is an assembler rather than a shell option.) The cross-refer-
ence listing file has the same name as the source file with a .crl extension.

The information in the cross-reference listing file is displayed in the following
format:

sym-id name X filename line number column number

sym-id An integer uniquely assigned to each identifier

name The identifier name

X One of the following values:

X Value Meaning

D Definition

d Declaration (not a definition)

M Modification

A Address taken

U Used

C Changed (used and modified in a single op-
eration)

R Any other kind of reference

E Error; reference is indeterminate

filename The source file

line number The line number in the source file

column number The column number in the source file
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2.9 Generating a Raw Listing File (–pl Option)

The –pl option generates a raw listing file that can help you understand how
the compiler is preprocessing your source file. Whereas the preprocessed list-
ing file (generated with the –ppo, –ppc, –ppl, and –ppf preprocessor options)
shows a preprocessed version of your source file, a raw listing file provides a
comparison between the original source line and the preprocessed output.
The raw listing file has the same name as the corresponding source file with
a .rl extension.

The raw listing file contains the following information:

� Each original source line

� Transitions into and out of include files

� Diagnostics

� Preprocessed source line if nontrivial processing was performed (com-
ment removal is considered trivial; other preprocessing is nontrivial)

Each source line in the raw listing file begins with one of the identifiers listed
in Table 2–3.

Table 2–3. Raw Listing File Identifiers

Identifier Definition

N Normal line of source

X Expanded line of source. It appears immediately following the normal line
of source if nontrivial preprocessing occurs.

S Skipped source line (false #if clause)

L Change in source position, given in the following format:

L line number filename key

Where line number is the line number in the source file. The key is present
only when the change is due to entry/exit of an include file. Possible values
of key are as follows:

1 = entry into an include file
2 = exit from an include file
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The –pl option also includes diagnostic identifiers as defined in Table 2–4.

Table 2–4. Raw Listing File Diagnostic Identifiers

Diagnostic 
identifier Definition

E Error

F Fatal

R Remark

W Warning

Diagnostic raw listing information is displayed in the following format:

S filename line number column number diagnostic

S One of the identifiers in Table 2–4 that indicates the se-
verity of the diagnostic

filename The source file

line number The line number in the source file

column number The column number in the source file

diagnostic The message text for the diagnostic

Diagnostics after the end of file are indicated as the last line of the file with a
column number of 0. When diagnostic message text requires more than one
line, each subsequent line contains the same file, line, and column information
but uses a lowercase version of the diagnostic identifier. For more information
about diagnostic messages, see section 2.6, Understanding Diagnostic Mes-
sages, on page 2-28.
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2.10 Using Inline Function Expansion

When an inline function is called, the C source code for the function is inserted
at the point of the call. This is known as inline function expansion. Inline func-
tion expansion is advantageous in short functions for the following reasons:

� It saves the overhead of a function call.

� Once inlined, the optimizer is free to optimize the function in context with
the surrounding code.

Inline function expansion is performed in one of the following ways:

� Intrinsic operators are expanded by default.

� Automatic inline function expansion is performed on small functions that
are invoked by the optimizer with the –o3 option. For more information
about automatic inline function expansion, see section 3.8 on page 3-25.

� Definition-controlled inline expansion is performed when you invoke the
compiler with optimization (–x option) and the compiler encounters the
inline keyword in code.

Note: Function Inlining Can Greatly Increase Code Size

Expanding functions inline expands code size, and inlining a function that is
called in a number of places increases code size. Function inlining is optimal
for functions that are called only from a small number of places and for small
functions. If your code size seems too large, try compiling with the –oi0 option
and note the difference in code size.

2.10.1 Inlining Intrinsic Operators

There are many intrinsic operators for the ’C6000. All of them are automatically
inlined by the compiler. The inlining happens automatically whether or not you
use the optimizer. You can stop the inlining by invoking the compiler with the
–x0 option.

For details about intrinsics, and a list of the intrinsics, see section 8.5.2, Using
Intrinsics to Access Assembly Language Statements, on page 8-24.
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2.10.2 Controlling Inline Function Expansion (–x Option)

The –x option controls the definition of the _INLINE preprocessor symbol and
some types of inline function expansion. There are three levels of expansion:

–x0 Disables the expansion of intrinsic operator functions, definition-
controlled inlining with the inline keyword, and the automatic inline
function expansions described in section 3.8 on page 3-25.

–x1 Disables definition-controlled inlining with the inline keyword and
the automatic inline function expansions described in section 3.8
on page 3-25.

–x2 or –x Creates the _INLINE preprocessor symbol and assigns it the
value 1, and invokes the optimizer is at level 2 (–o2), thereby
enabling definition-controlled inline expansion.

2.10.3 Using the inline Keyword and –o3 Optimization

Definition-controlled inline function expansion is performed when you invoke
the compiler with optimization and the compiler encounters the inline keyword
in code. Functions with local static variables or a variable number of arguments
are not inlined, with the exception of functions declared as static inline. In func-
tions declared as static inline, expansion occurs despite the presence of local
static variables. In addition, a limit is placed on the depth of inlining for recur-
sive or nonleaf functions. Inlining should be used for small functions or func-
tions that are called in a few places (though the compiler does not enforce this).
You can control this type of function inlining with the inline keyword.

The inline keyword specifies that a function is expanded inline at the point at
which it is called rather than by using standard calling procedures. The com-
piler will perform inline expansion of functions declared with the inline key-
word, and can automatically inline small functions.

For a function to be eligible for inlining:

� The function must be declared with the inline keyword, or
� The optimizer must be invoked using the –o3 switch, and

� The function is very small (controlled by the –oi switch), and
� The function is declared before it is called
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A function may be disqualified from inlining if it:

� returns a struct or union
� has a struct or union parameter
� has a volatile parameter
� has a variable length argument list
� declares a struct, union, or enum type
� contains a static variable
� contains a volatile variable
� is recursive
� contains # pragmas
� has too large of a stack (too many local variables)

2.10.3.1 Disabling the inline Keyword

When you want to compile code containing the inline keyword without defini-
tion-controlled inlining, use the –pi option. When you use the –pi option with
–o3 optimizations, automatic inlining is still performed.

2.10.3.2 Declaring a Function as Inline Within a Module

By declaring a function as inline within a module (with the inline keyword), you
can specify that the function is inlined within that module. A global symbol for
the function is created (code is generated), and the function is inlined only with-
in the module where it is declared as inline. The global symbol can be called
by other modules if they do not contain a static inline declaration for the func-
tion.

Functions declared as inline are expanded when the optimizer is invoked.
Using the –x2 option automatically invokes the optimizer at the default level
(–o2).

Use this syntax to declare a function as inline within a module:

inline  return-type function-name (parameter declarations) {function}
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2.10.3.3 Declaring a Function as Static Inline

Declaring a function as static inline in a header file specifies that the function
is inlined in any module that includes the header. This names the function and
specifies to expand the function inline, but no code is generated for the function
declaration itself. A function declared in this way can be placed in header files
and included by all source modules of the program.

Use this syntax to declare a function as static inline:

static  inline  return-type function-name (parameter declarations) {function}

2.10.4 The _INLINE Preprocessor Symbol

The _INLINE preprocessor symbol is defined (and set to 1) if you invoke the
parser (or compiler shell utility) with the –x2 (or –x) option. It allows you to write
code so that it runs whether or not the optimizer is used. It is used by standard
header files included with the compiler to control the declaration of standard
C runtime functions.

Example 2–1 on page 2-39 illustrates how the runtime-support library uses the
_INLINE preprocessor symbol.

The _INLINE preprocessor symbol is used in the string.h header file to declare
the function correctly, regardless of whether inlining is used. The _INLINE pre-
processor symbol conditionally defines _ _INLINE so that strlen is declared as
static inline only if the _INLINE preprocessor symbol is defined.

If the rest of the modules are compiled with inlining enabled and the string.h
header is included, all references to strlen are inlined and the linker does not
have to use the strlen in the runtime-support library to resolve any references.
Otherwise, the runtime-support library code resolves the references to strlen,
and function calls are generated.

Use the _INLINE preprocessor symbol in your header files in the same way
that the function libraries use it so that your programs run, regardless of
whether inlining is selected for any or all of the modules in your program.

Functions declared as inline are expanded whenever the optimizer is invoked
at any level. Functions declared as inline and controlled by the _INLINE
preprocessor symbol, such as the runtime-library functions, are expanded
whenever the optimizer is invoked and the _INLINE preprocessor symbol is
equal to 1. When you declare an inline function in a library, it is recommended
that you use the _INLINE preprocessor symbol to control its declaration. If you
fail to control the expansion using _INLINE and subsequently compile without
the optimizer, the call to the function is unresolved.
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In Example 2–1, there are two definitions of the strlen function. The first, in the
header file, is an inline definition. Note that this definition is enabled and the
prototype is declared as static inline only if _INLINE is true; that is, the module
including this header is compiled with the –x option.

The second definition, for the library, ensures that the callable version of strlen
exists when inlining is disabled. Since this is not an inline function, the _INLINE
preprocessor symbol is undefined (#undef) before string.h is included to gen-
erate a noninline version of strlen’s prototype.

Example 2–1. How the Runtime-Support Library Uses the _INLINE Preprocessor Symbol

(a) string.h

/*****************************************************************************/
/* string.h  vx.xx                                                           */
/* Copyright (c) 1993–1999 Texas Instruments Incorporated                    */
/* Excerpted ...                                                             */
/*****************************************************************************/

#ifdef _INLINE
#define _IDECL static inline
#else
#define _IDECL extern _CODE_ACCESS
#endif

_IDECL size_t  strlen(const char *_string);

#ifdef _INLINE

/****************************************************************************/
/*  strlen                                                                  */
/****************************************************************************/
static inline size_t strlen(const char *string)
{
   size_t      n = (size_t)–1;
   const char *s = string – 1;

   do n++; while (*++s);
   return n;
}

#endif
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Example 2–1.How the Runtime-Support Library Uses the _INLINE Preprocessor Symbol
(Continued)

(b) strlen.c

/****************************************************************************/
/*  strlen                                                                  */
/****************************************************************************/
#undef _INLINE

#include <string.h>

{
   size_t      n = (size_t)–1;
   const char *s = string – 1;

   do n++; while (*++s);
   return n;
}
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2.11 Interrupt Flexibility Options (–mi  Option)

On the ’C6000 architecture, interrupts cannot be taken in the delay slots of a
branch. In some instances the compiler can generate code that cannot be
interrupted for a potentially large number of cycles. For a given real-time sys-
tem, there may be a hard limit on how long interrupts can be disabled.

The –min option specifies an interrupt threshold value n. The threshold value
specifies the maximum number of cycles that the compiler can disable inter-
rupts. If the n is omitted, the threshold defaults to infinity and the compiler
assumes that the code is never interrupted.

Interrupts are only disabled around software pipelined loops. When using the
–min option, the compiler analyzes the loop structure and loop counter to
determine the maximum number of cycles it will take to execute a loop. If it can
determine that the maximum number of cycles is less than the threshold value,
then the compiler will disable interrupts around the software pipelined loop.
Otherwise, the compiler makes the loop interruptible, which in most cases
degrades the performance of the loop.

The –min option does not comprehend the effects of the memory system.
When determining the maximum number of execution cycles for a loop, the
compiler does not compute the effects of using slow off-chip memory or
memory bank conflicts. It is recommended that a conservative threshold value
is used to adjust for the effects of the memory system.

See section 7.6.7, The FUNC_INTERRUPT_THRESHOLD Pragma, on page
7-18 or the TMS320C6000 Programmer’s Guide for more information.
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2.12 Using the Interlist Utility
The compiler tools include a utility that interlists C source statements into the
assembly language output of the compiler. The interlist utility enables you to
inspect the assembly code generated for each C statement. The interlist utility
behaves differently, depending on whether or not the optimizer is used, and
depending on which options you specify.

The easiest way to invoke the interlist utility is to use the –ss option. To compile
and run the interlist utility on a program called function.c, enter:

cl6x –ss function

The –ss option prevents the shell from deleting the interlisted assembly lan-
guage output file. The output assembly file, function.asm, is assembled nor-
mally.

When you invoke the interlist utility without the optimizer, the interlist utility runs
as a separate pass between the code generator and the assembler. It reads
both the assembly and C source files, merges them, and writes the C state-
ments into the assembly file as comments.

Example 2–2 shows a typical interlisted assembly file.

Example 2–2. An Interlisted Assembly Language File

_main:
           STW     .D2     B3,*SP––(12)
           STW     .D2     A10,*+SP(8)
;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
;   5 | printf(”Hello, world\n”);
;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
           B       .S1     _printf
           NOP             2
           MVK     .S1     SL1+0,A0
           MVKH    .S1     SL1+0,A0
||         MVK     .S2     RL0,B3
           STW     .D2     A0,*+SP(4)
||         MVKH    .S2     RL0,B3
RL0:       ; CALL OCCURS
;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
;   6 | return 0;
;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
           ZERO    .L1     A10
           MV      .L1     A10,A4
           LDW     .D2     *+SP(8),A10
           LDW     .D2     *++SP(12),B3
           NOP             4
           B       .S2     B3
           NOP             5
           ; BRANCH OCCURS

For more information about using the interlist utility with the optimizer, see sec-
tion 3.9, Using the Interlist Utility With the Optimizer, on page 3-26.
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Optimizing Your Code

The compiler tools include an optimization program that improves the
execution speed and reduces the size of C programs by performing such tasks
as simplifying loops, software pipelining, rearranging statements and expres-
sions, and allocating variables into registers.

This chapter describes how to invoke the optimizer and describes which opti-
mizations are performed when you use it. This chapter also describes how you
can use the interlist utility with the optimizer and how you can profile or debug
optimized code.
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3.1 Using the C Compiler Optimizer
The optimizer runs as a separate pass between the parser and the code
generator. Figure 3–1 illustrates the execution flow of the compiler with stand-
alone optimization.

Figure 3–1. Compiling a C Program With the Optimizer

C source
file (.c)

Code
generator

Parser Optimizer

.if file .asm file.opt file

The easiest way to invoke the optimizer is to use the cl6x shell program, speci-
fying the –on option on the cl6x command line. The n denotes the level of opti-
mization (0, 1, 2, and 3), which controls the type and degree of optimization:

� –o0

� Performs control-flow-graph simplification
� Allocates variables to registers
� Performs loop rotation
� Eliminates unused code
� Simplifies expressions and statements
� Expands calls to functions declared inline

� –o1

Performs all –o0 optimizations, plus:

� Performs local copy/constant propagation
� Removes unused assignments
� Eliminates local common expressions

� –o2

Performs all –o1 optimizations, plus:

� Performs software pipelining (see section 3.2 on page 3-4)
� Performs loop optimizations
� Eliminates global common subexpressions
� Eliminates global unused assignments
� Converts array references in loops to incremented pointer form
� Performs loop unrolling

The optimizer uses –o2 as the default if you use –o without an optimization
level.
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� –o3

Performs all –o2 optimizations, plus:

� Removes all functions that are never called

� Simplifies functions with return values that are never used

� Inlines calls to small functions

� Reorders function declarations so that the attributes of called func-
tions are known when the caller is optimized

� Propagates arguments into function bodies when all calls pass the
same value in the same argument position

� Identifies file-level variable characteristics

If you use –o3, see section 3.4, Using the –o3 Option, on page 3-15 for
more information.

The levels of optimization described above are performed by the stand-alone
optimization pass. The code generator performs several additional opti-
mizations, particularly ’C6000-specific optimizations; it does so regardless of
whether or not you invoke the optimizer. These optimizations are always
enabled and are not affected by the optimization level you choose.
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3.2 Software Pipelining

Software pipelining is a technique used to schedule instructions from a loop
so that multiple iterations of the loop execute in parallel. When you use the –o2
and –o3 options, the compiler attempts to software pipeline your code with
information that it gathers from your program.

Figure 3–2 illustrates a software pipelined loop. The stages of the loop are rep-
resented by A, B, C, D, and E. In this figure, a maximum of five iterations of
the loop can execute at one time. The shaded area represents the loop kernel.
In the loop kernel, all five stages execute in parallel. The area above the kernel
is known as the pipelined loop prolog, and the area below the kernel is known
as the pipelined loop epilog.

Figure 3–2. Software-Pipelined Loop

A1

B1 A2
Pipelined-loop prolog

C1 B2 A3
Pipelined-loop prolog

D1 C2 B3 A4

E1 D2 C3 B4 A5 Kernel

E2 D3 C4 B5

E3 D4 C5
Pipelined-loop epilog

E4 D5
Pipelined-loop epilog

E5

The assembly optimizer also software pipelines loops. For more information
about the assembly optimizer, see Chapter 4. For more information about soft-
ware-pipelining, see the TMS320C62x/C67x Programmer’s Guide.
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3.2.1 Turn Off Software Pipelining (–mu Option)

By default, the compiler attempts to software pipeline your loops. You might
not want your loops to be software-pipelined for the following reasons:

� To help you debug your loops in C and in linear assembly. Software-pipe-
lined loops are sometimes difficult to debug because the code is not pres-
ented serially.

� To save code size. Although software pipelining can greatly improve the
efficiency of your code, a pipelined loop usually requires more code size
than an unpipelined loop.

This option affects both compiled C code and assembly optimized code.

3.2.2 Software Pipelining Information (–mw Option)

The –mw option embeds software pipelined loop information in the .asm file.
This information is used to optimize C code or linear assembly code.

The software pipelining information appears as a comment in the .asm file
before a loop and for the assembly optimizer the information is displayed as
the tool is running. Example 3–1 illustrates the information that is generated
for each loop.
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Example 3–1. Software Pipelining Information

        Loop label: LOOP
        Known Minimum Trip Count         : 8
      Known Max Trip Count Factor      : 1
      Loop Carried Dependency Bound(^) : 0
      Unpartitioned Resource Bound     : 10
      Partitioned Resource Bound(*)    : 10
      Resource Partition:
                                A–side   B–side
      .L units                     6        4     
      .S units                     3        6     
      .D units                     8        8     
      .M units                     3        9     
      .X cross paths               7        7     
      .T address paths             8        8    
      Long read  paths             4        4     
      Long write paths             0        0     
      Logical  ops (.LS)           0        0     (.L or .S unit)
      Addition ops (.LSD)         11       12     (.L or .S or .D unit)
      Bound(.L .S .LS)             5       15    
      Bound(.L .S .D .LS .LSD)    10*      10*    
 
      Searching for software pipeline schedule at ...
         ii = 10 Register is live too long
                     |72| –> |74|
                    |73 | –> |75|
         ii = 11 Cannot allocate machine registers
                    Regs Live Always   : 1/5 (A/B-side)
                    Max Regs Live      : 14/19
                    Max Cond Regs Live : 1/0
         ii = 12 Cannot allocate machine registers
                    Regs Live Always   : 1/5 (A/B-side)
                    Max Regs Live      : 15/17
                    Max Cond Regs Live : 1/0
         ii = 13 Schedule found with 3 iterations in parallel
      Done
      Speculative load threshold : 48

The terms defined below appear in the software pipelining information. For
more information on each term, see the TMS320C62x/C67x Programmer’s
Guide.

� Loop unroll factor. The number of times the loop was unrolled specifi-
cally to increase performance based on the resource bound constraint in
a software pipelined loop.

� Known minimum trip count. The minimum number of times the loop will
be executed.

� Known maximum trip count. The maximum number of times the loop will
be executed.
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� Known max trip count factor. Factor that would always evenly divide the
loops trip count. This information can be used to possibly unroll the loop.

� Loop label. The label you specified for the loop in the linear assembly
input file. This field is not present for C code.

� Loop carried dependency bound. The distance of the largest loop carry
path. A loop carry path occurs when one iteration of a loop writes a value
that must be read in a future iteration. Instructions that are part of the loop
carry bound are marked with the ^ symbol.

� Iteration interval (ii). The number of cycles between the initiation of
successive iterations of the loop. The smaller the iteration interval, the
fewer cycles it takes to execute a loop.

� Resource bound. The most used resource constrains the minimum itera-
tion interval. For example, if four instructions require a .D unit, they require
at least two cycles to execute (4 instructions/2 parallel .D units).

� Unpartitioned resource bound. The best possible resource bound val-
ues before the instructions in the loop are partitioned to a particular side.

� Partitioned resource bound (*). The resource bound values after the
instructions are partitioned.

� Resource partition. This table summarizes how the instructions have
been partitioned. This information can be used to help assign functional
units when writing linear assembly. Each table entry has values for the
A-side and B-side registers. An asterisk is used to mark those entries that
determine the resource bound value. The table entries represent the
following terms:

� .L units  is the total number of instructions that require .L units.

� .S units  is the total number of instructions that require .S units.

� .D units  is the total number of instructions that require .D units.

� .M units  is the total number of instructions that require .M units.

� .X cross paths  is the total number of .X cross paths.

� .T address paths  is the total number of address paths.

� Long read path  is the total number of long read port paths.

� Long write path  is the total number of long write port paths.

� Logical ops (.LS)  is the total number of instructions that can use
either the .L or .S unit.

� Addition ops (.LSD)  is the total number of instructions that can use
either the .L or .S or .D unit
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� Bound(.L .S .LS) is the resource bound value as determined by the
number of instructions that use the .L and .S units. It is calculated with the
following formula:

Bound(.L .S .LS ) = ceil((.L + .S + .LS) / 2)

� Bound(.L .S .D .LS .LSD)  is the resource bound value as determined by
the number of instructions that use the .D, .L and .S unit. It is calculated
with the following formula:

Bound(.L .S .D .LS .LSD) = ceil((.L + .S + .D + .LS + .LSD) / 3)

� Speculative load threshold. The number of bytes that are read if specu-
lative execution is enabled. Use this value with the –mh option to eliminate
loop epilogs and save code size.

3.2.2.1 Searching for Software Pipeline Messages

The following messages can appear when the compiler or assembly optimizer
is searching for a software pipeline:

� Did not find schedule . The compiler was unable to find a schedule for the
software pipeline at the given ii (iteration interval). You should simplify the
loop and/or eliminate loop carried dependencies.

� Register is live too long . A register must have a value that exists (is live)
for more than ii cycles. You may insert MV instructions to split register life-
times that are too long.

If the assembly optimizer is being used, the .sa file line numbers of the in-
structions that define and use the registers that are live too long are listed
after this failure message.

ii = 9  Register is live too long
           |10| –> |17|

This means that the instruction that defines the register value is on line 10
and the instruction that uses the register value is on line 17 in the sa file.

� Address increment is too large . An address register’s offset must be ad-
justed because the offset is out of range of the ’C6000’s offset addressing
mode. You must minimize address register offsets.

� Iterations in parallel > minimum or maximum trip count . A software
pipeline schedule was found, but the schedule has more iterations in
parallel than the minimum or maximum loop trip count. You must enable
redundant loops or communicate the trip information.

� Cannot allocate machine registers . A software pipeline schedule was
found, but it cannot allocate machine registers for the schedule. You must
simplify the loop.
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The register usage for the schedule found at the given ii is displayed. This
information can be used when writing linear assembly to balance register
pressure on both sides of the register file. For example:

ii = 11 Cannot allocate machine registers
        Regs Live Always : 3/0  (A/B–side)
        Max Regs Live : 20/14
        Max Cond Regs Live : 2/1

� Regs Live Always.  The number of values that must be assigned a
register for the duration of the whole loop body. This means that these
values must always be allocated registers for any given schedule
found for the loop.

� Max Regs Live.  Maximum number of values live at any given cycle in
the loop that must be allocated to a register. This indicates the maxi-
mum number of registers required by the schedule found.

� Max Cond Regs Live.  Maximum number of registers live at any given
cycle in the loop kernel that must be allocated to a condition register.

� Schedule found with N iterations in parallel . A software pipeline
schedule was found with N iterations executing in parallel.

3.2.2.2 Loop Disqualified for Software Pipelining Messages

The following messages appear if the loop is completely disqualified for soft-
ware pipelining:

� Unknown trip counter variable . The compiler was unable to identify a
trip counter that is a downcounter.

� Trip variable used in loop – Can’t adjust trip count . The loop trip
counter has a use in the loop other than as a loop trip counter.

� Unknown trip count . The minimum trip count is unknown and it is
required to software pipeline the loop.

� Cannot identify trip counter . The loop trip counter could not be identified
or was used incorrectly in the loop body.

� Too many instructions . There are too many instructions in the loop to
software pipeline.

� Cycle count too high – Not profitable . With the schedule that the com-
piler found for the loop, it is more efficient to use a non-software-pipelined
version.
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3.2.3 Removing Epilogs

Normally, software pipelined loops require an epilog to complete execution.
However, using a technique called speculative execution, it is possible to
remove many epilogs, significantly reducing code size and improving loop pre-
formance.

3.2.3.1 Speculative Execution

An instruction is speculatively executed if it is executed before it is known
whether the result will be used.  If the result is unused, it is discarded. To specu-
latively execute an instruction, the compiler moves it past a branch. This has
the same effect as moving a statement out of the body of an if statement.

An instruction can be legally speculatively executed only if the discarded result
does not change the program semantics.  In a speculatively executed instruc-
tion, not only is the result discarded, but also the previous value in that location.
For instance, an instruction which writes to memory cannot be speculatively
executed, because some other instruction might read that location.

Load instructions might be able to be speculatively executed, but it is possible
that the address register is invalid if the result will not be used.  This means
that a load instruction might access an address that is past the beginning or
end of valid memory, causing a fault.

Instructions which perform saturating arithmetic cannot be speculatively exe-
cuted if the CSR register (which contains the SAT bit) is read anywhere in the
function. See section 8.5.4, SAT Bit Side Effects, on page 8-28 for details.

3.2.3.2 Disqualifying Epilog Removal

To eliminate the epilog from a software pipelined loop, the compiler
may need to speculatively execute instructions.  If, in order to
remove the epilog, any of the following are speculatively executed,
the epilog will not be removed:

� Store instructions
� Load instructions that would read past the end of an array
� Load instructions that would read from a volatile memory location
� MVC or IDLE instructions
� Saturating instructions
� Instructions that define a register needed after the loop is done.
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3.2.3.3 Aggressively Removing Epilogs (–mh Option)

The –mhn option can significantly reduce code size by allowing the compiler
to aggressively eliminate software pipeline loop epilogs. The –mhn option indi-
cates that load instructions may be issued which read up to n bytes past the
beginning or end of an buffer. This means you guarantee all of the buffers read
are at least n bytes away from the borders of valid memory.  The threshold
value n is optional. If the value is not specified, an unlimited number of bytes
may be read past the end.

Since load instructions in loops most often advance through buffers of data,
speculatively executing such an instruction might advance past the end of the
buffer, reading from an address which might be invalid memory.  To eliminate
a software pipelined loop epilog by using speculative execution, the complier
must compute the worst case of a load reaching past the beginning or end of
a buffer, so that this does not happen.

For each loop kernel, the compiler calculates how far (both forward and back-
ward) the loop might read past the end of a buffer if the epilog were removed.
If the threshold that you specified is less than the calculated buffer distance for
a loop, the epilog is not removed. If the threshold is greater than or equal to
the calculated buffer distance, the loads can be speculatively executed and the
epilog may be removed.

For example, in the following software pipelined loop kernel, if the epilog is
removed, seven extra load instructions are performed through *A0++, reading
14 bytes past the end of the buffer pointed to by A0. If –mh14 or higher is used,
the epilog can be removed from this loop.

LOOP:      ; PIPED LOOP KERNEL
             ADD     .L1     A5,A4,A4     ; |6|
  ||         MPY     .M1X    B4,A3,A5     ;@@ |6|
  || [ B0]   B       .S2     L3           ;@@@@@ |5|
  || [ B0]   SUB     .L2     B0,1,B0      ;@@@@@@ |5|
  ||         LDH     .D1T1   *A0++,A3     ;@@@@@@@ |6|
  ||         LDH     .D2T2   *B5++,B4     ;@@@@@@@ |6|

Note: Padding Data Sections

Speculative execution makes it possible for the compiler to generate code
that reads past the beginning or end of a data section. Use the linker to pad
the beginning and end of data sections to allow for the speculative reads. The
threshold argument to the –mh option indicates the size of the required pad-
ding on each end.
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3.2.4 Selecting Target CPU Version (–mv Option)

Select the target CPU version using the last four digits of the TMS320C6000
part number. This selection controls the use of target-specific instructions and
alignment, such as –mv6701. If this option is not used, the compiler will gener-
ate ’C62x (fixed point) code.
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3.3 Redundant Loops
Every loop iterates some number of times before the loop terminates. The
number of iterations is called the trip count. The variable used to count each
iteration is the trip counter. When the trip counter reaches a limit equal to the
trip count, the loop terminates. The ’C6000 tools use the trip count to determine
whether or not a loop can be pipelined. The structure of a software pipelined
loop requires the execution of a minimum number of loop iterations (a mini-
mum trip count) in order to fill or prime the pipeline.

The minimum trip count for a software pipelined loop is determined by the num-
ber of iterations executing in parallel. In Figure 3–2 on page 3-4, the minimum
trip count is five. In the following example A, B, and C are instructions in a soft-
ware pipeline, so the minimum trip count for this single-cycle software pipe-
lined loop is three:

A
B A
C B A   ← Three iterations in parallel = minimum trip count

C B
C

When the ’C6000 tools cannot determine the trip count for a loop, then by de-
fault two loops and control logic are generated. The first loop is not pipelined,
and it executes if the runtime trip count is less than the loop’s minimum trip
count. The second loop is the software pipelined loop, and it executes when
the runtime trip count is greater than or equal to the minimum trip count. At any
given time, one of the loops is a redundant loop. :

foo(N)  /* N is the trip count */
{
   for (i=0; i < N; i++) /* i is the trip counter */
}

After finding a software pipeline for the loop, the compiler transforms foo() as
below, assuming the minimum trip count for the loop is 3. Two versions of the
loop would be generated and the following comparison would be used to deter-
mine which version should be executed:

foo(N) 
{
   if (N < 3)
   {
      for (i=0; i < N; i++)   /* Unpipelined version */
   }
   else 
   }
      for (i=0; i < N; i++)   /* Pipelined version   */ 
   }
}
foo(50); /* Execute software pipelined loop          */
foo(2);  /* Execute loop (unpipelined)*/
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3.3.1 Reduce Code Size (–ms n Option)

Redundant loops allow the compiler to choose the most efficient method for
code execution; however, this occurs at the expense of code size. If code size
is an issue, use the –msn option when you invoke the optimizer with the –o
(–o2 or –o3) option. These options affect both compiled C code and assembly
optimized code.

Specifying –ms0, –ms1 or –ms2 causes the compiler to increasingly favor
code size over performance and could restrict performance oriented optimiza-
tions. You should experiment with the –msn option to determine which speed
and code size sacrifices best fit your application.  In general, use –ms0 on all
but the most performance critical code, and use –ms2 on control code. Using
–msn (–ms0, –ms1, and –ms2) may invoke other options.

� –ms0

� Disallows redundant loops

� –ms1

� Applies –ms0 optimizations
� Applies inlining to intrinsic operators

� –ms2

� Applies –ms1 optimizations
� Disables software pipelining

For more help with reducing code size, see section 3.2.3, Removing Epilogs,
on page 3-10.
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3.4 Using the –o3 Option

The –o3 option instructs the compiler to perform file-level optimization. You
can use the –o3 option alone to perform general file-level optimization, or you
can combine it with other options to perform more specific optimizations. The
options listed in Table 3–1 work with –o3 to perform the indicated optimization:

Table 3–1. Options That You Can Use With –o3

If you ... Use this option Page

Have files that redeclare standard library functions –oln 3-15

Want to create an optimization information file –onn 3-16

Want to compile multiple source files –pm 3-17

3.4.1 Controlling File-Level Optimization (–ol n Option)

When you invoke the optimizer with the –o3 option, some of the optimizations
use known properties of the standard library functions. If your file redeclares
any of these standard library functions, these optimizations become ineffec-
tive. The –ol (lowercase L) option controls file-level optimizations. The number
following the –ol denotes the level (0, 1, or 2). Use Table 3–2 to select the ap-
propriate level to append to the –ol option.

Table 3–2. Selecting a Level for the –ol Option

If your source file... Use this option

Declares a function with the same name as a standard library
function

–ol0

Contains but does not alter functions declared in the standard li-
brary

–ol1

Does not alter standard library functions, but you used the –ol0
or –ol1 option in a command file or an environment variable. The
–ol2 option restores the default behavior of the optimizer.

–ol2
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3.4.2 Creating an Optimization Information File (–on n Option)

When you invoke the optimizer with the –o3 option, you can use the –on option
to create an optimization information file that you can read. The number
following the –on denotes the level (0, 1, or 2). The resulting file has an .nfo
extension. Use Table 3–3 to select the appropriate level to append to the –on
option.

Table 3–3. Selecting a Level for the –on Option

If you... Use this option

Do not want to produce an information file, but you used the –on1
or –on2 option in a command file or an environment variable. The
–on0 option restores the default behavior of the optimizer.

–on0

Want to produce an optimization information file –on1

Want to produce a verbose optimization information file –on2
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3.5 Performing Program-Level Optimization (–pm and –o3 Options)

You can specify program-level optimization by using the –pm option with the
–o3 option. With program-level optimization, all of your source files are
compiled into one intermediate file called a module. The module moves to the
optimization and code generation passes of the compiler. Because the com-
piler can see the entire program, it performs several optimizations that are
rarely applied during file-level optimization:

� If a particular argument in a function always has the same value, the com-
piler replaces the argument with the value and passes the value instead
of the argument.

� If a return value of a function is never used, the compiler deletes the return
code in the function.

� If a function is not called, directly or indirectly, the compiler removes the
function.

To see which program-level optimizations the compiler is applying, use the
–on2 option to generate an information file. See section 3.4.2, Creating an Op-
timization Information File (–onn Option), on page 3-16 for more information.

3.5.1 Controlling Program-Level Optimization (–op n Option)

You can control program-level optimization, which you invoke with –pm –o3,
by using the –op option. Specifically, the –op option indicates if functions in
other modules can call a module’s external functions or modify a module’s ex-
ternal variables. The number following –op indicates the level you set for the
module that you are allowing to be called or modified. The –o3 option com-
bines this information with its own file-level analysis to decide whether to treat
this module’s external function and variable declarations as if they had been
declared static. Use Table 3–4 to select the appropriate level to append to the
–op option.
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Table 3–4. Selecting a Level for the –op Option

If your module … Use this option

Has functions that are called from other modules and global vari-
ables that are modified in other modules

–op0

Does not have functions that are called by other modules but has
global variables that are modified in other modules

–op1

Does not have functions that are called by other modules or glob-
al variables that are modified in other modules

–op2

Has functions that are called from other modules but does not
have global variables that are modified in other modules

–op3

In certain circumstances, the compiler reverts to a different –op level from the
one you specified, or it might disable program-level optimization altogether.
Table 3–5 lists the combinations of –op levels and conditions that cause the
compiler to revert to other –op levels.

Table 3–5. Special Considerations When Using the –op Option

If your –op is... Under these conditions...
Then the –op
level...

Not specified The –o3 optimization level was specified Defaults to –op2

Not specified The compiler sees calls to outside functions
under the –o3 optimization level

Reverts to –op0

Not specified Main is not defined Reverts to –op0

–op1 or –op2 No function has main defined as an entry
point

Reverts to –op0

–op1 or –op2 No interrupt function is defined Reverts to –op0

–op1 or –op2 Functions are identified by the
FUNC_EXT_CALLED pragma

Reverts to –op0

–op3 Any condition Remains –op3

In some situations when you use –pm and –o3, you must use an –op option
or the FUNC_EXT_CALLED pragma. See section 3.5.2, Optimization Consid-
erations When Mixing C and Assembly, on page 3-19 for information about
these situations.
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3.5.2 Optimization Considerations When Mixing C and Assembly

If you have any assembly functions in your program, you need to exercise cau-
tion when using the –pm option. The compiler recognizes only the C source
code and not any assembly code that might be present. Because the compiler
does not recognize the assembly code calls and variable modifications to C
functions, the –pm option optimizes out those C functions. To keep these func-
tions, place the FUNC_EXT_CALLED pragma (see section 7.6.6, The
FUNC_EXT_CALLED Pragma, on page 7-18) before any declaration or refer-
ence to a function that you want to keep.

Another approach you can take when you use assembly functions in your pro-
gram is to use the –opn option with the –pm and –o3 options (see section 3.5.1,
Controlling Program-Level Optimization, on page 3-17).

In general, you achieve the best results through judicious use of the
FUNC_EXT_CALLED pragma in combination with –pm –o3 and –op1 or
–op2.

If any of the following situations apply to your application, use the suggested
solution:

Situation Your application consists of C source code that calls assem-
bly functions. Those assembly functions do not call any C
functions or modify any C variables.

Solution Compile with –pm –o3 –op2 to tell the compiler that outside
functions do not call C functions or modify C variables. See
section 3.5.1 for information about the –op2 option.

If you compile with the –pm –o3 options only, the compiler
reverts from the default optimization level (–op2) to –op0. The
compiler uses –op0, because it presumes that the calls to the
assembly language functions that have a definition in C may
call other C functions or modify C variables.

Situation Your application consists of C source code that calls assem-
bly functions. The assembly language functions do not call C
functions, but they modify C variables.

Solution Try both of these solutions and choose the one that works
best with your code:

� Compile with –pm –o3 –op1.

� Add the volatile keyword to those variables that may be
modified by the assembly functions and compile with
–pm –o3 –op2.

See section 3.5.1 on page 3-17 for information about the –opn
option.
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Situation Your application consists of C source code and assembly
source code. The assembly functions are interrupt service
routines that call C functions; the C functions that the assem-
bly functions call are never called from C. These C functions
act like main: they function as entry points into C.

Solution Add the volatile keyword to the C variables that may be modi-
fied by the interrupts. Then, you can optimize your code in one
of these ways:

� You achieve the best optimization by applying the
FUNC_EXT_CALLED pragma to all of the entry-point
functions called from the assembly language interrupts,
and then compiling with –pm –o3 –op2. Be sure that you
use the pragma with all of the entry-point functions. If you
do not, the compiler removes the entry-point functions
that are not preceded by the FUNC_EXT_CALL pragma.

� Compile with –pm –o3 –op3. Because you do not use the
FUNC_EXT_CALL pragma, you must use the –op3 op-
tion, which is less aggressive than the –op2 option, and
your optimization may not be as effective.

Keep in mind that if you use –pm –o3 without additional op-
tions, the compiler removes the C functions that the assembly
functions call. Use the FUNC_EXT_CALLED pragma to keep
these functions.
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3.6 Indicating Whether Certain Aliasing Techniques Are Used

Aliasing occurs when you can access a single object in more than one way,
such as when two pointers point to the same object or when a pointer points
to a named object. Aliasing can disrupt optimization, because any indirect
reference can refer to another object. The optimizer analyzes the code to de-
termine where aliasing can and cannot occur, then optimizes as much as pos-
sible while preserving the correctness of the program. The optimizer behaves
conservatively.

The following sections describe some aliasing techniques that may be used
in your code. These techniques are valid according to the ANSI C standard and
are accepted by the ’C6000 compiler; however, they prevent the optimizer
from fully optimizing your code.

3.6.1 Use the –ma Option When Certain Aliases are Used

The optimizer assumes that any variable whose address is passed as an
argument to a function is not subsequently modified by an alias set up in the
called function. Examples include:

� Returning the address from a function
� Assigning the address to a global variable

If you use aliases like this in your code, you must use the –ma option when you
are optimizing your code. For example, if your code is similar to this, use the
–ma option:

int *glob_ptr;

g()
{
    int  x = 1; 
    int *p = f(&x);

    *p        = 5;    /* p aliases x    */
    *glob_ptr = 10;   /* glob_ptr aliases x */

    h(x);
}

int *f(int *arg) 
{ 
    glob_ptr = arg;
    return arg; 
}
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3.6.2 Use the –mt Option to Indicate That These Techniques Are Not  Used

The –mt option informs the compiler that it can make certain assumptions
about how aliases are used in your code. These assumptions allow the compil-
er to improve optimization.

� The –mt option indicates that your code does not use the aliasing tech-
nique described in section 3.6.1. If your code uses that technique, do not
use the –mt option; however, you must compile with the –ma option.

Do not use the –ma option with the –mt option. If you do, the –mt option
overrides the –ma option.

� The –mt option indicates that a pointer to a character type does not alias
(point to) an object of another type. That is, the special exception to the
general aliasing rule for these types given in section 3.3 of the ANSI speci-
fication is ignored. If you have code similar to the following example, do
not use the –mt option:

{
    long  l;
    char *p = (char *) &l;

    p[2] = 5;
}

� The –mt option indicates that indirect references on two pointers, P and
Q, are not aliases if P and Q are distinct parameters of the same function
activated by the same call at run time. If you have code similar to the
following example, do not use the –mt option:

g(int j)
{
    int a[20];

    f(&a, &a)         /* Bad */
    f(&a+42, &a+j)    /* Also Bad */
}

f(int *ptr1, int *ptr2)
{
    ...
}
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� The –mt option indicates that each subscript expression in an array
reference A[E1]..[En] evaluates to a nonnegative value that is less than
the corresponding declared array bound. Do not use –mt if you have code
similar to the following example:

static int ary[20][20];

int g()
{
    return f(5, –4); /* –4 is a negative index */
    return f(0, 96); /* 96 exceeds 20 as an index */
    return f(4, 16); /* This one is OK */
}

int f(int i, int j)
{
    return ary[i][j];
}

In this example, ary[5][–4], ary[0][96], and ary[4][16] access the same
memory location. Only the reference ary[4][16] is acceptable with the –mt
option because both of its indices are within the bounds (0..19).

If your code does not contain any of the aliasing techniques described above,
you should use the –mt option to improve the optimization of your code. How-
ever, you must use discretion with the –mt option; unexpected results may oc-
cur if these aliasing techniques appear in your code and the –mt option is used.

3.6.3 Using the –mt Option With the Assembly Optimizer

The –mt option allows the assembly optimizer to assume there are no memory
aliases in your linear assembly, i.e., no memory references ever depend on
each other. However, the assembly optimizer still recognizes any memory de-
pendences you point out with the .mdep directive. For more information about
the .mdep directive, see page 4-26 and 4-56.
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3.7 Use Caution With asm Statements in Optimized Code

You must be extremely careful when using asm (inline assembly) statements
in optimized code. The optimizer rearranges code segments, uses registers
freely, and can completely remove variables or expressions. Although the
compiler never optimizes out an asm statement (except when it is
unreachable), the surrounding environment where the assembly code is
inserted can differ significantly from the original C source code. It is usually
safe to use asm statements to manipulate hardware controls such as interrupt
masks, but asm statements that attempt to interface with the C environment
or access C variables can have unexpected results. After compilation, check
the assembly output to make sure your asm statements are correct and main-
tain the integrity of the program.



Automatic Inline Expansion (–oi Option)

3-25Optimizing Your Code

3.8 Automatic Inline Expansion (–oi Option)

The optimizer automatically inlines small functions when it is invoked with the
–o3 option. A command-line option, –oisize, specifies the size of the functions
inlined. When you use –oi, specify the size limit for the largest function to be
inlined. You can use the –oisize option in the following ways:

� If you set the size parameter to 0 (–oi0), all size-controlled inlining is dis-
abled.

� If you set the size parameter to a nonzero integer, the compiler inlines
functions based on size. The optimizer multiplies the number of times the
function is inlined (plus 1 if the function is externally visible and its declara-
tion cannot be safely removed) by the size of the function. The optimizer
inlines the function only if the result is less than the size parameter. The
compiler measures the size of a function in arbitrary units; however, the
optimizer information file (created with the –on1 or –on2 option) reports
the size of each function in the same units that the –oi option uses.

The –oisize option controls only the inlining of functions that are not explicitly
declared as inline. If you do not use the –oisize option, the optimizer inlines
very small functions. The –x option controls the inlining of functions declared
as inline (see section 2.10.3.2 on page 2-37).
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3.9 Using the Interlist Utility With the Optimizer

You control the output of the interlist utility when running the optimizer (the –on
option) with the –os and –ss options.

� The –os option interlists optimizer comments with assembly source state-
ments.

� The –ss and –os options together interlist the optimizer comments and the
original C source with the assembly code.

When you use the –os option with the optimizer, the interlist utility does not run
as a separate pass. Instead, the optimizer inserts comments into the code,
indicating how the optimizer has rearranged and optimized the code. These
comments appear in the assembly language file as comments starting with ;**.
The C source code is not interlisted, unless you use the –ss option also.

The interlist utility can affect optimized code because it might prevent some
optimization from crossing C statement boundaries. Optimization makes
normal source interlisting impractical, because the optimizer extensively rear-
ranges your program. Therefore, when you use the –os option, the optimizer
writes reconstructed C statements.

Example 3–2 shows the function from Example 2–2 on page 2-42 compiled
with the optimizer (–o2) and the –os option. Note that the assembly file
contains optimizer comments interlisted with assembly code.
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Example 3–2. The Function From Example 2–2 Compiled With the –o2 and –os Options

_main:
;** 5 –––––––––––––––––––––––    printf(”Hello, world\n”);
;** 6 –––––––––––––––––––––––    return 0;
           STW     .D2     B3,*SP––(12)

.line 3
           B       .S1     _printf
           NOP             2
           MVK     .S1     SL1+0,A0

           MVKH    .S1     SL1+0,A0
||         MVK     .S2     RL0,B3

           STW     .D2     A0,*+SP(4)
||         MVKH    .S2     RL0,B3
RL0:       ; CALL OCCURS

.line 4
           ZERO    .L1     A4

.line 5
           LDW     .D2     *++SP(12),B3
           NOP             4
           B       .S2     B3
           NOP             5
           ; BRANCH OCCURS

.endfunc 7,000080400h,12

When you use the –ss and –os options with the optimizer, the optimizer inserts
its comments and the interlist utility runs between the code generator and the
assembler, merging the original C source into the assembly file.

Example 3–3 shows the function from Example 2–2 on page 2-42 compiled
with the optimizer (–o2) and the –ss and –os options. Note that the assembly
file contains optimizer comments and C source interlisted with assembly code.
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Example 3–3. The Function From Example 2–2 Compiled With the –o2, –os,
and –ss Options

_main:
;** 5 –––––––––––––––––––––––    printf(”Hello, world\n”);
;** 6 –––––––––––––––––––––––    return 0;
           STW     .D2     B3,*SP––(12)
;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
;   5 | printf(”Hello, world\n”);
;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
           B       .S1     _printf
           NOP             2
           MVK     .S1     SL1+0,A0
           MVKH    .S1     SL1+0,A0
||         MVK     .S2     RL0,B3
           STW     .D2     A0,*+SP(4)
||         MVKH    .S2     RL0,B3
RL0:       ; CALL OCCURS
;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
;   6 | return 0;
;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
           ZERO    .L1     A4
           LDW     .D2     *++SP(12),B3
           NOP             4
           B       .S2     B3
           NOP             5
           ; BRANCH OCCURS
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3.10 Debugging and Profiling Optimized Code

Debugging and profiling fully optimized code is not recommended, because
the optimizer’s extensive rearrangement of code and the many-to-many allo-
cation of variables to registers often make it difficult to correlate source code
with object code. To remedy this problem, you can use the options described
in the following sections to optimize your code in such a way that you can still
debug or profile it.

3.10.1 Debugging Optimized Code (–g and –o Options)

To debug optimized code, use the –g and –o options. The –g option generates
symbolic debugging directives that are used by the C source-level debugger,
but it disables many code generator optimizations. When you use the –o option
(which invokes the optimizer) with the –g option, you turn on the maximum
amount of optimization that is compatible with debugging.

If you are having trouble debugging loops in your code, you can use the –mu
option to turn off software pipelining. Refer to section 3.2.1 on page 3-5 for
more information.
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3.10.2 Profiling Optimized Code (–mg, –g, and –o Options)

To profile optimized code, use the –mg option with the –g and –o options. The
–mg option allows you to profile optimized code by turning on the maximum
amount of optimization that is compatible with profiling. When you combine the
–g option and the –o option with the –mg option, all of the line directives are
removed except for the first one and the last one. The first line directive indi-
cates the end of the prolog and the last line directive indicates the beginning
of the epilog. The shaded area indicates the area between the line directives,
which is the body of the function:

Body of the
function

Prolog

Epilog

_main:
           STW     .D2     B3,*SP––

.line 1
           B       .S1     _initialize
           NOP             3
           MVK     .S2     RL0,B3
           MVKH    .S2     RL0,B3
RL0:       ; CALL OCCURS
           B       .S1     _compute
           NOP             3
           MVK     .S2     RL1,B3
           MVKH    .S2     RL1,B3
RL1:       ; CALL OCCURS
           B       .S1     _cleanup
           NOP             3
           MVK     .S2     RL2,B3
           MVKH    .S2     RL2,B3
RL2:       ; CALL OCCURS

.line 6
           LDW     .D2     *++SP,B3
           NOP             4
           B       .S2     B3
           NOP             5
           ; BRANCH OCCURS

.endfunc 8,000080000h,4
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3.11 What Kind of Optimization Is Being Performed?

The TMS320C6000 C compiler uses a variety of optimization techniques to
improve the execution speed of your C programs and to reduce their size. Opti-
mization occurs at various levels throughout the compiler.

Most of the optimizations described here are performed by the separate op-
timizer pass that you enable and control with the –o compiler options (see sec-
tion 3.1 on page 3-2). However, the code generator performs some optimiza-
tions, which you cannot selectively enable or disable.

Following are the optimizations performed by the compiler. These optimiza-
tions improve any C code:

Optimization Page

Cost-based register allocation 3-32

Alias disambiguation 3-34

Branch optimizations and control-flow simplification 3-34

Data flow optimizations
� Copy propagation
� Common subexpression elimination
� Redundant assignment elimination

3-37

Expression simplification 3-37

Inline expansion of runtime-support library functions 3-38

Induction variable optimizations and strength reduction 3-39

Loop-invariant code motion 3-40

Loop rotation 3-40

Register variables 3-40

Register tracking/targeting 3-40
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3.11.1 Cost-Based Register Allocation

The optimizer, when enabled, allocates registers to user variables and
compiler temporary values according to their type, use, and frequency. Vari-
ables used within loops are weighted to have priority over others, and those
variables whose uses do not overlap can be allocated to the same register.

Induction variable elimination and loop test replacement allow the compiler to
recognize the loop as a simple counting loop and software pipeline, unroll, or
eliminate the loop. Strength reduction turns the array references into efficient
pointer references with autoincrements.

Example 3–4. Strength Reduction, Induction Variable Elimination, Register Variables,
and Software Pipelining

(a) C source

int a[10];

main()
{

int i;

for (i=0; i<10; i++)
    a[i] = 0;

}
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Example 3–4. Strength Reduction, Induction Variable Elimination, Register Variables
and Software Pipelining (Continued)

(b) Compiler output

FP .set A15
DP .set B14
SP .set B15

; opt6x –O2 j3_32.if j3_32.opt 
.sect ”.text”
.global _main

_main:
;**––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
           MVK     .S1     _a,A0
           MVKH    .S1     _a,A0

           MV      .L2X    A0,B4
||         ZERO    .L1     A3
||         ZERO    .D2     B5
||         MVK     .S2     2,B0         ; |7| 
;**––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L2:        ; PIPED LOOP PROLOG
   [ B0]   B       .S1     L3           ; |7| 
   [ B0]   B       .S1     L3           ;@ |7| 
   [ B0]   B       .S1     L3           ;@@ |7| 

   [ B0]   B       .S1     L3           ;@@@ |7| 
|| [ B0]   SUB     .L2     B0,2,B0      ;@@@@ |7| 

           ADD     .S2     8,B4,B4      ; |8| 
|| [ B0]   B       .S1     L3           ;@@@@ |7| 
|| [ B0]   SUB     .L2     B0,2,B0      ;@@@@@ |7| 
;**––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L3:        ; PIPED LOOP KERNEL
           STW     .D1T1   A3,*A0++(8)  ; |8| 
||         STW     .D2T2   B5,*–B4(4)   ; |8| 
||         ADD     .S2     8,B4,B4      ;@ |8| 
|| [ B0]   B       .S1     L3           ;@@@@@ |7| 
|| [ B0]   SUB     .L2     B0,2,B0      ;@@@@@@ |7| 
;**––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L4:        ; PIPED LOOP EPILOG
;**––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
           B       .S2     B3           ; |9| 
           NOP             5
           ; BRANCH OCCURS ; |9| 

.global _a

.bss _a,40,4
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3.11.2 Alias Disambiguation

C programs generally use many pointer variables. Frequently, compilers are
unable to determine whether or not two or more Ivalues (lowercase L: sym-
bols, pointer references, or structure references) refer to the same memory
location. This aliasing of memory locations often prevents the compiler from
retaining values in registers because it cannot be sure that the register and
memory continue to hold the same values over time.

Alias disambiguation is a technique that determines when two pointer expres-
sions cannot point to the same location, allowing the compiler to freely opti-
mize such expressions.

3.11.3 Branch Optimizations and Control-Flow Simplification

The compiler analyzes the branching behavior of a program and rearranges
the linear sequences of operations (basic blocks) to remove branches or
redundant conditions. Unreachable code is deleted, branches to branches are
bypassed, and conditional branches over unconditional branches are simpli-
fied to a single conditional branch.

When the value of a condition is determined at compile time (through copy
propagation or other data flow analysis), the the compiler can delete a condi-
tional branch. Switch case lists are analyzed in the same way as conditional
branches and are sometimes eliminated entirely. Some simple control flow
constructs are reduced to conditional instructions, totally eliminating the need
for branches.

In Example 3–5, the switch statement and the state variable from this simple
finite state machine example are optimized completely away, leaving a
streamlined series of conditional branches.
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Example 3–5. Control-Flow Simplification and Copy Propagation

(a) C source

fsm()
{

enum { ALPHA, BETA, GAMMA, OMEGA } state = ALPHA;
int *input;
while (state != OMEGA)

switch (state)
{

case ALPHA: state = (*input++ == 0) ?  BETA:  GAMMA; break;
case BETA: state = (*input++ == 0) ?  GAMMA: ALPHA; break;
case GAMMA: state = (*input++ == 0) ?  GAMMA: OMEGA; break;

}
}

main()
{

fsm();
}
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Example 3–5.Control Flow Simplification and Copy Propagation (Continued)

(b) Compiler output

FP .set A15
DP .set B14
SP .set B15

; OPT6X.EXE –O3 fsm.if fsm.opt 
.sect ”.text”
.global _fsm

;******************************************************************************
;* FUNCTION NAME: _fsm                                                        *
;*                                                                            *
;*   Regs Modified     : B0,B4                                                *
;*   Regs Used         : B0,B3,B4                                             *
;*   Local Frame Size  : 0 Args + 0 Auto + 0 Save = 0 byte                    *
;******************************************************************************
_fsm:
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L2:        
           LDW     .D2T2   *B4++,B0     ; |8| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L3:        
           NOP             4
   [ B0]   B       .S1     L7           ; |8| 
           NOP             4
   [ B0]   LDW     .D2T2   *B4++,B0     ; |10| 
           ; BRANCH OCCURS ; |8| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
           LDW     .D2T2   *B4++,B0     ; |9| 
           NOP             4
   [ B0]   B       .S1     L3           ; |9| 
           NOP             4
   [ B0]   LDW     .D2T2   *B4++,B0     ; |8| 
           ; BRANCH OCCURS ; |9| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L5:        
           LDW     .D2T2   *B4++,B0     ; |10| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L6:        
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L7:        
           NOP             4
   [!B0]   B       .S1     L6           ; |10| 
           NOP             4
   [!B0]   LDW     .D2T2   *B4++,B0     ; |10| 
           ; BRANCH OCCURS ; |10| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
           B       .S2     B3           ; |12| 
           NOP             5
           ; BRANCH OCCURS ; |12|
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3.11.4 Data Flow Optimizations

Collectively, the following data flow optimizations replace expressions with
less costly ones, detect and remove unnecessary assignments, and avoid
operations that produce values that are already computed. The optimizer per-
forms these data flow optimizations both locally (within basic blocks) and glob-
ally (across entire functions).

� Copy propagation

Following an assignment to a variable, the compiler replaces references to
the variable with its value. The value can be another variable, a constant,
or a common subexpression. This can result in increased opportunities for
constant folding, common subexpression elimination, or even total elimi-
nation of the variable (see Example 3–5 on page 3-35 and Example 3–6
on page 3-38).

� Common subexpression elimination

When two or more expressions produce the same value, the compiler
computes the value once, saves it, and reuses it.

� Redundant assignment elimination

Often, copy propagation and common subexpression elimination op-
timizations result in unnecessary assignments to variables (variables with
no subsequent reference before another assignment or before the end of
the function). The optimizer removes these dead assignments (see
Example 3–6).

3.11.5 Expression Simplification

For optimal evaluation, the compiler simplifies expressions into equivalent
forms, requiring fewer instructions or registers. Operations between constants
are folded into single constants. For example, a = (b + 4) – (c + 1) becomes
a = b – c + 3 (see Example 3–6).

In Example 3–6, the constant 3, assigned to a, is copy propagated to all uses
of a; a becomes a dead variable and is eliminated. The sum of multiplying j by
3 plus multiplying j by 2 is simplified into b = j * 5. The assignments to a and
b are eliminated and their values returned.
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Example 3–6. Data Flow Optimizations and Expression Simplification

(a) C source

char simplify(char j)
{

char a = 3;
char b = (j*a) + (j*2);
return b;

}

(b) Compiler output

FP .set A15
DP .set B14
SP .set B15

; opt6x –O2 t1.if t1.opt 
.sect ”.text”
.global _simplify

_simplify:
B .S2 B3
NOP 2
MPY .M1 5,A4,A0
NOP 1
EXT .S1 A0,24,24,A4
; BRANCH OCCURS

3.11.6 Inline Expansion of Functions

The compiler replaces calls to small functions with inline code, saving the over-
head associated with a function call as well as providing increased opportuni-
ties to apply other optimizations (see Example 3–7).

In Example 3–7, the compiler finds the code for the C function plus( ) and
replaces the call with the code.
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Example 3–7. Inline Function Expansion

(a) C source

int plus (int x, int y)
{

return x + y;
}
main ()
{

int a = 3;
int b = 4;
int c = 5;

return plus (a, plus (b, c));
}

(b) Compiler output

FP .set A15
DP .set B14
SP .set B15

; opt6x –O3 t2.if t2.opt 
.sect ”.text”
.global _main;

_main:
;>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>ENTERING plus()
;<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<LEAVING plus()
;>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>ENTERING plus()
;<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<LEAVING plus()

B .S2 B3
NOP 4
MVK .S1 12,A4
; BRANCH OCCURS

3.11.7 Induction Variables and Strength Reduction

Induction variables are variables whose value within a loop is directly related
to the number of executions of the loop. Array indices and control variables for
loops are often induction variables.

Strength reduction is the process of replacing inefficient expressions involving
induction variables with more efficient expressions. For example, code that
indexes into a sequence of array elements is replaced with code that incre-
ments a pointer through the array.

Induction variable analysis and strength reduction together often remove all
references to your loop-control variable, allowing its elimination (see
Example 3–4 on page 3-32).
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3.11.8 Loop-Invariant Code Motion

This optimization identifies expressions within loops that always compute to
the same value. The computation is moved in front of the loop, and each occur-
rence of the expression in the loop is replaced by a reference to the precom-
puted value.

3.11.9 Loop Rotation

The compiler evaluates loop conditionals at the bottom of loops, saving an ex-
tra branch out of the loop. In many cases, the initial entry conditional check and
the branch are optimized out.

3.11.10 Register Variables

The compiler helps maximize the use of registers for storing local variables,
parameters, and temporary values. Accessing variables stored in registers is
more efficient than accessing variables in memory. Register variables are par-
ticularly effective for pointers (see Example 3–4 on page 3-32).

3.11.11 Register Tracking/Targeting

The compiler tracks the contents of registers to avoid reloading values if they
are used again soon. Variables, constants, and structure references such as
(a.b) are tracked through straight-line code. Register targeting also computes
expressions directly into specific registers when required, as in the case of as-
signing to register variables or returning values from functions (see
Example 3–8 on page 3-41).
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Example 3–8. Register Tracking/Targeting

(a) C source

int x, y;

main()
{

x += 1;
y = x;

}

(b) Compiler output

FP .set A15
DP .set B14
SP .set B15

; opt6x –O2 t3.if t3.opt 
.sect ”.text”
.global _main

_main:
LDW .D2 *+B14(_x),B4
NOP       1
B .S2    B3
NOP       2
ADD .L2 1,B4,B4
STW .D2 B4,*+B14(_y)
STW .D2 B4,*+B14(_x)
; BRANCH OCCURS

.global _x

.bss _x,4,4

.global _y

.bss _y,4,4
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Using the Assembly Optimizer

The assembly optimizer allows you to write assembly code without being
concerned with the pipeline structure of the ’C6000 or assigning registers. It
accepts linear assembly code, which is assembly code that may have had
register-allocation performed and is unscheduled. The assembly optimizer as-
signs registers and uses loop optimizations to turn linear assembly into highly
parallel assembly.
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4.1 Code Development Flow to Increase Performance

You can achieve the best performance from your ’C6000 code if you follow this
flow when you are writing and debugging your code:
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There are three phases of code development for the ’C6000:

� Phase 1: write in C

You can develop your C code for phase 1 without any knowledge of the
’C6000. Use the stand-alone simulator with the –g option (see section 6.4,
Using the Profiling Capability of the Stand-Alone Simulator, on page 6-7)
to identify any inefficient areas in your C code. To improve the performance
of your code, proceed to phase 2.

� Phase 2: refine your C code

In phase 2, use the intrinsics and shell options that are described in this
book to improve your C code. Use the stand-alone simulator with the –g
option to check the performance of your altered code. Refer to the
TMS320C6000 Programmer’s Guide for hints on refining C code. If your
code is still not as efficient as you would like it to be, proceed to phase 3.

� Phase 3: write linear assembly

In this phase, you extract the time-critical areas from your C code and re-
write the code in linear assembly. You can use the assembly optimizer to
optimize this code. When you are writing your first pass of linear assembly,
you should not be concerned with the pipeline structure or with assigning
registers. Later, when you are refining your linear assembly code, you
might want to add more details to your code, such as which functional unit
to use.

Improving performance in this stage takes more time than in phase 2, so
try to refine your code as much as possible before using phase 3. Then,
you should have smaller sections of code to work on in this phase.
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4.2 About the Assembly Optimizer

If you are not satisfied with the performance of your C code after you have used
all of the C optimizations that are available, you can use the assembly opti-
mizer to make it easier to write assembly code for the ’C6000.

The assembly optimizer performs several tasks including the following:

� Schedules instructions to maximize performance using the instruction-
level parallelism of the ’C6000

� Ensures that the instructions conform to the ’C6000 latency requirements

� Allocates registers for your source code

Like the C compiler, the assembly optimizer performs software pipelining.
Software pipelining is a technique used to schedule instructions from a loop
so that multiple iterations of the loop execute in parallel. The code generation
tools attempt to software pipeline your code with inputs from you and with
information that it gathers from your program. For more information, see sec-
tion 3.2, Software Pipelining, on page 3-4.

To invoke the assembly optimizer, use the shell program (cl6x). The assembly
optimizer is automatically invoked by the shell program if one of your input files
has a .sa extension. You can specify C source files along with your linear
assembly files. For more information about the shell program, see section 2.1,
on page 2-2.

4.3 What You Need to Know to Write Linear Assembly

By using the ’C6000 profiling tools, you can identify the time-critical sections
of your code that need to be rewritten as linear assembly. The source code that
you write for the assembly optimizer is similar to assembly source code. How-
ever, linear assembly code does not include information about instruction
latencies or register usage. The intention is for you to let the assembly
optimizer determine this information for you. When you are writing linear as-
sembly code, you need to know about these items:

� Assembly optimizer directives

Your linear assembly file can be a combination of assembly optimizer code
and regular assembly source. Use the assembly optimizer directives to
differentiate the assembly optimizer code from the regular assembly code
and to provide the assembly optimizer with additional information about
your code. The assembly optimizer directives are described in section 4.4,
on page 4-17.

About the Assembly Optimizer / What You Need to Know to Write Linear Assembly
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� Options that affect what the assembly optimizer does

The following shell options affect the behavior of the assembly optimizer:

Option Effect Page

–el Changes the default extension for assembly optimizer source
files

2-18

–fl Changes how assembly optimizer source files are identified 2-18

–k Keeps the assembly language (.asm) file 2-15

–mhn Allows speculative execution 3-10

–min Specifies an interrupt threshold value 2-41

–msn Controls code size on three levels (–ms0, –ms1, and –ms2) 3-14

–mt Presumes no memory aliasing 3-23

–mu Turns off software pipelining 3-5

–mvn Select target version 3-12

–mw Provides software pipelining feedback 3-5

–n Compiles or assembly optimizes only (does not assemble) 2-16

–q Suppresses progress messages 2-16

� TMS320C62x instructions

When you are writing your linear assembly, your code does not need to
indicate the following:

� Pipeline latency
� Register usage
� Which unit is being used

As with other code generation tools, you might need to modify your linear
assembly code until you are satisfied with its performance. When you do
this, you will probably want to add more detail to your linear assembly. For
example, you might want to specify which unit should be used.

Note: Do Not Use Scheduled Assembly Code as Source

The assembly optimizer assumes that the instructions in the input file are
placed in the logical order in which you would like them to occur (that is, linear
assembly code). Parallel instructions are illegal. On the other hand, the as-
sembler assumes that you have placed instructions in a location that ac-
counts for any delay slots due to pipeline latency. Therefore, it is not valid to
use code written for the assembler (that is, scheduled assembly code), or as-
sembly optimizer output, as input for the assembly optimizer.
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� Linear assembly source statement syntax

The linear assembly source programs consist of source statements that
can contain assembly optimizer directives, assembly language instruc-
tions, and comments. See section 4.3.1 for more information on the
elements of a source statement.

� Specifying the functional unit

The functional unit specifier is optional in both regular assembly code and
linear assembly code. Specifying the functional unit enables you to control
which side of the register file is used for an instruction, which helps the
assembly optimizer perform functional unit and register allocation. See
section 4.3.2 for information on specifying the functional unit.

� Source comments

The assembly optimizer attaches the comments on instructions from the
input linear assembly to the output file. It attaches @ characters to the
comments to specify what iteration of the loop an instruction is on in the
software pipeline. See section 4.3.3, Using Linear Assembly Source Com-
ments, on page 4-14 for an illustration of the use of source comments and
the resulting assembly optimizer output.

4.3.1 Linear Assembly Source Statement Format

A source statement can contain five ordered fields (label, mnemonic, unit
specifier, operand list, and comment). The general syntax for source state-
ments is as follows:

[label [:] ] [ [register] ] mnemonic [unit specifier] [operand list ] [;comment ]

label [:] Labels are optional for all assembly language instructions
and for most (but not all) assembly optimizer directives.
When used, a label must begin in column 1 of a source state-
ment. A label can be followed by a colon.

[register] Square brackets ( [ ] ) enclose conditional instructions. The
machine-instruction mnemonic is executed based on the
value of the register within the brackets; valid register names
are A1, A2, B0, B1, B2, or symbolic.

mnemonic The mnemonic is a machine-instruction (such as ADDK,
MVKH, B) or assembly optimizer directive (such as .proc,
.trip)

unit specifier The unit specifier enables you to specify the functional unit.
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operand list The operand list is not required for all instructions or direc-
tives. The operands can be symbols, constants, or expres-
sions and must be separated by commas.

comment Comments are optional. Comments that begin in column 1
must begin with a semicolon or an asterisk; comments that
begin in any other column must begin with a semicolon.

The ’C6000 assembly optimizer reads up to 200 characters per line. Any char-
acters beyond 200 are truncated. Keep the operational part of your source
statements (that is, everything other than comments) less than 200 characters
in length for correct assembly. Your comments can extend beyond the charac-
ter limit, but the truncated portion is not included in the .asm file.

Follow these guidelines in writing linear assembly code:

� All statements must begin with a label, a blank, an asterisk, or a semicolon.

� Labels are optional; if used, they must begin in column 1.

� One or more blanks must separate each field. Tab characters are inter-
preted as blanks. You must separate the operand list from the preceding
field with a blank.

� Comments are optional. Comments that begin in column 1 can begin with
an asterisk or a semicolon (* or ;), but comments that begin in any other
column must begin with a semicolon.

� If you set up a conditional instruction, the register must be surrounded by
square brackets.

� A mnemonic cannot begin in column 1 or it is interpreted as a label.

See the TMS320C6000 Assembly Language Tools User’s Guide for informa-
tion on the syntax of ’C6000 instructions, including conditional instructions,
labels, and operands.
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4.3.2 Functional Unit Specification for Linear Assembly

You specify a functional unit by following the assembler instruction with a
period (.) and a functional unit specifier. One instruction can be assigned to
each functional unit in a single instruction cycle. There are eight functional
units, two of each functional type, and two address paths. The two of each
functional type are differentiated by the data path each uses, A or B.

.D1 and .D2 Data/addition/subtraction operations

.L1 and .L2 Arithmetic logic unit (ALU)/compares/long data arithmetic

.M1 and .M2 Multiply operations

.S1 and .S2 Shift/ALU/branch/field operations

.T1 and .T2 Address paths

There are several ways to use the unit specifier field in linear assembly:

� You can specify the particular functional unit (for example, .D1).

� You can specify the .D1 or .D2 functional unit followed by T1 or T2 to
specify that the nonmemory operand is on a specific register side. T1
specifies side A and T2 specifies side B. For example:

    LDW  .D1T2    *A3[A4], B3
    LDW  .D1T2    *src, dst

� You can specify only the functional type (for example, .M), and the
assembly optimizer assigns the specific unit (for example, .M2).

� You can specify only the data path (for example, .1), and the assembly
optimizer assigns the functional type (for example, .L1).
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If you do not specify the functional unit, the assembly optimizer selects the
functional unit based on the mnemonic field.

You can use the –mw shell option to display the functional unit allocation
summary for a software pipelined loop. See section 3.2.2, Software Pipelining
Information (–mw Option), on page 3-5 for more information.

For more information on functional units, including which machine-instruction
mnemonics require which functional type, see the TMS320C6000 CPU and
Instruction Set Reference Guide.

The following examples show how specifying functional units can be helpful
in the linear assembly code.

Example 4–1 is refined C code for computing a dot product.

Example 4–1. C Code for Computing a Dot Product

int dotp(short a[], short b[])
{
    int sum0 = 0;
    int sum1 = 0;

    int sum, i;

    for (i = 0; i < 100/4; i += 4)
    {

sum0 += a[i]   * b[i];
sum0 += a[i+1] * b[i+1];

sum1 += a[i+2] * b[i+2];
sum1 += a[i+3] * b[i+3];

    }

    return sum0 + sum1;
}
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Example 4–2 is a hand-coded linear assembly program that computes a dot
product; compare this to Example 4–1, which illustrates C code.

Example 4–2. Linear Assembly Code for Computing a Dot Product

_dotp:  .cproc          a_0, b_0

        .reg            a_4, b_4, cnt, tmp
        .reg            prod1, prod2, prod3, prod4
        .reg            valA, valB, sum0, sum1, sum

 
        ADD             4, a_0, a_4
        ADD             4, b_0, b_4

        MVK             100,  cnt

        ZERO            sum0 
        ZERO            sum1 
 
loop: .trip 25

        LDW             *a_0++[2], valA    ; load a[0–1]
        LDW             *b_0++[2], valB    ; load b[0–1]
        MPY             valA, valB, prod1  ; a[0] * b[0]
        MPYH            valA, valB, prod2  ; a[1] * b[1]
        ADD             prod1, prod2, tmp  ; sum0 += (a[0] * b[0]) +
        ADD             tmp, sum0, sum0    ;         (a[1] * a[1])  

 
        LDW             *a_4++[2], valA    ; load a[2–3]
        LDW             *b_4++[2], valB    ; load b[2–3]
        MPY             valA, valB, prod3  ; a[2] * b[2]
        MPYH            valA, valB, prod4  ; a[3] * b[3]
        ADD             prod3, prod4, tmp  ; sum1 += (a[0] * b[0]) +
        ADD             tmp, sum1, sum1    ;         (a[1] * a[1])  

 
  [cnt] SUB             cnt, 4, cnt    ; cnt –= 4
  [cnt] B               loop               ; if (!0) goto loop

 
        ADD             sum0, sum1, sum    ; compute final result

        .return         sum

        .endproc
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The assembly optimizer generates the software-pipeline kernel shown in
Example 4–3 for the hand-coded program in Example 4–2.

Example 4–3. Software-Pipeline Kernel for Computing a Dot Product With Example 4–2

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
loop:        ; PIPED LOOP KERNEL

           MV      .L2X    A0,B4        ; |1| 
|| [ B0]   B       .S1     loop         ;@ |32|  if (!0) goto loop
||         MV      .L1X    B1,A7        ;@ |1| 
||         LDW     .D2T2   *B9++(8),B5 ;@@ |24|  load a[2–3]
||         LDW     .D1T1   *A6++(8),A4 ;@@ |25|  load b[2–3]

           ADD     .L1X    B7,A0,A0     ; |28|  sum1 += (a[0] * b[0]) +
||         ADD     .L2     B4,B5,B4     ; |21|  sum0 += (a[0] * b[0]) +
||         MPYH    .M2X    A4,B1,B5     ;@ |20|  a[1] * b[1]
||         MPY     .M1     A4,A7,A0     ;@ |19|  a[0] * b[0]
||         LDW     .D2T2   *B6++(8),B1 ;@@@ |18|  load b[0–1]

           ADD     .L1     A0,A3,A3     ; |29|          (a[1] * a[1])  
||         ADD     .L2     B4,B8,B8     ; |22|          (a[1] * a[1])  
||         MPY     .M2X    B5,A4,B7     ;@ |26|  a[2] * b[2]
||         MPYH    .M1X    B5,A4,A0     ;@ |27|  a[3] * b[3]
|| [ B0]   SUB     .S2     B0,0x4,B0    ;@@ |31|  cnt –= 4
||         LDW     .D1T1   *A5++(8),A4 ;@@@ |17|  load a[0–1]

The kernel displayed in Example 4–3 is not the best possible kernel to use.
This kernel cannot be scheduled in two cycles because the cross path (indi-
cated by the X appended to the functional unit specifier) is repeated too many
times. If you use the –mw option, the assembly optimizer automatically
embeds a comment in the scheduled assembly indicating this, so that you do
not have to analyze the output by hand. Example 4–4 shows the cross paths
in the software pipeline information generated by the –mw option.
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Example 4–4. Software Pipeline Information for Example 4–2

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;*   SOFTWARE PIPELINE INFORMATION
;*
;*      Loop label : loop
;*      Known Minimum Trip Count         : 25
;*      Known Max Trip Count Factor      : 1
;*      Loop Carried Dependency Bound(^) : 0
;*      Unpartitioned Resource Bound     : 2
;*      Partitioned Resource Bound(*)    : 3
;*      Resource Partition:
;*                                A–side   B–side
;*      .L units                     0        0     
;*      .S units                     1        0     
;*      .D units                     2        2     
;*      .M units                     2        2     
;*      .X cross paths               3*       3*    
;*      .T address paths             2        2     
;*      Long read paths              0        0     
;*      Long write paths             0        0     
;*      Logical  ops (.LS)           2        1     (.L or .S unit)
;*      Addition ops (.LSD)          1        3     (.L or .S or .D unit)
;*      Bound(.L .S .LS)             2        1     
;*      Bound(.L .S .D .LS .LSD)     2        2     
;*
;*      Searching for software pipeline schedule at ...
;*         ii = 3  Schedule found with 4 iterations in parallel
;*      Done
;*
;*      Speculative Load Threshold : 48
;*
;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

There are only two cross paths in the ’C6000. This limits the ’C6000 to one
source read from each data path’s opposite register file per cycle. The com-
piler must select a side for each instruction; this is called partitioning. In
Example 4–3, the compiler partitioned two ADD instructions to sides requiring
cross paths before the multiply instructions that needed the cross paths were
partitioned.

You can partition enough instructions by hand to force optimal partitioning by
using functional unit specifiers. If you use functional unit specifiers to force the
MPYs to the sides you want them to be on, the compiler has more information
about where the subsequent ADDs should go (rather, more information about
where the symbolic registers involved must go). Example 4–5 shows the as-
sembly code from  after functional unit specifiers are added.
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Example 4–5. Code From Example 4–2 With Functional Unit Specifiers Added

_dotp:  .cproc          a_0, b_0

        .reg            a_4, b_4, cnt, tmp
        .reg            prod1, prod2, prod3, prod4
        .reg            valA, valB, sum0, sum1, sum

 
        ADD             4, a_0, a_4
        ADD             4, b_0, b_4

        MVK             100,  cnt

        ZERO            sum0 
        ZERO            sum1 
 
loop: .trip 25

        LDW             *a_0++[2], valA    ; load a[0–1]
        LDW             *b_0++[2], valB    ; load b[0–1]
        MPY     .M1     valA, valB, prod1  ; a[0] * b[0]
        MPYH    .M1     valA, valB, prod2  ; a[1] * b[1]
        ADD             prod1, prod2, tmp  ; sum0 += (a[0] * b[0]) +
        ADD             tmp, sum0, sum0    ;         (a[1] * a[1])  

 
        LDW             *a_4++[2], valA    ; load a[2–3]
        LDW             *b_4++[2], valB    ; load b[2–3]
        MPY     .M2     valA, valB, prod3  ; a[2] * b[2]
        MPYH    .M2     valA, valB, prod4  ; a[3] * b[3]
        ADD             prod3, prod4, tmp  ; sum1 += (a[0] * b[0]) +
        ADD             tmp, sum1, sum1    ;         (a[1] * a[1])  

 
  [cnt] SUB             cnt, 4, cnt    ; cnt –= 4
  [cnt] B               loop               ; if (!0) goto loop

 
        ADD             sum0, sum1, sum    ; compute final result

        .return         sum

        .endproc
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The resulting kernel from Example 4–5 is shown in Example 4–6.

Example 4–6. Software-Pipeline Kernel for Computing a Dot Product With Example 4–5

;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
loop:        ; PIPED LOOP KERNEL

           ADD     .L1     A4,A3,A3     ; |21|  sum0 += (a[0] * b[0]) +
||         ADD     .L2     B8,B9,B9     ; |29|          (a[1] * a[1])  
||         MPYH    .M1X    B5,A8,A3     ;@ |20|  a[1] * b[1]
|| [ B0]   B       .S1     loop         ;@@ |32|  if (!0) goto loop
||         MPY     .M2X    A5,B4,B6     ;@@ |26|  a[2] * b[2]
||         LDW     .D2T2   *B7++(16),B5 ;@@@@ |17|  load a[0–1]
||         LDW     .D1T1   *A7++(16),A8 ;@@@@ |18|  load b[0–1]

           ADD     .L1     A3,A0,A0     ; |22|          (a[1] * a[1])  
||         ADD     .L2     B6,B8,B8     ;@ |28|  sum1 += (a[0] * b[0]) +
||         MPY     .M1X    B5,A8,A4     ;@@ |19|  a[0] * b[0]
||         MPYH    .M2X    A5,B4,B8     ;@@ |27|  a[3] * b[3]
|| [ B0]   SUB     .S2     B0,0x4,B0    ;@@@ |31|  cnt –= 4
||         LDW     .D1T1   *A6++(16),A5 ;@@@@@ |24|  load a[2–3]
||         LDW     .D2T2   *B1++(16),B4 ;@@@@@ |25|  load b[2–3]

4.3.3 Using Linear Assembly Source Comments

A comment in linear assembly can begin in any column and extends to the end
of the source line. A comment can contain any ASCII character, including
blanks. Comments are printed in the linear assembly source listing, but they
do not affect the linear assembly.

A source statement that contains only a comment is valid. If it begins in col-
umn 1, it can start with a semicolon ( ; ) or an asterisk ( *). Comments that begin
anywhere else on the line must begin with a semicolon. The asterisk identifies
a comment only if it appears in column 1.

The assembly optimizer schedules instructions; that is, it rearranges instruc-
tions. Stand-alone comments are moved to the top of a block of instructions.
Comments at the end of an instruction statement remain in place with the
instruction.

The assembly optimizer attaches comments on instructions from the input lin-
ear assembly to the output file. It attaches @ (iteration delta) characters to the
comments to specify the iteration of the loop that an instruction is on in the soft-
ware pipeline. Zero @ characters represents the first iteration, one @ char-
acter represents the second iteration, and so on.
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Example 4–7 shows code for a function called Lmac that contains comments.
Example 4–8 shows the assembly optimizer output for Example 4–7.

Example 4–7. Lmac Function Code Showing Comments

Lmac:   .cproc   A4,B4
 
        .reg    t0,t1,p,i,sh:sl
 
        MVK     100,i
        ZERO    sh
        ZERO    sl
 
loop:   .trip   100
 
        LDH     .1      *a4++, t0       ; t0 = a[i]
        LDH     .2      *b4++, t1       ; t1 = b[i]
        MPY             t0,t1,p         ; prod = t0 * t1
        ADD             p,sh:sl,sh:sl   ; sum += prod
[i]     ADD             –1,i,i          ; ––i
[i]     B               loop            ; if (i) goto loop
 
        .return sh:sh1
 
        .endproc
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Example 4–8. Lmac Function’s Assembly Optimizer Output Showing Loop Iterations,
Pipelined-Loop Prolog and Kernel

;* BB ––––––––––––––––––––––––––––––––––––––––––––––––––––
L2:        ; PIPE LOOP PROLOG
 
         LDH   .D1  *A4++,A3     ; t0 = a[i]
||       LDH   .D2  *B4++,B5     ; t1 = b[i]
 
   [ B0] ADD   .L2  –1,B0,B0     ; ––i
||       LDH   .D1  *A4++,A3     ;@ t0 = a[i]
||       LDH   .D2  *B4++,B5     ;@ t1 = b[i]
 
   [ B0] B     .S2  L3           ; if (i) goto loop
|| [ B0] ADD   .L2  –1,B0,B0     ;@ ––i
||       LDH   .D1  *A4++,A3     ;@@ t0 = a[i]
||       LDH   .D2  *B4++,B5     ;@@ t1 = b[i]
 
   [ B0] B     .S2  L3           ;@ if (i) goto loop
|| [ B0] ADD   .L2  –1,B0,B0     ;@@ ––i
||       LDH   .D1  *A4++,A3     ;@@@ t0 = a[i]
||       LDH   .D2  *B4++,B5     ;@@@ t1 = b[i]
 
   [ B0] B     .S2  L3           ;@@ if (i) goto loop
|| [ B0] ADD   .L2  –1,B0,B0     ;@@@ ––i
||       LDH   .D1  *A4++,A3     ;@@@@ t0 = a[i]
||       LDH   .D2  *B4++,B5     ;@@@@ t1 = b[i]
 
         MPY   .M1X A3,B5,A5     ; prod = t0 * t1
|| [ B0] B     .S2  L3           ;@@@ if (i) goto loop
|| [ B0] ADD   .L2  –1,B0,B0     ;@@@@ ––i
||       LDH   .D1  *A4++,A3     ;@@@@@ t0 = a[i]
||       LDH   .D2  *B4++,B5     ;@@@@@ t1 = b[i]
 
         MPY   .M1X A3,B5,A5     ;@ prod = t0 * t1
|| [ B0] B     .S2  L3           ;@@@@ if (i) goto loop
|| [ B0] ADD   .L2  –1,B0,B0     ;@@@@@ ––i
||       LDH   .D1  *A4++,A3     ;@@@@@@ t0 = a[i]
||       LDH   .D2  *B4++,B5     ;@@@@@@ t1 = b[i]
 
;* BB ––––––––––––––––––––––––––––––––––––––––––––––––––––
L3:        ; PIPE LOOP KERNEL
 
         ADD   .L1  A5,A1:A0,A1:A0 ; sum += prod
||       MPY   .M1X A3,B5,A5     ;@@ prod = t0 * t1
|| [ B0] B     .S2  L3           ;@@@@@ if (i) goto loop
|| [ B0] ADD   .L2  –1,B0,B0     ;@@@@@@ ––i
||       LDH   .D1  *A4++,A3     ;@@@@@@@ t0 = a[i]
||       LDH   .D2  *B4++,B5     ;@@@@@@@ t1 = b[i]
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4.4 Assembly Optimizer Directives

Assembly optimizer directives supply data for and control the assembly opti-
mization process. The assembly optimizer optimizes linear assembly code
that is contained within procedures; that is, code within the .proc and .endproc
directives or within the .cproc and .endproc directives. If you do not use these
directives in your linear assembly file, your code will not be optimized by the
assembly optimizer. This section describes these directives and others that
you can use with the assembly optimizer.

Table 4–1 summarizes the assembly optimizer directives. It provides the syn-
tax for each directive, a description of each directive, any restrictions that you
should keep in mind, and a page reference for more detail.

Table 4–1. Assembly Optimizer Directives Summary

Syntax Description Restrictions Page

.call [ret_reg =] func_name (arg1, arg2) Calls a function Valid only within procedures 4-18

label .cproc [variable1 [, variable2 , …] ] Start a C callable
procedure

Must use with .endproc 4-20

.endproc End a C callable
procedure

Must use with .cproc 4-20

.endproc [register1 [, register2 , …] ] End a procedure Must use with .proc; cannot use vari-
ables in the register parameter

4-30

.mdep [symbol1], [symbol2] Indicates a memory
dependence

Valid only within procedures 4-26

.mptr {register| symbol}, base [+ offset]
[, stride]

Avoid memory bank
conflicts

Valid only within procedures; can use
variables in the register parameter

4-27

.no_mdep No memory aliases in
the function

Valid only within procedures 4-29

label .proc [register1 [, register2 , …] ] Start a procedure Must use with .endproc; cannot use
variables in the register parameter

4-30

.reg  variable1 [, variable2 ,…] Declare variables Valid only within procedures 4-34

.return [argument] Return value to
procedure

Valid only within .cproc procedures 4-39

.reserve [register1 [, register2 , …] ] Reserve register use 4-38

label .trip min Specify trip count
value

Valid only within procedures 4-40
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Syntax .call [ret_reg =] func_name ([arg1, arg2,...])

Description Use the .call  directive to call a function. Optionally, you may specify a register
that is assigned the result of the call. The register can be a symbolic or machine
register. The .call directive adheres to the same register and function calling
conventions as the C compiler. For information, see section 8.3, Register Con-
ventions, on page 8-15, and section 8.4, Function Structure and Calling Con-
ventions, on page 8-17. There is no support for alternative register or function
calling conventions.

You cannot call a function that has a variable number of arguments, such as
printf. No error checking is performed to ensure the correct number and/or type
of arguments is passed. You cannot pass or return structures through the .call
directive.

Following is a description of the .call directive parameters:

ret_reg (Optional) Symbolic/machine register that is assigned the result
of the call. If not specified, the assembly optimizer presumes the
call overwrites the registers A5 and A4 with a result.

func_name The name of the function to call, or the name of the symbolic/
machine register for indirect calls. A register pair is not allowed.
The label of the called function must be defined in the file. If the
code for the function is not in the file, the label must be defined
with the .global or .def directive.

arguments (Optional) Symbolic/machine registers passed as an argument.
The arguments are passed in this order and may not be a
constant, memory reference, or other expression.

You can use the cl6x –mln option to indicate whether a call is near or far. If the
–mln option is set to 0 or if no level is specified (default), the call is near. If the
–mln option is set to 1, 2, or 3, the call is far. To force a far call, you must expli-
citly load the address of the function in a register, and then issue an indirect
call. For example:

MVK func,reg
MVKH func,reg
.call reg(op1) ; forcing a far call
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If you want to use * for indirection, you must abide by C syntax rules, and use
the following alternate syntax:

 .call [ret_reg =] (* ireg) ([arg1, arg2,...])

 For example:

.call (*driver)(op1, op2) ; indirect call

.reg driver

.call driver(op1, op2) ; also an indirect call

Here are other valid examples that use the .call syntax.

.call fir(x, h, y) ; void function

.call minimal( ) ; no arguments

.call sum = vecsum(a, b) ; returns an int

.call hi:lo = _atol(string) ; returns a long

Since you can use machine register names anywhere you can use symbolic
registers, it may appear you can change the function calling convention. For
example:

.call   A6 = compute()

It appears that the result is returned in A6 instead of A4. This is incorrect. Using
machine registers does not overide the calling convention. After returning from
the compute function with the returned result in A4, a MV instruction transfers
the result to A6.
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Syntax label .cproc [variable1 [, variable2 , …] ]

.endproc

Description Use the .cproc/.endproc  directive pair to delimit a section of your code that
you want the assembly optimizer to optimize and treat as a C callable function.
This section is called a procedure. The .cproc directive is similar to the .proc
directive in that you use .cproc at the beginning of a section and .endproc at
the end of a section. In this way, you can set off sections of your assembly code
that you want to be optimized, like functions. The directives must be used in
pairs; do not use .cproc without the corresponding .endproc. Specify a label
with the .cproc directive. You can have multiple procedures in a linear assem-
bly file.

The .cproc directive differs from the .proc directive in that the compiler treats
the .cproc region as a C callable function. The assembly optimizer performs
some operations automatically in a .cproc region in order to make the function
conform to the C calling conventions and to C register usage conventions.
These operations include the following:

� When you use save-on-entry registers (A10 to A15 and B10 to B15), the
assembly optimizer saves the registers on the stack and restores their
original values at the end of the procedure.

� If the compiler cannot allocate machine registers to symbolic register
names specifed with the .reg directive (see page 4-34) it uses local tempo-
rary stack variables. With .cproc, the compiler manages the stack pointer
and ensures that space is allocated on the stack for these variables.

For more information, see section 8.3, Register Conventions, on page 8-15
and section 8.4, Function Structure and Calling Conventions, on page 8-17.

Use the optional variable to represent function parameters. The variable
entries are very similar to parameters declared in a C function. The arguments
to the .cproc directive can be of the following types:

� Machine-register names . If you specify a machine-register name, its
position in the argument list must correspond to the argument passing
conventions for C. For example, the C compiler passes the first argument
to a function in register A4. This means that the first argument in a .cproc
directive must be A4 or a symbolic name. Up to ten arguments can be used
with the .cproc directive.
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� Symbolic names . If you specify a symbolic name, then the assembly
optimizer ensures that either the symbolic name is allocated to the
appropriate argument passing register or the argument passing register
is copied to the register allocated for the symbolic name. For example, the
first argument in a C call is passed in register A4, so if you specify the
following .cproc  directive:

frame   .cproc arg1

The assembly optimizer either allocates arg1 to A4, or arg1 is allocated to
a different register (such as B7) and an MV A4, B7 is automatically gener-
ated.

� Register pairs . A register pair is specified as arghi:arglo and represents
a 40-bit argument or a 64-bit type double argument for ’C67xx. For
example, the .cproc defined as follows:

_fcn .cproc arg1,  arg2hi:arg2lo, arg3, B6, arg5, B9:B8

...

.return res

...

.endproc

corresponds to a C function declared as:

int fcn(int arg1, long arg2, int arg3, int arg4, int arg5, long arg6);

In this example, the fourth argument of .cproc is register B6. This is
allowed since the fourth argument in the C calling conventions is passed in
B6. The sixth argument of .cproc is the actual register pair B9:B8. This is
allowed since the sixth argument in the C calling conventions is passed in
B8 or B9:B8 for longs.

When .endproc is used with a .cproc directive, it cannot have arguments. The
live out set for a .cproc region is determined by any .return directives that
appear in the .cproc region. (A value is live out if it has been defined before or
within the procedure and is used as an output from the procedure.) Returning
a value from a .cproc region is handled by the .return directive. The return
branch is automatically generated in a .cproc region. See page 4-39 for
information on the .return directive.

Only code within procedures is optimized. The assembly optimizer copies any
code that is outside of procedures to the output file and does not modify it. See
page 4-33 for a list of instruction types that cannot be used in .cproc regions.
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Example Here is an example in which .cproc and .endproc are used:

_if_then: .cproc   a, cword, mask, theta

        .reg    cond, if, ai, sum, cntr

        MVK             32,cntr              ; cntr = 32
        ZERO            sum                  ; sum = 0
 
LOOP:   
        AND     .S2X    cword,mask,cond      ; cond = codeword & mask
 [cond] MVK     .S2     1,cond               ; !(!(cond))
        CMPEQ   .L2     theta,cond,if        ; (theta == !(!(cond)))
        LDH     .D1     *a++,ai              ; a[i]
 [if]   ADD     .L1     sum,ai,sum           ; sum += a[i]
 [!if]  SUB     .D1     sum,ai,sum           ; sum –= a[i]
        SHL     .S1     mask,1,mask          ; mask = mask << 1
 [cntr] ADD     .L2     –1,cntr,cntr         ; decrement counter
 [cntr] B       .S1     LOOP                 ; for LOOP
 
        .return sum

        .endproc
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This is the output from the assembly optimizer:

;******************************************************************************
;* FUNCTION NAME: _if_then                                                    *
;*                                                                            *
;*   Regs Modified     : A0,A3,A4,A5,B0,B1,B2,B4,B5,B6,B7                     *
;*   Regs Used         : A0,A3,A4,A5,A6,B0,B1,B2,B3,B4,B5,B6,B7               *
;******************************************************************************
_if_then:
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;         .reg    cond, if, ai, sum, cntr
           MVK     .S2     0x20,B1      ; cntr = 32
           CMPGTU  .L2     B1,3,B0
   [ B0]   B       .S1     L4
           NOP             2

           ZERO    .L1     A5           ; sum = 0
||         MV      .S1     A6,A0
||         MV      .L2     B4,B5
|| [ B0]   MVC     .S2     CSR,B6
|| [ B0]   MV      .D2     B6,B4

   [ B0]   AND     .L2     –2,B6,B7

   [ B0]   MVC     .S2     B7,CSR
|| [ B0]   SUB     .L2     B1,3,B1

           ; BRANCH OCCURS
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
LOOP:        
   [ B1]   ADD     .L2     0xffffffff,B1,B1 ; decrement counter

   [ B1]   B       .S1     LOOP         ; for LOOP
||         LDH     .D1     *A4++,A3     ; a[i]

           NOP             1
           AND     .S2X    B5,A0,B0     ; cond = codeword & mask
   [ B0]   MVK     .S2     0x1,B0       ; !(!(cond))
           CMPEQ   .L2     B6,B0,B0     ; (theta == !(!(cond)))

   [!B0]   SUB     .D1     A5,A3,A5     ; sum –= a[i]
|| [ B0]   ADD     .L1     A5,A3,A5     ; sum += a[i]
||         SHL     .S1     A0,0x1,A0    ; mask = mask << 1

           ; BRANCH OCCURS
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
           B       .S1     L9
           NOP             5
           ; BRANCH OCCURS
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

Runtime check to deter-
mine which version of the
loop to use

Unpipelined
loop body
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Pipelined loop body

Software-pipelining
information produced
by the –mw option

L4:   
;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;*   SOFTWARE PIPELINE INFORMATION
;*
;*      Loop label : LOOP
;*      Loop Carried Dependency Bound : 1
;*      Unpartitioned Resource Bound  : 2
;*      Partitioned Resource Bound(*) : 2
;*      Resource Partition:
;*                                A–side   B–side
;*      .L units                     1        2*    
;*      .S units                     1        2*    
;*      .D units                     2*       0     
;*      .M units                     0        0     
;*      .X cross paths               0        1     
;*      .T address paths             1        0     
;*      Long read  paths             0        0     
;*      Long write paths             0        0     
;*      Logical  ops (.LS)           0        0     (.L or .S unit)
;*      Addition ops (.LSD)          0        0     (.L or .S or .D unit)
;*      Bound(.L .S .LS)             1        2*    
;*      Bound(.L .S .D .LS .LSD)     2*       2*    
;*
;*      Searching for software pipeline schedule at ...
;*         ii = 2  Schedule found with 4 iterations in parallel
;*      Done
;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L5:        ; PIPED LOOP PROLOG
   [ B1]   ADD     .L2     0xffffffff,B1,B1 ; decrement counter

           LDH     .D1     *A4++,A3     ; a[i]
|| [ B1]   B       .S1     L6           ; for LOOP

   [ B1]   ADD     .L2     0xffffffff,B1,B1 ;@ decrement counter

           AND     .S2X    B5,A0,B2     ; cond = codeword & mask
||         LDH     .D1     *A4++,A3     ;@ a[i]
|| [ B1]   B       .S1     L6           ;@ for LOOP

           SHL     .S1     A0,0x1,A0    ; mask = mask << 1
|| [ B2]   MVK     .S2     0x1,B2       ; !(!(cond))
|| [ B1]   ADD     .L2     0xffffffff,B1,B1 ;@@ decrement counter

;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L6:        ; PIPED LOOP KERNEL

           CMPEQ   .L2     B4,B2,B0     ; (theta == !(!(cond)))
||         AND     .S2X    B5,A0,B2     ;@ cond = codeword & mask
||         LDH     .D1     *A4++,A3     ;@@ a[i]
|| [ B1]   B       .S1     L6           ;@@ for LOOP

   [ B0]   ADD     .L1     A5,A3,A5     ; sum += a[i]
|| [!B0]   SUB     .D1     A5,A3,A5     ; sum –= a[i]
||         SHL     .S1     A0,0x1,A0    ;@ mask = mask << 1
|| [ B2]   MVK     .S2     0x1,B2       ;@ !(!(cond))
|| [ B1]   ADD     .L2     0xffffffff,B1,B1 ;@@@ decrement counter
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;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L7:        ; PIPED LOOP EPILOG

           CMPEQ   .L2     B4,B2,B0     ;@ (theta == !(!(cond)))
||         AND     .S2X    B5,A0,B2     ;@@ cond = codeword & mask
||         LDH     .D1     *A4++,A3     ;@@@ a[i]

   [ B0]   ADD     .L1     A5,A3,A5     ;@ sum += a[i]
|| [!B0]   SUB     .D1     A5,A3,A5     ;@ sum –= a[i]
||         SHL     .S1     A0,0x1,A0    ;@@ mask = mask << 1
|| [ B2]   MVK     .S2     0x1,B2       ;@@ !(!(cond))

           CMPEQ   .L2     B4,B2,B0     ;@@ (theta == !(!(cond)))
||         AND     .S2X    B5,A0,B2     ;@@@ cond = codeword & mask

   [ B0]   ADD     .L1     A5,A3,A5     ;@@ sum += a[i]
|| [!B0]   SUB     .D1     A5,A3,A5     ;@@ sum –= a[i]
||         SHL     .S1     A0,0x1,A0    ;@@@ mask = mask << 1
|| [ B2]   MVK     .S2     0x1,B2       ;@@@ !(!(cond))

           CMPEQ   .L2     B4,B2,B0     ;@@@ (theta == !(!(cond)))

   [ B0]   ADD     .L1     A5,A3,A5     ;@@@ sum += a[i]
|| [!B0]   SUB     .D1     A5,A3,A5     ;@@@ sum –= a[i]

;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
           MVC     .S2     B6,CSR
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L9:        
           B       .S2     B3
           NOP             4
           MV      .L1     A5,A4
           ; BRANCH OCCURS

;         .endproc
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Syntax .mdep [symbol1], [symbol2]

Description The .mdep  directive identifies a specific memory dependence.

Following is a description of the .mdep directive parameters:

symbol The symbol parameter is the name of the memory reference.

The symbol used to name a memory reference has the same syntax restric-
tions as any assembly symbol. (For more information about symbols, see the
TMS320C6000 Assembly Language Tools User’s Guide.) It is in the same
space as the symbolic registers. You cannot use the same name for a symbolic
register and annotating a memory reference.

The .mdep directive tells the assembly optimizer that there is a dependence
between two memory references.

The .mdep directive is valid only within procedures; that is, within occurrences
of the .proc and .endproc directive pair or the .cproc and .endproc directive
pair.

Example Here is an example in which .mdep is used to indicate a dependence between
two memory references.

.mdep ld1, st1

LDW *p1++ {ld1}, inp1 ;name memory reference ”ld1”
;other code ...
STW outp2, *p2++ {st1} ;name memory reference ”st1”
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Syntax .mptr {register | symbol}, base [+ offset ] [, stride]

Description The .mptr  directive associates a register with the information that allows the
assembly optimizer to determine automatically whether two memory opera-
tions have a memory bank conflict. If the assembly optimizer determines that
two memory operations have a memory bank conflict, then it does not sche-
dule them in parallel.

A memory bank conflict occurs when two accesses to a single memory bank
in a given cycle result in a memory stall that halts all pipeline operation for one
cycle while the second value is read from memory. For more information on
memory bank conflicts, including how to use the .mptr directive to prevent
them, see section 4.5 on page 4-45.

Following are descriptions of the .mptr directive parameters:

register|symbol The name of the register or the symbol used to name a
specific memory reference.

base A symbol that associates related memory accesses

offset The offset in bytes from the starting base symbol. The
offset is an optional parameter and defaults to 0.

stride The register loop increment in bytes. The stride is an
optional parameter and defaults to 0.

The .mptr directive tells the assembly optimizer that when the register or sym-
bol name is used as a memory pointer in an LD(B/BU)(H/HU)(W) or ST(B/H/W)
instruction, it is initialized to point to base + offset and is incremented by stride
each time through the loop.

The .mptr directive is valid within procedures only; that is, within occurrences
of the .proc and .endproc directive pair or the .cproc and .endproc directive
pair.

The symbols used for base symbol names are in a name space separate from
all other labels. This means that a symbolic register or assembly label can
have the same name as a memory bank base name. For example:

     .mptr  Darray,Darray
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Example Here is an example in which .mptr is used to avoid memory bank conflicts.

_blkcp:   .cproc i

          .reg   ptr1, ptr2, tmp1, tmp2

          MVK    0x0, ptr1              ; ptr1 = address 0
          MVK    0x8, ptr2              ; ptr2 = address 8

loop:     .trip  50

          .mptr  ptr1, a+0, 4
          .mptr  foo, a+8, 4

                                        ; potential conflict 
          LDW    *ptr1++, tmp1          ; load  *0, bank 0
          STW    tmp1, *ptr2++{foo}     ; store *8, bank 0

   [i]    ADD    –1,i,i                 ; i––
   [i]    B      loop                   ; if (!0) goto loop

          .endproc

This is the output from the assembly optimizer:

;******************************************************************************
;* FUNCTION NAME: _blkcp                                                      *
;*                                                                            *
;*   Regs Modified     : A0,A3,A4,B0                                          *
;*   Regs Used         : A0,A3,A4,B0,B3                                       *
;******************************************************************************
_blkcp:
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
; _blkcp:   .cproc i
;           .reg   ptr1, ptr2, tmp1, tmp2
           MVK     .S1     0x0,A3            ; |5|  ptr1 = address 0

           MVK     .S1     0x8,A0            ; |6|  ptr2 = address 8
||         MV      .L2X    A4,B0             ; |1|

; loop:     .trip  50
;           .mptr  ptr1, a+0, 4
;           .mptr  foo, a+8, 4
   [ B0]   ADD     .L2     0xffffffff,B0,B0  ; |17|  i––
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L1:

   [ B0]   B       .S1     L1                ; |18|  if (!0) goto loop
||         LDW     .D1T1   *A3++,A4          ; |14|  load  *0, bank 0

  [ B0]   ADD     .L2     0xffffffff,B0,B0  ; |17|  i––
           NOP             3
           STW     .D1T1   A4,*A0++          ; |15|  store *8, bank 0
           ; BRANCH OCCURS                   ; |18| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
           B       .S2     B3
           NOP             5
           ; BRANCH OCCURS

;           .endproc
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Syntax .no_mdep

Description The .no_mdep  directive tells the assembly optimizer that no memory depen-
dences occur within that function, with the exception of any dependences
pointed to with the .mdep directive.

Example Here is an example in which .no_mdep is used.

fn: .cproc dst, src, cnt
.no_mdep ;no memory aliasing in this function
...
.endproc
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Syntax label .proc [register1 [, register2 , …] ]

.endproc [register1 [, register2 , …] ]

Description Use the .proc/.endproc directive pair to delimit a section of your code that you
want the assembly optimizer to optimize. This section is called a procedure.
Use .proc at the beginning of the section and .endproc at the end of the section.
In this way, you can set off sections of your assembly code that you want to
be optimized, like functions. The directives must be used in pairs; do not use
.proc without the corresponding .endproc. Specify a label with the .proc direc-
tive. You can have multiple procedures in a linear assembly file.

Use the optional register parameter in the .proc directive to indicate which reg-
isters are live in, and use the optional register parameter of the .endproc direc-
tive to indicate which registers are live out for each procedure. A value is live
in if it has been defined before the procedure and is used as an input to the
procedure. A value is live out if it has been defined before or within the proce-
dure and is used as an output from the procedure. If you do not specify any
registers with the .proc directive, it is assumed that all of the registers refer-
enced in the procedure are live in. If you do not specify any registers with the
.endproc directive, it is assumed that no registers are live out.

Only code within procedures is optimized. The assembly optimizer copies any
code that is outside of procedures to the output file and does not modify it.

Example Here is a block move example in which .proc and .endproc are used:

move .proc A4, B4, B0
.no_mdep

loop:
LDW *B4++, A1
MV A1, B1
STW B1, *A4++
ADD –4, B0, B0

 [B0] B loop
.endproc
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The following code is the output from the assembly optimizer. The shaded
areas of the example highlight portions of the code that are affected by redun-
dant loops. For information about redundant loops, see section 3.3 page 3-13.

;******************************************************************************
;* FUNCTION NAME: move                                                        *
;*                                                                            *
;*   Regs Modified     : A0,A1,A3,A4,B0,B1,B4,B5,B6                           *
;*   Regs Used         : A0,A1,A3,A4,B0,B1,B4,B5,B6                           *
;******************************************************************************
move:
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;
; move .proc A4, B4, B0
; .no_mdep

           ZERO    .L1     A0
||         ZERO    .L2     B5

           CMPEQ   .L2X    B5,A0,B1
||         MVK     .S2     0x18,B6
||         MV      .L1X    B0,A3

   [ B1]   CMPGTU  .L1X    A3,B6,A1
   [!B1]   CMPGTU  .L1X    B5,A0,A1
   [ A1]   B       .S1     L5
   [ A1]   SUBAW   .D2     B0,6,B0      ; |8| 
           NOP             4
           ; BRANCH OCCURS
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
           ADD     .L2     0xfffffffc,B0,B0 ; |7| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L3:        

   [ B0]   B       .S1     L3           ; |8| 
||         LDW     .D2T2   *B4++,B1     ; |5| 

   [ B0]   ADD     .L2     0xfffffffc,B0,B0 ; |7| 
           NOP             3
           STW     .D1T2   B1,*A4++     ; |6| 
           ; BRANCH OCCURS ; |8| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
           B       .S1     L8           ; |8| 
           NOP             5
           ; BRANCH OCCURS ; |8| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
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Pipelined loop body

L5:        ; PIPED LOOP PROLOG

   [ B0]   ADD     .L2     0xfffffffc,B0,B0 ; |7| 
||         LDW     .D2T2   *B4++,B1     ; |5| 

   [ B0]   B       .S2     loop         ;  ^|8| 
|| [ B0]   ADD     .L2     0xfffffffc,B0,B0 ; @|7| 
||         LDW     .D2T2   *B4++,B1     ; @|5| 

   [ B0]   B       .S2     loop         ; @ ^|8| 
|| [ B0]   ADD     .L2     0xfffffffc,B0,B0 ; @@|7| 
||         LDW     .D2T2   *B4++,B1     ; @@|5| 

   [ B0]   B       .S2     loop         ; @@ ^|8| 
|| [ B0]   ADD     .L2     0xfffffffc,B0,B0 ; @@@|7| 
||         LDW     .D2T2   *B4++,B1     ; @@@|5| 

   [ B0]   B       .S2     loop         ; @@@ ^|8| 
|| [ B0]   ADD     .L2     0xfffffffc,B0,B0 ; @@@@|7| 
||         LDW     .D2T2   *B4++,B1     ; @@@@|5| 

           MV      .L1X    B1,A0        ; |5| 
|| [ B0]   B       .S2     loop         ; @@@@ ^|8| 
|| [ B0]   ADD     .L2     0xfffffffc,B0,B0 ; @@@@@|7| 
||         LDW     .D2T2   *B4++,B1     ; @@@@@|5| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
loop:        ; PIPED LOOP KERNEL
           STW     .D1T1   A0,*A4++     ; |6| 
||         MV      .L1X    B1,A0        ; @|5| 
|| [ B0]   B       .S2     loop         ; @@@@@ ^|8| 
|| [ B0]   ADD     .L2     0xfffffffc,B0,B0 ; @@@@@@|7| 
||         LDW     .D2T2   *B4++,B1     ; @@@@@@|5| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L7:        ; PIPED LOOP EPILOG
           STW     .D1T1   A0,*A4++     ; @|6| 
||         MV      .L1X    B1,A0        ; @@|5| 

           STW     .D1T1   A0,*A4++     ; @@|6| 
||         MV      .L1X    B1,A0        ; @@@|5| 

           STW     .D1T1   A0,*A4++     ; @@@|6| 
||         MV      .L1X    B1,A0        ; @@@@|5| 

           STW     .D1T1   A0,*A4++     ; @@@@|6| 
||         MV      .L1X    B1,A0        ; @@@@@|5| 

           STW     .D1T1   A0,*A4++     ; @@@@@|6| 
||         MV      .L1X    B1,A0        ; @@@@@@|5| 

           STW     .D1T1   A0,*A4++     ; @@@@@@|6| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L8:        

; .endproc
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The following types of instructions are not allowed in .proc or .cproc (see page
4-20 and 4-30) regions:

� Instructions that reference the stack pointer (register B15) are not allowed
in a .proc or .cproc region. Stack space can be allocated by the assembly
optimizer in a .proc or .cproc region for storage of temporary values. To
allocate this storage area the stack pointer is decremented on entry to the
region and incremented on exit from the region. Since the stack pointer
can change value on entry to the region, the assembly optimizer does not
allow code that references the stack pointer register.

� Indirect branches are not allowed in a .proc or .cproc region so that the
.proc or .cproc region exit protocols cannot be bypassed. Here is an
example of an indirect branch:

B B4 <=  illegal

� Direct branches to labels not defined in the .proc or .cproc region are not
allowed so that the .proc or .cproc region exit protocols cannot be
bypassed. Here is an example of a direct branch outside of a .proc region:

.proc
  ...

B outside <= illegal
.endproc

outside:
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Syntax .reg  variable1 [, variable2 ,…]

Description The .reg  directive allows you to use descriptive names for values that are
stored in registers. The assembly optimizer chooses a register for you such
that its use agrees with the functional units chosen for the instructions that op-
erate on the value.

The .reg directive is valid within procedures only; that is, within occurrences
of the .proc and .endproc directive pair or the .cproc and .endproc directive
pair.

Objects of type long, double, or long double are allocated into an even/odd reg-
ister pair and are always referenced as a register pair (for example, A1:A0).
A symbolic register that is used as a register in a register pair must be defined
as a register pair with the .reg directive. For example:

   .reg ahi:alo

   ADD  a0,ahi:alo,ahi:alo

Example 1 This example uses the same code as the block move example on page 4-30
but the .reg directive is used:

move .cproc dst, src, cnt

.reg tmp1, tmp2

loop:
LDW *src++, tmp1
MV tmp1, tmp2
STW tmp2, *dst++
ADD –4, cnt, cnt

[cnt] B loop

.endproc

Notice how the output of the following example differs from the output of the
.proc example on page 4-30: symbolic registers declared with .reg are allo-
cated as machine registers.
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;******************************************************************************
;* FUNCTION NAME: move                                                        *
;*                                                                            *
;*   Regs Modified     : A0,A1,A3,A4,A5,B0,B1,B4,B5,B6                        *
;*   Regs Used         : A0,A1,A3,A4,A5,A6,B0,B1,B3,B4,B5,B6                  *
;******************************************************************************
move:
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;
; move .cproc dst, src, cnt
; .no_mdep
; .reg tmp1, tmp2

           ZERO    .L1     A3
||         ZERO    .L2     B5

           CMPEQ   .L2X    B5,A3,B1
||         MVK     .S2     0x18,B6
||         MV      .L1     A6,A5        ; |1| 

   [ B1]   CMPGTU  .L1X    A5,B6,A1
   [!B1]   CMPGTU  .L1X    B5,A3,A1
   [ A1]   B       .S1     L5
           MV      .L1X    B4,A0        ; |1| 
           MV      .L2X    A6,B0        ; |1| 
   [ A1]   SUBAW   .D2     B0,6,B0      ; |9| 
   [ A1]   MV      .L2X    A4,B4        ; |9| 
           NOP             1
           ; BRANCH OCCURS
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
           ADD     .L2     0xfffffffc,B0,B0 ; |8| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L3:        

   [ B0]   B       .S1     L3           ; |9| 
||         LDW     .D1T1   *A0++,A3     ; |6| 

   [ B0]   ADD     .L2     0xfffffffc,B0,B0 ; |8| 
           NOP             3
           STW     .D1T1   A3,*A4++     ; |7| 
           ; BRANCH OCCURS ; |9| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
           B       .S1     L8           ; |9| 
           NOP             5
           ; BRANCH OCCURS ; |9| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
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Pipelined loop body

L5:        ; PIPED LOOP PROLOG
   [ B0]   ADD     .S2     0xfffffffc,B0,B0 ; |8| 
||         LDW     .D1T1   *A0++,A3     ; |6| 

   [ B0]   B       .S1     loop         ;  ^|9| 
|| [ B0]   ADD     .S2     0xfffffffc,B0,B0 ; @|8| 
||         LDW     .D1T1   *A0++,A3     ; @|6| 

   [ B0]   B       .S1     loop         ; @ ^|9| 
|| [ B0]   ADD     .S2     0xfffffffc,B0,B0 ; @@|8| 
||         LDW     .D1T1   *A0++,A3     ; @@|6| 

   [ B0]   B       .S1     loop         ; @@ ^|9| 
|| [ B0]   ADD     .S2     0xfffffffc,B0,B0 ; @@@|8| 
||         LDW     .D1T1   *A0++,A3     ; @@@|6| 

   [ B0]   B       .S1     loop         ; @@@ ^|9| 
|| [ B0]   ADD     .S2     0xfffffffc,B0,B0 ; @@@@|8| 
||         LDW     .D1T1   *A0++,A3     ; @@@@|6| 

           MV      .L2X    A3,B5        ; |1| 
|| [ B0]   B       .S1     loop         ; @@@@ ^|9| 
|| [ B0]   ADD     .S2     0xfffffffc,B0,B0 ; @@@@@|8| 
||         LDW     .D1T1   *A0++,A3     ; @@@@@|6| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
loop:        ; PIPED LOOP KERNEL
           STW     .D2T2   B5,*B4++     ; |7| 
||         MV      .L2X    A3,B5        ; @|1| 
|| [ B0]   B       .S1     loop         ; @@@@@ ^|9| 
|| [ B0]   ADD     .S2     0xfffffffc,B0,B0 ; @@@@@@|8| 
||         LDW     .D1T1   *A0++,A3     ; @@@@@@|6| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L7:        ; PIPED LOOP EPILOG
           STW     .D2T2   B5,*B4++     ; @|7| 
||         MV      .L2X    A3,B5        ; @@|1| 

           STW     .D2T2   B5,*B4++     ; @@|7| 
||         MV      .L2X    A3,B5        ; @@@|1| 

           STW     .D2T2   B5,*B4++     ; @@@|7| 
||         MV      .L2X    A3,B5        ; @@@@|1| 

           STW     .D2T2   B5,*B4++     ; @@@@|7| 
||         MV      .L2X    A3,B5        ; @@@@@|1| 

           STW     .D2T2   B5,*B4++     ; @@@@@|7| 
||         MV      .L2X    A3,B5        ; @@@@@@|1| 

           STW     .D2T2   B5,*B4++     ; @@@@@@|7| 
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
L8:        
           B       .S2     B3
           NOP             5
           ; BRANCH OCCURS
; .endproc
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Example 2 The code in the following example is invalid, because you cannot use a vari-
able defined by the .reg directive with the .proc directive:

move .proc dst, src, cnt ; WRONG: You cannot use a 
.reg dst, src, cnt ; variable with .proc

This example could be corrected as follows:

move .cproc dst, src, cnt

Example 3 The code in the following example is invalid, because a variable defined by the
.reg directive cannot be used outside of the defined procedure:

move .proc A4
.reg tmp

LDW *A4++, tmp
MV tmp, B5

.endproc

MV tmp, B6 ; WRONG: tmp is invalid outside of 
; the procedure
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Syntax .reserve [register1 [, register2 , …] ]

Description The .reserve  directive prevents the assembly optimizer from using the speci-
fied register in a .proc or .cproc region. 

If a .reserved register is explicitly assigned in a .proc or .cproc region, then the
assembly optimizer can also use that register. For example, the variable tmp1
can be allocated to register A5, even though it is in the .reserve list, since A5
was explicitly defined in the ADD instruction:

.cproc

.reserve  a5

.reg      tmp1

....
ADD       a4, b4, a5
....

.endproc

Example 1 The .reserve in this example guarantees that the assembly optimizer does not
use A10 to A13 or B10 to B13 for the variables tmp1 to tmp5:

test .proc  a4, b4
 .reg  tmp1, tmp2, tmp3, tmp4, tmp5

.reserve a10, a11, a12, a13, b10, b11, b12, b13

.....

.endproc a4

Example 2 The assembly optimizer may generate less efficient code if the available
register pool is overly restricted. In addition, it is possible that the available
register pool is constrained such that allocation is not possible and an error
message is generated. For example, the following code generates an error
since all of the conditional registers have been reserved, but a conditional
register is required for the symbol tmp:

.cproc ...

.reserve a1,a2,b0,b1,b2

.reg tmp

....
[tmp] ....

....

.endproc
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Syntax .return [argument]

Description The .return  directive function is equivalent to the return statement in C code.
It places the optional argument in the appropriate register for a return value as
per the C calling conventions (see section 8.4 on page 8-17). Also, .return
branches to the .cproc region pipelined-loop epilog.

The optional argument can have the folowing meanings:

� Zero arguments implies a .cproc region that has no return value, similar
to a void function in C code.

� An argument implies a .cproc region that has a 32-bit return value, similar
to an int function in C code.

� A register pair of the format hi:lo implies a .cproc region that has a 40-bit
return value, or a 64-bit type double for ’C67xx, similar to a long function
in C code.

Arguments to the .return directive can be either symbolic register names or
machine-register names.

All return statements in a .cproc region must be consistent in the type of the
return value. It is not legal to mix a .return arg with a .return hi:lo in the same
.cproc region.

The .return directive is unconditional. To perform a conditional .return, simply
use a conditional branch around a .return. The assembly optimizer removes
the branch and generates the appropriate conditional code. For example, to
return if condition cc is true, code the return as:

[!cc] B around
.return

around:

Example This example uses a symbolic register name, tmp, and a machine-register, A5,
as .return arguments:

.cproc ...

.reg tmp

...

.return tmp <= legal symbolic name

...

.return a5 <= legal actual name
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Syntax label .trip  minimum value, [maximum value[, factor ] ]

Description The .trip  directive specifies the value of the trip count. The trip count indicates
how many times a loop iterates. The .trip directive is valid within procedures
only. Following are descriptions of the .trip directive parameters:

label The label represents the beginning of the loop. This is a
required parameter.

minimum value The minimum number of times that the loop can iterate.
This is a required parameter. The default is 1.

maximum value The maximum number of times that the loop can iterate.
The maximum value is an optional parameter.

factor The factor used, along with minimum value and maximum
value, to determine the number of times that the loop can
iterate. In the following example, the loop executes some
multiple of 8, between 8 and 48, times:

loop: .trip 8, 48, 8

A factor of 2 states that your loop always executes an even
number of times allowing the compiler to unroll once; this
can result in a performance increase.

The factor is optional when the maximum value is speci-
fied.

You are not required to specify a .trip directive with every loop; however, you
should use .trip if you know that a loop iterates some number of times. This
generally means that redundant loops are not generated (unless minimum
value is really small) saving code size and execution time.

If you know that a loop always executes the same number of times whenever
it is called, define maximum value (where maximum value equals minimum
value) as well. The compiler may now be able to unroll your loop thereby
increasing performance.

When you are compiling with the interrupt flexibility option (–min), using a .trip
maximum value allows the compiler to determine the maximum number of
cycles that the loop can execute. Then, the compiler compares that value to
the threshold value given by the –mi option. See section 2.11, Interrupt Flexibil-
ity Options (–mi Option), on page 2-41 for more information.
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If the assembly optimizer cannot ensure that the trip count is large enough to
pipeline a loop for maximum performance, a pipelined version and an unpipe-
lined version of the same loop are generated. This makes one of the loops a
redundant loop. The pipelined or the unpipelined loop is executed based on
a comparison between the trip count and the number of iterations of the loop
that can execute in parallel. If the trip count is greater or equal to the number
of parallel iterations, the pipelined loop is executed; otherwise, the unpipelined
loop is executed. For more information about redundant loops, see section 3.3
on page 3-13.

Example 1 The .trip directive states that the loop executes somewhere between 16 and
48 times when the w_vecsum routine is called.

w_vecsum:   .cproc  ptr_a, ptr_b, ptr_c, weight, cnt
            .reg    ai, bi, prod, scaled_prod, ci
            .no_mdep

loop:       .trip 16, 48, 8
            ldh     *ptr_a++, ai
            ldh     *ptr_b++, bi
            mpy     weight, ai, prod
            shr     prod, 15, scaled_prod
            add     scaled_prod, bi, ci
            sth     ci, *ptr_c++
  [cnt]     sub     cnt, 1, cnt
  [cnt]     b       loop
            .endproc

The .sa file was compiled with –k –o2 –mh –mi40 specified. The –mi40 option
says that interrupts occur at no fewer than every 40 cycles, and that the loop
must be interruptible. The tools generate a 6-cycle loop to execute one itera-
tion of the loop.
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Here is the resulting assembly code:

Pipelined loop body

FP      .set    A15
DP      .set    B14
SP      .set    B15
        .global $bss

        .sect   ”.text”

;******************************************************************************
;* FUNCTION NAME: w_vecsum                                                    *
;*                                                                            *
;*   Regs Modified     : A0,A1,A2,A3,A4,A5,B4,B5,B6,B7                        *
;*   Regs Used         : A0,A1,A2,A3,A4,A5,A6,A8,B3,B4,B5,B6,B7               *
;******************************************************************************
w_vecsum:
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
; w_vecsum:   .cproc  ptr_a, ptr_b, ptr_c, weight, cnt
;             .reg    ai, bi, prod, scaled_prod, ci
;             .no_mdep
           MV      .L1     A4,A5             ; 

           MVK     .S1     0x1,A2            ; init prolog collapse predicate
||         MV      .D1     A8,A1             ; 
||         MV      .L1X    B6,A0             ; 
||         MV      .L2X    A6,B5             ; 

;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
C10:    ; PIPED LOOP PROLOG
; loop:       .trip 16, 48
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
loop:    ; PIPED LOOP KERNEL
   [ A1]   B       .S1     loop              ; |13| 
           MPY     .M1     A0,A3,A4          ; |8| 
           LDH     .D1T1   *A5++,A3          ; @|6| 
           SHR     .S1     A4,0xf,A4         ; |9| 

           ADD     .L2X    A4,B6,B7          ; |10| 
||         LDH     .D2T2   *B4++,B6          ; @|7| 

   [ A2]   SUB     .S1     A2,1,A2           ; 
|| [!A2]   STH     .D2T2   B7,*B5++          ; |11| 
|| [ A1]   SUB     .L1     A1,0x1,A1         ; @|12| 

;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
C11:    ; PIPED LOOP EPILOG
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
           B       .S2     B3
           NOP             5
           ; BRANCH OCCURS  

;             .endproc
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Example 2 The .trip directive states that the loop will execute either 16, 24, 32, 40, or 48
times because the factor parameter is specified. When using the same options
as specified in Example 1, the compiler knows that it can unroll the loop several
times without affecting the results. This leads to a 7-cycle loop that executes
four iterations; over a 3x speedup in terms of performance without the optional
factor parameter.

w_vecsum:   .cproc  ptr_a, ptr_b, ptr_c, weight, cnt
            .reg    ai, bi, prod, scaled_prod, ci
            .no_mdep

loop:       .trip 16, 48, 8
            ldh     *ptr_a++, ai
            ldh     *ptr_b++, bi
            mpy     weight, ai, prod
            shr     prod, 15, scaled_prod
            add     scaled_prod, bi, ci
            sth     ci, *ptr_c++
  [cnt]     sub     cnt, 1, cnt
  [cnt]     b       loop
            .endproc

Here is the resulting assembly code:

FP      .set    A15
DP      .set    B14
SP      .set    B15
        .global $bss

        .sect   ”.text”

;******************************************************************************
;* FUNCTION NAME: w_vecsum                                                    *
;*                                                                            *
;*   Regs Modified     : A0,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,B0,B4,B5,  *
;*                           B6,B7,B8,B9,SP                                   *
;*   Regs Used         : A0,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,B0,B3,B4,  *
;*                           B5,B6,B7,B8,B9,SP                                *
;******************************************************************************
w_vecsum:
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
; w_vecsum:   .cproc  ptr_a, ptr_b, ptr_c, weight, cnt
;             .reg    ai, bi, prod, scaled_prod, ci
;             .no_mdep
           STW     .D2T1   A12,*SP––(16)     ; |1|

           STW     .D2T1   A10,*+SP(8)       ; |1| 
||         ADD     .L1X    2,B4,A5           ; 
||         MV      .D1     A4,A9             ; 
||         MVK     .S1     0x1,A2            ; init prolog collapse predicate

           MV      .L2     B4,B6             ; 
||         MV      .L1X    B6,A10            ; 
||         STW     .D2T1   A11,*+SP(12)      ; |1| 
||         ADD     .S1     4,A8,A1           ; 
||         ADD     .D1     2,A6,A0           ; 
||         MV      .S2X    A6,B8             ;
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Pipelined loop body

;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
C10:    ; PIPED LOOP PROLOG
; loop:       .trip 16, 48, 8
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
loop:    ; PIPED LOOP KERNEL

   [ A1]   SUB     .L1     A1,0x4,A1         ; |12| 
|| [!A2]   LDH     .D2T2   *–B6(2),B7        ; |7| 
||         MPY     .M1     A10,A6,A3         ; |8|

   [ A1]   B       .S1     loop              ; |13| 
||         MPY     .M2X    A10,B0,B4         ; |8| 
||         LDH     .D1T1   *A9++(8),A12      ; @|6|

           MV      .L2     B9,B5             ; Inserted to split a long life
||         SHR     .S1     A4,0xf,A4         ; |9| 
||         MPY     .M1     A10,A8,A8         ; |8| 
||         LDH     .D2T2   *B6++(8),B9       ; @|7| 
||         LDH     .D1T1   *–A9(6),A6        ; @|6|

           MV      .L1     A11,A4            ; Inserted to split a long life
||         SHR     .S1     A3,0xf,A3         ; |9| 
||         ADD     .L2X    A4,B5,B5          ; |10| 
||         SHR     .S2     B4,0xf,B4         ; |9| 
||         LDH     .D2T1   *–B6(4),A11       ; @|7| 
||         LDH     .D1T2   *–A9(4),B0        ; @|6|

           ADD     .L1     A3,A7,A3          ; |10| 
|| [!A2]   STH     .D2T2   B5,*B8++(8)       ; |11| 
||         SHR     .S1     A8,0xf,A4         ; |9| 
||         ADD     .L2X    B4,A4,B4          ; |10| 
||         LDH     .D1T1   *–A9(2),A8        ; @|6|

   [!A2]   STH     .D1T1   A3,*A0++(8)       ; |11| 
|| [!A2]   STH     .D2T2   B4,*–B8(4)        ; |11| 
||         ADD     .L2X    A4,B7,B4          ; |10|

   [ A2]   SUB     .L1     A2,1,A2           ; 
|| [!A2]   STH     .D2T2   B4,*–B8(2)        ; |11| 
||         LDH     .D1T1   *A5++(8),A7       ; @|7| 
||         MPY     .M1     A10,A12,A4        ; @|8|

;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
C11:    ; PIPED LOOP EPILOG
;** ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
           LDW     .D2T1   *+SP(8),A10

           B       .S2     B3
||         LDW     .D2T1   *+SP(12),A11

           LDW     .D2T1   *++SP(16),A12
           NOP             4
           ; BRANCH OCCURS

;             .endproc
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4.5 Avoiding Memory Bank Conflicts With the Assembly Optimizer

The internal memory of the ’C6000 family varies from device to device. See
the appropriate device data sheet to determine the memory spaces in your
particular device. This section discusses how to write code to avoid memory
bank conflicts.

Most ’C6000 devices use an interleaved memory bank scheme, as shown in
Figure 4–1. Each number in the diagram represents a byte address. A load
byte (LDB) instruction from address 0 loads byte 0 in bank 0. A load halfword
(LDH) from address 0 loads the halfword value in bytes 0 and 1, which are also
in bank 0. A load word (LDW) from address 0 loads bytes 0 through 3 in banks
0 and 1.

Because each bank is single-ported memory, only one access to each bank
is allowed per cycle. Two accesses to a single bank in a given cycle result in
a memory stall that halts all pipeline operation for one cycle while the second
value is read from memory. Two memory operations per cycle are allowed
without any stall, as long as they do not access the same bank.

Figure 4–1. 4-Bank Interleaved Memory
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For devices that have more than one memory space (Figure 4–2), an access
to bank 0 in one memory space does not interfere with an access to bank 0
in another memory space, and no pipeline stall occurs.
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Figure 4–2. 4-Bank Interleaved Memory With Two Memory Spaces
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4.5.1 Preventing Memory Bank Conflicts

The assembly optimizer uses the assumptions that memory operations do not
have bank conflicts. If it determines that two memory operations have a bank
conflict on any loop iteration it does not schedule the operations in parallel. The
assembly optimizer checks for memory bank conflicts only for those loops that
it is trying to software pipeline.

The information required for memory bank analysis indicates a base, an offset,
a stride, a width, and an iteration delta. The width is implicitly determined by
the type of memory access (byte, halfword, word, or double word for the
’C67x). The iteration delta is determined by the assembly optimizer as it
constructs the schedule for the software pipeline. The base, offset, and stride
are supplied the load and store instructions and/or by the .mptr directive.
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An LD(B/BU)(H/HU)(W) or ST(B/H/W) operation in linear assembly can have
memory bank information associated with it implicitly, by using the .mptr direc-
tive. The .mptr directive associates a register with the information that allows
the assembly optimizer to determine automatically whether two memory op-
erations have a bank conflict. If the assembly optimizer determines that two
memory operations have a memory bank conflict, then it does not schedule
them in parallel. The syntax is:

    .mptr    register, base+offset, stride

For example:

     .mptr a_0,a+0,16
     .mptr a_4,a+4,16

     LDW *a_0++[4], val1  ; base=a, offset=0, stride=16
     LDW *a_4++[4], val2  ; base=a, offset=4, stride=16

     .mptr dptr,D+0,8

     LDH *dptr++, d0      ; base=D, offset=0, stride=8
     LDH *dptr++, d1      ; base=D, offset=2, stride=8
     LDH *dptr++, d2      ; base=D, offset=4, stride=8
     LDH *dptr++, d3      ; base=D, offset=6, stride=8

In this example, the offset for dptr is updated after every memory access.
The offset is updated only when the pointer is modified by a constant. This
occurs for the pre/post increment/decrement addressing modes.

See page 4-27 for information about the .mptr directive.
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Example 4–9 shows loads and stores extracted from a loop that is being soft-
ware pipelined.

Example 4–9. Load and Store Instructions That Specify Memory Bank Information

        .mptr   Ain,IN,–16
        .mptr   Bin,IN–4,–16
 
        .mptr   Aco,COEF,16
        .mptr   Bco,COEF+4,16
 
        .mptr   Aout,optr+0,4
        .mptr   Bout,optr+2,4

        LDW     .D1     *Ain––[2],Ain12           ; IN(k–i) & IN(k–i+1)
        LDW     .D2     *Bin––[2],Bin23           ; IN(k–i–2) & IN(k–i–1)
        LDW     .D1     *Ain––[2],Ain34           ; IN(k–i–4) & IN(k–i–3)
        LDW     .D2     *Bin––[2],Bin56           ; IN(k–i–6) & IN(k–i–5)
 
        LDW     .D2     *Bco++[2],Bco12           ; COEF(i) & COEF(i+1)
        LDW     .D1     *Aco++[2],Aco23           ; COEF(i+2) & COEF(i+3)
        LDW     .D2     *Bco++[2],Bin34           ; COEF(i+4) & COEF(i+5)
        LDW     .D1     *Aco++[2],Ain56           ; COEF(i+6) & COEF(i+7)
 
        STH     .D1     Assum,*Aout++[2]          ; *oPtr++ = (r >> 15)
        STH     .D2     Bssum,*Bout++[2]          ; *oPtr++ = (i >> 15)
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4.5.2 A Dot Product Example That Avoids Memory Bank Conflicts

The C code in Example 4–10 implements a dot product function. The inner
loop is unrolled once to take advantage of the ’C6000’s ability to operate on
two 16-bit data items in a single 32-bit register. LDW instructions are used to
load two consecutive short values. The linear assembly instructions in
Example 4–11 implement the dotp loop kernel. Example 4–12 shows the loop
kernel determined by the assembly optimizer.

For this loop kernel, there are two restrictions associated with the arrays a[ ]
and b[ ]:

� Because LDW is being used, the arrays must be be aligned to start on
word boundaries.

� To avoid a memory bank conflict, one array must start in bank 0 and the
other array in bank 2. If they start in the same bank, then a memory bank
conflict occurs every cycle and the loop computes a result every two
cycles instead of every cycle, due to a memory bank stall. For example:

Bank conflict:

      MVK   0, A0
   || MVK   8, B0
      LDW   *A0, A1
   || LDW   *B0, B1

No bank conflict:

      MVK   0, A0
   || MVK   4, B0
      LDW   *A0, A1
   || LDW   *B0, B1

Example 4–10. C Code for Dot Product

int dotp(short a[], short b[])
{
    int sum0 = 0, sum1 = 0, sum, i;

    for (i = 0; i < 100/2; i+= 2)
    {
        sum0 += a[i] * b[i];
        sum1 += a[i + 1] * b[i + 1];
    }
    return sum0 + sum1;
}
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Example 4–11. Linear Assembly for Dot Product

_dotp:  .cproc  a, b 
        .reg   sum0, sum1, i
        .reg    val1, val2, prod1, prod2

        MVK     50,i ; i = 100/2
        ZERO    sum0 ; multiply result = 0
        ZERO    sum1 ; multiply result = 0

loop:   .trip 50
        LDW     *a++,val1        ; load a[0–1]  bank0
        LDW     *b++,val2        ; load b[0–1]  bank2
        MPY     val1,val2,prod1  ; a[0] * b[0]
        MPYH    val1,val2,prod2  ; a[1] * b[1]
        ADD     prod1,sum0,sum0  ; sum0 += a[0] * b[0]
        ADD     prod2,sum1,sum1  ; sum1 += a[1] * b[1]

    [i] ADD     –1,i,i           ; i––
    [i] B       loop             ; if (!i) goto loop

        ADD     sum0,sum1,A4     ; compute final result
        .return A4
        .endproc

Example 4–12. Dot Product Software-Pipelined Kernel

L3:        ; PIPE LOOP KERNEL
 
         ADD   .L2  B4,B6,B6     ; sum0 += a[0] * b[0]
||       ADD   .L1  A5,A0,A0     ; sum1 += a[1] * b[1]
||       MPY   .M2X A3,B5,B4     ;@@ a[0] * b[0]
||       MPYH  .M1X A3,B5,A5     ;@@ a[1] * b[1]
|| [ B0] B     .S1  L3           ;@@@@@ if (!i) goto loop
|| [ B0] ADD   .S2  –1,B0,B0     ;@@@@@@ i––
||       LDW   .D1  *A4++,A3     ;@@@@@@@ load a[0–1]  bank0
||       LDW   .D2  *B4++,B5     ;@@@@@@@ load b[0–1]  bank2

It is not always possible to control fully how arrays and other memory objects
are aligned. This is especially true when a pointer is passed into a function and
that pointer may have different alignments each time the function is called. A
solution to this problem is to write a dot product routine that cannot have
memory hits. This would eliminate the need for the arrays to use different
memory banks.

If the dot product loop kernel is unrolled once, then four LDW instructions
execute in the loop kernel. Assuming that nothing is known about the bank
alignment of arrays a and b (except that they are word aligned), the only safe
assumptions that can be made about the array accesses are that a[0–1]
cannot conflict with a[2–3] and that b[0–1] cannot conflict with b[2–3].
Example 4–13 shows the unrolled loop kernel.
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Example 4–13. Dot Product From Example 4–11 Unrolled to Prevent Memory Bank
Conflicts

_dotp2: .cproc   a_0, b_0
        .reg    a_4, b_4, sum0, sum1, i
        .reg    val1, val2, prod1, prod2

        ADD     4,A4,a_4
        ADD     4,B4,b_4
        MVK     25,i ; i = 100/4
        ZERO    sum0 ; multiply result = 0
        ZERO    sum1 ; multiply result = 0
 
        .mptr   a_0,a+0,8
        .mptr   a_4,a+4,8
        .mptr   b_0,b+0,8
        .mptr   b_4,b+4,8
 
loop:   .trip 50
        LDW     *a_0++[2],val1   ; load a[0–1]  bankx
        LDW     *b_0++[2],val2   ; load b[0–1]  banky
        MPY     val1,val2,prod1  ; a[0] * b[0]
        MPYH    val1,val2,prod2  ; a[1] * b[1]
        ADD     prod1,sum0,sum0  ; sum0 += a[0] * b[0]
        ADD     prod2,sum1,sum1  ; sum1 += a[1] * b[1]
 
        LDW     *a_4++[2],val1   ; load a[2–3]  bankx+2
        LDW     *b_4++[2],val2   ; load b[2–3]  banky+2
        MPY     val1,val2,prod1  ; a[2] * b[2]
        MPYH    val1,val2,prod2  ; a[3] * b[3]
        ADD     prod1,sum0,sum0  ; sum0 += a[2] * b[2]
        ADD     prod2,sum1,sum1  ; sum1 += a[3] * b[3]
 
    [i] ADD     –1,i,i           ; i––
    [i] B       loop             ; if (!0) goto loop
 
        ADD     sum0,sum1,A4     ; compute final result
        .return A4
        .endproc
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The goal is to find a software pipeline in which the following instructions are
in parallel:

LDW *a0++[2],val1 ; load a[0–1]  bankx
|| LDW *a2++[2],val2 ; load a[2–3]  bankx+2

LDW *b0++[2],val1 ; load b[0–1]  banky
|| LDW *b2++[2],val2 ; load b[2–3]  banky+2

Example 4–14. Unrolled Dot Product Kernel From Example 4–12

L3:        ; PIPE LOOP KERNEL
 
         ADD   .L2  B6,B9,B9     ; sum0 += a[0] * b[0]
||       ADD   .L1  A6,A0,A0     ; sum1 += a[1] * b[1]
||       MPY   .M2X B5,A4,B6     ;@ a[0] * b[0]
||       MPYH  .M1X B5,A4,A6     ;@ a[1] * b[1]
|| [ B0] B     .S1  L3           ;@@ if (!0) goto loop
||       LDW   .D1  *A3++(8),A4  ;@@@ load a[2–3]  bankx+2
||       LDW   .D2  *B4++(8),B5  ;@@@@ load a[0–1]  bankx
 
         ADD   .L2  B6,B9,B9     ; sum0 += a[2] * b[2]
||       ADD   .L1  A6,A0,A0     ; sum1 += a[3] * b[3]
||       MPY   .M2X A4,B8,B6     ;@ a[2] * b[2]
||       MPYH  .M1X A4,B8,A6     ;@ a[3] * b[3]
|| [ B0] ADD   .S2  –1,B0,B0     ;@@@ i––
||       LDW   .D2  *B7++(8),B8  ;@@@@ load b[2–3]  banky+2
||       LDW   .D1  *A5++(8),A4  ;@@@@ load b[0–1]  banky

Without the .mptr directives in Example 4–13, the loads of a[0–1] and b[0–1]
are scheduled in parallel, and the loads of a[2–3] and b[2–3] are scheduled in
parallel. This results in a 50% chance that a memory conflict will occur on every
cycle. However, the loop kernel shown in Example 4–14 can never have a
memory bank conflict.

In Example 4–11, if .mptr directives had been used to specify that a and b point
to different bases, then the assembly optimizer would never find a schedule
for a 1-cycle loop kernel, because there would always be a memory bank con-
flict. However, it would find a schedule for a 2-cycle loop kernel.
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4.5.3 Memory Bank Conflicts for Indexed Pointers

When determining memory bank conflicts for indexed memory accesses, it is
sometimes necessary to specify that a pair of memory accesses always
conflict, or that they never conflict. This can be accomplished by using the
.mptr directive with a stride of 0.

A stride of 0 indicates that there is a constant relation between the memory
accesses regardless of the iteration delta. Essentially, only the base, offset,
and width are used by the assembly optimizer to determine a memory bank
conflict. Recall that the stride is optional and defaults to 0.

In Example 4–15, the .mptr directive is used to specify which memory
accesses conflict and which never conflict.

Example 4–15. Using .mptr for Indexed Pointers

.mptr a,RS

.mptr b,RS

.mptr c,XY

.mptr d,XY+2

LDW     *a++[i0a],A0  ; a and b always conflict with each other
LDW     *b++[i0b],B0  ;

STH     A1,*c++[i1a]    ; c and d never conflict with each other 
STH     B2,*d++[i1b]    ;
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4.5.4 Memory Bank Conflict Algorithm

The assembly optimizer uses the following process to determine if two
memory access instructions might have a memory bank conflict:

1) If either access does not have memory bank information, then they do not
conflict.

2) If both accesses do not have the same base, then they conflict.

3) The offset, stride, access width, and iteration delta are used to determine
if a memory bank conflict will occur. The assembly optimizer uses a
straightforward analysis of the access patterns and determines if they ever
access the same relative bank. The stride and offset values are always
expressed in bytes.

The iteration delta is the difference in the loop iterations of the memory
references being scheduled in the software pipeline. For example, given
three instructions A, B, C and a software pipeline with a single-cycle ker-
nel, then A and C have an iteration delta of 2:

A
B A
C B A

C B
C
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4.6 Memory Alias Disambiguation

Memory aliasing occurs when two instructions can access the same memory
location. Such memory references are called ambiguous. Memory alias dis-
ambiguation is the process of determining when such ambiguity is not pos-
sible. When you cannot determine whether two memory references are am-
biguous, you presume they are ambiguous. This is the same as saying the two
instructions have a memory dependence between them.

Dependences between instructions constrain the instruction schedule, includ-
ing the software pipeline schedule. In general, the fewer the dependences, the
greater freedom you have in choosing a schedule and the better the final
schedule performs.

4.6.1 How the Assembly Optimizer Handles Memory References (Default)

The assembly optimizer assumes all memory references are always aliased;
they always depend on one another. This presumption is safe for all possible
input. This gives you complete control over how possible memory aliases are
to be handled.

In some cases, this presumption is overly conservative. In such cases, the ex-
tra instruction dependences, due to the presumed memory aliases, can cause
the assembly optimizer to emit instruction schedules that have less parallelism
and do not perform well. To handle these cases, the assembly optimizer pro-
vides one option and two directives.

4.6.2 Using the –mt Option to Handle Memory References

In the assembly optimizer, the –mt option means no memory references ever
depend on each other. The –mt option does not mean the same thing to the
compiler. The compiler interprets the –mt switch to indicate several specific
cases of memory aliasing are guaranteed not to occur. For more information
about using the –mt option, see section 3.6.2, page 3-22.

4.6.3 Using the .no_mdep Directive 

You can specify the .no_mdep directive anywhere in a .(c)proc function. When-
ever it is used, you guarantee that no memory dependences occur within that
function.

Note: Memory Dependency Exception

For both of these methods, –mt and .no_mdep, the assembly optimizer rec-
ognizes any memory dependences the user points out with the .mdep direc-
tive.
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4.6.4 Using the .mdep Directive to Identify Specific Memory Dependences

You can use the .mdep directive to identify specific memory dependences by
annotating each memory reference with a name, and using those names with
the .mdep directive to indicate the actual dependence. Annotating a memory
reference requires adding information right next to the memory reference in
the assembly stream. Include the following Immediately after a memory refer-
ence:

{ symbol }

The symbol has the same syntax restrictions as any assembly symbol. (For
more information about symbols, see the TMS320C6000 Assembly Language
Tools User’s Guide.) It is in the same name space as the symbolic registers.
You cannot use the same name for a symbolic register and annotating a
memory reference.

Example 4–16. Annotating a Memory Reference

LDW *p1++ {ld1}, inp1 ;name memory reference ”ld1”
;other code ...
STW outp2, *p2++ {st1} ;name memory reference ”st1”

The directive to indicate a specific memory dependence in the previous exam-
ple is as follows:

.mdep ld1, st1

This means that whenever ld1 accesses memory at location X, some later time
in code execution st1 may also access location X. This is equivalent to adding
a dependence between these two instructions. In terms of the software pipe-
line, these two instructions must remain in the same order. The ld1 reference
must always occur before the st1 reference; the instructions cannot even be
scheduled in parallel.

It is important to note the directional sense of the directive from ld1 to st1. The
opposite, from st1 to ld1, is not implied. In terms of the software pipeline, while
every ld1 must occur before every st1, it is still legal to schedule the ld1 from
iteration n+1 before the st1 from interation n.
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Example 4–17 is a picture of the software pipeline with the instructions from
two different iterations in different columns. In the actual instruction sequence,
instructions on the same horizontal line are in parallel.

Example 4–17. Software Pipeline Using .mdep ld1, st1

iteration n iteration n+1
––––––––––––– –––––––––––––
LDW { ld1 }

... LDW { ld1 }

STW { st1 } ...

STW { st1 }

If that schedule does not work because the iteration n st1 might write a value
the iteration n+1 ld1 should read, then you must note a dependence relation-
ship from st1 to ld1.

.mdep   st1, ld1

Both directives together force the software pipeline shown in Example 4–18.

Example 4–18. Software Pipeline Using .mdep st1, ld1 and .mdep ld1, st1

iteration n iteration n+1
––––––––––––– –––––––––––––
LDW { ld1 }

...

STW { st1 }

LDW { ld1 }

...

STW { st1 }

Indexed addressing, *+base[index], is a good example of an addressing mode
where you typically do not know anything about the relative sequence of the
memory accesses, except they sometimes access the same location. To cor-
rectly model this case, you need to note the dependence relation in both direc-
tions, and you need to use both directives.

.mdep   ld1, st1

.mdep   st1, ld1
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4.6.5 Memory Alias Examples

Following are memory alias examples that use the .mdep and .no_mdep direc-
tives.

� Example 1

The .mdep r1, r2 directive declares that LDW must be before STW. In this case,
src and dst might point to the same array.

fn: .cproc dst, src, cnt
.reg tmp
.no_mdep
.mdep r1, r2

LDW *src{r1}, tmp
STW cnt, *dst{r2}

.return tmp

.endproc

� Example 2

Here, .mdep r2, r1 indicates that STW must occur before LDW. Since STW is after
LDW in the code, the dependence relation is across loop iterations. The STW in-
struction writes a value that may be read by the LDW instruction on the next itera-
tion. In this case, a 6-cycle recurrence is created.

fn: .cproc dst, src, cnt
.reg tmp
.no_mdep
.mdep r2, r1

LOOP: .trip 100
LDW *src++{r1}, tmp
STW tmp, *dst++{r2}

 [cnt] SUB cnt, 1, cnt
 [cnt] B LOOP

.endproc

Note: Memory Dependence/Bank Conflict

Do not confuse the topic of memory alias disambiguation with the handling
of memory bank conflicts. They may seem similar because they each deal
with memory references and the effect of those memory references on the
instruction schedule. Alias disambiguation is a correctness issue, bank con-
flicts are a performance issue. A memory dependence has a much broader
impact on the instruction schedule than a bank conflict. It is best to keep
these two topics separate.
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Linking C Code

The C compiler and assembly language tools provide two methods for linking
your programs:

� You can compile individual modules and link them together. This method
is especially useful when you have multiple source files.

� You can compile and link in one step by using cl6x. This method is useful
when you have a single source module.

This chapter describes how to invoke the linker with each method. It also
discusses special requirements of linking C code, including the runtime-
support libraries, specifying the type of initialization, and allocating the
program into memory. For a complete description of the linker, see the
TMS320C6000 Assembly Language Tools User’s Guide.

Topic Page

5.1 Invoking the Linker as an Individual Program 5-2. . . . . . . . . . . . . . . . . . . 

5.2 Invoking the Linker With the Compiler Shell (–z Option) 5-4. . . . . . . . . . 

5.3 Disabling the Linker (–c Shell Option) 5-5. . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4 Linker Options 5-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.5 Controlling the Linking Process 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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5.1 Invoking the Linker as an Individual Program

This section shows how to invoke the linker in a separate step after you have
compiled and assembled your programs. This is the general syntax for linking
C programs in a separate step:

lnk6x {–c|–cr } filenames [-options] [–o name.out] –l libraryname [lnk.cmd]

lnk6x The command that invokes the linker.

–c | –cr Options that tell the linker to use special conventions
defined by the C environment. When you use lnk6x, you
must use –c or –cr. The –c option uses automatic vari-
able initialization at runtime; the –cr option uses variable
initialization at load time.

filenames Names of object files, linker command files, or archive
libraries. The default extension for all input files is .obj;
any other extension must be explicitly specified. The
linker can determine whether the input file is an object
or ASCII file that contains linker commands. The default
output filename is a.out, unless you use the –o option to
name the output file.

options Options affect how the linker handles your object files.
Options can appear anywhere on the command line or
in a linker command file. (Options are discussed in sec-
tion 5.4)

–o name.out The –o option names the output file.

–l libraryname (lowercase L) Identifies the appropriate archive library
containing C runtime-support and floating-point math
functions. (The –l option tells the linker that a file is an
archive library.) If you are linking C code, you must use
a runtime-support library. You can use the libraries
included with the compiler, or you can create your own
runtime-support library. If you have specified a runtime-
support library in a linker command file, you do not need
this parameter.

lnk.cmd Contains options, filenames, directives, or commands
for the linker.
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When you specify a library as linker input, the linker includes and links only
those library members that resolve undefined references. For example, you
can link a C program consisting of modules prog1, prog2, and prog3 (the
output file is named prog.out), enter:

lnk6x –c prog1 prog2 prog3 –o prog.out –l rts6201.lib

The linker uses a default allocation algorithm to allocate your program into
memory. You can use the MEMORY and SECTIONS directives in the linker
command file to customize the allocation process. For more information, see
the TMS320C6000 Assembly Language Tools User’s Guide.
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5.2 Invoking the Linker With the Compiler Shell (–z Option)

The options and parameters discussed in this section apply to both methods
of linking; however, when you link while compiling, the linker options must fol-
low the –z option (see section 2.2, Invoking the C Compiler Shell, on page 2-4).

By default, the compiler does not run the linker. However, if you use the –z op-
tion, a program is compiled, assembled, and linked in one step. When using
–z to enable linking, remember that:

� The –z option divides the command line into compiler options (the options
before –z) and linker options (the options following –z).

� The –z option must follow all source files and other compiler options on the
command line or be specified with the C_OPTION environment variable.

All arguments that follow –z on the command line are passed on to the linker.
These arguments can be linker command files, additional object files, linker
options, or libraries. For example, to compile and link all the .c files in a directo-
ry, enter:

cl6x –sq *.c –z c.cmd –o prog.out –l rts6201.lib

First, all of the files in the current directory that have a .c extension are com-
piled using the –s (interlist C and assembly code) and –q (run in quiet mode)
options. Second, the linker links the resulting object files by using the c.cmd
command file. The –o option names the output file, and the –l option names
the runtime-support library.

The order in which the linker processes arguments is important. The compiler
passes arguments to the linker in the following order:

1) Object filenames from the command line

2) Arguments following the –z option on the command line

3) Arguments following the –z option from the C_OPTION environment
variable
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5.3 Disabling the Linker (–c Shell Option)

You can override the –z option by using the –c shell option. The –c option is
especially helpful if you specify the –z option in the C_OPTION environment
variable and want to selectively disable linking with the –c option on the
command line.

The –c linker option has a different function than, and is independent of, the
–c shell option. By default, the compiler uses the –c linker option when you use
the –z option. This tells the linker to use C linking conventions (autoinitializa-
tion of variables at runtime). If you want to initialize variables at load time, use
the –cr linker option following the –z option.
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5.4 Linker Options

All command-line input following the –z option is passed to the linker as param-
eters and options. Following are the options that control the linker, along with
detailed descriptions of their effects.

–a Produces an absolute, executable module. This is the
default; if neither –a nor –r is specified, the linker acts
as if –a is specified.

–ar Produces a relocatable, executable object module

–b Disables merge of symbolic debugging information

–c Autoinitializes variables at runtime. See section 8.8.3
on page 8-40, for more information.

–cr Initializes variables at load time. See section 8.8.4 on
page 8-41, for more information.

–e global_symbol Defines a global_symbol that specifies the primary
entry point for the output module

–f fill_value Sets the default fill value for null areas within output
sections; fill_value is a 32-bit constant

–g global_symbol Defines global_symbol as global even if the global
symbol has been made static with the –h linker option

–h Makes all global symbols static

–heap  size Sets the heap size (for dynamic memory allocation) to
size bytes and defines a global symbol that specifies
the heap size. The default is 1K bytes.

–i directory Alters the library-search algorithm to look in directory
before looking in the default location. This option must
appear before the –l linker option. The directory must
follow operating system conventions. You can specify
up to eight –i options.

–l libraryname (lower case L) Names an archive library file or linker
command filename as linker input. The libraryname is
an archive library name and must follow operating
system conventions.

–m filename Produces a map or listing of the input and output sec-
tions, including null areas, and places the listing in file-
name. The filename must follow operating system
conventions.
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–n Ignores all fill specifications in memory directives. Use
this option in the development stage of a project to
avoid generating large .out files, which can result from
using memory directive fill specifications.

–o filename Names the executable output module. The filename
must follow operating system conventions. If the –o
option is not used, the default filename is a.out.

–q Requests a quiet run (suppresses the banner)

–r Retains relocation entries in the output module

–s Strips symbol table information and line number en-
tries from the output module.

–stack  size Sets the C system stack size to size bytes and defines
a global symbol that specifies the stack size. The de-
fault is 1K bytes.

–u symbol Places the unresolved external symbol symbol into
the output module’s symbol table

–w Displays a message when an undefined output sec-
tion is created

–x Forces rereading of libraries. Resolves back refer-
ences

For more information on linker options, see the Linker Description chapter in
the TMS320C6000 Assembly Language Tools User’s Guide.
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5.5 Controlling the Linking Process

Regardless of the method you choose for invoking the linker, special
requirements apply when linking C programs. You must:

� Include the compiler’s runtime-support library
� Specify the type of initialization
� Determine how you want to allocate your program into memory

This section discusses how these factors are controlled and provides an
example of the standard default linker command file.

For more information about how to operate the linker, see the linker description
in the TMS320C6000 Assembly Language Tools User’s Guide.

5.5.1 Linking With Runtime-Support Libraries

You must link all C programs with a runtime-support library. The library con-
tains standard C functions as well as functions used by the compiler to manage
the C environment. You must use the –l linker option to specify which ’C6000
runtime-support library to use. The –l option also tells the linker to look at the
–i options and then the C_DIR environment variable to find an archive path or
object file. To use the –l linker option, type on the command line:

lnk6x {–c | –cr } filenames –l libraryname

Generally, you should specify the library as the last name on the command line
because the linker searches libraries for unresolved references in the order
that files are specified on the command line. If any object files follow a library,
references from those object files to that library are not resolved. You can use
the –x linker option to force the linker to reread all libraries until references are
resolved. Whenever you specify a library as linker input, the linker includes and
links only those library members that resolve undefined references.

The ’C6000 libraries are rts6201.lib and rts6701.lib, for use with little-endian
code, and rts6201e.lib and rts6701e.lib, for use with big-endian code.

You must link all C programs with an object module called boot.obj. When a
C program begins running, it must execute boot.obj first. The boot.obj file con-
tains code and data to initialize the runtime environment; the linker automati-
cally extracts boot.obj and links it when you use –c or –cr and include
rts6201.lib or rts6201e.lib, and either rts6701.lib or rts6701e.lib in the link.
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Note: The _c_int00 Symbol

One important function contained in the runtime support library is _c_int00.
The symbol _c_int00 is the starting point in boot.obj; if you use the –c or –cr
linker option, _c_int00 is automatically defined as the entry point for the
program. If your program begins running from reset, you should set up the
reset vector to branch to _c_int00 so that the processor executes boot.obj
first.

The boot.obj module contains code and data for initializing the runtime envi-
ronment. The module performs the following tasks:

1) Sets up the stack

2) Processes the runtime initialization table and autoinitializes global
variables (when using the –c option)

3) Calls main

4) Calls exit when main returns

Chapter 9 describes additional runtime-support functions that are included in
the library. These functions include ANSI C standard runtime support.

5.5.2 Specifying the Type of Initialization

The C compiler produces data tables for initializing global variables. Section
8.8.2, Initialization Tables, on page 8-37 discusses the format of these tables.
These tables are in a named section called .cinit. The initialization tables are
used in one of the following ways:

� Global variables are initialized at runtime. Use the –c linker option (see
section 8.8.3, Autoinitialization of Variables at Runtime, on page 8-40).

� Global variables are initialized at load time. Use the –cr linker option (see
section 8.8.4, Initialization of Variables at Load time, on page 8-41).
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When you link a C program, you must use either the –c or –cr linker option.
These options tell the linker to select initialization at run time or load time.
When you compile and link programs, the –c linker option is the default. If
used, the –c linker option must follow the –z option. (See section 5.2, Invoking
the Linker With the Compiler Shell, on page 5-4). The following list outlines
the linking conventions used with –c or –cr:

� The symbol _c_int00 is defined as the program entry point; it identifies the
beginning of the C boot routine in boot.obj. When you use –c or –cr,
_c_int00 is automatically referenced, ensuring that boot.obj is automati-
cally linked in from the runtime-support library.

� The .cinit output section is padded with a termination record so that the
loader (load time initialization) or the boot routine (runtime initialization)
knows when to stop reading the initialization tables.

� When using initializing at load time (the –cr linker option), the following
occur:

� The linker sets the symbol cinit to –1. This indicates that the initializa-
tion tables are not in memory, so no initialization is performed at
runtime.

� The STYP_COPY flag is set in the .cinit section header. STYP_COPY
is the special attribute that tells the loader to perform autoinitialization
directly and not to load the .cinit section into memory. The linker does
not allocate space in memory for the .cinit section.

� When autoinitializing at run time (–c linker option), the linker defines the
symbol cinit as the starting address of the .cinit section. The boot routine
uses this symbol as the starting point for autoinitialization.
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5.5.3 Specifying Where to Allocate Sections in Memory

The compiler produces relocatable blocks of code and data. These blocks,
called sections, are allocated in memory in a variety of ways to conform to a
variety of system configurations.

The compiler creates two basic kinds of sections: initialized and uninitialized.
Table 5–1 summarizes the sections.

Table 5–1. Sections Created by the Compiler

(a) Initialized sections

Name Contents

.cinit Tables for explicitly initialized global and static variables

.const Global and static const variables that are explicitly initialized and con-
tain string literals

.switch Jump tables for large switch statements

.text Executable code and constants

(b) Uninitialized sections

Name Contents

.bss Global and static variables

.far Global and static variables declared far

.stack Stack

.sysmem Memory for malloc functions (heap)

When you link your program, you must specify where to allocate the sections
in memory. In general, initialized sections are linked into ROM or RAM;
uninitialized sections are linked into RAM. With the exception of .text, the ini-
tialized and uninitialized sections created by the compiler cannot be allocated
into internal program memory. See section 8.1.1, on page 8-3 for a complete
description of how the compiler uses these sections.

The linker provides MEMORY and SECTIONS directives for allocating sec-
tions. For more information about allocating sections into memory, see the
linker chapter in the TMS320C6000 Assembly Language Tools User’s Guide.
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5.5.4 A Sample Linker Command File

Example 5–1 shows a typical linker command file that links a C program. The
command file in this example is named lnk.cmd and lists several linker options:

–c Tells the linker to use autoinitialization at runtime.

–heap Tells the linker to set the C heap size at 0x2000 bytes.

–stack Tells the linker to set the stack size to 0x0100 bytes.

–l Tells the linker to use an archive library file, rts6201.lib, for
input.

To link the program, use the following syntax:

lnk6x  object_file(s) –o outfile –m mapfile lnk.cmd

The MEMORY and possibly the SECTIONS directives, might require modifica-
tion to work with your system. See the TMS320C6000 Assembly Language
Tools User’s Guide for more information on these directives.

Example 5–1. Sample Linker Command File

–c
–heap 0x2000
–stack 0x0100
–l rts6201.lib

MEMORY
{
    VECS:   o = 00000000h       l = 00400h /* reset & interrupt vectors     */
    PMEM:   o = 00000400h       l = 0FC00h /* intended for initialization   */
    BMEM:   o = 80000000h       l = 10000h /* .bss, .sysmem, .stack, .cinit */
}

SECTIONS
{
    vectors     >       VECS
    .text       >       PMEM
    .tables     >       BMEM
    .data       >       BMEM
    .stack      >       BMEM
    .bss        >       BMEM
    .sysmem     >       BMEM
    .cinit      >       BMEM
    .const      >       BMEM
    .cio        >       BMEM 
    .far        >       BMEM 
}
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Using the Stand-Alone Simulator

The TMS320C6000 stand-alone simulator loads and runs an executable
COFF .out file. When used with the C I/O libraries, the stand-alone simulator
supports all C I/O functions with standard output to the screen.

The stand-alone simulator is useful for quick simulation of small pieces of
code; specifically, to gather cycle count information. It is faster for iterative
code changes than using the TMS320C6000 debugger.

The stand-alone simulator gives you a way to gather statistics about your
program using the clock function. Additional benefits are that the stand-alone
simulator can be used in a batch file and is included in the code generation
tools.

This chapter describes how to invoke the stand-alone simulator. It also
provides an example of C code and the stand-alone simulator results.
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6.1 Invoking the Stand-Alone Simulator

This section shows how to invoke the stand-alone simulator to load and run
an executable COFF .out file. This is the general syntax for invoking the
stand-alone simulator:

load6x [options] filename.out

load6x The command that invokes the stand-alone simulator.

options Options affect how the stand-alone simulator acts and
how it handles your .out file. Options can appear any-
where on the command line. (Options are discussed in
section 6.2, Stand-Alone Simulator Options.)

filename.out Names the .out file to be loaded into the stand-alone sim-
ulator. The .out file must be an executable COFF file.

The stand-alone simulator can run both ’C62xx and ’C67xx files. No options
are needed to specify either a floating-point or fixed-point .out file. The stand-
alone simulator determines the version (’C62xx or ’C67xx) by reading COFF
flags in the .out file.

The banner generated upon invoking the stand-alone simulator defines the
values (memory map, silicon revision, fast or slow version of load6x, etc.) used
to load and run the .out file. Example 6–1 provides two instances of the banner.
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Example 6–1. Sample Stand-Alone Simulator Banners

(a) The file clock.out invoked with no options

load6x clock.out
TMS320C6x Standalone Simulator Version X.X
Copyright (c) 1989–1999 by Texas Instruments Incorporated
OPTIONS –– C6xxx Simulator
OPTIONS –– REVISION 2
OPTIONS –– MAP 1 *** DEFAULT MEMORY MAPPING ***
NOTE    : For details on above options please refer to the readme.1st
Loading t.out
 174 Symbols loaded
Done
Interrupt to abort . . . 
Hello, world
Time = 133 cycles
NORMAL COMPLETION: 9873 cycles

(b) The file clock.out invoked with the –a option

load6x clock.out
TMS320C6x Standalone Simulator Version X.X
Copyright (c) 1989–1999 by Texas Instruments Incorporated
OPTIONS –– C6xxx Memory Hierarchy Modeling Simulator
OPTIONS –– REVISION 2
OPTIONS –– MAP 1 *** DEFAULT MEMORY MAPPING ***
WARNING : Ensure that map modes for linker.cmd file and load6x are same!!
NOTE    : For details on above options please refer to the readme.1st
Loading t.out
 174 Symbols loaded
Done
Interrupt to abort . . . 
Hello, world
Time = 7593 cycles
NORMAL COMPLETION: 98705 cycles
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6.2 Stand-Alone Simulator Options

Following are the options that control the stand-alone simulator, along with
descriptions of their effects.

–a Enables memory hierarchy modelling which counts data
memory bank conflicts, external memory access stalls, and
model program cache on both ’C62x and ’C67x models. See
section 6.3, Selecting Memory Hierarchy Modelling (–a Op-
tion), on page 6-6 for more information.

–b Initializes all memory in the .bss section (data) with 0s. The C
language ensures that all uninitialized static storage class vari-
ables are initialized to 0 at the beginning of the program.
Because the compiler does not set uninitialized variables, the
–b option enables you to initialize these variables.

–d[d] Enables verbose mode. Prints internal status messages de-
scribing I/O at a low level. Use –dd for more verbose informa-
tion.

–f value Initializes all memory in the .bss section (data) with a specified
value. The value is a 32-bit constant (up to 8 hexadecimal dig-
its). For example, load6x –f 0xabcdabcd will fill the .bss
section with the hexadecimal value abcdabcd.

–g Enables profiling mode. Source files must be compiled with the
–mg profiling option for profiling to work on the stand-alone
simulator. See section 6.4, Using the Profiling Capability of the
Stand-Alone Simulator (–g Option), on page 6-7 for more
information.

–h Prints the list of available options for the stand-alone simulator.

–o xxx Sets overall timeout to xxx minutes. The stand-alone simulator
aborts if the loaded program is not finished after xxx minutes.

–map value Selects the memory map. The value  can be 0 for memory
map 0 (internal program memory begins at 0x1400000) or 1 for
memory map 1. Memory map 1 is used by default. If the -q op-
tion is not used, the load6x banner lists the selected memory
map.

–q Requests a quiet run (suppresses the banner)
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–r xxx Relocates all sections by xxx bytes during the load. For more
information on relocation, see the linker chaper of the
TMS320C6000 Assembly Language Tools User’s Guide. 

–rev  value Selects the silicon revision to simulate. The value can be 2 for
revision 2 or 3 for revision 3. Revision 2 silicon is simulated by
default.  See section 6.5, Selecting Silicon Revision to Simu-
late (–rev Option), on page 6-9 for more information.

–t xxx Sets timeout to xxx seconds. The stand-alone simulator aborts
if no I/O event occurs for xxx seconds. I/O events include sys-
tem calls.

–z Pauses after each internal I/O error. Does not pause for EOF
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6.3 Selecting Memory Hierarchy Modeling (–a Option)

The stand-alone simulator does not by default count memory bank conflicts,
external memory access stalls, or model program cache on both ’C62x and
’C67x models. To enable these for more accurate chip simulation, use the –a
option.

When the –a option is used and the –q option is not used, the load6x banner
shows that the memory hierarchy modelling option has been selected. The
clock cycles provided by load6x may not be accurate in all cases involving ex-
ternal memory accesses, but can be considered as indicative of the silicon be-
havior. Enabling memory modeling causes the stand-alone simulator (load6x)
to run much slower.

The amount of time required to perform external memory accesses is deter-
mined by the values in the EMIF registers. By default, the stand-alone simula-
tor uses best case (i.e. fastest) values for all external memory spaces. The de-
fault EMIF values are:

� CE0 Space Control Register = 0x00000040 (32-bit wide SBSRAM)

� CE1 Space Control Register = 0x00000020 (32-bit wide asynchronous in-
terface)

� CE2 Space Control Register = 0x00000040 (32-bit wide SBSRAM)

� CE3 Space Control Register = 0x00000040 (32-bit wide SBSRAM)

These EMIF values can be changed from within a .out file code to select differ-
ent external memories and to modify access time values that more accurately
reflect your system requirements. In a C code application, it is recommended
that this be done as early as possible to ensure the most accurate simulation
possible.

Note: Cannot Change Memory Type

Code running in external memory cannot change the memory type of the
external memory space it is executing in.

Note: Fast Validation

Not using the –a option on a ’C62x/C67x .out file enables the fast version of
the stand-alone simulator. This allows for very fast validation of an applica-
tion without the use of hardware.



Using the Profiling Capability of the Stand-Alone Simulator

6-7Using the Stand-Alone Simulator

6.4 Using the Profiling Capability of the Stand-Alone Simulator

Invoking load6x with the -g option runs the standalone simulator in profiling
mode. Source files must be compiled with the -mg profiling option for profiling
to work on the stand-alone simulator (see section 3.10.2, Profiling Optimized
Code (–mg, –g, and –o Options), on page 3-30.) The profile results resemble
the results given by the profiler in the TI simulator debugger. The profile results
are stored in a file called by the same name as the .out file with the .vaa exten-
sion.

For example, to create a profile information file called file.vaa, enter the follow-
ing:

load6x –g file.out

Example 6–2 runs three different versions of the dot product routines and
prints out the result of each routine.

Example 6–2. Profiling Dot Product Routines

load6x –q –g t.out
val = 11480
val = 11480
val = 11480

<t.vaa>
Program Name:   /c6xcode/t.out
Start Address:  0000554c main, at line 32, ”/c6xcode/t.c”
Stop Address:   000073a0        exit
Run Cycles:     10543
Profile Cycles: 10543
BP Hits:        18

 
***************************************************************************
 Area Name                Count  Inclusive   Incl–Max  Exclusive  
Excl–Max
CF dot_prod1()                  1         60         60        
60         60
CF dot_prod2()                  1         55         55        
55         55
CF dot_prod3()                  1         35         35        
35         35
CF main()                       1      10537      10537       
134        134
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Example 6–2.Profiling Dot Product Routines (Continued)

***************************************************************************
 Area Name                Count
CF dot_prod1()                  1  25%
=====================================
CF dot_prod2()                  1  25%
=====================================
CF dot_prod3()                  1  25%
=====================================
CF main()                       1  25%
=====================================
 
***************************************************************************
 Area Name            Inclusive
CF main()                   10537  99%
=====================================
CF dot_prod1()                 60  <1%
CF dot_prod2()                 55  <1%
CF dot_prod3()                 35  <1%
 
***************************************************************************
 Area Name             Incl–Max
CF main()                   10537  99%
=====================================
CF dot_prod1()                 60  <1%
CF dot_prod2()                 55  <1%
CF dot_prod3()                 35  <1%
 
***************************************************************************
 Area Name            Exclusive
CF main()                     134   1%
=====================================
CF dot_prod1()                 60  <1% ================
CF dot_prod2()                 55  <1% ===============
CF dot_prod3()                 35  <1% =========
 
***************************************************************************
 Area Name             Excl–Max
CF main()                     134   1%
=====================================
CF dot_prod1()                 60  <1% ================
CF dot_prod2()                 55  <1% ===============
CF dot_prod3()                 35  <1% =========
 
***************************************************************************
 Area Name              Address
CF dot_prod1()           000052c0
CF dot_prod2()           000053a4
CF dot_prod3()           00005444
CF main()                0000554c
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6.5 Selecting Silicon Revision to Simulate (–rev Option)

A new silicon revision option allows the standalone simulator to support both
revisions 2 and 3 of ’C6000 silicon. By default, the standalone simualtor simu-
lates revision 2 silicon.

load6x -rev value file .out

The valid values are 2 to select revision 2 silicon and 3 to select revision 3 sili-
con. In revision 3 silicon, the internal data memory has been divided into two
memory spaces (0x8000000–0x80007fff and 0x800800–0x800ffff) allowing
accesses to the same bank of memory if you are accessing different halves.
For example:

MVK .S2 0x80000000, B5
MVKH .S2 0x80000000, B5
MVK .S1 0x80008000, A5
MVKH .S1 0x80008000, A5
LDW .D2 *B5, B6

|| LDW .D1 *A5, A6

In this example, the LDW instructions in parallel do not cause a memory bank
conflict in revision 3 silicon, while it will in revision 2 silicon.

For an illustration of an interleaved memory with two memory spaces as for
revision 3 silicon, see Figure 4–2 on page 4-46.

If the -q option is not used, the load6x banner lists the selected silicon revision.
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6.6 Stand-Alone Simulator Example

A typical use of the stand-alone simulator is running code that includes the
clock function to find the number of cycles required to run the code. Use printf
statements to display your data to the screen. Example 6–3 shows an
example of the C code for accomplishing this.

Example 6–3. C Code With Clock Function

#include <stdio.h>
#include <time.h>

main()
{
    clock_t start;
    clock_t overhead;
    clock_t elapsed;

    /* Calculate the overhead from calling clock() */

    start    = clock();
    overhead = clock() – start;

    /* Calculate the elapsed time */

    start   = clock();
    puts(”Hello, world”);
    elapsed = clock() – start – overhead;

    printf(”Time = %ld cycles\n”, (long)elapsed);
}

To compile and link the code in Example 6–3, enter the following text on the
command line. The –z option invokes the linker, –l linker option names a linker
command file, and the –o linker option names the output file.

cl6x clock.c –z –l lnk60.cmd –o clock.out

To run the stand-alone simulator on the resulting executable COFF file, enter:

load6x clock.out

Example 6–4. Stand-Alone Simulator Results After Compiling and Linking Example 6–3

TMS320C6x Standalone Simulator   Version x.xx
Copyright (c) 1989–1997 Texas Instruments Incorporated
Interrupt to abort . . .
Hello, world
Time = 3338 cycles
NORMAL COMPLETION: 11692 cycles
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The TMS320C6000 C compiler supports the C language standard that was
developed by a committee of the American National Standards Institute
(ANSI) to standardize the C programming language.

ANSI C supersedes the de facto C standard that is described in the first edition
of The C Programming Language by Kernighan and Ritchie. The ANSI stan-
dard is described in the American National Standard for Information Sys-
tems—Programming Language C X3.159–1989. The second edition of The
C Programming Language is based on the ANSI standard. ANSI C encom-
passes many of the language extensions provided by current C compilers and
formalizes many previously unspecified characteristics of the language.
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7.1 Characteristics of TMS320C6000 C

The ANSI standard identifies certain features of the C language that are
affected by characteristics of the target processor, runtime environment, or
host environment. For efficiency or practicality, these characteristics can differ
among standard compilers. This section describes how these characteristics
are implemented for the ’C6000 C compiler.

The following list identifies all such cases and describes the behavior of the
’C6000 C compiler in each case. Each description also includes a reference
to more information. Many of the references are to the formal ANSI standard
or to the second edition of The C Programming Language by Kernighan and
Ritchie (K&R).

7.1.1 Identifiers and Constants

� The first 100 characters of all identifiers are significant. Case is significant;
uppercase and lowercase characters are distinct for identifiers. These
characteristics apply to all identifiers, internal and external.

(ANSI 3.1.2, K&R A2.3)

� The source (host) and execution (target) character sets are assumed to
be ASCII. There are no multibyte characters.

 (ANSI 2.2.1, K&R A12.1)

� Hex or octal escape sequences in character or string constants may have
values up to 32 bits. (ANSI 3.1.3.4, K&R A2.5.2)

� Character constants with multiple characters are encoded as the last
character in the sequence. For example,

’abc’ == ’c’ (ANSI 3.1.3.4, K&R A2.5.2)

7.1.2 Data Types

� For information about the representation of data types, see section 7.2 on
page 7-5. (ANSI 3.1.2.5, K&R A4.2)

� The type size_t, which is the result of the sizeof operator, is unsigned int.
(ANSI 3.3.3.4, K&R A7.4.8)

� The type ptrdiff_t, which is the result of pointer subtraction, is int.
(ANSI 3.3.6, K&R A7.7)
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7.1.3 Conversions

� Float-to-integer conversions truncate toward 0. 
(ANSI 3.2.1.3, K&R A6.3)

� Pointers and integers can be freely converted.
(ANSI 3.3.4, K&R A6.6)

7.1.4 Expressions

� When two signed integers are divided and either is negative, the quo-
tient is negative, and the sign of the remainder is the same as the sign of
the numerator. The slash mark (/) is used to find the quotient and the per-
cent symbol (%) is used to find the remainder. For example,

10 / –3 == –3, –10 / 3 == –3

10 % –3 == 1, –10 % 3 == –1 (ANSI 3.3.5, K&R A7.6)

A signed modulus operation takes the sign of the dividend (the first oper-
and).

� A right shift of a signed value is an arithmetic shift; that is, the sign is
preserved. (ANSI 3.3.7, K&R A7.8)

7.1.5 Declarations

� The register storage class is effective for all chars, shorts, ints, and pointer
types. For more information, see section 7.4, Register Variables, on
page 7-12. (ANSI 3.5.1, K&R A2.1)

� Structure members are packed into words.
(ANSI 3.5.2.1, K&R A8.3)

� A bit field defined as an integer is signed. Bit fields are packed into words
and do not cross word boundaries. For more information about bit-field
packing, see section 8.2.2, Bit Fields, page 8-13.

(ANSI 3.5.2.1, K&R A8.3)

� The interrupt keyword can be applied only to void functions that have no
arguments. For more information about the interrupt keyword, see sec-
tion 7.3.3 on page 7-8.
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7.1.6 Preprocessor

� The preprocessor ignores any unsupported #pragma directive.
 (ANSI 3.8.6, K&R A12.8)

The following pragmas are supported:

� CODE_SECTION
� DATA_ALIGN
� DATA_MEM_BANK
� DATA_SECTION
� FUNC_CANNOT_INLINE
� FUNC_EXT_CALLED
� FUNC_INTERRUPT_THRESHOLD
� FUNC_IS_PURE
� FUNC_IS_SYSTEM
� FUNC_NEVER_RETURNS
� FUNC_NO_GLOBAL_ASG
� FUNC_NO_IND_ASG
� INTERRUPT
� NMI_INTERRUPT
� STRUCT_ALIGN

For more information on pragmas, see section 7.6 on page 7-14.
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7.2 Data Types

Table 7–1 lists the size, representation, and range of each scalar data type for
the ’C6000 compiler. Many of the range values are available as standard mac-
ros in the header file limits.h. For more information, see section 9.3.6, Limits
(float.h and limits.h), on page 9-16.

Table 7–1. TMS320C6000 C Data Types

Range

Type Size Representation Minimum Maximum

char, signed char 8 bits ASCII –128 127

unsigned char 8 bits ASCII 0 255

short 16 bits 2s complement –32 768 32 767

unsigned short 16 bits Binary 0 65 535

int, signed int 32 bits 2s complement –2 147 483 648 2 147 483 647

unsigned int 32 bits Binary 0 4 294 967 295

long, signed long 40 bits 2s complement –549 755 813 888 549 755 813 887

unsigned long 40 bits Binary 0 1 099 511 627 775

enum 32 bits 2s complement –2 147 483 648 2 147 483 647

float 32 bits IEEE 32-bit 1.175 494e–38† 3.40 282 346e+38

double 64 bits IEEE 64-bit 2.22 507 385e–308† 1.79 769 313e+308

long double 64 bits IEEE 64-bit 2.22 507 385e–308† 1.79 769 313e+308

pointers 32 bits Binary 0 0xFFFFFFFF

† Figures are minimum precision.
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7.3 Keywords

The ’C6000 C compiler supports the standard const, register, and volatile
keywords. In addition, the ’C6000 C compiler extends the C language through
the support of the cregister, interrupt, near, and far keywords.

7.3.1 The const Keyword

The TMS320C6000 C compiler supports the ANSI standard keyword const.
This keyword gives you greater optimization and control over allocation of stor-
age for certain data objects. You can apply the const qualifier to the definition
of any variable or array to ensure that its value is not altered.

If you define an object as far const, the .const section allocates storage for the
object. The const data storage allocation rule has two exceptions:

� If the keyword volatile is also specified in the definition of an object (for ex-
ample, volatile const int x). Volatile keywords are assumed to be allocated
to RAM. (The program does not modify a const volatile object, but some-
thing external to the program might.)

� If the object is auto (allocated on the stack).

In both cases, the storage for the object is the same as if the const keyword
were not used.

The placement of the const keyword within a definition is important. For exam-
ple, the first statement below defines a constant pointer p to a variable int. The
second statement defines a variable pointer q to a constant int:

int * const p = &x;
const int * q = &x;

Using the const keyword, you can define large constant tables and allocate
them into system ROM. For example, to allocate a ROM table, you could use
the following definition:

far const int digits[] = {0,1,2,3,4,5,6,7,8,9};
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7.3.2 The cregister Keyword

The ’C6000 compiler extends the C language by adding the cregister keyword
to allow high level language access to control registers.

When you use the cregister keyword on an object, the compiler compares the
name of the object to a list of standard control registers for the ’C6000 (see
Table 7–2). If the name matches, the compiler generates the code to reference
the control register. If the name does not match, the compiler issues an error.

Table 7–2. Valid Control Registers

Register Description

AMR Addressing mode register

CSR Control status register

FADCR (’C67x only) FP ADD control register

FAUCR (’C67x only) FP AUX control register

FMCR (’C67x only) FP MULT control register

ICR Interrupt clear register

IER Interrupt enable register

IFR Interrupt flag register

IRP Interrupt return pointer

ISR Interrupt set register

ISTP Interrupt service table pointer

NRP Nonmaskable interrupt return pointer

The cregister keyword can only be used in file scope. The cregister keyword
is not allowed on any declaration within the boundaries of a function. It can only
be used on objects of type integer or pointer. The cregister keyword is not
allowed on objects of any floating-point type or on any structure or union
objects.

The cregister keyword does not imply that the object is volatile. If the control
register being referenced is volatile (that is, can be modified by some external
control), then the object must be declared with the volatile keyword also.

To use the control registers in Table 7–2, you must declare each register as
follows. The C6X.h include file defines all the control registers in this manner:

extern cregister volatile unsigned int  register;

Once you have declared the register, you can use the register name directly.
Note that IFR is read only. See the TMS320C6000 CPU and Instruction Set
Reference Guide for detailed information on the control registers.
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See Example 7–1 for an example that declares and uses control registers.

Example 7–1. Define and Use Control Registers

extern cregister volatile unsigned int AMR;
extern cregister volatile unsigned int CSR;
extern cregister volatile unsigned int IFR;
extern cregister volatile unsigned int ISR;
extern cregister volatile unsigned int ICR;
extern cregister volatile unsigned int IER;

extern cregister volatile unsigned int FADCR; 
extern cregister volatile unsigned int FAUCR; 
extern cregister volatile unsigned int FMCR;

main()
{
   printf(”AMR = %x\n”, AMR);
}

7.3.3 The interrupt Keyword

The ’C6000 compiler extends the C language by adding the interrupt keyword,
which specifies that a function is treated as an interrupt function.

Functions that handle interrupts follow special register-saving rules and a spe-
cial return sequence. When C code is interrupted, the interrupt routine must
preserve the contents of all machine registers that are used by the routine or
by any function called by the routine. When you use the interrupt keyword with
the definition of the function, the compiler generates register saves based on
the rules for interrupt functions and the special return sequence for interrupts.

You can only use the interrupt keyword with a function that is defined to return
void and that has no parameters. The body of the interrupt function can have
local variables and is free to use the stack or global variables. For example:

interrupt void int_handler()
{
    unsigned int flags;

    ...
}

The name c_int00 is the C entry point. This name is reserved for the system
reset interrupt. This special interrupt routine initializes the system and calls the
function main. Because it has no caller, c_int00 does not save any registers.
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7.3.4 The near and far Keywords

The ’C6000 C compiler extends the C language with the near and far keywords
to specify how global and static variables are accessed and how functions are
called.

Syntactically, the near and far keywords are treated as storage class modifiers.
They can appear before, after, or in between the storage class specifiers and
types. Two storage class modifiers cannot be used together in a single decla-
ration. For example:

far static int x;
static near int x;
static int far x;
far int foo();
static far int foo();

7.3.4.1 Near and far data objects

Global and static data objects can be accessed in the following two ways:

near keyword The compiler assumes that the data item can be accessed
relative to the data page pointer. For example:
  ldw   *dp(_address),a0

far keyword The compiler cannot access the data item via the dp. This
can be required if the total amount of program data is larg-
er than the offset allowed (32K) from the DP. For example:
  mvk   _address,a1

  mvkh  _address,a1

  ldw   *a1,a0

By default, the compiler generates small-memory model code, which means
that every data object is handled as if it were declared near, unless it is actually
declared far. If an object is declared near, it is loaded using relative offset
addressing from the data page pointer (DP, which is B14). DP points to the
beginning of the .bss section.

If you use the DATA_SECTION pragma, the object is indicated as a far vari-
able, and this cannot be overridden. This ensures access to the variable, since
the variable might not be in the .bss section. For details, see section 7.6.4,
DATA_SECTION pragma, on page 7-17.
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7.3.4.2 Near and far function calls

Function calls can be invoked in one of two ways:

near  keyword The compiler assumes that destination of the call is within
± 1 M word of the caller. Here the compiler uses the PC
relative branch instruction.
  B     _func

far  keyword The compiler is told by the user that the call is not within
± 1 M word.
  mvk   _func,a1

  mvkh  _func,a1

  B     a1

By default, the compiler generates small-memory model code, which means
that every function call is handled as if it were declared near, unless it is
actually declared far.

7.3.4.3 Controlling How Runtime-Support Functions Are Called (–mr Option)

The –mrn option controls how runtime-support functions are called:

–mr0 Runtime-support data and calls are near

–ml1 Runtime-support data and calls are far

By default, runtime-support functions are called with the same convention as
ordinary functions you code yourself. If you do not use a –ml option to enable
one of large-memory models, then these calls will be near. The –mr0 option
causes calls to runtime-support functions to be near, regardless of the setting
of the –ml option. The –mr0 option is for special situations, and typically is not
needed. The –mr1 option causes calls to runtime-support functions to be far,
regardless of the setting of the –ml option.

The –mr option only addresses how runtime-support functions are called. Call-
ing functions with the far method does not mean those functions must be in
off-chip memory. It simply means those functions can be placed at any dis-
tance from where they are called.
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7.3.4.4 Large model option (–ml)

The large model command line option changes the default near and far
assumptions. The near and far modifiers always override the default.

The –mln option generates large-memory model code on four levels (–ml0,
–ml1, –ml2, and –ml3):

–ml/–ml0 Aggregate data (structs/arrays) default to far

–ml1 All calls default to far

–ml2 All aggregate data and calls default to far

–ml3 All calls and all data default to far

If no level is specified, all data and functions default to near. Near data is ac-
cessed via the data page pointer more efficiently while near calls are executed
more efficiently using a PC relative branch.

Use these options if you have too much static and extern data to fit within a
15-bit scaled offset from the beginning of the .bss section, or if you have calls
in which the called function is more than ± 1 M word away from the call site.
The linker issues an error message when these situations occur.

If an object is declared far, its address is loaded into a register and the compiler
does an indirect load of that register. For more information on the –mln option,
see page 2-16.

For more information on the differences in the large and small memory models,
see section 8.1.5 on page 8-6.

7.3.5 The volatile Keyword

The optimizer analyzes data flow to avoid memory accesses whenever
possible. If you have code that depends on memory accesses exactly as
written in the C code, you must use the volatile keyword to identify these
accesses. A variable qualified with a volatile keyword is allocated to an unini-
tialized section (as opposed to a register). The compiler does not optimize out
any references to volatile variables.

In the following example, the loop waits for a location to be read as 0xFF:

unsigned int *ctrl;
while (*ctrl !=0xFF);

In this example, *ctrl is a loop-invariant expression, so the loop is optimized
down to a single-memory read. To correct this, define *ctrl as:

volatile unsigned int *ctrl;

Here the *ctrl pointer is intended to reference a hardware location, such as an
interrupt flag.
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7.4 Register Variables

The TMS320C6000 C compiler treats register variables (variables defined
with the register keyword) differently, depending on whether you use the op-
timizer.

� Compiling with the optimizer

The compiler ignores any register definitions and allocates registers to
variables and temporary values by using an algorithm that makes the most
efficient use of registers.

� Compiling without the optimizer

If you use the register keyword, you can suggest variables as candidates
for allocation into registers. The compiler uses the same set of registers for
allocating temporary expression results as it uses for allocating register
variables.

The compiler attempts to honor all register definitions. If the compiler runs
out of appropriate registers, it frees a register by moving its contents to
memory. If you define too many objects as register variables, you limit the
number of registers the compiler has for temporary expression results.
This limit causes excessive movement of register contents to memory.

Any object with a scalar type (integral, floating point, or pointer) can be defined
as a register variable. The register designator is ignored for objects of other
types, such as arrays.

The register storage class is meaningful for parameters as well as local vari-
ables. Normally, in a function, some of the parameters are copied to a location
on the stack where they are referenced during the function body. The compiler
copies a register parameter to a register instead of the stack, which speeds
access to the parameter within the function.

For more information about registers, see section 8.3, Register Conventions,
on page 8-15.
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7.5 The asm Statement

The TMS320C6000 C compiler can embed ’C6000 assembly language in-
structions or directives directly into the assembly language output of the com-
piler. This capability is an extension to the C language—the asm statement.
The asm statement provides access to hardware features that C cannot pro-
vide. The asm statement is syntactically like a call to a function named asm,
with one string constant argument:

asm(”assembler text” ) ;

The compiler copies the argument string directly into your output file. The
assembler text must be enclosed in double quotes. All the usual character
string escape codes retain their definitions. For example, you can insert a .byte
directive that contains quotes as follows:

asm(”STR: .byte \”abc\””);

The inserted code must be a legal assembly language statement. Like all
assembly language statements, the line of code inside the quotes must begin
with a label, a blank, a tab, or a comment (asterisk or semicolon). The compiler
performs no checking on the string; if there is an error, the assembler detects
it. For more information about the assembly language statements, see the
TMS320C6000 Assembly Language Tools User’s Guide.

The asm statements do not follow the syntactic restrictions of normal C state-
ments. Each can appear as a statement or a declaration, even outside of
blocks. This is useful for inserting directives at the very beginning of a compiled
module.

Note: Avoid Disrupting the C Environment With asm Statements

Be careful not to disrupt the C environment with asm statements. The com-
piler does not check the inserted instructions. Inserting jumps and labels into
C code can cause unpredictable results in variables manipulated in or
around the inserted code. Directives that change sections or otherwise affect
the assembly environment can also be troublesome.

Be especially careful when you use the optimizer with asm statements.
Although the optimizer cannot remove asm statements, it can significantly
rearrange the code order near them and cause undesired results.
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7.6 Pragma Directives

Pragma directives tell the compiler’s preprocessor how to treat functions. The
’C6000 C compiler supports the following pragmas:

� CODE_SECTION
� DATA_ALIGN
� DATA_MEM_BANK
� DATA_SECTION
� FUNC_CANNOT_INLINE
� FUNC_EXT_CALLED
� FUNC_INTERRUPT_THRESHOLD
� FUNC_IS_PURE
� FUNC_IS_SYSTEM
� FUNC_NEVER_RETURNS
� FUNC_NO_GLOBAL_ASG
� FUNC_NO_IND_ASG
� INTERRUPT
� NMI_INTERRUPT
� STRUCT_ALIGN

Some of these pragmas use the arguments func and symbol. With the excep-
tion of the DATA_MEM_BANK pragma, these arguments must have file scope;
that is, you cannot define or declare them inside the body of a function. You
must specify the pragma outside the body of a function, and it must occur
before any declaration, definition, or reference to the func or symbol argument.
If you do not follow these rules, the compiler issues a warning.

7.6.1 The CODE_SECTION Pragma

The CODE_SECTION pragma allocates space for the symbol in a section
named section name. The syntax of the pragma is:

#pragma CODE_SECTION ( symbol, ”section name”);

The CODE_SECTION pragma is useful if you have code objects that you want
to link into an area separate from the .text section.

Example 7–2 demonstrates the use of the CODE_SECTION pragma.
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Example 7–2. Using the CODE_SECTION Pragma

(a) C source file

#pragma CODE_SECTION(fn, ”my_sect”)

int fn(int x)
{
   return c;
}

(b) Assembly source file

.file ”CODEN.c”

.sect ”my_sect”

.global _fn

.sym _fn,_fn,36,2,0

.func 3

7.6.2 The DATA_ALIGN Pragma

The DATA_ALIGN pragma aligns the symbol to an alignment boundary. The
alignment boundary is the maximum of the symbol’s default alignment value
or the value of the constant in bytes. The constant must be a power of 2. The
syntax of the pragma is:

#pragma DATA_ALIGN ( symbol, constant);

7.6.3 The DATA_MEM_BANK Pragma

The DATA_MEM_BANK pragma aligns a symbol or variable to a specified
‘C6000 internal data memory bank boundary. The constant specifies a specific
memory bank to start your variables on. The value of constant can be 0–3 for
‘C62xx (for data memory banks 0, 1, 2, 3 on the current ‘C62xx parts) or 0–7
for ‘C67xx (for data banks 0–7 on the current ‘C67xx parts). See Figure 4–1
on page 4-45 for a graphic representation of memory banks.

The syntax of this pragma is:

#pragma DATA_MEM_BANK ( symbol, constant);

Both global and local variables can be aligned with the DATA_MEM_BANK
pragma. The DATA_MEM_BANK pragma must reside inside the function that
contains the local variable being aligned. The symbol can also be used as a
parameter in the DATA_SECTION pragma.
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When optimization is enabled, the tools may or may not use the stack to store
the values of local variables.

The DATA_MEM_BANK pragma allows you to align data on any data memory
bank that can hold data of the symbol’s type size. This is useful if you need to
align data in a particular way to avoid memory bank conflicts in your hand-
coded assembly code versus padding with zeros and having to account for the
padding in your code.

This pragma increases the amount of space used in data memory by a small
amount as padding is used to align data onto the correct bank.

For ‘C62xx, the code in Example 7–3 guarantees that array x begins at an ad-
dress ending in 4 or c (in hexadecimal), and that array y begins at an address
ending in 2 or a. The alignment for array y affects its stack placement. Array
z is placed in the .z_sect section, and begins at an address ending in 6 or e.

Example 7–3. Using the DATA_MEM_BANK Pragma

#pragma DATA_MEM_BANK (x, 2);
short x[100];

#pragma DATA_MEM_BANK (z, 3);
#pragma DATA_SECTION (z, ”.z_sect”);
short z[100];

void main()
{
    #pragma DATA_MEM_BANK (y, 1);
    short y[100];
    ...
}
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7.6.4 The DATA_SECTION Pragma

The DATA_SECTION pragma allocates space for the symbol in a section
named section name. The syntax of the pragma is:

#pragma DATA_SECTION ( symbol, “section name”);

The DATA_SECTION pragma is useful if you have data objects that you want
to link into an area separate from the .bss section.

Example 7–4 demonstrates the use of the DATA_SECTION pragma.

Example 7–4. Using the DATA_SECTION Pragma

(a) C source file

#pragma DATA_SECTION(bufferB, ”my_sect”)
char bufferA[512];
char bufferB[512];

(b) Assembly source file

        .global _bufferA
        .bss    _bufferA,512,4
        .global _bufferB
_bufferB:       .usect  ”my_sect”,512,4

7.6.5 The FUNC_CANNOT_INLINE Pragma

The FUNC_CANNOT_INLINE pragma instructs the compiler that the named
function cannot be expanded inline. Any function named with this pragma
overrides any inlining you designate in any other way, such as using the inline
keyword.

The pragma must appear before any declaration or reference to the function
that you want to keep. The syntax of the pragma is:

#pragma FUNC_CANNOT_INLINE ( func);

The argument func is the name of the C function that cannot be inlined. For
more information, see section 2.10, Using Inline Function Expansion, on
page 2-35.
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7.6.6 The FUNC_EXT_CALLED Pragma

When you use the –pm option, the compiler uses program-level optimization.
When you use this type of optimization, the compiler removes any function that
is not called, directly or indirectly, by main. You might have C functions that are
called by hand-coded assembly instead of main.

The FUNC_EXT_CALLED pragma specifies to the optimizer to keep these C
functions or any other functions that these C functions call. These functions
act as entry points into C.

The pragma must appear before any declaration or reference to the function
that you want to keep. The syntax of the pragma is:

#pragma FUNC_EXT_CALLED  (func);

The argument func is the name of the C function that you do not want removed.

When you use program-level optimization, you may need to use the
FUNC_EXT_CALLED pragma with certain options. See section 3.5.2, Opti-
mization Considerations When Mixing C and Assembly, on page 3-19.

7.6.7 The FUNC_INTERRUPT_THRESHOLD Pragma

The compiler allows interrupts to be disabled around software pipelined loops
for threshold cycles within the function. This implements the –mi option for a
single function (see section 2.11, Interrupt Flexibility Options, on page 2-41).
The FUNC_INTERRUPT_THRESHOLD pragma always overrides the –min
command line option. A threshold value less than 0 assumes that the function
is never interrupted, which is equivalent to an interrupt threshold of infinity. The
syntax of the pragma is:

#pragma FUNC_INTERRUPT_THRESHOLD ( func, threshold);

The following examples demonstrate the use of different thresholds:

� #pragma FUNC_INTERRUPT_THRESHOLD (foo, 2000)

The function foo( ) must be interruptible at least every 2,000 cycles.

� #pragma FUNC_INTERRUPT_THRESHOLD (foo, 1)

The function foo( ) must always be interruptible.

� #pragma FUNC_INTERRUPT_THRESHOLD (foo, –1)

The function foo( ) is never interrupted.
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7.6.8 The FUNC_IS_PURE Pragma

The FUNC_IS_PURE pragma specifies to the optimizer that the named func-
tion has no side effects. This allows the optimizer to do the following:

� Delete the call to the function if the function’s value is not needed
� Delete duplicate functions

The pragma must appear before any declaration or reference to the function.
The syntax of the pragma is:

#pragma FUNC_IS_PURE  (func);

The argument func is the name of a C function.

7.6.9 The FUNC_IS_SYSTEM Pragma

The FUNC_IS_SYSTEM pragma specifies to the optimizer that the named
function has the behavior defined by the ANSI standard for a function with that
name.

The pragma must appear before any declaration or reference to the function
that you want to keep. The syntax of the pragma is:

#pragma FUNC_IS_SYSTEM  (func);

The argument func is the name of the C function to treat as an ANSI standard
function.

7.6.10 The FUNC_NEVER_RETURNS Pragma

The FUNC_NEVER_RETURNS pragma specifies to the optimizer that the
function never returns to its caller.

The pragma must appear before any declaration or reference to the function
that you want to keep. The syntax of the pragma is:

#pragma FUNC_NEVER_RETURNS  (func);

The argument func is the name of the C function that does not return.
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7.6.11 The FUNC_NO_GLOBAL_ASG Pragma

The FUNC_NO_GLOBAL_ASG pragma specifies to the optimizer that the
function makes no assignments to named global variables and contains no
asm statements.

The pragma must appear before any declaration or reference to the function
that you want to keep. The syntax of the pragma is:

#pragma FUNC_NO_GLOBAL_ASG  (func);

The argument func is the name of the C function that makes no assignments.

7.6.12 The FUNC_NO_IND_ASG Pragma

The FUNC_NO_IND_ASG pragma specifies to the optimizer that the function
makes no assignments through pointers and contains no asm statements.

The pragma must appear before any declaration or reference to the function
that you want to keep. The syntax of the pragma is:

#pragma FUNC_NO_IND_ASG  (func);

The argument func is the name of the C function that makes no assignments.

7.6.13 The INTERRUPT Pragma

The INTERRUPT pragma enables you to handle interrupts directly with C
code. The argument func is the name of a function. The pragma syntax is:

#pragma INTERRUPT  (func);

The code for func will return via the IRP (interrupt return pointer).

Except for _c_int00, which is the name reserved for the system reset interrupt
for C programs, the name of the interrupt (the func argument) does not need
to conform to a naming convention.
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7.6.14 The NMI_INTERRUPT Pragma

The NMI_INTERRUPT pragma enables you to handle non-maskable inter-
rupts directly with C code. The argument func is the name of a function. The
pragma syntax is:

#pragma NMI_INTERRUPT  (func);

The code generated for func  will return via the NRP versus the IRP as for a
function declared with the interrupt keyword or INTERRUPT pragma.

Except for _c_int00, which is the name reserved for the system reset interrupt
for C programs, the name of the interrupt (the func  argument) does not need
to conform to a naming convention.

7.6.15 The STRUCT_ALIGN Pragma

The STRUCT_ALIGN pragma is similar to DATA_ALIGN, but it can be applied
to a structure, union type, or typedef and is inherited by any symbol created
from that type. The syntax of the pragma is:

#pragma STRUCT_ALIGN  (type, constant expression);

This pragma guarantees that the alignment of the named type or the base type
of the named typedef is at least equal to that of the expression. (The alignment
may be greater as required by the compiler.) The alignment must be a power
of 2. The type  must be a type or a typedef name. If a type, it must be either
a structure tag or a union tag. If a typedef, it’s base type must be either a struc-
ture tag or a union tag.

Since ANSI C declares that a typedef is simply an alias for a type (i.e. a struct)
this pragma can be applied to the struct, the typedef of the struct, or any type-
def derived from them, and affects all aliases of the base type.

This example aligns any st_tag structure variables on a page boundary:

typedef struct st_tag
{
    int   a;
   short b;
} st_typedef;

#pragma STRUCT_ALIGN (st_tag, 128);

Any use of STRUCT_ALIGN with a basic type (int, short, float) or a variable
results in an error.
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7.7 Initializing Static and Global Variables

The ANSI C standard specifies that global (extern) and static variables without
explicit initializations must be initialized to 0 before the program begins run-
ning. This task is typically done when the program is loaded. Because the load-
ing process is heavily dependent on the specific environment of the target
application system, the compiler itself makes no provision for preinitializing
variables at run time. It is up to your application to fulfill this requirement.

If your loader does not preinitialize variables, you can use the linker to prein-
itialize the variables to 0 in the object file. For example, in the linker command
file, use a fill value of 0 in the .bss section:

SECTIONS
{

...

.bss: fill = 0x00;

...
}

Because the linker writes a complete load image of the zeroed .bss section into
the output COFF file, this method can have the unwanted effect of significantly
increasing the size of the output file (but not the program).

If you burn your application into ROM, you should explicitly initialize variables
that require initialization. The preceding method initializes .bss to 0 only at load
time, not at system reset or power up. To make these variables 0 at run time,
explicitly define them in your code.

For more information about linker command files and the SECTIONS direc-
tive, see the linker description information in the TMS320C6000 Assembly
Language Tools User’s Guide.
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7.8 Changing the ANSI C Language Mode
The –pk, –pr, and –ps options let you specify how the C compiler interprets
your source code. You can compile your source code in the following modes:

� Normal ANSI mode
� K&R C mode
� Relaxed ANSI mode
� Strict ANSI mode

The default is normal ANSI mode. Under normal ANSI mode, most ANSI viola-
tions are emitted as errors. Strict ANSI violations (those idioms and allow-
ances commonly accepted by C compilers, although violations with a strict in-
terpretation of ANSI), however, are emitted as warnings. Language exten-
sions, even those that conflict with ANSI C, are enabled.

7.8.1 Compatibility With K&R C (–pk Option)

The ANSI C language is a superset of the de facto C standard defined in Ker-
nighan and Ritchie’s The C Programming Language. Most programs written
for other non-ANSI compilers correctly compile and run without modification.

There are subtle changes, however, in the language that can affect existing
code. Appendix C in The C Programming Language (second edition, referred
to in this manual as K&R) summarizes the differences between ANSI C and
the first edition’s C standard (the first edition is referred to in this manual as
K&R C).

To simplify the process of compiling existing C programs with the ’C6000 ANSI
C compiler, the compiler has a K&R option (–pk) that modifies some semantic
rules of the language for compatibility with older code. In general, the –pk op-
tion relaxes requirements that are stricter for ANSI C than for K&R C. The –pk
option does not disable any new features of the language such as function pro-
totypes, enumerations, initializations, or preprocessor constructs. Instead,
–pk simply liberalizes the ANSI rules without revoking any of the features.

The specific differences between the ANSI version of C and the K&R version
of C are as follows:

� The integral promotion rules have changed regarding promoting an
unsigned type to a wider signed type. Under K&R C, the result type was
an unsigned version of the wider type; under ANSI, the result type is a
signed version of the wider type. This affects operations that perform dif-
ferently when applied to signed or unsigned operands; namely, compari-
sons, division (and mod), and right shift:

unsigned short u;
int i;
if (u < i) ... /* SIGNED comparison, unless –pk used */
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� ANSI prohibits combining two pointers to different types in an operation.
In most K&R compilers, this situation produces only a warning. Such
cases are still diagnosed when –pk is used, but with less severity:

int *p;
char *q = p; /* error without –pk, warning with –pk */

Even without –pk, a violation of this rule is a code-E (recoverable) error.
You can use –pe, which converts code-E errors to warnings, as an alterna-
tive to –pk.

� External declarations with no type or storage class (only an identifier) are
illegal in ANSI but legal in K&R:

a; /* illegal unless –pk used */

� ANSI interprets file scope definitions that have no initializers as tentative
definitions. In a single module, multiple definitions of this form are fused
together into a single definition. Under K&R, each definition is treated as
a separate definition, resulting in multiple definitions of the same object
and usually an error. For example:

int a;
int a; /* illegal if –pk used, OK if not */

Under ANSI, the result of these two definitions is a single definition for the
object a. For most K&R compilers, this sequence is illegal, because int a is
defined twice.

� ANSI prohibits, but K&R allows objects with external linkage to be
redeclared as static:

extern int a;
static int a; /* illegal unless –pk used */

� Unrecognized escape sequences in string and character constants are
explicitly illegal under ANSI but ignored under K&R:

char c = ’\q’; /* same as ’q’ if –pk used, error */
/* if not */

� ANSI specifies that bit fields must be of type int or unsigned. With –pk, bit
fields can be legally defined with any integral type. For example:

struct s
{
 short f : 2; /* illegal unless –pk used */
};

The ’C6000 C compiler operates on bit fields defined as unsigned ints.
Signed int bit field definitions are prohibited.

� K&R syntax allows a trailing comma in enumerator lists:

enum { a, b, c, }; /* illegal unless –pk used */

� K&R syntax allows trailing tokens on preprocessor directives:

#endif NAME /* illegal unless –pk used */
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7.8.2 Enabling Strict ANSI Mode and Relaxed ANSI Mode (–ps and –pr Options)

Use the –ps option when you want to compile under strict ANSI mode. In this
mode, error messages are provided when non-ANSI features are used, and
language extensions that could invalidate a strictly conforming program are
disabled. Examples of such extensions are the inline and asm keywords.

Use the –pr option when you want the compiler to ignore strict ANSI violations
rather than emit a warning (as occurs in normal ANSI mode) or an error mes-
sage (as occurs in strict ANSI mode). In relaxed ANSI mode, the compiler ac-
cepts extensions to the ANSI C standard, even when they conflict with ANSI C.
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Runtime Environment

This chapter describes the TMS320C6000 C runtime environment. To ensure
successful execution of C programs, it is critical that all runtime code maintain
this environment. It is also important to follow the guidelines in this chapter if
you write assembly language functions that interface with C code.
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8.1 Memory Model

The C compiler treats memory as a single linear block that is partitioned into
subblocks of code and data. Each subblock of code or data generated by a C
program is placed in its own continuous memory space. The compiler
assumes that a full 32-bit address space is available in target memory.

Note: The Linker Defines the Memory Map

The linker, not the compiler, defines the memory map and allocates code and
data into target memory. The compiler assumes nothing about the types of
memory available, about any locations not available for code or data (holes),
or about any locations reserved for I/O or control purposes. The compiler
produces relocatable code that allows the linker to allocate code and data
into the appropriate memory spaces.

For example, you can use the linker to allocate global variables into on-chip
RAM or to allocate executable code into external ROM. You can allocate
each block of code or data individually into memory, but this is not a general
practice (an exception to this is memory-mapped I/O, although you can
access physical memory locations with C pointer types).
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8.1.1 Sections

The compiler produces relocatable blocks of code and data called sections.
The sections are allocated into memory in a variety of ways to conform to a
variety of system configurations. For more information about sections and allo-
cating them, see the introductory COFF information in the TMS320C6000
Assembly Language Tools User’s Guide.

The ’C6000 compiler creates the following sections:

� Initialized sections  contain data or executable code. The C compiler
creates the following initialized sections:

� The .cinit section  contains tables for initializing variables and con-
stants.

� The .const section  contains string literals, floating-point constants,
and data defined with the C qualifier const (provided the constant is
not also defined as volatile).

� The .switch section  contains jump tables for large switch state-
ments.

� The .text section  contains all the executable code.

� Uninitialized sections  reserve space in memory (usually RAM). A pro-
gram can use this space at runtime to create and store variables. The
compiler creates the following uninitialized sections:

� The .bss section  reserves space for global and static variables.
When you specify the –c linker option, at program startup, the C boot
routine copies data out of the .cinit section (which can be in ROM) and
stores it in the .bss section. The compiler defines the global symbol
$bss and assigns $bss the value of the starting address of the .bss
section.

� The .far section  reserves space for global and static variables that
are declared far.

� The .stack section  allocates memory for the system stack. This
memory passes arguments to functions and allocates local variables.

� The .sysmem section  reserves space for dynamic memory alloca-
tion. The reserved space is used by the malloc, calloc, and realloc
functions. If a C program does not use these functions, the compiler
does not create the .sysmem section.

With the exception of .text, the initialized and uninitialized sections cannot be
allocated into internal program memory.
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The assembler creates the default sections .text, .bss, and .data. The C
compiler, however, does not use the .data section. You can instruct the com-
piler to create additional sections by using the CODE_SECTION and
DATA_SECTION pragmas (see sections 7.6.1, The CODE_SECTION
Pragma, on page 7-14 and 7.6.4, The DATA_SECTION Pragma, on page
7-17).

8.1.2 C System Stack

The C compiler uses a stack to:

� Save function return addresses
� Allocate local variables
� Pass arguments to functions
� Save temporary results

The runtime stack grows from the high addresses to the low addresses. The
compiler uses the B15 register to manage this stack. B15 is the stack pointer
(SP), which points to the next unused location on the stack.

The linker sets the stack size, creates a global symbol, __STACK_SIZE, and
assigns it a value equal to the stack size in bytes. The default stack size is
0x400 (1024) bytes. You can change the stack size at link time by using the
–stack option with the linker command. For more information on the –stack
option, see section 5.4, Linker Options, on page 5-6.

At system initialization, SP is set to a designated address for the top of the
stack. This address is the first location past the end of the .stack section. Since
the position of the stack depends on where the .stack section is allocated, the
actual address of the stack is determined at link time.

At system initialization, SP is set to the first 8-byte aligned address before the
end (highest numerical address) of the .stack section. This address is the first
location past the end of the .stack section. Since the position of the stack de-
pends on where the .stack section is allocated, the actual address of the stack
is determined at link time.

The C environment automatically decrements SP (register B15) at the entry
to a function to reserve all the space necessary for the execution of that func-
tion. The stack pointer is incremented at the exit of the function to restore the
stack to its state before the function was entered. If you interface assembly lan-
guage routines to C programs, be sure to restore the stack pointer to the state
it had before the function was entered. (For more information about using the
stack pointer, see section 8.3, Register Conventions, on page 8-15; for more
information about the stack, see section 8.4, Function Structure and Calling
Conventions, on page 8-17.)
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Note: Stack Overflow

The compiler provides no means to check for stack overflow during compila-
tion or at runtime. Place the beginning of the .stack section in the first address
after an unmapped memory space so stack overflow will cause a simulator
fault. This makes this problem easy to detect. Be sure to allow enough space
for the stack to grow.

8.1.3 Dynamic Memory Allocation

Dynamic memory allocation is not a standard part of the C language. The run-
time-support library supplied with the ’C6000 compiler contains several func-
tions (such as malloc, calloc, and realloc) that allow you to allocate memory
dynamically for variables at runtime.

Memory is allocated from a global pool, or heap, that is defined in the .sysmem
section. You can set the size of the .sysmem section by using the –heap size
option with the linker command. The linker also creates a global symbol,
__SYSMEM_SIZE, and assigns it a value equal to the size of the heap in
bytes. The default size is 0x400 bytes. For more information on the –heap
option, see section 5.4, Linker Options, on page 5-6.

Dynamically allocated objects are not addressed directly (they are always
accessed with pointers) and the memory pool is in a separate section (.sys-
mem); therefore, the dynamic memory pool can have a size limited only by the
amount of available memory in your system. To conserve space in the .bss
section, you can allocate large arrays from the heap instead of defining them
as global or static. For example, instead of a definition such as:

struct big table[100];

use a pointer and call the malloc function:

struct big *table
table = (struct big *)malloc(100*sizeof(struct big));

8.1.4 Initialization of Variables

The C compiler produces code that is suitable for use as firmware in a ROM-
based system. In such a system, the initialization tables in the .cinit section are
stored in ROM. At system initialization time, the C boot routine copies data
from these tables (in ROM) to the initialized variables in .bss (RAM).

In situations where a program is loaded directly from an object file into memory
and run, you can avoid having the .cinit section occupy space in memory. A
loader can read the initialization tables directly from the object file (instead of
from ROM) and perform the initialization directly at load time instead of at run-
time. You can specify this to the linker by using the –cr linker option. For more
information, see section 8.8, System Initialization, on page 8-35.
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8.1.5 Memory Models

The compiler supports two memory models that affect how the .bss section is
allocated into memory. Neither model restricts the size of the .text or .cinit
sections.

� The small memory model , which is the default, requires that the entire
.bss section fit within 32K bytes (32 768 bytes) of memory. This means that
the total space for all static and global data in the program must be less
than 32K bytes. The compiler sets the data-page pointer register (DP,
which is B14) during runtime initialization to point to the beginning of the
.bss section. Then the compiler can access all objects in .bss (global and
static variables and constant tables) with direct addressing without modi-
fying the DP.

� The large memory model  does not restrict the size of the .bss section;
unlimited space is available for static and global data. However, when the
compiler accesses any global or static object that is stored in .bss, it must
first load the object’s address into a register before a global data item is
accessed. This task produces two extra assembly instructions.

For example, the following compiler-generated assembly language uses
the MVK and MVKH instructions to move the global variable _x into the A0
register, then loads the B0 register using a pointer to A0:

MVK _x, A0
MVKH _x, A0
LDW *A0, B0

To use the large memory model, invoke the compiler with the –mln option.
For more information on the –mln option, see section 7.3.4.4, Large Model
Option (–ml), on page 7-11.

For more information on the storage allocation of global and static variables,
see section 7.3.4, The near and far Keywords, on page 7-9.
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8.1.6 Position Independent Data

Near global and static data are stored in the .bss section. All near data for a
program must fit within 32K bytes of memory. This limit comes from the ad-
dressing mode used to access near data, which is limited to a 15-bit unsigned
offset from DP (B14) the data page pointer.

For some applications, it may be desirable to have multiple data pages with
separate instances of near data. For example, a multi-channel application may
have multiple copies of the same program running with different data pages.
The functionality is supported by the ’C6x compilers memory model, and is re-
ferred to as position independent data.

Position independent data means that all near data accesses are relative to
the data page (DP) pointer, allowing for the DP to be changed at runtime. There
are three areas where position independent data is implemented by the com-
piler:

1) Near direct memory access

   STW  B4,*DP(_a)

   .global _a
   .bss    _a,4,4

All near direct accesses are relative to the DP.

2) Near indirect memory access

   MVK (_a – $bss),A0
   ADD DP,A0,A0

The  expression (_a – $bss) calculates the offset of the symbol _a from the
start of the .bss section. The compiler defines the global $bss in generated
assembly code. The value of $bss is the starting address of the .bss sec-
tion.

3) Initialized near pointers

The .cinit record for an initialized near pointer value is stored as an offset
from the beginning of the .bss section. During the autoinitialization of glob-
al variables, the data page pointer is added to these offsets. (See section
8.8.2, Initialization Tables, on page 8-37.)
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8.2 Object Representation

This section explains how various data objects are sized, aligned, and
accessed.

8.2.1 Data Type Storage

Table 8–1 lists register and memory storage for various data types:

Table 8–1. Data Representation in Registers and Memory

Data Type Register Storage Memory Storage

char Bits 0–7 of register 8 bits

unsigned char Bits 0–7 of register 8 bits

short Bits 0–15 of register 16 bits

unsigned short Bits 0–15 of register 16 bits

int Entire register 32 bits

unsigned int Entire register 32 bits

enum Entire register 32 bits

float Entire register 32 bits

long Bits 0–39 of even/odd register
pair

64 bits aligned to 64-bit
boundary

unsigned long Bits 0–39 of even/odd register
pair

64 bits aligned to 64-bit
boundary

double Even/odd register pair 64 bits aligned to 64-bit
boundary

long double Even/odd register pair 64 bits aligned to 64-bit
boundary

struct Members are stored as their
individual types require.

Multiple of 8 bits aligned to 8-bit
boundary; members are stored
as their individual types require.

array Members are stored as their
individual types require.

Members are stored as their
individual types require, aligned
to 32-bit boundary.
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8.2.1.1 char and short Data Types (signed and unsigned)

The char and unsigned char data types are stored in memory as a single byte
and are loaded to and stored from bits 0–7 of a register (see Figure 8–1).
Objects defined as short or unsigned short are stored in memory as two bytes
and are loaded to and stored from bits 0–15 of a register (see Figure 8–1). In
big-endian mode, 2-byte objects are loaded to registers by moving the first
byte (that is, the lower address) of memory to bits 8–15 of the register and mov-
ing the second byte of memory to bits 0–7. In little-endian mode, 2-byte objects
are loaded to registers by moving the first byte (that is, the lower address) of
memory to bits 0–7 of the register and moving the second byte of memory to
bits 8–15.

Figure 8–1. Char and Short Data Storage Format

Si d 8 bit
MS LS

Signed 8-bit
char

S S S S S S S S S S S S S S S S S S S S S S S S S I I I I I I I
char

31 7 0

U i d
MS LS

Unsigned
8-bit char

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U U U U U U U U
8-bit char

31 7 0

Si d 16 bit
MS LS

Signed 16-bit
short

S S S S S S S S S S S S S S S S S I I I I I I I I I I I I I I I
short

31 15 0

U i d
MS LS

Unsigned
16-bit short

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U U U U U U U U U U U U U U U U
16-bit short

31 15 0

Legend: S = sign MS = most significant
I = signed integer LS = least significant
U = unsigned integer
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8.2.1.2 enum, float, and int Data Types (signed and unsigned)

The int, unsigned int, enum, and float data types are stored in memory as 32-bit
objects (see Figure 8–2). Objects of these types are loaded to and stored from
bits 0–32 of a register. In big-endian mode, 4-byte objects are loaded to regis-
ters by moving the first byte (that is, the lower address) of memory to bits 24–31
of the register, moving the second byte of memory to bits 16–23, moving the
third byte to bits 8–15, and moving the fourth byte to bits 0–7. In little-endian
mode, 4-byte objects are loaded to registers by moving the first byte (that is,
the lower address) of memory to bits 0–7 of the register, moving the second
byte to bits 8–15, moving the third byte to bits 16–23, and moving the fourth
byte to bits 24–31.

Figure 8–2. 32-Bit Data Storage Format

Single- MS LSSingle-
precision S E E E E E E E E M M M M M M M M M M M M M M M M M M M M M M Mec s o

floating-point 31 23 0

Signed 32-bit MS LSSigned 32-bit
integer, or S I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Itege , o

enum 31 0

U i d 32 bit
MS LS

Unsigned 32-bit
integer

U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U
integer

31 0

Legend: S = sign E = exponent MS = most significant
M = mantissa I = signed integer LS = least significant
U = unsigned integer
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8.2.1.3 long Data Types (signed and unsigned)

Long and unsigned long data types are stored in an odd/even pair of registers
(see Figure 8–3) and are always referenced as a pair in the format of odd
register:even register (for example, A1:A0). In little-endian mode, the lower
address is loaded into the even register and the higher address is loaded into
the odd register; if data is loaded from location 0, then the byte at 0 is the lowest
byte of the even register. In big-endian mode, the higher address is loaded into
the even register and the lower address is loaded into the odd register; if data
is loaded from location 0, then the byte at 0 is the highest byte of the odd
register but is ignored.

Figure 8–3. 40-Bit Data Storage Format

(a) Signed 40-bit long

MS

Odd register X X X X X X X X X X X X X X X X X X X X X X X X S I I I I I I IOdd register

31 8 7 6 0

LS

Even register I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I IEven register

31 0

(b) Unsigned 40-bit long

MS

Odd register X X X X X X X X X X X X X X X X X X X X X X X X U U U U U U U UOdd register

31 8 7 0

LS

Even register U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U UEven register

31 0

Legend: S = sign I = signed integer MS = most significant
U = unsigned integer X = unused LS = least significant
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8.2.1.4 double and long double Data Types

Double and long double data types are stored in an odd/even pair of registers
(see Figure 8–4) and can only exist in a register in one format: as a pair in the
format of odd register:even register (for example, A1:A0). The odd memory
word contains the sign bit, exponent, and the most significant part of the man-
tissa. The even memory word contains the least significant part of the mantis-
sa. In little-endian mode, the lower address is loaded into the even register and
the higher address is loaded into the odd register. In big-endian mode, the
higher address is loaded into the even register and the lower address is loaded
into the odd register. In little-endian mode, if code is loaded from location 0,
then the byte at 0 is the lowest byte of the even register. In big-endian mode,
if code is loaded from location 0, then the byte at 0 is the highest byte of the
odd register.

Figure 8–4. Double-Precision Floating-Point Data Storage Format

MS

Odd register S E E E E E E E E E E E M M M M M M M M M M M M M M M M M M M MOdd register

31 20 0

LS

Even register M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M MEven register

31 0

Legend: S = sign MS = most significant
M = mantissa LS = least significant
E = exponent

8.2.1.5 Structures and Arrays

A nested structure is aligned on a 4-byte boundary only if it does not contain
a double or a long double. Top level structures and nested structures contain-
ing a long, unsigned long, double or long double are aligned on an 8-byte
boundary. Structures always reserve a multiple of four bytes of storage in
memory. However, when a structure contains a double or a long double type,
the structure reserves a multiple of eight bytes. Members of structures are
stored in the same manner as if they were individual objects.

Arrays are aligned on a boundary required by their element types. Elements
of arrays are stored in the same manner as if they were individual objects.
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8.2.2 Bit Fields

Bit fields are the only objects that are packed within a byte. That is, two bit fields
can be stored in the same byte. Bit fields can range in size from 1 to 32 bits,
but they never span a 4-byte boundary.

For big-endian mode, bit fields are packed into registers from most significant
bit (MSB) to least significant bit (LSB) in the order in which they are defined
Bit fields are packed in memory from most significant byte (MSbyte) to least
significant byte (LSbyte). For little-endian mode, bit fields are packed into
registers from the LSB to the MSB in the order in which they are defined, and
packed in memory from LSbyte to MSbyte (see Figure 8–5).

Figure 8–5 illustrates bit field packing, using the following bit field definitions:

struct{
int A:7
int B:10
int C:3
int D:2
int E:9

}x;

A0 represents the least significant bit of the field A; A1 represents the next least
significant bit, etc. Again, storage of bit fields in memory is done with a
byte-by-byte, rather than bit-by-bit, transfer.

Figure 8–5. Bit Field Packing in Big-Endian and Little-Endian Formats
MS LS
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Legend: X = not used
MS = most significant
LS = least significant
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8.2.3 Character String Constants

In C, a character string constant is used in one of the following ways:

� To initialize an array of characters. For example:

char s[] = ”abc”;

When a string is used as an initializer, it is simply treated as an initialized
array; each character is a separate initializer. For more information about
initialization, see section 8.8, System Initialization, on page 8-35.

� In an expression. For example:

strcpy (s, ”abc”);

When a string is used in an expression, the string itself is defined in the
.const section with the .string assembler directive, along with a unique
label that points to the string; the terminating 0 byte is included. For exam-
ple, the following lines define the string abc, and the terminating 0 byte (the
label SL5 points to the string):

.sect ”.const”
SL5: .string ”abc”,0

String labels have the form SLn, where n is a number assigned by the
compiler to make the label unique. The number begins at 0 and is in-
creased by 1 for each string defined. All strings used in a source module
are defined at the end of the compiled assembly language module.

The label SLn represents the address of the string constant. The compiler
uses this label to reference the string expression.

Because strings are stored in the .const section (possibly in ROM) and
shared, it is bad practice for a program to modify a string constant. The
following code is an example of incorrect string use:

const char *a = ”abc”
a[1] = ’x’; /* Incorrect! */
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8.3 Register Conventions

Strict conventions associate specific registers with specific operations in the
C environment. If you plan to interface an assembly language routine to a C
program, you must understand and follow these register conventions.

The register conventions dictate how the compiler uses registers and how val-
ues are preserved across function calls. Table 8–2 summarizes how the
compiler uses the TMS320C6000 registers.

8.3.1 Register Variables and Register Allocation

The registers in Table 8–2 are available to the compiler for allocation to regis-
ter variables and temporary expression results. If the compiler cannot allocate
a register of a required type, spilling occurs. Spilling is the process of moving
a register’s contents to memory to free the register for another purpose.

Objects of type double, long, or long double are allocated into an odd/even reg-
ister pair and are always referenced as a register pair (for example, A1:A0).
The odd register contains the sign bit, the exponent, and the most significant
part of the mantissa. The even register contains the least significant part of the
mantissa. The A4 register is used with A5 for passing the first argument if the
first argument is a double, long, or long double. The same is true for B4 and
B5 for the second parameter, and so on. For more information about argu-
ment-passing registers and return registers, see section 8.4, Function Struc-
ture and Calling Conventions.
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Table 8–2. Register Usage

Register

Function
Preserved

By Special Uses Register

Function
Preserved

By Special Uses

A0 Parent –– B0 Parent ––

A1 Parent –– B1 Parent ––

A2 Parent –– B2 Parent ––

A3 Parent Structure register (pointer
to a returned structure)

B3 Parent Return register (address to
return to)

A4 Parent Argument 1 or return value B4 Parent Argument 2

A5 Parent Argument 1 or return value
with A4 for doubles and
longs

B5 Parent Argument 2 with B4 for
doubles and longs

A6 Parent Argument 3 B6 Parent Argument 4

A7 Parent Argument 3 with A6 for
doubles and longs

B7 Parent Argument 4 with B6 for
doubles and longs

A8 Parent Argument 5 B8 Parent Argument 6

A9 Parent Argument 5 with A8 for
doubles and longs

B9 Parent Argument 6 with B8 for
doubles and longs

A10 Child Argument 7 B10 Child Argument 8

A11 Child Argument 7 with A10 for
doubles and longs

B11 Child Argument 8 with B10 for
doubles and longs

A12 Child Argument 9 B12 Child Argument 10

A13 Child Argument 9 with A12 for
doubles and longs

B13 Child Argument 10 with B12 for
doubles and longs

A14 Child –– B14 Child Data page pointer (DP)

A15 Child Frame pointer (FP) B15 Child Stack pointer (SP)
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8.4 Function Structure and Calling Conventions

The C compiler imposes a strict set of rules on function calls. Except for special
runtime support functions, any function that calls or is called by a C function
must follow these rules. Failure to adhere to these rules can disrupt the C
environment and cause a program to fail.

8.4.1 How a Function Makes a Call

A function (parent function) performs the following tasks when it calls another
function (child function).

1) Arguments passed to a function are placed in registers or on the stack.

If arguments are passed to a function, up to the first ten arguments are
placed in registers A4, B4, A6, B6, A8, B8, A10, B10, A12, and B12. If
longs, doubles, or long doubles are passed, they are placed in register
pairs A5:A4, B5:B4, A7:A6, and so on.

Any remaining arguments are placed on the stack (that is, the stack
pointer points to the next free location; SP + offset points to the eleventh
argument, and so on). Arguments placed on the stack must be aligned to a
value appropriate for their size. An argument that is not declared in a proto-
type and whose size is less than the size of int is passed as an int. An argu-
ment that is a float is passed as double if it has no prototype declared.

A structure argument is passed as the address of the structure. It is up to
the called function to make a local copy.

For a function declared with an ellipsis indicating that it is called with vary-
ing numbers of arguments, the convention is slightly modified. The last
explicitly declared argument is passed on the stack, so that its stack
address can act as a reference for accessing the undeclared arguments.

Figure 8–6 shows the register argument conventions.
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Figure 8–6. Register Argument Conventions

int func1( int a, int b, int c);

A4 A4 B4 A6

int func2( int a, float b, int *c, struct A d, float e, int f, int g);

A4 A4 B4 A6 B6 A8 B8 A10

int func3( int a, double b, float c, long double d);

A4 A4 B5:B4 A6 B7:B6

int vararg(int a, int b, int c, int d, ...);

A4 A4 B4  A6 stack ...

struct A func4( int y);

A3 A4

2) The calling function must save registers A0 to A9 and B0 to B9, if their val-
ues are needed after the call, by pushing the values onto the stack.

3) The caller (parent) calls the function (child).

4) Upon returning, the caller reclaims any stack space needed for arguments
by adding to the stack pointer. This step is needed only in assembly pro-
grams that were not compiled from C code. This is because the C compiler
allocates the stack space needed for all calls at the beginning of the func-
tion and deallocates the space at the end of the function.

8.4.2 How a Called Function Responds

A called function (child function) must perform the following tasks:

1) The called function (child) allocates enough space on the stack for any
local variables, temporary storage areas, and arguments to functions that
this function might call. This allocation occurs once at the beginning of the
function and may include the allocation of the frame pointer (FP).

The frame pointer is used to read arguments from the stack and to handle
register spilling instructions. If any arguments are placed on the stack or if
the frame size exceeds 128K bytes, the frame pointer (A15) is allocated in
the following manner:

a) The old A15 is saved on the stack.

b) The new frame pointer is set to the current SP (B15).

c) The frame is allocated by decrementing SP by a constant.



Function Structure and Calling Conventions

8-19Runtime Environment

d) Neither A15 (FP) nor B15 (SP) is decremented anywhere else within
this function.

If the above conditions are not met, the frame pointer (A15) is not allo-
cated. In this situation, the frame is allocated by subtracting a constant
from register B15 (SP). Register B15 (SP) is not decremented anywhere
else within this function.

2) If the called function calls any other functions, the return address must be
saved on the stack. Otherwise, it is left in the return register (B3) and is
overwritten by the next function call.

3) If the called function modifies any registers numbered A10 to A15 or B10
to B15, it must save them, either in other registers or on the stack. The
called function can modify any other registers without saving them.

4) If the called function expects a structure argument, it receives a pointer to
the structure instead. If writes are made to the structure from within the
called function, space for a local copy of the structure must be allocated
on the stack and the local structure must be copied from the passed
pointer to the structure. If no writes are made to the structure, it can be
referenced in the called function indirectly through the pointer argument.

You must be careful to declare functions properly that accept structure
arguments, both at the point where they are called (so that the structure
argument is passed as an address) and at the point where they are de-
clared (so the function knows to copy the structure to a local copy).

5) The called function executes the code for the function.

6) If the called function returns any integer, pointer, or float type, the return
value is placed in the A4 register. If the function returns a double or long
double type, the value is placed in the A5:A4 register pair.

If the function returns a structure, the caller allocates space for the struc-
ture and passes the address of the return space to the called function in
A3. To return a structure, the called function copies the structure to the
memory block pointed to by the extra argument.

In this way, the caller can be smart about telling the called function where
to return the structure. For example, in the statement s = f(x), where s is a
structure and f is a function that returns a structure, the caller can actually
make the call as f(&s, x). The function f then copies the return structure
directly into s, performing the assignment automatically.

If the caller does not use the return structure value, an address value of 0
can be passed as the first argument. This directs the called function not to
copy the return structure.
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You must be careful to declare functions properly that return structures,
both at the point where they are called (so that the extra argument is
passed) and at the point where they are declared (so the function knows to
copy the result).

7) Any register numbered A10 to A15 or B10 to B15 that was saved in step
3 is restored.

8) If A15 was used as a frame pointer (FP), the old value of A15 is restored
from the stack. The space allocated for the function in step 1 is reclaimed
at the end of the function by adding a constant to register B15 (SP).

9) The function returns by jumping to the value of the return register (B3) or
the saved value of the return register.

8.4.3 Accessing Arguments and Local Variables

A function accesses its stack arguments and local nonregister variables indi-
rectly through register A15 (FP) or through register B15 (SP), one of which
points to the top of the stack. Since the stack grows toward smaller addresses,
the local and argument data for a function are accessed with a positive offset
from FP or SP. Local variables, temporary storage, and the area reserved for
stack arguments to functions called by this function are accessed with offsets
smaller than the constant subtracted from FP or SP at the beginning of the
function.

Stack arguments passed to this function are accessed with offsets greater
than or equal to the constant subtracted from register FP or SP at the begin-
ning of the function. The compiler attempts to keep register arguments in their
original registers if the optimizer is used or if they are defined with the register
keyword. Otherwise, the arguments are copied to the stack to free those regis-
ters for further allocation.

For information on whether FP or SP is used to access local variables, tempo-
rary storage, and stack arguments, see section 8.4.2, How a Called Function
Responds, on page 8-18.
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8.5 Interfacing C With Assembly Language

The following are ways to use assembly language with C code:

� Use separate modules of assembled code and link them with compiled C
modules (see section 8.5.1).

� Use intrinsics in C source to directly call an assembly language statement
(see section 8.5.2 on page 8-24).

� Use inline assembly language embedded directly in the C source (see
section 8.5.5 on page 8-29).

� Use assembly language variables and constants in C source (see section
8.5.6 on page 8-30).

8.5.1 Using Assembly Language Modules With C Code

Interfacing C with assembly language functions is straightforward if you follow
the calling conventions defined in section 8.4, Function Structure and Calling
Conventions, on page 8-17 and the register conventions defined in section
8.3, Register Conventions, on page 8-15. C code can access variables and call
functions defined in assembly language, and assembly code can access C
variables and call C functions.

Follow these guidelines to interface assembly language and C:

� All functions, whether they are written in C or assembly language, must
follow the register conventions outlined in section 8.3, Register Conven-
tions, on page 8-15.

� You must preserve registers A10 to A15, B3, and B10 to B15, and you may
need to preserve A3. If you use the stack normally, you do not need to
explicitly preserve the stack. In other words, you are free to use the stack
inside a function as long as you pop everything you pushed before your
function exits. You can use all other registers freely without preserving
their contents.

� Interrupt routines must save all the registers they use. For more informa-
tion, see section 8.6, Interrupt Handling, on page 8-32.
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� When you call a C function from assembly language, load the designated
registers with arguments and push the remaining arguments onto the
stack as described in section 8.4.1, How a Function Makes a Call, on page
8-17.

Remember that only A10 to A15 and B10 to B15 are preserved by the C
compiler. C functions can alter any other registers, save any other regis-
ters whose contents need to be preserved by pushing them onto the stack
before the function is called, and restore them after the function returns.

� Functions must return values correctly according to their C declarations.
Integers and 32-bit floating-point (float) values are returned in A4. Doubles
and long doubles are returned in A5:A4. Structures are returned by copy-
ing them to the address in A3.

� No assembly module should use the .cinit section for any purpose other
than autoinitialization of global variables. The C startup routine in boot.c
assumes that the .cinit section consists entirely of initialization tables. Dis-
rupting the tables by putting other information in .cinit can cause unpredict-
able results.

� The compiler adds an underscore (_) to the beginning of all identifiers
(that is, labels). In assembly language modules, you must use an under-
score prefix for all objects that are to be accessible from C. For example,
a C object named x is called _x in assembly language. Identifiers that are
used only in assembly language modules can use any name that does not
begin with a leading underscore without conflicting with a C identifier.

� Any object or function declared in assembly language that is accessed or
called from C must be declared with the .def or .global directive in the
assembler. This declares the symbol as external and allows the linker to
resolve references to it.

Likewise, to access a C function or object from assembly language,
declare the C object with .ref or .global. This creates an undeclared exter-
nal reference that the linker resolves.
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Example 8–1 illustrates a C function called main, which calls an assembly
language function called asmfunc. The asmfunc function takes its single
argument, adds it to the C global variable called gvar, and returns the result.

Example 8–1. Calling an Assembly Language Function From C

(a) C program

extern  int  asmfunc(); /* declare external asm function */
int gvar = 4;        /* define global variable        */

main()
{
   int i;
   i = 1;
   i = asmfunc(i);   /* call function normally        */
}

(b) Assembly language program

.global _gvar ; declare external variables

.global _asmfunc ; declare external function
_asmfunc:

LDW *+b14(_gvar),A3
NOP 4
ADD a3,a4,a3
STW a3,*+b14(_gvar)
MV a3,a4
B B3
NOP 5

In the C program in Example 8–1, the extern declaration of asmfunc is optional
because the return type is int. Like C functions, you need to declare assembly
functions only if they return noninteger values or pass noninteger parameters.
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8.5.2 Using Intrinsics to Access Assembly Language Statements

The ’C6000 C compiler recognizes a number of intrinsic operators. Intrinsics
are used like functions and produce assembly language statements that would
otherwise be inexpressible in C. You can use C variables with these intrinsics,
just as you would with any normal function.

The intrinsics are specified with a leading underscore, and are accessed by
calling them as you do a function. For example:

int x1, x2, y;
y = _sadd(x1, x2);

The intrinsics listed in Table 8–3 correspond to the indicated ’C6000 assembly
language instructions. See the TMS320C6000 CPU and Instruction Set Refer-
ence Guide for more information.

Table 8–3. TMS320C6000 C Compiler Intrinsics 

C Compiler Intrinsic
Assembly
Instruction Description Device †

int _abs( int src2);

int_labs( long src2);

ABS Returns the saturated absolute value
of src2

int _add2( int src1, int src2); ADD2 Adds the upper and lower halves of
src1 to the upper and lower halves of
src2 and returns the result. Any over-
flow from the lower half add does not
affect the upper half add.

uint _clr( uint src2, uint csta, uint cstb); CLR Clears the specified field in src2. The
beginning and ending bits of the field to
be cleared are specified by csta and
cstb, respectively.

uint _clrr ( uint src2, int src1); CLR Clears the specified field in src2. The
beginning and ending bits of the field to
be cleared are specified by the lower
10 bits of src1.

int _dpint( double src); DPINT Converts 64-bit double to 32-bit signed
integer, using the rounding mode set by
the CSR register

’C67x

† Instructions not specified with a device apply to all ’C6000 devices.
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Table 8–3. TMS320C6000 C Compiler Intrinsics (Continued)

C Compiler Intrinsic Device †Description
Assembly
Instruction

int _ext(uint src2, uint csta, int cstb); EXT Extracts the specified field in src2,
sign-extended to 32 bits. The extract is
performed by a shift left followed by a
signed shift right; csta and cstb are the
shift left and shift right amounts,
respectively.

int _extr( int src2, int src1) EXT Extracts the specified field in src2,
sign-extended to 32 bits. The extract is
performed by a shift left followed by a
signed shift right; the shift left and shift
right amounts are specified by the low-
er 10 bits of src1.

uint _extu( uint src2, uint csta, uint cstb); EXTU Extracts the specified field in src2,
zero-extended to 32 bits. The extract is
performed by a shift left followed by a
unsigned shift right;csta and cstb are
the shift left and shift right amounts, re-
spectively.

uint _extur( uint src2, int src1); EXTU Extracts the specified field in src2,
zero-extended to 32 bits. The extract is
performed by a shift left followed by a
unsigned shift right;the shift left and
shift right amounts are specified by the
lower 10 bits of src1.

uint _ftoi( float src); Reinterprets the bits in the float as an
unsigned. For example:
_ftoi (1.0) == 1065353216U

uint _hi(double src); Returns the high (odd) register of a
double register pair

double _itod( uint src2, uint src1) Builds a new double register pair by re-
interpreting two unsigneds, where src2
is the high (odd) register and src1 is the
low (even) register

float _itof( uint src); Reinterprets the bits in the unsigned as
a float. For example:
_itof (0x3f800000)==1.0

† Instructions not specified with a device apply to all ’C6000 devices.
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Table 8–3. TMS320C6000 C Compiler Intrinsics (Continued)

C Compiler Intrinsic Device †Description
Assembly
Instruction

uint _lo(double src); Returns the low (even) register of a
double register pair

uint _lmbd( uint src1, uint src2); LMBD Searches for a leftmost 1 or 0 of src2
determined by the LSB of src1. Re-
turns the number of bits up to the bit
change.

int _mpy( int src1, int src2);
int _mpyus( uint src1, int src2);
int _mpysu( int src1, uint src2);
uint _mpyu( uint src1, uint src2);

MPY
MPYUS
MPYSU
MPYU

Multiplies the 16 LSBs of src1 by the 16
LSBs of src2 and returns the result.
Values can be signed or unsigned.

int _mpyh( int src1, int src2);
int _mpyhus( uint src1, int src2);
int _mpyhsu( int src1, uint src2);
uint _mpyhu( uint src1, uint src2);

MPYH
MPYHUS
MPYHSU
MPYHU

Multiplies the 16 MSBs of src1 by the
16 MSBs of src2 and returns the result.
Values can be signed or unsigned.

int _mpyhl( int src1, int src2);
int _mpyhuls( uint src1, int src2);
int _mpyhslu( int src1, uint src2);
uint _mpyhlu( uint src1, uint src2);

MPYHL
MPYHULS
MPYHSLU
MPYHLU

Multiplies the 16 MSBs of src1 by the
16 LSBs of src2 and returns the result.
Values can be signed or unsigned.

int _mpylh( int src1, int src2);
int _mpyluhs( uint src1, int src2);
int _mpylshu( int src1, uint src2);
uint _mpylhu( uint src1, uint src2);

MPYLH
MPYLUHS
MPYLSHU
MPYLHU

Multiplies the 16 LSBs of src1 by the 16
MSBs of src2 and returns the result.
Values can be signed or unsigned.

void _nassert( int); Generates no code. Tells the optimizer
that the expression declared with the
assert function is true; this gives a hint
to the optimizer as to what
optimizations might be valid.

uint _norm( int src2);
uint _lnorm( long src2);

NORM Returns the number of bits up to the
first nonredundant sign bit of src2

double _rcpdp( double src); RCPDP Computes the approximate 64-bit
double reciprocal

’C67x

float _rcpsp( float src); RCPSP Computes the approximate 32-bit float
reciprocal

’C67x

double _rsqrdp( double src); RSQRDP Computes the approximate 64-bit
double square root reciprocal

’C67x

† Instructions not specified with a device apply to all ’C6000 devices.
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Table 8–3. TMS320C6000 C Compiler Intrinsics (Continued)

C Compiler Intrinsic Device †Description
Assembly
Instruction

float _rsqrsp( float src); RSQRSP Computes the approximate 32-bit float
square root reciprocal

’C67x

int _sadd( int src1, int src2);
long _lsadd( int src1, long src2);

SADD Adds src1 to src2 and saturates the
result. Returns the result

int _sat( long src2); SAT Converts a 40-bit long to a 32-bit
signed int and saturates if necessary

uint _set(uint src2, uint csta, uint cstb); SET Sets the specified field in src2 to all 1s
and returns the src2 value. The begin-
ning and ending bits of the field to be
set are specified by csta and cstb,
respectively.

unit _setr( unit src2, int src1); SET Sets the specified field in src2 to all 1s
and returns the src2 value. The begin-
ning and ending bits of the field to be
set are specified by the lower ten bits of
src1.

int _smpy( int src1, int sr2);
int _smpyh( int src1, int sr2);
int _smpyhl( int src1, int sr2);
int _smpylh( int src1, int sr2);

SMPY
SMPYH
SMPYHL
SMPYLH

Multiplies src1 by src2, left shifts the
result by 1, and returns the result. If the
result is 0x80000000, saturates the
result to 0x7FFFFFFF

uint _sshl( uint src2, uint src1); SSHL Shifts src2 left by the contents of src1,
saturates the result to 32 bits, and re-
turns the result

int _spint( float); SPINT Converts 32-bit float to 32-bit signed in-
teger, using the rounding mode set by
the CSR register

’C67x

int _ssub( int src1, int src2);
long _lssub( int src1, long src2);

SSUB Subtracts src2 from src1, saturates the
result, and returns the result

uint _subc( uint src1, uint src2); SUBC Conditional subtract divide step

int _sub2( int src1, int src2); SUB2 Subtracts the upper and lower halves
of src2 from the upper and lower halves
of src1, and returns the result. Borrow-
ing in the lower half subtract does not
affect the upper half subtract.

† Instructions not specified with a device apply to all ’C6000 devices.
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8.5.3 Using _nassert to Expand Compiler Knowledge of Loops

The _nassert intrinsic has been expanded to allow other types of information.
You can now guarantee that a loop executes a certain number of times.

This example tells the compiler that the loop is guaranteed to run exactly 10
times:

_nassert (trip_count == 10);
for (i = 0; i < trip_count; i++) { ...

_nassert(); can also be used to specify a range for the trip count as well as a
factor of the trip count. For example:

_nassert ((trip >= 8) && (trip <= 48) && ((trip % 8) ==
0));
for (i = 0; i < trip; i++) { ...

This example tells the compiler that the loop executes between 8 and 48 times
and that the trip variable is a multiple of 8 (8, 16, 24, 32, 40, 48). The compiler
can now use all this information to generate the best loop possible by unrolling
better even when the –min option is used to specify that interrupts do occur
every n cycles.

8.5.4 SAT Bit Side Effects

The saturated intrinsic operations define the SAT bit if saturation occurs. The
SAT bit can be set and cleared from C code by accessing the control status
register (CSR). The compiler uses the following steps for generating code that
accesses the SAT bit:

1) The SAT bit becomes undefined by a function call or a function return. This
means that the SAT bit in the CSR is valid and can be read in C code until
a function call or until a function returns.

2) If the code in a function accesses the CSR, then the compiler assumes that
the SAT bit is live across the function, which means:

� The SAT bit is maintained by the code that disables interrupts around
software pipelined loops.

� Saturated instructions cannot be speculatively executed.

3) If an interrupt service routine modifies the SAT bit, then the routine should
be written to save and restore the CSR.
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8.5.5 Using Inline Assembly Language

Within a C program, you can use the asm statement to insert a single line of
assembly language into the assembly language file created by the compiler.
A series of asm statements places sequential lines of assembly language into
the compiler output with no intervening code. For more information, see sec-
tion 7.5, The asm Statement, on page 7-13.

The asm statement is useful for inserting comments in the compiler output.
Simply start the assembly code string with a semicolon (;) as shown below:

asm(”;*** this is an assembly language comment”);

Note: Using the asm Statement

Keep the following in mind when using the asm statement:

� Be extremely careful not to disrupt the C environment. The compiler
does not check or analyze the inserted instructions.

� Avoid inserting jumps or labels into C code because they can produce
unpredictable results by confusing the register-tracking algorithms that
the code generator uses.

� Do not change the value of a C variable when using an asm statement.

� Do not use the asm statement to insert assembler directives that change
the assembly environment.
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8.5.6 Accessing Assembly Language Variables From C

It is sometimes useful for a C program to access variables or constants defined
in assembly language. There are several methods that you can use to accom-
plish this, depending on where and how the item is defined: a variable defined
in the .bss section, a variable not defined in the .bss section, or a constant.

8.5.6.1 Accessing Assembly Language Global Variables

Accessing uninitialized variables from the .bss section or a section named with
.usect is straightforward:

1) Use the .bss or .usect directive to define the variable.

2) When you use .usect, the variable is defined in a section other than .bss
and therefore must be declared far in C.

3) Use the .def or .global directive to make the definition external.

4) Precede the name with an underscore in assembly language.

5) In C, declare the variable as extern and access it normally.

Example 8–2 shows how you can access a variable defined in .bss.

Example 8–2. Accessing an Assembly Language Variable From C

(a) C program

extern int var1; /* External variable */
far extern int var2; /* External variable */
var1 = 1; /* Use the variable */
var2 = 1; /* Use the variable */

(b) Assembly language program

* Note the use of underscores in the following lines

.bss _var1,4,4 ; Define the variable

.global var1 ; Declare it as external

_var2 .usect ”mysect”,4,4 ; Define the variable
.global _var2 ; Declare it as external
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8.5.6.2 Accessing Assembly Language Constants

You can define global constants in assembly language by using the .set, .def,
and .global directives, or you can define them in a linker command file using
a linker assignment statement. These constants are accessible from C only
with the use of special operators.

For normal variables defined in C or assembly language, the symbol table con-
tains the address of the value of the variable. For assembler constants, how-
ever, the symbol table contains the value of the constant. The compiler cannot
tell which items in the symbol table are values and which are addresses.

If you try to access an assembler (or linker) constant by name, the compiler
attempts to fetch a value from the address represented in the symbol table. To
prevent this unwanted fetch, you must use the & (address of) operator to get
the value. In other words, if x is an assembly language constant, its value in
C is &x.

You can use casts and #defines to ease the use of these symbols in your pro-
gram, as in Example 8–3.

Example 8–3. Accessing an Assembly Language Constant From C

(a) C program

extern int table_size; /*external ref */

#define TABLE_SIZE ((int) (&table_size))

. /* use cast to hide address–of */

.

.

for (i=0; i<TABLE_SIZE; ++i)

/* use like normal symbol */

(b) Assembly language program

_table_size .set 10000 ; define the constant
.global _table_size ; make it global

Because you are referencing only the symbol’s value as stored in the symbol
table, the symbol’s declared type is unimportant. In Example 8–3, int is used.
You can reference linker-defined symbols in a similar manner.
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8.6 Interrupt Handling

As long as you follow the guidelines in this section, you can interrupt and return
to C code without disrupting the C environment. When the C environment is
initialized, the startup routine does not enable or disable interrupts. If your sys-
tem uses interrupts, you must handle any required enabling or masking of
interrupts. Such operations have no effect on the C environment and are easily
incorporated with asm statements or calling an assembly language function.

8.6.1 Saving Registers During Interrupts

When C code is interrupted, the interrupt routine must preserve the contents
of all machine registers that are used by the routine or by any functions called
by the routine. The compiler handles register preservation if the interrupt ser-
vice routine is written in C.

8.6.2 Using C Interrupt Routines

A C interrupt routine is like any other C function in that it can have local vari-
ables and register variables; however, it should be declared with no arguments
and should return void. C interrupt routines can allocate up to 32K on the stack
for local variables. For example:

interrupt void example (void)
{
...
}

If a C interrupt routine does not call any other functions, only those registers
that the interrupt handler attempts to define are saved and restored. However,
if a C interrupt routine does call other functions, these functions can modify
unknown registers that the interrupt handler does not use. For this reason, the
routine saves all usable registers if any other functions are called. Interrupts
branch to the interrupt return pointer (IRP). Do not call interrupt handling func-
tions directly.

Interrupts can be handled directly with C functions by using the interrupt prag-
ma or the interrupt keyword. For more information, see section 7.6.13, The
INTERRUPT Pragma, on page 7-20, and section 7.3.3, The interrupt Key-
word, on page 7-8.

8.6.3 Using Assembly Language Interrupt Routines

You can handle interrupts with assembly language code as long as you follow
the same register conventions the compiler does. Like all assembly functions,
interrupt routines can use the stack, access global C variables, and call C func-
tions normally. When calling C functions, be sure that any registers listed in
Table 8–2 on page 8-16 are saved, because the C function can modify them.
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8.7 Runtime-Support Arithmetic Routines

The runtime-support library contains a number of assembly language func-
tions that provide arithmetic routines for C math operations that the ’C6000
instruction set does not provide, such as integer division, integer remainder,
and floating-point operations.

These routines follow the standard C calling sequence. You can call them
directly from C, but the compiler automatically adds them when appropriate.

The source code for these functions is in the source library rts.src. The source
code has comments that describe the operation of the functions. You can
extract, inspect, and modify any of the math functions. Be sure, however, that
you follow the calling conventions and register-saving rules outlined in this
chapter. Table 8–4 summarizes the runtime-support functions used for arith-
metic.

Table 8–4. Summary of Runtime-Support Arithmetic Functions
 

Type Function Description

float _cvtdf (double) Convert double to float

int _fixdi (double) Convert double to signed integer

long _fixdli (double) Convert double to long

uint _fixdu (double) Convert double to unsigned integer

ulong _fixdul (double) Convert double to unsigned long

double _cvtfd (float) Convert float to double

int _fixfi (float) Convert float to signed integer

long _fixfli (float) Convert float to long

uint _fixfu (float) Convert float to unsigned integer

ulong _fixful (float) Convert float to unsigned long

double _fltid (int) Convert signed integer to double

float _fltif (int) Convert signed integer to float

double _fltud (uint) Convert unsigned integer to double

float _fltuf (uint) Convert unsigned integer to float

float _fltlif (long) Convert signed long to float
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Table 8–4. Summary of Runtime-Support Arithmetic Functions
 (Continued)

Type DescriptionFunction

double _fltlid (long) Convert signed long to double

double _fltuld (ulong) Convert unsigned long to double

float _fltulf (ulong) Convert unsigned long to float

double _absd (double) Double absolute value

double _negd (double) Double negative value

float _absf (float) Float absolute value

float _negf (float) Float negative value

double _addd (double, double) Double addition

double _cmpd (double, double) Double comparison

double _divd (double, double) Double division

double _mpyd (double, double) Double multiplication

double _subd (double, double) Double subtraction

float _addf (float, float) Float addition

float _cmpf (float, float) Float comparison

float _divf (float, float) Float division

float _mpyf (float, float) Float multiplication

float _subf (float, float) Float subtraction

int _divi (int, int) Signed integer division

int _remi (int, int) Signed integer remainder

uint _divu (uint, uint) Unsigned integer division

uint _remu (uint, uint) Unsigned integer remainder

long _divli (long, long) Signed long division

long _remli (long, long) Signed long remainder

ulong _divul (ulong, ulong) Unsigned long division

ulong _remul (ulong, ulong) Unsigned long remainder
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8.8 System Initialization

Before you can run a C program, you must create the C runtime environment.
The C boot routine performs this task using a function called c_int00. The
runtime-support source library, rts.src, contains the source to this routine in a
module named boot.asm.

To begin running the system, the c_int00 function can be branched to or called,
but it is usually vectored to by reset hardware. You must link the c_int00 func-
tion with the other object modules. This occurs automatically when you use the
–c or –cr linker option and include rts6201.lib as one of the linker input files.

When C programs are linked, the linker sets the entry point value in the execut-
able output module to the symbol c_int00. This does not, however, set the
hardware to automatically vector to c_int00 at reset (see the TMS320C6000
CPU and Instruction Set Reference Guide).

The c_int00 function performs the following tasks to initialize the environment:

1) It defines a section called .stack for the system stack and sets up the initial
stack pointers.

2) It initializes global variables by copying the data from the initialization
tables in the .cinit section to the storage allocated for the variables in the
.bss section. If you are initializing variables at load time (–cr option), a
loader performs this step before the program runs (it is not performed by
the boot routine). For more information, see section 8.8.1, Automatic Ini-
tialization of Variables.

3) It calls the function main to run the C program.

You can replace or modify the boot routine to meet your system requirements.
However, the boot routine must perform the operations listed above to cor-
rectly initialize the C environment.
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8.8.1 Automatic Initialization of Variables

Some global variables must have initial values assigned to them before a C
program starts running. The process of retrieving these variables’ data and
intializing the variables with the data is called autoinitialization.

The compiler builds tables in a special section called .cinit that contains data
for initializing global and static variables. Each compiled module contains
these initialization tables. The linker combines them into a single table (a single
.cinit section). The boot routine or a loader uses this table to initialize all the
system variables.

Note: Initializing Variables

In standard C, global and static variables that are not explicitly initialized are
set to 0 before program execution. The ’C6000 C compiler does not perform
any preinitialization of uninitialized variables. Explicitly initialize any variable
that must have an initial value of 0.

The easiest method is to have the stand-alone simulator using the –b option
clear the .bss section before the program starts running. Another method is
to set a fill value of 0 in the linker control map for the .bss section.

You cannot use these methods with code that is burned into ROM.

Global variables are either autoinitialized at runtime or at load time. For infor-
mation, see sections 8.8.3, Autoinitialization of Variables at Runtime, on page
8-40, and 8.8.4, Initialization of Variables at Load Time, on page 8-41. Also,
see section 7.7, Initializing Static and Global Variables,on page 7-22.
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8.8.2 Initialization Tables

The tables in the .cinit section consist of variable-size initialization records.
Each variable that must be autoinitialized has a record in the .cinit section.
Figure 8–7 shows the format of the .cinit section and the initialization records.

Figure 8–7. Format of Initialization Records in the .cinit Section
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An initialization record contains the following information:

� The first field of an initialization record is the size (in bytes) of the initializa-
tion data. If the the size is negative, then the data is DP address patch data
(described below).

� The second field contains the starting address of the area within the .bss
section where the initialization data must be copied.

� The third field contains the data that is copied into the .bss section to initial-
ize the variable.

Each variable that must be autoinitialized has an initialization record in the .ci-
nit section.

If the first field is negative, then the record represents a list of addresses that
need to be patched by adding the value of the data page pointer (DP). This is
only required for autoinitialized pointers to near data. The DP address patch
autoinitialization record has the following fields:

� A negative size in bytes of the list of addresses

� A list of addresses to be patched

Each variable that is autoinitialized with the address of a near variable will be
in the DP address patch list. Example 8–4 (a) shows initialized global variables
defined in C. Example 8–4 (b) shows the corresponding initialization table.
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The ”.cinit:c” is a subsection in the .cinit section that contains all scalar data.
The sub–section is handeled as one record during initialization, which mini-
mizes the overall size of the .cinit section.

Example 8–4. Initialization Table

(a) Initialized variables defined in C

int x;
short i = 23;
int *p = &x;
int a[5] = {1,2,3,4,5};

(b) Initialized information for variables defined in (a)

        .global _x

        .bss    _x,4,4

        .sect   ”.cinit:c”
        .align  8
        .field          (CIR – $) – 8, 32
        .field          _i+0,32
        .field          0x17,16                   ; _i @ 0

        .sect   ”.text”
        .global _i
_i:     .usect  ”.bss:c”,2,2

        .sect   ”.cinit:c”
        .align  4
        .field          _x–$bss,32                ; _p @ 0

        .sect   ”.text”
        .global _p
_p:     .usect  ”.bss:c”,4,4

        .sect   ”.cinit”
        .align  8
        .field          IR_1,32
        .field          _a+0,32
        .field          0x1,32                   ; _a[0] @ 0
        .field          0x2,32                   ; _a[1] @ 32
        .field          0x3,32                   ; _a[2] @ 64
        .field          0x4,32                   ; _a[3] @ 96
        .field          0x5,32                   ; _a[4] @ 128
IR_1:   .set    20

        .sect   ”.text”
        .global _a
        .bss    _a,20,4
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(b) Initialized information for variables defined in (a) (Continued)

;******************************************************************************
;* MARK THE END OF THE SCALAR INIT RECORD IN CINIT:C                          *
;******************************************************************************
CIR:    .sect   ”.cinit:c”
;******************************************************************************
;* ADDRESS RELOCATIONS – SCALARS                                              *
;******************************************************************************
        .sect   ”.cinit:c”
        .align  8
        .field  –4,32
        .align  4
        .field          _p,32

The .cinit section must contain only initialization tables in this format. When
interfacing assembly language modules, do not use the .cinit section for any
other purpose.

When you use the –c or –cr option, the linker combines the .cinit sections from
all the C modules and appends a null word to the end of the composite .cinit
section. This terminating record appears as a record with a size field of 0 and
marks the end of the initialization tables.
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8.8.3 Autoinitialization of Variables at Runtime

Autoinitializing variables at runtime is the default method of autoinitialization.
To use this method, invoke the linker with the –c option.

Using this method, the .cinit section is loaded into memory along with all the
other initialized sections. The linker defines a special symbol called cinit that
points to the beginning of the initialization tables in memory. When the program
begins running, the C boot routine copies data from the tables (pointed to by
.cinit) into the specified variables in the .bss section. This allows initialization
data to be stored in ROM and copied to RAM each time the program starts.

Figure 8–8 illustrates autoinitialization at runtime. Use this method in any sys-
tem where your application runs from code burned into ROM.

Figure 8–8. Autoinitialization at Run time
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8.8.4 Initialization of Variables at Load Time

Initialization of variables at load time enhances performance by reducing boot
time and by saving the memory used by the initialization tables. To use this
method, invoke the linker with the –cr option.

When you use the –cr linker option, the linker sets the STYP_COPY bit in the
.cinit section’s header. This tells the loader not to load the .cinit section into
memory. (The .cinit section occupies no space in the memory map.) The linker
also sets the cinit symbol to –1 (normally, cinit points to the beginning of the
initialization tables). This indicates to the boot routine that the initialization
tables are not present in memory; accordingly, no runtime initialization is per-
formed at boot time.

A loader (which is not part of the compiler package) must be able to perform
the following tasks to use initialization at load time:

� Detect the presence of the .cinit section in the object file

� Determine that STYP_COPY is set in the .cinit section header, so that it
knows not to copy the .cinit section into memory

� Understand the format of the initialization tables

Figure 8–9 illustrates the initialization of variables at load time.

Figure 8–9. Initialization at Load Time
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Runtime-Support Functions

Some of the tasks that a C program performs (such as I/O, dynamic memory
allocation, string operations, and trigonometric functions) are not part of the
C language itself. However, the ANSI C standard defines a set of runtime-
support functions that perform these tasks. The TMS320C6000 C compiler
implements the complete ANSI standard library except for those facilities that
handle exception conditions and locale issues (properties that depend on local
language, nationality, or culture). Using the ANSI standard library ensures a
consistent set of functions that provide for greater portability.

In addition to the ANSI-specified functions, the TMS320C6000 runtime-sup-
port library includes routines that give you processor-specific commands and
direct C language I/O requests.

A library build utility is provided with the code generation tools that lets you
create customized runtime-support libraries. The use of this utility is covered
in Chapter 10, Library-Build Utility.
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9.1 Libraries

The following libraries are included with the TMS320C6000 C compiler:

� rts6201.lib and rts6701.lib—runtime-support object libraries for use with
little-endian code, and rts6201e.lib rts6701e.lib—runtime-support object
libraries for use with big-endian code.

The rts6201.lib, rts6701.lib, rts6201e.lib, and rts6701e.lib libraries do not
contain functions involving signals and locale issues. They do contain the
following:

� ANSI C standard library
� C I/O library
� Low-level support functions that provide I/O to the host operating system
� Intrinsic arithmetic routines
� System startup routine, _c_int00
� Functions and macros that allow C to access specific instructions

� rts.src—runtime-support source library. The runtime-support object libra-
ries are built from the C and assembly source contained in the rts.src
library.

You can control how the runtime-support functions are called in terms of near
or far calls with the –mr option. For more information, see section 7.3.4.3, Con-
trolling How Runtime-Support Functions Are Called (–mr Option), on page
7-10.

9.1.1 Linking Code With the Object Library

When you link your program, you must specify the object library as one of the
linker input files so that references to the I/O and runtime-support functions
can be resolved.

You should specify libraries last on the linker command line because the linker
searches a library for unresolved references when it encounters the library on
the command line. You can also use the –x linker option to force repeated
searches of each library until the linker can resolve no more references.

When a library is linked, the linker includes only those library members re-
quired to resolve undefined references. For more information about linking,
see the TMS320C6000 Assembly Language Tools User’s Guide.
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9.1.2 Modifying a Library Function

You can inspect or modify library functions by using the archiver to extract the
appropriate source file or files from the source libraries. For example, the fol-
lowing command extracts two source files:

ar6x x rts.src atoi.c strcpy.c

To modify a function, extract the source as in the previous example. Make the
required changes to the code, recompile, and reinstall the new object file or
files into the library:

cl6x –options  atoi.c strcpy.c ;recompile
ar6x r rts6201.lib  atoi.obj strcpy.obj ;rebuild library

You can also build a new library this way, rather than rebuilding into rts6201.lib.
For more information about the archiver, see the TMS320C6000 Assembly
Language Tools User’s Guide.

9.1.3 Building a Library With Different Options

You can create a new library from rts.src by using the library-build utility mk6x.
For example, use this command to build an optimized runtime-support library:

mk6x ––u –o2 –x rts.src –l rts.lib

The ––u option tells the mk6x utility to use the header files in the current direc-
tory, rather than extracting them from the source archive. The use of the opti-
mizer (–o2) and inline function expansion (–x) options does not affect compati-
bility with code compiled without these options. For more information on the
library build utility, see Chapter 10, Library-Build Utility.
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9.2 The C I/O Functions

The C I/O functions make it possible to access the host’s operating system to
perform I/O (using the debugger). For example, printf statements executed in
a program appear in the debugger command window. When used in conjunc-
tion with the debugging tools, the capability to perform I/O on the host gives
you more options when debugging and testing code.

To use the I/O functions, include the header file stdio.h for each module that
references a C I/O function.

For example, given the following program in a file named main.c:

#include <stdio.h>

main()
{
   FILE *fid;

   fid = fopen(”myfile”,”w”);
   fprintf(fid,”Hello, world\n”);
   fclose(fid);

   printf(”Hello again, world\n”);
}

Issuing the following shell command compiles, links, and creates the file
main.out:

cl6x main.c –z –heap 400 –l rts6201.lib –o main.out

Executing main.out under the debugger on a SPARC host accomplishes the
following:

1) Opens the file myfile in the directory where the debugger was invoked
2) Prints the string Hello, world into that file
3) Closes the file
4) Prints the string Hello again, world in the debugger command window

With properly written device drivers, the library also offers facilities to perform
I/O on a user-specified device.

Note:

If there is not enough space on the heap for a C I/O buffer, buffered opera-
tions on the file will fail. If a call to printf() mysteriously fails, this may be the
reason. Check the size of the heap. To set the heap size, use the –heap op-
tion when linking (see page 5-6).
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9.2.1 Overview of Low-Level I/O Implementation

The code that implements I/O is logically divided into layers: high level, low
level, and device level.

The high-level functions are the standard C library of stream I/O routines
(printf, scanf, fopen, getchar, and so on). These routines map an I/O request
to one or more of the I/O commands that are handled by the low-level routines.

The low-level routines are comprised of basic I/O functions: open, read, write,
close, lseek, rename, and unlink. These low-level routines provide the inter-
face between the high-level functions and the device-level drivers that actually
perform the I/O command on the specified device.

The low-level functions also define and maintain a stream table that
associates a file descriptor with a device. The stream table interacts with the
device table to ensure that an I/O command performed on a stream executes
the correct device-level routine.

The data structures interact as shown in Figure 9–1.

Figure 9–1. Interaction of Data Structures in I/O Functions

Device tableStream table

read

open

read

open

file_descriptor2

file_descriptor1

The first three streams in the stream table are predefined to be stdin, stdout,
and stderr and they point to the host device and associated device drivers.
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Figure 9–2. The First Three Streams in the Stream Table

file_descriptor3

Device table
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Host
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At the next level are the user-definable device-level drivers. They map directly
to the low-level I/O functions. The runtime-support library includes the device
drivers necessary to perform I/O on the host on which the debugger is running.

The specifications for writing device-level routines to interface with the low-
level routines follow. Each function must set up and maintain its own data
structures as needed. Some function definitions perform no action and should
just return.
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Close File or Device For I/Oclose

Syntax #include <stdio.h>
#include <file.h>

int close(int  file_descriptor);

Description The close function closes the device or file associated with file_descriptor.

The file_descriptor is the stream number assigned by the low-level routines
that is associated with the opened device or file.

Return Value The return value is one of the following:

0 if successful

–1 if not successful

Set File Position Indicatorlseek

Syntax #include <stdio.h>
#include <file.h>

long lseek(int  file_descriptor, long  offset, int  origin);

Description The lseek function sets the file position indicator for the given file to origin +
offset. The file position indicator measures the position in characters from the
beginning of the file.

� The file_descriptor is the stream number assigned by the low-level rou-
tines that the device-level driver must associate with the opened file or
device.

� The offset indicates the relative offset from the origin in characters.

� The origin is used to indicate which of the base locations the offset is mea-
sured from. The origin must be a value returned by one of the following
macros:

SEEK_SET (0x0000) Beginning of file
SEEK_CUR (0x0001) Current value of the file position indicator
SEEK_END (0x0002) End of file

Return Value The return function is one of the following:

# new value of the file-position indicator if successful

EOF if not successful
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Open File or Device For I/Oopen

Syntax #include <stdio.h>
#include <file.h>

int open(char  *path, unsigned  flags, int  mode);

Description The open function opens the device or file specified by path and prepares it
for I/O.

� The path is the filename of the file to be opened, including path informa-
tion.

� The flags are attributes that specify how the device or file is manipulated.
The flags are specified using the following symbols:

O_RDONLY (0x0000) /* open for reading */
O_WRONLY(0x0001) /* open for writing */
O_RDWR (0x0002) /* open for read & write */
O_APPEND (0x0008) /* append on each write */
O_CREAT (0x0100) /* open with file create */
O_TRUNC (0x0200) /* open with truncation */
O_BINARY (0x8000) /* open in binary mode */

These parameters can be ignored in some cases, depending on how data
is interpreted by the device. Note, however, that the high-level I/O calls
look at how the file was opened in an fopen statement and prevent certain
actions, depending on the open attributes.

� The mode is required but ignored.

Return Value The function returns one of the following values:

# stream number assigned by the low-level routines that the device-level
driver associates with the opened file or device if successful

< 0 if not successful
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Read Characters From Bufferread

Syntax #include <stdio.h>
#include <file.h>

int read(int  file_descriptor, char  *buffer, unsigned  count);

Description The read function reads the number of characters specified by count to the
buffer from the device or file associated with file_descriptor.

� The file_descriptor is the stream number assigned by the low-level rou-
tines that is associated with the opened file or device.

� The buffer is the location of the buffer where the read characters are
placed.

� The count is the number of characters to read from the device or file.

Return Value The function returns one of the following values:

0 if EOF was encountered before the read was complete

# number of characters read in every other instance

–1 if not successful

Rename Filerename

Syntax #include <stdio.h>
#include <file.h>

int rename(char * old_name, char * new_name);

Description The rename function changes the name of a file.

� The old_name is the current name of the file.
� The new_name is the new name for the file.

Return Value The function returns one of the following values:

0 if successful
Non-0 if not successful
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Delete Fileunlink

Syntax #include <stdio.h>
#include <file.h>

int unlink(char * path);

Description The unlink function deletes the file specified by path.

The path is the filename of the file to be opened, including path information.

Return Value The function returns one of the following values:

0 if successful

–1 if not successful

Write Characters to Bufferwrite

Syntax #include <stdio.h>
#include <file.h>

int write(int  file_descriptor, char * buffer, unsigned  count);

Description The write function writes the number of characters specified by count from the
buffer to the device or file associated with file_descriptor.

� The file_descriptor is the stream number assigned by the low-level rou-
tines.  It is associated with the opened file or device.

� The buffer is the location of the buffer where the write characters are
placed.

� The count is the number of characters to write to the device or file.

Return Value The function returns one of the following values:

# number of characters written if successful

–1 if not successful
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9.2.2 Adding a Device for C I/O

The low-level functions provide facilities that allow you to add and use a device
for I/O at run time. The procedure for using these facilities is:

1) Define the device-level functions as described in section 9.2.1, Overview
of Low-Level I/O Implementation, on page 9-5.

Note: Use Unique Function Names

The function names open, close, read, and so on (pages 9–7 to 9–10), are
used by the low-level routines. Use other names for the device-level func-
tions that you write.

2) Use the low-level function add_device() to add your device to the
device_table. The device table is a statically defined array that supports
n devices, where n is defined by the macro _NDEVICE found in stdio.h.
The structure representing a device is also defined in stdio.h and is com-
posed of the following fields:

name String for device name

flags Flags that specify whether the device supports
multiple streams or not

function pointers Pointers to the device-level functions:

� CLOSE
� LSEEK
� OPEN
� READ
� RENAME
� WRITE
� UNLINK

The first entry in the device table is predefined to be the host device on
which the debugger is running. The low-level routine add_device() finds
the first empty position in the device table and initializes the device fields
with the passed-in arguments. For a complete description, see the
add_device function on page 9-45.
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3) Once the device is added, call fopen() to open a stream and associate it
with that device. Use devicename:filename as the first argument to
fopen().

The following program illustrates adding and using a device for C I/O:

#include <stdio.h>

/****************************************************************************/
/* Declarations of the user–defined device drivers                          */
/****************************************************************************/
extern int  my_open(char *path, unsigned flags, int fno);
extern int  my_close(int fno);
extern int  my_read(int fno, char *buffer, unsigned count);
extern int  my_write(int fno, char *buffer, unsigned count);
extern long my_lseek(int fno, long offset, int origin);
extern int  my_unlink(char *path);
extern int  my_rename(char *old_name, char *new_name);

main()
{
   FILE *fid;

   add_device(”mydevice”, _MSA, my_open, my_close, my_read, my_write, my_lseek,

                                my_unlink, my_rename);

   fid = fopen(”mydevice:test”,”w”);

   fprintf(fid,”Hello, world\n”);
  
   fclose(fid);
}
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9.3 Header Files

Each run time-support function is declared in a header file. Each header file
declares the following:

� A set of related functions (or macros)
� Any types that you need to use the functions
� Any macros that you need to use the functions

These are the header files that declare the runtime-support functions:

assert.h float.h setjmp.h stdlib.h
ctype.h gsm.h stdarg.h string.h
errno.h limits.h stdef.h time.h
file.h math.h stdio.h

In order to use a runtime-support function, you must first use the #include
preprocessor directive to include the header file that declares the function. For
example, the isdigit function is declared by the ctype.h header. Before you can
use the isdigit function, you must first include ctype.h:

#include <ctype.h>
.
.
.
val = isdigit(num);

You can include headers in any order. You must, however, include a header
before you reference any of the functions or objects that it declares.

Sections 9.3.1, Diagnostic Messages (assert.h), on page 9-14 through 9.3.15,
Time Functions (time.h), on page 9-22 describe the header files that are
included with the ’C6000 C compiler. Section 9.5, Summary of Runtime-Sup-
port Functions and Macros, on page 9-30 lists the functions that these headers
declare.
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9.3.1 Diagnostic Messages (assert.h )

The assert.h header defines the assert macro, which inserts diagnostic failure
messages into programs at run time. The assert macro tests a run time
expression.

� If the expression is true (nonzero), the program continues running.

� If the expression is false, the macro outputs a message that contains the
expression, the source file name, and the line number of the statement
that contains the expression; then, the program terminates (using the
abort function).

The assert.h header refers to another macro named NDEBUG (assert.h does
not define NDEBUG). If you have defined NDEBUG as a macro name when
you include assert.h, assert is turned off and does nothing. If NDEBUG is not
defined, assert is enabled.

The assert.h header refers to another macro named NASSERT (assert.h does
not define NASSERT). If you have defined NASSERT as a macro name when
you include assert.h, assert acts like _nassert. The _nassert intrinsic
generates no code and tells the optimizer that the expression declared with
assert is true. This gives a hint to the optimizer as to what optimizations might
be valid. If NASSERT is not defined, assert is enabled normally.

The _nassert intrinsic can also be used to guarantee tht a loop will execute a
certain number of times. For more information, see section 8.5.3, Using
_nassert to Enable SIMD and Expand Compiler Knowledge of Loops, on
page 8-28.

The assert function is listed in Table 9–3 (a) on page 9-31.

9.3.2 Character-Typing and Conversion (ctype.h )

The ctype.h header declares functions that test type of characters and
converts them.

The character-typing functions test a character to determine whether it is a
letter, a printing character, a hexadecimal digit, etc. These functions return a
value of true (a nonzero value) or false (0). Character-typing functions have
names in the form isxxx (for example, isdigit).

The character-conversion functions convert characters to lowercase,
uppercase, or ASCII, and return the converted character. Character-
conversion functions have names in the form toxxx (for example, toupper).
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The ctype.h header also contains macro definitions that perform these same
operations. The macros run faster than the corresponding functions. Use the
function version if an argument is passed that has side effects. The typing
macros expand to a lookup operation in an array of flags (this array is defined
in ctype.c). The macros have the same name as the corresponding functions,
but each macro is prefixed with an underscore (for example, _isdigit).

The character typing and conversion functions are listed in Table 9–3 (b) page
9-31.

9.3.3 Error Reporting (errno.h )

The errno.h header declares the errno variable. The errno variable indicates
errors in library functions. Errors can occur in a math function if invalid
parameter values are passed to the function or if the function returns a result
that is outside the defined range for the type of the result. When this happens,
a variable named errno is set to the value of one of the following macros:

� EDOM for domain errors (invalid parameter)
� ERANGE for range errors (invalid result)
� ENOENT for path errors (path does not exist)
� EFPOS for seek errors (file position error)

C code that calls a math function can read the value of errno to check for error
conditions. The errno variable is declared in errno.h and defined in errno.c.

9.3.4 Low-Level Input/Output Functions (file.h )

The file.h header declares the low-level I/O functions used to implement input
and output operations.

How to implement I/O for the ’C6000 is described in section 9.2 on page 9-4.

9.3.5 Fast Macros/Static Inline Functions (gsm.h )

The gsm.h header file contains fast macros, and static inline function
definitions to define the basic operations of a GSM vocoder.
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9.3.6 Limits (float.h and limits.h )

The float.h and limits.h headers define macros that expand to useful limits and
parameters of the TMS320C6000’s numeric representations. Table 9–1 and
Table 9–2 list these macros and their limits.

Table 9–1. Macros That Supply Integer Type Range Limits (limits.h)

Macro Value Description

CHAR_BIT 8 Number of bits in type char

SCHAR_MIN –128 Minimum value for a signed char

SCHAR_MAX 127 Maximum value for a signed char

UCHAR_MAX 255 Maximum value for an unsigned char

CHAR_MIN SCHAR_MIN Minimum value for a char

CHAR_MAX SCHAR_MAX Maximum value for a char

SHRT_MIN –32 768 Minimum value for a short int

SHRT_MAX 32 767 Maximum value for a short int

USHRT_MAX 65 535 Maximum value for an unsigned short int

INT_MIN (–INT_MAX – 1) Minimum value for an int

INT_MAX 2 147 483 647 Maximum value for an int

UINT_MAX 4 294 967 295 Maximum value for an unsigned int

LONG_MIN (–LONG_MAX – 1) Minimum value for a long int

LONG_MAX 549 755 813 887 Maximum value for a long int

ULONG_MAX 1 099 511 627 775 Maximum value for an unsigned long int

Note: Negative values in this table are defined as expressions in the actual header file so that
their type is correct.
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Table 9–2. Macros That Supply Floating-Point Range Limits (float.h)

Macro Value Description

FLT_RADIX 2 Base or radix of exponent representation

FLT_ROUNDS 1 Rounding mode for floating-point addition

FLT_DIG 
DBL_DIG 
LDBL_DIG

6
15
15

Number of decimal digits of precision for a float, double, or long
double

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

24
53
53

Number of base FLT_RADIX digits in the mantissa of a float,
double, or long double

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

–125
–1021
–1021

Minimum negative integer such that FLT_RADIX raised to that
power minus 1 is a normalized float, double, or long double

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

128
1024
1024

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite float, double, or long
double

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

1.19209290e–07
2.22044605e–16
2.22044605e–16

Minimum positive float, double, or long double number x such
that 1.0 + x ≠ 1.0

FLT_MIN 
DBL_MIN
LDBL_MIN

1.17549435e–38
2.22507386e–308
2.22507386e–308

Minimum positive float, double, or long double

FLT_MAX
DBL_MAX
LDBL_MAX

3.40282347e+38
1.79769313e+308
1.79769313e+308

Maximum float, double, or long double

FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

–37
–307
–307

Minimum negative integers such that 10 raised to that power is
in the range of normalized floats, doubles, or long doubles

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

38
308
308

Maximum positive integers such that 10 raised to that power is
in the range of representable finite floats, doubles, or long
doubles

Legend: FLT_ applies to type float.
DBL_ applies to type double.
LDBL_ applies to type long double.

Note: The precision of some of the values in this table has been reduced for readability. Refer to the float.h header file supplied
with the compiler for the full precision carried by the processor.
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9.3.7 Function Calls as near or far (linkage.h)

The linkage.h header declares two macros. Depending on the value of the
_FAR_RTS macro, the _CODE_ACCESS macro is set to force calls to run-
time-support functions to be either user default, near or far. The _FAR_RTS
macro is set according to the use of the –mr shell option.

The _DATA_ACCESS macro is set to always be far. The _IDECL macro deter-
mines how inline functions are declared.

All header files that define functions or data declare #include <linkage.h>.
Functions are modified with _CODE_ACCESS, for example:

    extern _CODE_ACCESS void    exit(int _status);

Data is modified with _DATA_ACCESS, for example:

    extern _DATA_ACCESS unsigned char _ctypes_[];

9.3.8 Floating-Point Math (math.h )

The math.h header declares several trigonometric, exponential, and
hyperbolic math functions. These functions are listed in Table 9–3 (c) on page
9-32. The math functions expect arguments either of type double or of type
float and return values either of type double or of type float, respectively.
Except where indicated, all trigonometric functions use angles expressed in
radians.

The math.h header also defines one macro named HUGE_VAL. The math
functions use this macro to represent out-of-range values. When a function
produces a floating-point return value that is too large to represent, it returns
HUGE_VAL instead.

The math.h header includes enhanced math functions that are available when
you define the _TI_ENHANCED_MATH_H symbol in your source file. When
you define the _TI_ENHANCED_MATH_H symbol, the HUGE_VALF symbol
is made visible. HUGE_VALF is the float counterpart to HUGE_VAL.

For all math.h functions, domain and range errors are handled by setting errno
to EDOM or ERANGE, as appropriate. The function input/outputs are rounded
to the nearest legal value.
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9.3.9 Nonlocal Jumps (setjmp.h )

The setjmp.h header defines a type and a macro and declares a function for
bypassing the normal function call and return discipline. These include:

� jmp_buf, an array type suitable for holding the information needed to re-
store a calling environment

� setjmp, a macro that saves its calling environment in its jmp_buf argument
for later use by the longjmp function

� longjmp, a function that uses its jmp_buf argument to restore the program
environment. The nonlocal jmp macro and function are listed in Table 9–3
(d) on page 9-35.

9.3.10 Variable Arguments  (stdarg.h )

Some functions can have a variable number of arguments whose types can
differ. Such functions are called variable-argument functions. The stdarg.h
header declares macros and a type that help you to use variable-argument
functions.

� The macros are va_start, va_arg,  and va_end. These macros are used
when the number and type of arguments can vary each time a function is
called.

� The type va_list is a pointer type that can hold information for va_start,
va_end, and va_arg.

A variable-argument function can use the macros declared by stdarg.h to step
through its argument list at run time when the function knows the number and
types of arguments actually passed to it. You must ensure that a call to a
variable-argument function has visibility to a prototype for the  function in order
for the arguments to be handled correctly. The variable argument functions are
listed in Table 9–3 (e) page 9-35.
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9.3.11 Standard Definitions  (stddef.h )

The stddef.h header defines types and macros. The types are:

� ptrdiff_t, a signed integer type that is the data type resulting from the
subtraction of two pointers

� size_t, an unsigned integer type that is the data type of the sizeof operator

The macros are:

� NULL, a macro that expands to a null pointer constant(0)

� offsetof(type, identifier), a macro that expands to an integer that has type
size_t. The result is the value of an offset in bytes to a structure member
(identifier) from the beginning of its structure (type).

These types and macros are used by several of the run time-support functions.

9.3.12 Input/Output Functions (stdio.h )

The stdio.h header defines types and macros and declares functions. The
types are:

� size_t, an unsigned integer type that is the data type of the sizeof operator.
Originally defined in stddef.h

� fpos_t, an unsigned integer type that can uniquely specify every position
within a file

� FILE, a structure type to record all the information necessary to control a
stream

The macros are:

� NULL, a macro that expands to a null pointer constant(0). Originally
defined in stddef.h. It is not redefined if it was already defined.

� BUFSIZ, a macro that expands to the size of the buffer that setbuf() uses

� EOF, the end-of-file marker

� FOPEN_MAX, a macro that expands to the largest number of files that can
be open at one time

� FILENAME_MAX, a macro that expands to the length of the longest file
name in characters

� L_tmpnam, a macro that expands to the longest filename string that
tmpnam() can generate
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� SEEK_CUR, SEEK_SET, and SEEK_END, macros that expand to indi-
cate the position (current, start-of-file, or end-of-file, respectively) in a file

� TMP_MAX, a macro that expands to the maximum number of unique file-
names that tmpnam() can generate

� stderr, stdin, stdout, pointers to the standard error, input, and output files,
respectively

The input/output functions are listed in Table 9–3 (f) on page 9-35.

9.3.13 General Utilities (stdlib.h )

The stdlib.h header defines a macro and types and declares functions. The
macro is named RAND_MAX, and it returns the largest value returned by the
rand() function. The types are:

� div_t, a structure type that is the type of the value returned by the div
function

� ldiv_t, a structure type that is the type of the value returned by the ldiv
function

The functions are:

� String conversion functions that convert strings to numeric
representations

� Searching and sorting functions that search and sort arrays

� Sequence-generation functions that generate a pseudo-random
sequence and choose a starting point for a sequence

� Program-exit functions that terminate your program normally or
abnormally

� Integer-arithmetic that is not provided as a standard part of the C language

The general utility functions are listed in Table 9–3 (g) on page 9-38.
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9.3.14 String Functions (string.h )

The string.h header declares standard functions that perform the following
tasks with character arrays (strings):

� Move or copy entire strings or portions of strings
� Concatenate strings
� Compare strings
� Search strings for characters or other strings
� Find the length of a string

In C, all character strings are terminated with a 0 (null) character. The string
functions named strxxx all operate according to this convention. Additional
functions that are also declared in string.h perform corresponding operations
on arbitrary sequences of bytes (data objects), where a 0 value does not
terminate the object. These functions are named memxxx.

When you use functions that move or copy strings, be sure that the destination
is large enough to contain the result. The string functions are listed in
Table 9–3 (h) on page 9-39.

9.3.15 Time Functions (time.h )

The time.h header defines one macro and several types, and declares
functions that manipulate dates and times. Times are represented in the
following ways:

� As an arithmetic value of type time_t. When expressed in this way, a time
is represented as a number of seconds since 12:00 AM January 1, 1900.
The time_t type is a synonym for the type unsigned long.

� As a structure of type struct tm. This structure contains members for ex-
pressing time as a combination of years, months, days, hours, minutes,
and seconds. A time represented like this is called broken-down time. The
structure has the following members.

int tm_sec; /* seconds after the minute (0–59) */
int tm_min; /* minutes after the hour (0–59) */
int tm_hour; /* hours after midnight (0–23) */
int tm_mday; /* day of the month (1–31) */
int tm_mon; /* months since January (0–11) */
int tm_year; /* years since 1900 (0 and up) */
int tm_wday; /* days since Saturday (0–6) */
int tm_yday; /* days since January 1 (0–365) */
int tm_isdst; /* daylight savings time flag */
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A time, whether represented as a time_t or a struct tm, can be expressed from
different points of reference:

� Calendar time represents the current Gregorian date and time.
� Local time is the calendar time expressed for a specific time zone.

The time functions and macros are listed in Table 9–3 (i) on page 9-41.

You can adjust local time for local or seasonal variations. Obviously, local time
depends on the time zone. The time.h header defines a structure type called
tmzone and a variable of this type called _tz. You can change the time zone
by modifying this structure, either at run time or by editing tmzone.c and chang-
ing the initialization. The default time zone is CST (Central Standard Time),
U.S.A.

The basis for all the time.h functions are the system functions of clock and time.
Time provides the current time (in time_t format), and clock provides the sys-
tem time (in arbitrary units). You can divide the value returned by clock by the
macro CLOCKS_PER_SEC to convert it to seconds. Since these functions
and the CLOCKS_PER_SEC macro are system specific, only stubs are pro-
vided in the library. To use the other time functions, you must supply custom
versions of these functions.

Note: Writing Your Own Clock Function

The clock function works with the stand-alone simulator (load6x). Used in the
load6x environment, clock() returns a cycle accurate count. The clock func-
tion returns –1 when used with the HLL debugger.

A host-specific clock function can be written. You must also define the
CLOCKS_PER_SEC macro according to the units of your clock so that the
value returned by clock()—number of clock ticks—can be divided by
CLOCKS_PER_SEC to produce a value in seconds.
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9.4 Saving On-Chip Memory by Placing Runtime-Support Off-Chip

One of many techniques you might use to save valuable on-chip space is to
place the code and data needed by the runtime-support functions in off-chip
memory.

Placing the runtime-support in off-chip memory has the advantage of saving
valuable on-chip space. However, it comes at a cost. The runtime-support
functions will run much slower. Depending on your application, this may or may
not be acceptable. It is also possible your application doesn’t use the runtime-
support library much, and placing the runtime-support off-chip saves very little
on-chip memory.

The following terms are used in this section:

� Normal runtime-support functions. Ordinary runtime-support functions.
Example: strcpy.

� Internal runtime-support functions that implement atomic C operations
like divide or floating point math functions on the ’C62xx. Example: _divu
performs 32-bit unsigned divide.

� near calls are function calls performed with a ordinary PC-relative branch
instruction. The destination of such branches must be within 1048576
(0x100000) words of the branch. Such calls use one instruction word and
one cycle.

� far calls are functions calls performed by loading the address of the func-
tion into a register and then branching to the address in the register.  There
is no limit on the range of the call. Such calls use three instruction words
and three cycles.

For information on using the –mr shell option to control near and far function
calls, see section 7.3.4.3, Controlling How Runtime-Support Functions Are
Called (–mr Option), on page 7-10.

9.4.1 Must #include Header File

When you call a runtime-support function, you must include the header file
which corresponds to that function. For instance, when you call memcmp, you
must declare #include <string.h>. If you do not include the header, the
memcmp call looks like a normal user call to the compiler, and the effect of
using –mr1 does not occur.

See section 9.3, Header Files, on page 9-13 for a list of header files and more
detailed information of each ’C6000 header file.
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9.4.2 Runtime-Support Data

Most runtime-support functions do not have any data of their own. Data is typi-
cally passed as arguments or through pointers. However, a few functions do
have their own data. All of the isxxx character recognition functions defined in
ctype.h refer to a global table. And many of the floating-point math functions
have their own constant look-up tables. All runtime-support data is now de-
fined to be far data, i.e. accessed without regard to where it is in memory. This
does not necessarily mean this data is in off-chip memory.

9.4.3 How to Link When Runtime-Support Functions Are Off-Chip

You get runtime-support code and data in off-chip memory through the linking
process. Example 9–1 shows a sample linker command file for linking when
the runtime-support functions are in off-chip memory. Using this linker com-
mand file, your sections are built and allocated normally.

The .cinit section is built normally as well. It is important to not allocate the run-
time-support .cinit sections separately as is done with the other sections. All
of the .cinit sections must be combined together into one section for autoinitial-
ization of global variables to work properly.

The .stack, .sysmem, and .cio sections are entirely created from within the run-
time-support functions. So, you do not need any special syntax to build and
allocate these sections separately from sections you define. Typically, you
place the .stack (system stack) and .sysmem (dynamic memory heap) sec-
tions in on-chip memory for performance reasons. The .cio section is a buffer
used by printf and related functions. You can typically afford slower perfor-
mance of such I/O functions, so it is placed in off-chip memory.

The .rtstext section collects all the .text, or code, sections from runtime-sup-
port and allocates them to external memory name EXT0. If needed, replace
the library name rts6201.lib with the library you normally use, perhaps
rts6701.lib. The –l option is required, and no space is allowed between the –l
and the name of the library. The choice of EXT0 is arbitrary. Use the memory
range which makes the most sense in your application.

The .bss section combines all of the undefined data sections together. Unde-
fined sections reserve memory without any initialization of the contents of that
memory. You use the .bss and.usect assembler directives to create undefined
data sections.

The .rtsdata section combines all of the defined data sections together. De-
fined data sections both reserve and initialize the contents of a section. You
use the .sect assembler directive to create defined sections.
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Example 9–1. Runtime-Support Linker Command File

/****************************************************************************/
/* farlnk.cmd – Link command file which puts RTS off-chip                   */
/****************************************************************************/
–c
–heap  0x2000
–stack 0x4000
/* Memory Map 1 – the default */
MEMORY
{
        PMEM:   o = 00000000h   l = 00010000h
        EXT0:   o = 00400000h   l = 01000000h
        EXT1:   o = 01400000h   l = 00400000h
        EXT2:   o = 02000000h   l = 01000000h
        EXT2:   o = 03000000h   l = 01000000h
        BMEM:   o = 80000000h   l = 00010000h
}
SECTIONS
{
    /*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    /* Sections of user code and data                                       */
    /*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    .text       >       PMEM
    .bss        >       BMEM
    .const      >       BMEM
    .data       >       BMEM
    .switch     >       BMEM
    .far        >       EXT2
    /*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    /* All of .cinit, including from RTS, must be collected together in     */
    /* one step.                                                            */
    /*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    .cinit      >       BMEM
    /*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    /* Sections defined only in RTS.                                        */
    /*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    .stack      >       BMEM
    .sysmem     >       BMEM
    .cio        >       EXT0
 
    /*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    /* RTS code – placed off chip                                           */
    /*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    .rtstext   { –lrts6201.lib(.text)   } > EXT0
    /*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    /* RTS data – undefined sections – placed off chip                      */
    /*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    .rtsbss    { –lrts6201.lib(.bss)
                 –lrts6201.lib(.far)    } > EXT0
    /*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    /* RTS data – defined sections – placed off chip                        */
    /*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    .rtsdata   { –lrts6201.lib(.const)
                 –lrts6201.lib(.switch) } > EXT0
}
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It is necessary to build and allocate the undefined data sections separately
from the defined data sections. When a defined data section is combined with
an undefined data section, the resulting output section is a defined data sec-
tion. This forces the linker to fill the range of memory corresponding to the un-
defined section with a value, typically the default value of 0. This has the unde-
sirable effect of making your resulting .out file much larger.

You may get a linker warning such as the following:

>> farlnk.cmd, line 65: warning: rts6201.lib(.switch) not found

This message simply means that none of the runtime-support functions need-
ed by your application define a .switch section. Simply delete the correspond-
ing –l option entry in the linker command file to avoid the message. If your ap-
plication changes such that you later do include an runtime-support function
with a .switch section, it will be linked next to the .switch sections from your
code. This is fine, except it is taking up that valuable on-chip memory. So, you
may want to check for this situation occasionally by looking at the linker map
file you create with the linker –m option.

9.4.4 Example Compiler Invocation When Runtime-Support Is Off-Chip

A typical build could look like ...

cl6x –mr1 <options> <C files> –z –o app.out –m app.map farlnk.cmd

In this one step you both compile all the C files and link them together. The
’C6000 executable image file is named app.out and the linker map file is
named app.map.
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9.4.5 Linker Error Messages When Calls Don’t Reach

When you try to call a function which, due to how you linked your application,
is too far away from a call site to be reached with the normal PC-relative branch
instruction, you will see a linker error message such as:

>> PC–relative displacement overflow. Located in file.obj,
section .text, SPC offset 000000bc

The message means that in the named object file, in that particular section,
there is a PC-relative branch instruction which is trying to reach a call destina-
tion that is too far away. The SPC offset is the section program counter (SPC)
offset within that section where the branch occurs. For C code, the section
name is always .text. If this happens to you when you are linking C code, follow
these steps to find the problem:

1) Recompile the C source file as you did before but include –s –al.

cl6x <other options> –s –al file.c

This gives you C interlisted in the assembly output and creates an assem-
bler listing file with the .lst extension.

2) Edit the resulting .lst file, in this case file.lst.

3) Each line in the assembly listing has several fields. The field you are inter-
ested in here is the second one, the section program counter (SPC) field.
Find the line with the same SPC field as the SPC offset given in the linker
error message, such as:

245 000000bc 0FFFEC10!            B       .S1     _atoi             ; |56|

In this case, the call to the function atoi is too far away from the location
where this code is linked.

It is possible that use of the –s option will cause instructions to move
around some and thus the instruction at the given SPC offset is not a
branch. The branch nearest to that instruction is the likely culprit. Or, you
can rebuild the whole application with –s –al and relink to see the new SPC
offset of the error.

To fix the problem, your choices are:

� Use the –mr1 option to force the call to atoi, and all other runtime-support
functions, to be far

� Compile with –ml1 or higher to force all calls to be far

� Rewrite your linker command file (looking at a map file usually helps) so
that all the calls to atoi are close (within 0x100000 words) to where atoi is
linked.
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9.4.6 Changing Runtime-Support Data to near

If for some reason you do not want accesses of runtime-support data to use
the far access method, take these steps:

1) Edit the linkage.h header file, and change the

#define _DATA_ACCESS far

macro to

#define _DATA_ACCESS near

to force all access of runtime-support data to use near access, or change it
to

#define _DATA_ACCESS

if you want runtime-support data access to use the same method used
when accessing ordinary user data.

2) Replace the linkage.h entry in the source library using the library-build util-
ity:

ar6x –r rts.src linkage.h

3) Rename or delete the object library you use when linking.

4) Rebuild the object library you use with the library-build command as given
in

You have to perform this process each time you install an update of the code
generation toolset.
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9.5 Summary of Runtime-Support Functions and Macros

Table 9–3 summarizes the runtime-support header files (in alphabetical order)
provided with the TMS320C6000 ANSI C compiler. Most of the functions
described are per the ANSI standard and behave exactly as described in the
standard.

The functions and macros listed in Table 9–3 are described in detail in section
9.6, Description of Run time-Support Functions and Macros on page 9-42. For
a complete description of a function or macro, see the indicated page.

A superscripted number is used in the following descriptions to show expo-
nents. For example, xy is the equivalent of x to the power y.
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Table 9–3. Summary of Runtime-Support Functions and Macros

(a) Error message macro (assert.h)

Macro Description Page

void assert (int expr); Inserts diagnostic messages into programs 9-48

(b) Character typing and conversion functions (ctype.h)

Function Description Page

int isalnum (int c); Tests c to see if it is an alphanumeric-ASCII character 9-66

int isalpha (int c); Tests c to see if it is an alphabetic-ASCII character 9-66

int isascii (int c); Tests c to see if it is an ASCII character 9-66

int iscntrl (int c); Tests c to see if it is a control character 9-66

int isdigit (int c); Tests c to see if it is a numeric character 9-66

int isgraph (int c); Tests c to see if it is any printing character except a
space

9-66

int islower (int c); Tests c to see if it is a lowercase alphabetic ASCII
charcter

9-66

int isprint (int c); Tests c to see if it is a printable ASCII character
(including a space)

9-66

int ispunct (int c); Tests c to see if it is an ASCII punctuation character 9-66

int isspace (int c); Tests c to see if it is an ASCII space bar, tab (horizontal
or vertical), carriage return, form feed, or new line
character

9-66

int isupper (int c); Tests c to see if it is an uppercase ASCII alphabetic
character

9-66

int isxdigit (int c); Tests c to see if it is a hexadecimal digit 9-66

char toascii (int c); Masks c into a legal ASCII value 9-96

char tolower (int char c); Converts c to lowercase if it is uppercase 9-96

char toupper (int char c); Converts c to uppercase if it is lowercase 9-96

Note: Functions in ctype.h are expanded inline if the –x option is used.
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(c) Floating-point math functions (math.h) 

Function Description Page

double acos (double x); Returns the arc cosine of x 9-43

float acosf (float x); Returns the arc cosine of x 9-43

double acosh (double x); Returns the hyperbolic arc cosine of x † 9-43

float acoshf (float x); Returns the hyperbolic arc cosine of x † 9-43

double acot (double x); Returns the arc cotangent of x † 9-43

double acot2 (double x, double y); Returns the arc cotangent of x/y † 9-44

float acot2f (float x, float y); Returns the arc cotangent of x/y † 9-44

float acotf (float x); Returns the arc cotangent of x † 9-43

double acoth (double x); Returns the hyperbolic arc cotangent of x † 9-44

float acothf (float x); Returns the hyperbolic arc cotangent of x † 9-44

double asin (double x); Returns the arc sine of x 9-47

float asinf (float x); Returns the arc sine of x 9-47

double asinh (double x); Returns the hyperbolic arc sine of x † 9-47

float asinhf (float x); Returns the hyperbolic arc sine of x † 9-47

double atan (double x); Returns the arc tangent of x 9-48

double atan2 (double y, double x); Returns the arc tangent of y/x 9-49

float atan2f (float y, float x); Returns the arc tangent of y/x 9-49

float atanf (float x); Returns the arc tangent of x 9-48

double atanh (double x); Returns the hyperbolic arc tangent of x † 9-49

float atanhf (float x); Returns the hyperbolic arc tangent of x † 9-49

double ceil (double x); Returns the smallest integer ≥ x; expands inline if
–x is used

9-52

float ceilf (float x); Returns the smallest integer ≥ x; expands inline if
–x is used

9-52

double cos (double x); Returns the cosine of x 9-53

float cosf (float x); Returns the cosine of x 9-53

double cosh (double x); Returns the hyperbolic cosine of x 9-54

float coshf (float x); Returns the hyperbolic cosine of x 9-54

double cot (double x); Returns the cotangent of x † 9-54

† Enhanced math function. See section 9.3.8 on page 9-18 for information on accessing this function.
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(c) Floating-point math functions (math.h) (Continued)

Function PageDescription

float cotf (float x); Returns the cotangent of x † 9-54

double coth (double x); Returns the hyperbolic cotangent of x † 9-54

float cothf (float x); Returns the hyperbolic cotangent of x † 9-54

double exp (double x); Returns ex 9-57

double exp10 (double x); Returns 10.0x † 9-57

float exp10f (float x); Returns 10.0x † 9-57

double exp2 (double x); Returns 2.0x † 9-57

float exp2f (float x); Returns 2.0x † 9-57

float expf (float x); Returns ex 9-57

double fabs (double x); Returns the absolute value of x 9-58

float fabsf (float x); Returns the absolute value of x 9-58

double floor (double x); Returns the largest integer � x; expands inline if
–x is used

9-60

float floorf (float x); Returns the largest integer � x; expands inline if
–x is used

9-60

double fmod (double x, double y); Returns the exact floating-point remainder of x/y 9-60

float fmodf (float x, float y); Returns the exact floating-point remainder of x/y 9-60

double frexp (double value, int *exp); Returns f and exp such that .5 � |f| � 1 and value
is equal to f × 2exp

9-63

float frexpf (float value, int *exp); Returns f and exp such that .5 � |f| � 1 and value
is equal to f × 2exp

9-63

double ldexp (double x, int exp); Returns x × 2exp 9-67

float ldexpf (float x, int exp); Returns x × 2exp 9-67

double log (double x); Returns the natural logarithm of x 9-68

double log10 (double x); Returns the base-10 logarithm of x 9-68

float log10f (float x); Returns the base-10 logarithm of x 9-68

double log2 (double x); Returns the base-2 logarithm of x † 9-68

float log2f (float x); Returns the base-2 logarithm of x † 9-68

float logf (float x); Returns the natural logarithm of x 9-68

† Enhanced math function. See section 9.3.8 on page 9-18 for information on accessing this function.
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(c) Floating-point math functions (math.h) (Continued)

Function PageDescription

double modf (double value, double *ip); Breaks value into a signed integer and a signed
fraction

9-73

float modff (float value, float *ip); Breaks value into a signed integer and a signed
fraction

9-73

double pow (double x, double y); Returns xy 9-73

float powf (float x, float y); Returns xy 9-73

double powi (double x, int y); Returns xi † 9-74

float powif (float x, int y); Returns xi † 9-74

double round (double  x); Returns x rounded to the nearest integer † 9-78

float roundf (float x); Returns x rounded to the nearest integer † 9-78

double rsqrt (double x); Returns the reciprocal square root of x † 9-78

float rsqrtf (float x); Returns the reciprocal square root of x † 9-78

double sin (double x); Returns the sine of x 9-81

float sinf (float x); Returns the sine of x 9-81

double sinh (double x); Returns the hyperbolic sine of x 9-82

float sinhf (float x); Returns the hyperbolic sine of x 9-82

double sqrt (double x); Returns the nonnegative square root of x 9-82

float sqrtf (float x); Returns the nonnegative square root of x 9-82

double tan (double x); Returns the tangent of x 9-94

float tanf (float x); Returns the tangent of x 9-94

double tanh (double x); Returns the hyperbolic tangent of x 9-95

float tanhf (float x); Returns the hyperbolic tangent of x 9-95

double trunc (double x); Returns x truncated toward 0 † 9-97

float truncf (float x); Returns x truncated toward 0 † 9-97

† Enhanced math function. See section 9.3.8 on page 9-18 for information on accessing this function.
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(d) Nonlocal jumps macro and  function (setjmp.h)

Function or Macro Description Page

int setjmp (jmp_buf env); Saves calling environment for use by longjmp; this
is a macro

9-80

void longjmp (jmp_buf env, int _val); Uses jmp_buf argument to restore a previously
saved environment

9-80

(e) Variable argument macros (stdarg.h)

Macro Description Page

type va_arg (va_list, type); Accesses the next argument of type type in a
variable-argument list

9-98

void va_end (va_list); Resets the calling mechanism after using va_arg 9-98

void va_start (va_list, parmN); Initializes ap to point to the first operand in the
variable-argument list

9-98

(f) C I/O functions (stdio.h) 

Function Description Page

int add_device (char *name, unsigned flags,
int (*dopen)(), int (*dclose)(),
int (*dread)(), int (*dwrite)(),
fpos_t (*dlseek)(), int (*dunlink)(),
int (*drename)());

Adds a device record to the device table 9-45

void clearerr (FILE *_fp); Clears the EOF and error indicators for the stream
that _fp points to

9-52

int fclose (FILE *_fp); Flushes the stream that _fp points to and closes
the file associated with that stream

9-58

int feof (FILE *_fp); Tests the EOF indicator for the stream that _fp
points to

9-58

int ferror (FILE *_fp); Tests the error indicator for the stream that _fp
points to

9-58

int fflush (register FILE *_fp); Flushes the I/O buffer for the stream that _fp
points to

9-59

int fgetc (register FILE *_fp); Reads the next character in the stream that
_fp points to

9-59

int fgetpos (FILE *_fp, fpos_t *pos); Stores the object that pos points to to the current
value of the file position indicator for the stream
that _fp points to

9-59

char *fgets (char *_ptr, register int _size, 
register FILE *_fp);

Reads the next _size minus 1 characters from the
stream that _fp points to into array _ptr

9-59
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(f) C I/O functions (stdio.h) (Continued)

Function PageDescription

FILE *fopen (const char *_fname,
const char *_mode);

Opens the file that _fname points to; _mode points
to a string describing how to open the file

9-61

int fprintf (FILE *_fp, const char *_format, ...); Writes to the stream that _fp points to 9-61

int fputc (int _c, register FILE *_fp); Writes a single character, _c, to the stream that _fp
points to

9-61

int fputs (const char *_ptr, register FILE *_fp); Writes the string pointed to by _ptr to the stream
pointed to by _fp

9-61

size_t fread (void *_ptr, size_t _size,
size_t _count, FILE *_fp);

Reads from the stream pointed to by _fp and
stores the input to the array pointed to by _ptr

9-62

FILE *freopen (const char *_fname,
const char *_mode, register FILE *_fp);

Opens the file that _fname points to using the
stream that _fp points to; _mode points to a string
describing how to open the file

9-62

int fscanf (FILE *_fp, const char *_fmt, ...); Reads formatted input from the stream that _fp
points to

9-63

int fseek (register FILE *_fp, long _offset,
int _ptrname);

Sets the file position indicator for the stream that
_fp points to

9-63

int fsetpos (FILE *_fp, const fpos_t *_pos); Sets the file position indicator for the stream that
_fp points to to _pos. The pointer _pos must be a
value from fgetpos() on the same stream.

9-64

long ftell (FILE *_fp); Obtains the current value of the file position indica-
tor for the stream that _fp points to

9-64

size_t fwrite (const void *_ptr, size_t _size,
size_t _count, register FILE *_fp);

Writes a block of data from the memory pointed to
by _ptr to the stream that _fp points to

9-64

int getc (FILE *_fp); Reads the next character in the stream that
_fp points to

9-64

int getchar (void); A macro that calls fgetc() and supplies stdin as the
argument

9-65

char *gets (char *_ptr); Performs the same function as fgets() using stdin
as the input stream

9-65

void perror (const char *_s); Maps the error number in _s to a string and prints
the error message

9-73

int printf (const char *_format, ...); Performs the same function as fprintf but uses
stdout as its output stream

9-74

int putc (int _x, FILE *_fp); A macro that performs like fputc() 9-74

int putchar (int _x); A macro that calls fputc() and uses stdout as the
output stream

9-74
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(f) C I/O functions (stdio.h) (Continued)

Function PageDescription

int puts (const char *_ptr); Writes the string pointed to by _ptr to stdout 9-75

int remove (const char *_file); Causes the file with the name pointed to by _file to
be no longer available by that name

9-77

int rename (const char *_old_name, 
const char *_new_name);

Causes the file with the name pointed to by
_old_name to be known by the name pointed to by
_new_name

9-77

void rewind (register FILE *_fp); Sets the file position indicator for the stream
pointed to by _fp to the beginning of the file

9-77

int scanf (const char *_fmt, ...); Performs the same function as fscanf() but reads
input from stdin

9-79

void setbuf (register FILE *_fp, char *_buf); Returns no value. setbuf() is a restricted version of
setvbuf() and defines and associates a buffer with
a stream

9-79

int setvbuf (register FILE *_fp, register char *_buf,
register int _type, register size_t _size);

Defines and associates a buffer with a stream 9-81

int sprintf (char *_string, const char *_format, ...); Performs the same function as fprintf() but writes
to the array that _string points to

9-82

int sscanf  (const char *_str,  const char *_fmt, ...); Performs the same function as fscanf() but reads
from the string that _str points to

9-83

FILE *tmpfile (void); Creates a temporary file 9-95

char *tmpnam (char *_s); Generates a string that is a valid filename (that is,
the filename is not already being used)

9-96

int ungetc (int _c, register FILE *_fp); Pushes the character specified by _c back into the
input stream pointed to by _fp

9-97

int vfprintf (FILE *_fp, const char *_format,
va_list _ap);

Performs the same function as fprintf() but re-
places the argument list with _ap

9-99

int vprintf (const char *_format, va_list _ap); Performs the same function as printf() but replaces
the argument list with _ap

9-99

int vsprintf (char *_string, const char *_format,
va_list _ap);

Performs the same function as sprintf() but re-
places the argument list with _ap

9-99
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(g) General functions (stdlib.h) 

Function Description Page

void abort (void); Terminates a program abnormally 9-42

int abs (int i); Returns the absolute value of val; expands inline
unless –x0 is used

9-42

int atexit (void (*fun)(void)); Registers the function pointed to by fun, called
without arguments at program termination

9-49

double atof (const char *st); Converts a string to a floating-point value; expands
inline if –x is used

9-50

int atoi (register const char *st); Converts a string to an integer 9-50

long atol (register const char *st); Converts a string to a long integer value; expands
inline if –x is used

9-50

void *bsearch (register const void *key, 
register const void *base,
size_t nmemb, size_t size, 
int (*compar)(const void *,const void *));

Searches through an array of nmemb objects for
the object that key points to

9-51

void *calloc (size_t num, size_t size); Allocates and clears memory for num objects,
each of size bytes

9-51

div_t div (register int numer, register int denom); Divides numer by denom producing a quotient and
a remainder

9-56

void exit (int status); Terminates a program normally 9-56

void free (void *packet); Deallocates memory space allocated by malloc,
calloc, or realloc

9-62

char *getenv (const char *_string) Returns the environment information for the vari-
able associated with _string

9-65

long labs (long i); Returns the absolute value of i; expands inline
unless –x0 is used

9-42

ldiv_t ldiv (register long numer, 
register long denom);

Divides numer by denom 9-56

int ltoa (long val, char *buffer); Converts val to the equivalent string 9-69

void *malloc (size_t size); Allocates memory for an object of size bytes 9-69

void *memalign (size_t alignment, size_t size); Allocates memory for an object of size bytes
aligned to an alignment byte boundary

9-69

void minit (void); Resets all the memory previously allocated by
malloc, calloc, or realloc

9-71

void qsort (void *base, size_t nmemb,
size_t size, int (*compar) ());

Sorts an array of nmemb members; base points to
the first member of the unsorted array, and size
specifies the size of each member

9-75
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(g) General functions (stdlib.h)(Continued)

Function PageDescription

int rand (void); Returns a sequence of pseudorandom integers in
the range 0 to RAND_MAX

9-76

void *realloc (void *packet, size_t size); Changes the size of an allocated memory space 9-76

void srand (unsigned int seed); Resets the random number generator 9-76

double strtod (const char *st, char **endptr); Converts a string to a floating-point value 9-93

long strtol (const char *st, char **endptr, int base); Converts a string to a long integer 9-93

unsigned long strtoul (const char *st, 
char **endptr, int base);

Converts a string to an unsigned long integer 9-93

(h) String functions (string.h) 

Function Description Page

void *memchr (const void *cs, int c, size_t n); Finds the first occurrence of c in the first n charac-
ters of cs; expands inline if –x is used

9-70

int memcmp (const void *cs, const void *ct,
size_t n);

Compares the first n characters of cs to ct;
expands inline if –x is used

9-70

void *memcpy (void *s1, const void *s2, 
register size_t n);

Copies n characters from s1 to s2 9-70

void *memmove (void *s1, const void *s2, 
size_t n);

Moves n characters from s1 to s2 9-71

void *memset (void *mem, register int ch, 
register size_t length);

Copies the value of ch into the first length charac-
ters of mem; expands inline if –x is used

9-71

char *strcat (char *string1, const char *string2); Appends string2 to the end of string1 9-83

char *strchr (const char *string, int c); Finds the first occurrence of character c in s; 
expands inline if –x is used

9-84

int strcmp (register const char *string1, 
register const char *s2);

Compares strings and returns one of the following
values: <0 if string1 is less than string2; 0 if string1
is equal to string2; >0 if string1 is greater than
string2. Expands inline if –x is used.

9-84

int strcoll (const char *string1, 
const char *string2);

Compares strings and returns one of the following
values: <0 if string1 is less than string2; 0 if string1
is equal to string2; >0 if string1 is greater than
string2.

9-84

char *strcpy (register char *dest, 
register const char *src);

Copies string src into dest; expands inline if –x is
used

9-85
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(h) String functions (string.h)(Continued)

Function PageDescription

size_t strcspn (register const char *string,
const char *chs);

Returns the length of the initial segment of string
that is made up entirely of characters that are not
in chs

9-86

char *strerror (int errno); Maps the error number in errno to an error mes-
sage string

9-86

size_t strlen (const char *string); Returns the length of a string 9-88

char *strncat (char *dest, const char *src, 
register size_t n);

Appends up to n characters from src to dest 9-88

int strncmp (const char *string1,
const char *string2, size_t n);

Compares up to n characters in two strings;
expands inline if –x is used

9-89

char *strncpy (register char *dest, 
register const char *src, register size_t n);

Copies up to n characters from src to dest;
expands inline if –x is used

9-90

char *strpbrk (const char *string, 
const char *chs);

Locates the first occurrence in string of any char-
acter from chs

9-91

char *strrchr (const char *string, int c); Finds the last occurrence of character c in string;
expands inline if –x is used

9-91

size_t strspn (register const char *string,
const char *chs);

Returns the length of the initial segment of string,
which is entirely made up of characters from chs

9-92

char *strstr (register const char *string1,
const char *string2);

Finds the first occurrence of string2 in string1 9-92

char *strtok (char *str1, const char *str2); Breaks str1 into a series of tokens, each delimited
by a character from str2

9-94

size_t  strxfrm (register char *to, 
register const char *from,
register size_t n);

Transforms n characters from from, to to 9-94
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(i)  Time-support functions (time.h)

Function Description Page

char *asctime (const struct tm *timeptr); Converts a time to a string 9-46

clock_t clock (void); Determines the processor time used 9-53

char *ctime (const time_t *timer); Converts calendar time to local time 9-55

double difftime (time_t time1, time_t time0); Returns the difference between two calendar
times

9-55

struct tm *gmtime (const time_t *timer); Converts local time to Greenwich Mean Time 9-65

struct tm *localtime (const time_t *timer); Converts time_t value to broken down time 9-67

time_t mktime (register struct tm *tptr); Converts broken down time to a time_t value 9-72

size_t strftime (char *out, size_t maxsize,
const char *format, const struct tm *time);

Formats a time into a character string 9-87

time_t time (time_t *timer); Returns the current calendar time 9-95
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9.6 Description of Runtime-Support Functions and Macros

This section describes the runtime-support functions and macros. A super-
scripted number is used in the following descriptions to show exponents. For
example, xy is the equivalent of x to the power y.

Abortabort

Syntax #include <stdlib.h>

void abort (void);

Defined in exit.c in rts.src

Description The abort function terminates the program.

Example void abort(void)
{
   exit(EXIT_FAILURE); 
}

See the exit function on page 9-56.

Absolute Valueabs/labs

Syntax #include <stdlib.h>

int abs (int i);
long labs (long i);

Defined in abs.c in src

Description The C compiler supports two functions that return the absolute value of an
integer:

� The abs function returns the absolute value of an integer i.
� The labs function returns the absolute value of a long i.
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Arc Cosineacos/acosf

Syntax #include <math.h>

double acos (double x);
float acosf (float x);

Defined in acos.c and acosf.c in rts.src

Description The acos and acosf functions return the arc cosine of a floating-point argument
x, which must be in the range [–1,1]. The return value is an angle in the range
[0,π] radians.

Example double 3Pi_Over_2;

3Pi_Over_2 = acos ( –1.0 )   /* Pi  */
           + acos (  0.0 )   /* Pi/2 */
           + acos (  1.0 );  /* 0.0  */

Hyperbolic Arc Cosineacosh/acoshf

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double acosh (double x);
float acoshf (float x);

Defined in acosh.c and acoshf.c in rts.src

Description The acosh and acoshf functions return the hyperbolic arc cosine of a floating-
point argument x, which must be in the range [1, infinity]. The return value is
� 0.0.

Polar Arc Cotangentacot/acotf

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double acot (double x);
float acotf (float x);

Defined in acot.c and acotf.c in rts.src

Description The acot and acotf functions return the arc cotangent of a floating-point argu-
ment x. The return value is an angle in the range [0, π/2] radians.

Example double realval, radians;

realval = 0.0;
radians = acotf ( realval );     /* return value = Pi/2 */
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Cartesian Arc Cotangentacot2/acot2f

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double acot2 (double x, double y);
float acot2f (float x, float y);

Defined in acot2.c and acot2f.c in rts.src

Description The acot2 and acot2f functions return the inverse cotangent of x/y. The func-
tion uses the signs of the arguments to determine the quadrant of the return
value. Both arguments cannot be 0. The return value is an angle in the range
[–π, π] radians.

Hyperbolic Arc Cotangentacoth/acothf

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double acoth (double x);
float acothf (float x);

Defined in acoth.c and acothf.c in rts.src

Description The acothf function returns the hyperbolic arc cotangent of a floating-point
argument x. The magnitude of x must be � 0.
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Add Device to Device Tableadd_device

Syntax #include <stdio.h>

int add_device (char *name,
unsigned flags,
int (*dopen)(),
int (*dclose)(),
int (*dread)(),
int (*dwrite)(),
fpos_t (*dlseek)(),
int (*dunlink)(),
int (*drename)());

Defined in lowlev.c in rts.src

Description The add_device function adds a device record to the device table allowing that
device to be used for input/output from C. The first entry in the device table is
predefined to be the host device on which the debugger is running. The func-
tion add_device() finds the first empty position in the device table and initializes
the fields of the structure that represent a device.

To open a stream on a newly added device use fopen() with a string of the for-
mat devicename:filename as the first argument.

� The name is a character string denoting the device name.

� The flags are device characteristics. The flags are as follows:

_SSA Denotes that the device supports only one open stream at a time

_MSA Denotes that the device supports multiple open streams

More flags can be added by defining them in stdio.h.

� The dopen, dclose, dread, dwrite, dlseek, dunlink, drename specifiers are
function pointers to the device drivers that are called by the low-level func-
tions to perform I/O on the specified device. You must declare these func-
tions with the interface specified in section 9.2.1, Overview of Low-Level
I/O Implementation, on page 9-5. The device drivers for the host that the
TMS320C6000 debugger is run on are included in the C I/O library.

Return Value The function returns one of the following values:

0 if successful

–1 if fails
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Example This example does the following:

� Adds the device mydevice to the device table
� Opens a file named test on that device and associate it with the file *fid
� Writes the string Hello, world into the file
� Closes the file

#include <stdio.h>

/****************************************************************************/
/* Declarations of the user–defined device drivers                          */
/****************************************************************************/
extern int my_open(char *path, unsigned flags, int fno);
extern int my_close(int fno);
extern int my_read(int fno, char *buffer, unsigned count);
extern int my_write(int fno, char *buffer, unsigned count);
extern int my_lseek(int fno, long offset, int origin);
extern int my_unlink(char *path);
extern int my_rename(char *old_name, char *new_name);

main()
{

   FILE *fid;
   add_device(”mydevice”, _MSA, my_open, my_close, my_read, my_write, my_lseek, 
                                my_unlink, my_rename);
 
   fid = fopen(”mydevice:test”,”w”);
 
   fprintf(fid,”Hello, world\n”);
  
   fclose(fid);
}

Convert Internal Time to Stringasctime

Syntax #include <time.h>

char *asctime (const struct tm *timeptr);

Defined in asctime.c in rts.src

Description The asctime function converts a broken-down time into a string with the
following form:

Mon Jan 11 11:18:36 1988 \n\0

The function returns a pointer to the converted string.

For more information about the functions and types that the time.h header
declares and defines, see section 9.3.15, Time Functions (time.h), on page
9-22.
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Arc Sineasin/asinf

Syntax #include <math.h>

double asin (double x);
float asinf (float x);

Defined in asin.c and asinf.c in rts.src

Description The asin and asinf functions return the arc sine of a floating-point argument
x, which must be in the range [–1, 1]. The return value is an angle in the range
[–π/2, π/2] radians.

Example double realval, radians;

realval = 1.0;

radians = asin ( realval );  /* asin returns π/2 */

Hyperbolic Arc Sineasinh/asinhf

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double asinh (double x);
float asinhf (float x);

Defined in asinh.c and asinhf.c in rts.src

Description The asinh and asinhf functions return the hyperbolic arc sine of a floating-point
number x. A range error occurs if the magnitude of the argument is too large.
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Insert Diagnostic Information Macroassert

Syntax #include <assert.h>

void assert (int expr);

Defined in assert.h as macro

Description The assert macro tests an expression; depending upon the value of the
expression, assert either issues a message and aborts execution or continues
execution. This macro is useful for debugging.

� If expr is false, the assert macro writes information about the call that failed
to the standard output device and aborts execution.

� If expr is true, the assert macro does nothing.

The header file that defines the assert macro refers to another macro,
NDEBUG. If you have defined NDEBUG as a macro name when the assert.h
header is included in the source file, the assert macro is defined as:

#define assert(ignore)

Example In this example, an integer i is divided by another integer j. Since dividing by
0 is an illegal operation, the example uses the assert macro to test j before the
division. If j = = 0, assert issues a message and aborts the program.

int   i, j;
assert ( j );
q = i/j;

Polar Arc Tangentatan/atanf

Syntax #include <math.h>

double atan (double x);
float atanf (float x);

Defined in atan.c and atanf.c in rts.src

Description The atan and atanf functions return the arc tangent of a floating-point argu-
ment x. The return value is an angle in the range [–π/2, π/2] radians.

Example double realval, radians;

realval = 0.0;
radians = atan ( realval );     /* radians = 0.0 */
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Cartesian Arc Tangentatan2/atan2f

Syntax #include <math.h>

double atan2 (double y, double x);
float atan2f (float y, float x);

Defined in atan2.c and atan2f.c in rts.src

Description The atan2 and atan2f functions return the inverse tangent of y/x. The function
uses the signs of the arguments to determine the quadrant of the return value.
Both arguments cannot be 0. The return value is an angle in the range [–π, π]
radians.

Example double rvalu = 0.0, rvalv = 1.0, radians;

radians = atan2 ( rvalu, rvalv );   /* radians = 0.0 */

Hyperbolic Arc Tangentatanh/atanhf

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double atanh (double y, double x);
float atanhf (float x);

Defined in atanh.c and atanhf.c in rts.src

Description The atanh and atanhf functions return the hyperbolic arc tangent of a floating-
point argument x. The return value is in the range [–1.0, 1.0].

Register Function Called by Exit()atexit

Syntax #include <stdlib.h>

int atexit (void (*fun)(void));

Defined in exit.c in rts.src

Description The atexit function registers the function that is pointed to by fun, to be called
without arguments at normal program termination. Up to 32 functions can be
registered.

When the program exits through a call to the exit function, the functions that
were registered are called without arguments in reverse order of their
registration.
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Convert String to Numberatof/atoi/atol

Syntax #include <stdlib.h>

double atof (const char *st);
int atoi (register const char *st);
long atol (register const char *st);

Defined in atof.c, atoi.c, and atol.c in rts.src

Description Three functions convert strings to numeric representations:

� The atof function converts a string into a floating-point value. Argument st
points to the string; the string must have the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

� The atoi function converts a string into an integer. Argument st points to
the string; the string must have the following format:

[space] [sign] digits

� The atol function converts a string into a long integer. Argument st points
to the string; the string must have the following format:

[space] [sign] digits

The space is indicated by a space (character), a horizontal or vertical tab, a
carriage return, a form feed, or a new line. Following the space is an optional
sign, and the digits that represent the integer portion of the number. The frac-
tional part of the number follows, then the exponent, including an optional sign.

The first character that cannot be part of the number terminates the string.

The functions do not handle any overflow resulting from the conversion.
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Array Searchbsearch

Syntax #include <stdlib.h>

void *bsearch (register const void *key, register const void *base,
size_t nmemb, size_t size, 
int (*compar)(const void *, const void *));

Defined in bsearch.c in rts.src

Description The bsearch function searches through an array of nmemb objects for a mem-
ber that matches the object that key points to. Argument base points to the first
member in the array; size specifies the size (in bytes) of each member.

The contents of the array must be in ascending order. If a match is found, the
function returns a pointer to the matching member of the array; if no match is
found, the function returns a null pointer (0).

Argument compar points to a function that compares key to the array
elements. The comparison function should be declared as:

int cmp(const void *ptr1, const void *ptr2);

The cmp function compares the objects that ptr1 and ptr2 point to and returns
one of the following values:

� 0 if *ptr1 is less than *ptr2
0 if *ptr1 is equal to *ptr2

� 0 if *ptr1 is greater than *ptr2

Example int list[10] = { 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };
 
 int intcmp(const void *ptr1, const void *ptr2)
 {
     return *(int*)ptr1 – *(int*)ptr2;
 }

Allocate and Clear Memorycalloc

Syntax #include <stdlib.h>

void *calloc (size_t num, size_t size);

Defined in memory.c in rts.src

Description The calloc function allocates size bytes (size is an unsigned integer or size_t)
for each of num objects and returns a pointer to the space. The function initial-
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izes the allocated memory to all 0s. If it cannot allocate the memory (that is,
if it runs out of memory), it returns a null pointer (0).

The memory that calloc uses is in a special memory pool or heap. The constant
_ _SYSMEM_SIZE defines the size of the heap as 2K bytes. You can change
this amount at link time by invoking the linker with the –heap option and
specifying the desired size of the heap (in bytes) directly after the option. (See
section 8.1.3, Dynamic Memory Allocation, on page 8-5.)

Example This example uses the calloc routine to allocate and clear 20 bytes.

prt = calloc (10,2)  ;   /*Allocate and clear 20 bytes */

Ceilingceil/ceilf

Syntax #include <math.h>

double ceil (double x);
float ceilf (float x);

Defined in ceil.c and ceilf.c in rts.src

Description The ceil and ceilf functions return a floating-point number that represents the
smallest integer greater than or equal to x.

Example extern float ceil();

float answer

answer = ceilf ( 3.1415 );   /* answer = 4.0  */
answer = ceilf ( –3.5 );     /* answer = –3.0 */

Clear EOF and Error Indicatorsclearerr

Syntax #include <stdio.h>

void clearerr (FILE *_fp);

Defined in clearerr.c in rts.src

Description The clearerr functions clears the EOF and error indicators for the stream that
_fp points to.
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Processor Timeclock

Syntax #include <time.h>

clock_t clock (void);

Defined in clock.c in rts.src

Description The clock function determines the amount of processor time used. It returns
an approximation of the processor time used by a program since the program
began running. The time in seconds is the return value divided by the value
of the macro CLOCKS_PER_SEC.

If the processor time is not available or cannot be represented, the clock func-
tion returns the value of [(clock_t) –1].

Note: Writing Your Own Clock Function

The clock function works with the stand-alone simulator (load6x). Used in the
load6x environment, clock() returns a cycle accurate count. The clock func-
tion returns –1 when used with the HLL debugger.

A host-specific clock function can be written. You must also define the
CLOCKS_PER_SEC macro according to the units of your clock so that the
value returned by clock() (number of clock ticks) can be divided by
CLOCKS_PER_SEC to produce a value in seconds.

For more information about the functions and types that the time.h header
declares and defines, see section 9.3.15, Time Functions (time.h), on page
9-22.

Cosinecos/cosf

Syntax #include <math.h>

double cos (double x);
float cosf (float x);

Defined in cos.c and cosf.c in rts.src

Description The cos and cosf functions return the cosine of a floating-point number x. The
angle x is expressed in radians. An argument with a large magnitude might
produce a result with little or no significance.

Example double radians, cval;

radians = 0.0;

cval = cos ( radians );  /* cval = 0.0 */
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Hyperbolic Cosinecosh/coshf

Syntax #include <math.h>

double cosh (double x);
float coshf (float x);

Defined in cosh.c and coshf.c in rts.src

Description The cosh and coshf functions return the hyperbolic cosine of a floating-point
number x. A range error occurs (errno is set to the value of EDOM) if the
magnitude of the argument is too large. These functions are equivalent to
(ex + e–x) / 2, but are computationally faster and more accurate.

Example double x, y;

x = 0.0;
y = cosh ( x); /* return value = 1.0 */

Polar Cotangentcot/cotf

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double cot (double x);
float cotf (float x);

Defined in cot.c and cotf.c in rts.src

Description The cot and cotf functions return the cotangent of a floating-point argument x,
which must not equal 0.0. When x is 0.0, errno is set to the value of EDOM and
the function returns the most positive number.

Hyperbolic Cotangentcoth/cothf

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double coth (double x);
float cothf (float x);

Defined in coth.c and cothf.c in rts.src

Description The coth and cothf functions return the hyperbolic cotangent of a floating-point
argument x. The magnitude of the return value is � 1.0.
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Calendar Timectime

Syntax #include <time.h>

char *ctime (const time_t *timer);

Defined in ctime.c in rts.src

Description The ctime function converts a calendar time (pointed to by timer) to local time
in the form of a string. This is equivalent to:

asctime(localtime(timer))

The function returns the pointer returned by the asctime function.

For more information about the functions and types that the time.h header
declares and defines, see section 9.3.15, Time Functions (time.h), on page
9-22.

Time Differencedifftime

Syntax #include <time.h>

double difftime (time_t time1, time_t time0);

Defined in difftime.c in rts.src

Description The difftime function calculates the difference between two calendar times,
time1 minus time0. The return value expresses seconds.

For more information about the functions and types that the time.h header
declares and defines, see section 9.3.15, Time Functions (time.h), on page
9-22.
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Divisiondiv/ldiv

Syntax #include <stdlib.h>

div_t div (register int numer, register int denom);
ldiv_t ldiv (register long numer, register long denom);

Defined in div.c in rts.src

Description Two functions support integer division by returning numer (numerator) divided
by denom (denominator). You can use these functions to determine both the
quotient and the remainder in a single operation.

� The div function performs integer division. The input arguments are inte-
gers; the function returns the quotient and the remainder in a structure of
type div_t. The structure is defined as follows:

typedef struct
{

int  quot;   /*  quotient */
int  rem;   /* remainder */

} div_t;

� The ldiv function performs long integer division. The input arguments are
long integers; the function returns the quotient and the remainder in a
structure of type ldiv_t. The structure is defined as follows:

typedef struct
{

long int  quot;   /*  quotient */
long int  rem;    /* remainder */

} ldiv_t;

The sign of the quotient is negative if either but not both of the operands is
negative. The sign of the remainder is the same as the sign of the dividend.

Normal Terminationexit

Syntax #include <stdlib.h>

void exit (int status);

Defined in exit.c in rts.src

Description The exit function terminates a program normally. All functions registered by the
atexit function are called in reverse order of their registration. The exit function
can accept EXIT_FAILURE as a value. (See the abort function on page 9-42).

You can modify the exit function to perform application-specific shut-down
tasks. The unmodified function simply runs in an infinite loop until the system
is reset.

The exit function cannot return to its caller.
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Exponentialexp/expf

Syntax #include <math.h>

double exp (double x);
float expf (float x);

Defined in exp.c and expf.c in rts.src

Description The exp and expf functions return the exponential function of real number x.
The return value is the number ex. A range error occurs if the magnitude of x
is too large.

Example double x, y;

x = 2.0;
y = exp ( x );   /* y = approx 7.38 (e*e, e is 2.17828)... */

Exponentialexp10/exp10f

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double exp10 (double x);
float exp10f (float x);

Defined in exp10.c and exp10f.c in rts.src

Description The exp10 and exp10f functions return 10x, where x is a real number. A range
error occurs if the magnitude of x is too large.

Exponentialexp2/exp2f

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double exp2 (double x);
float exp2f (float x);

Defined in exp2.c and exp2f.c in rts.src

Description The exp2 and exp2f functions return 2x, where x is a real number. A range error
occurs if the magnitude of x is too large.
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Absolute Valuefabs/fabsf

Syntax #include <math.h>

double fabs (double x);
float fabsf (float x);

Defined in fabs.c in rts.src

Description The fabs and fabsf functions return the absolute value of a floating-point num-
ber x.

Example double x, y;

x = –57.5;
y = fabs ( x ); /* return value = +57.5 */

Close Filefclose

Syntax #include <stdio.h>

int fclose (FILE *_fp);

Defined in fclose.c in rts.src

Description The fclose function flushes the stream that _fp points to and closes the file
associated with that stream.

Test EOF Indicatorfeof

Syntax #include <stdio.h>

int feof (FILE *_fp);

Defined in feof.c in rts.src

Description The feof function tests the EOF indicator for the stream pointed to by _fp.

Test Error Indicatorferror

Syntax #include <stdio.h>

int ferror (FILE *_fp);

Defined in ferror.c in rts.src

Description The ferror function tests the error indicator for the stream pointed to by _fp.
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Flush I/O Bufferfflush

Syntax #include <stdio.h>

int fflush (register FILE *_fp);

Defined in fflush.c in rts.src

Description The fflush function flushes the I/O buffer for the stream pointed to by _fp.

Read Next Characterfgetc

Syntax #include <stdio.h>

int fgetc (register FILE *_fp);

Defined in fgetc.c in rts.src

Description The fgetc function reads the next character in the stream pointed to by _fp.

Store Objectfgetpos

Syntax #include <stdio.h>

int fgetpos (FILE *_fp, fpos_t *pos);

Defined in fgetpos.c in rts.src

Description The fgetpos function stores the object pointed to by pos to the current value
of the file position indicator for the stream pointed to by _fp.

Read Next Charactersfgets

Syntax #include <stdio.h>

char *fgets (char *_ptr, register int _size, register FILE *_fp);

Defined in fgets.c in rts.src

Description The fgets function reads the specified number of characters from the stream
pointed to by _fp. The characters are placed in the array named by _ptr. The
number of characters read is _size –1.
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Floorfloor/floorf

Syntax #include <math.h>

double floor (double x);
float floorf (float x);

Defined in floor.c and floorf.c in rts.src

Description The floor and floorf functions return a floating-point number that represents the
largest integer less than or equal to x.

Example double answer;

answer = floor ( 3.1415 ); /* answer =  3.0 */
answer = floor ( –3.5 );   /* answer = –4.0 */

Floating-Point Remainderfmod/fmodf

Syntax #include <math.h>

double fmod (double x, double y);
float fmodf (float x, float y);

Defined in fmod.c and fmodf.c in rts.src

Description The fmod and fmodf functions return the exact floating-point remainder of x
divided by y. If y = = 0, the function returns 0.

The functions are equivalent mathematically to x – trunc(x / y)�� y, but not
to the C expression written the same way. For example, fmod(x, 3.0) is 0.0,
1.0, or 2.0 for any small integer x > 0.0. When x is large enough that x / y can
no longer be expressed exactly, fmod(x, 3.0) continues to yield correct
answers, while the C expression returns 0.0 for all values of x.

Example double x, y, r;

x = 11.0;
y = 5.0;
r = fmod ( x, y ); /* fmod returns 1.0 */
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Open Filefopen

Syntax #include <stdio.h>

FILE *fopen (const char *_fname, const char *_mode);

Defined in fopen.c in rts.src

Description The fopen function opens the file that _fname points to. The string pointed to
by _mode describes how to open the file.

Write Streamfprintf

Syntax #include <stdio.h>

int fprintf (FILE *_fp, const char *_format, ...);

Defined in fprint.c in rts.src

Description The fprintf function writes to the stream pointed to by _fp. The string pointed
to by _format describes how to write the stream.

Write Characterfputc

Syntax #include <stdio.h>

int fputc (int _c, register FILE *_fp);

Defined in fputc.c in rts.src

Description The fputc function writes a character to the stream pointed to by _fp.

Write Stringfputs

Syntax #include <stdio.h>

int fputs (const char *_ptr, register FILE *_fp);

Defined in fputs.c in rts.src

Description The fputs function writes the string pointed to by _ptr to the stream pointed to
by _fp.
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Read Streamfread

Syntax #include <stdio.h>

size_t fread (void *_ptr, size_t _size, size_t _count, FILE *_fp);

Defined in fread.c in rts.src

Description The fread function reads from the stream pointed to by _fp. The input is stored
in the array pointed to by _ptr. The number of objects read is _count. The size
of the objects is _size.

Deallocate Memoryfree

Syntax #include <stdlib.h>

void free (void *packet);

Defined in memory.c in rts.src

Description The free function deallocates memory space (pointed to by packet) that was
previously allocated by a malloc, calloc, or realloc call. This makes the memory
space available again. If you attempt to free unallocated space, the function
takes no action and returns. For more information, see section 8.1.3, Dynamic
Memory Allocation, on page 8-5.

Example This example allocates ten bytes and frees them.

char *x;
x = malloc(10); /*  allocate 10 bytes   */
free(x); /*  free 10 bytes       */

Open Filefreopen

Syntax #include <stdio.h>

FILE *freopen (const char *_fname, const char *_mode, register FILE *_fp);

Defined in fopen.c in rts.src

Description The freopen function opens the file pointed to by _fname, and associates with
it the stream pointed to by _fp. The string pointed to by _mode describes how
to open the file.
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Fraction and Exponentfrexp/frexpf

Syntax #include <math.h>

double frexp (double value, int *exp); 
float frexpf (float value, int *exp);

Defined in frexp.c and frexpf.c in rts.src

Description The frexp and frexpf functions break a floating-point number into a normalized
fraction (f) and the integer power of 2. These functions return f and exp such
that 0.5 � |f| � 1.0 and value �� f � 2exp. The power is stored in the int
pointed to by exp. If value is 0, both parts of the result are 0.

Example double fraction;

int exp;

fraction = frexp ( 3.0, &exp );
/* after execution, fraction is .75 and exp is 2 */

Read Streamfscanf

Syntax #include <stdio.h>

int fscanf (FILE *_fp, const char *_fmt, ...);

Defined in fscanf.c in rts.src

Description The fscanf function reads from the stream pointed to by _fp. The string pointed
to by _fmt describes how to read the stream.

Set File Position Indicatorfseek

Syntax #include <stdio.h>

int fseek (register FILE *_fp, long _offset, int _ptrname);

Defined in fseek.c in rts.src

Description The fseek function sets the file position indicator for the stream pointed to by
_fp. The position is specified by _ptrname. For a binary file, use _offset to posi-
tion the indicator from _ptrname. For a text file, offset must be 0.
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Set File Position Indicatorfsetpos

Syntax #include <stdio.h>

int fsetpos (FILE *_fp, const fpos_t *_pos);

Defined in fsetpos.c in rts.src

Description The fsetpos function sets the file position indicator for the stream pointed to
by _fp to _pos. The pointer _pos must be a value from fgetpos() on the same
stream.

Get Current File Position Indicatorftell

Syntax #include <stdio.h>

long ftell (FILE *_fp);

Defined in ftell.c in rts.src

Description The ftell function gets the current value of the file position indicator for the
stream pointed to by _fp.

Write Block of Datafwrite

Syntax #include <stdio.h>

size_t fwrite (const void *_ptr, size_t _size, size_t _count, register FILE *_fp);

Defined in fwrite.c in rtd.src

Description The fwrite function writes a block of data from the memory pointed to by _ptr
to the stream that _fp points to.

Read Next Charactergetc

Syntax #include <stdio.h>

int getc (FILE *_fp);

Defined in fgetc.c in rts.src

Description The getc function reads the next character in the file pointed to by _fp.
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Read Next Character From Standard Inputgetchar

Syntax #include <stdio.h>

int getchar (void);

Defined in fgetc.c in rts.src

Description The getchar function reads the next character from the standard input device.

Get Environment Informationgetenv

Syntax #include <stdlib.h>

char *getenv (const char *_string);

Defined in trgdrv.c in rts.src

Description The getenv function returns the environment information for the variable
associated with _string.

Read Next From Standard Inputgets

Syntax #include <stdio.h>

char *gets (char *_ptr);

Defined in fgets.c in rts.src

Description The gets function reads an input line from the standard input device. The char-
acters are placed in the array named by _ptr. Use the function fgets ( ) instead
of gets when possible.

Greenwich Mean Timegmtime

Syntax #include <time.h>

struct tm *gmtime (const time_t *timer);

Defined in gmtime.c in rts.src

Description The gmtime function converts a calendar time (pointed to by timer) into a
broken-down time, which is expressed as Greenwich Mean Time.

For more information about the functions and types that the time.h header
declares and defines, see section 9.3.15, Time Functions (time.h), on page
9-22.
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Character Typingisxxx

Syntax #include <ctype.h>

int isalnum (int c); int islower (int c);
int isalpha (int c); int isprint (int c);
int isascii (int c); int ispunct (int c);
int iscntrl (int c); int isspace (int c);
int isdigit (int c); int isupper (int c);
int isgraph (int c); int isxdigit (int c);

Defined in isxxx.c and ctype.c in rts.src
Also defined in ctype.h as macros

Description These functions test a single argument, c, to see if it is a particular type of char-
acter —alphabetic, alphanumeric, numeric, ASCII, etc. If the test is true, the
function returns a nonzero value; if the test is false, the function returns 0. The
character typing functions include:

isalnum Identifies alphanumeric ASCII characters (tests for any
character for which isalpha or isdigit is true)

isalpha Identifies alphabetic ASCII characters (tests for any character
for which islower or isupper is true)

isascii Identifies ASCII characters (any character 0–127)

iscntrl Identifies control characters (ASCII characters 0–31 and 127)

isdigit Identifies numeric characters between 0 and 9 (inclusive)

isgraph Identifies any nonspace character

islower Identifies lowercase alphabetic ASCII characters

isprint Identifies printable ASCII characters, including spaces (ASCII
characters 32–126)

ispunct Identifies ASCII punctuation characters

isspace Identifies ASCII tab (horizontal or vertical), space bar, carriage
return, form feed, and new line characters

isupper Identifies uppercase ASCII alphabetic characters

isxdigit Identifies hexadecimal digits (0–9, a–f, A–F)

The C compiler also supports a set of macros that perform these same func-
tions. The macros have the same names as the functions but are prefixed with
an underscore; for example, _isascii  is the macro equivalent of the isascii
function. In general, the macros execute more efficiently than the functions.
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See abs/labs on page 9-42.labs

Multiply by a Power of 2ldexp/ldexpf

Syntax #include <math.h>

double ldexp (double x, int exp);
float ldexpf (float x, int exp);

Defined in ldexp.c and ldexpf.c in rts.src

Description The ldexp and ldexpf functions multiply a floating-point number x by 2exp and
return (x × 2)exp. The exp can be a negative or a positive value. A range error
occurs if the result is too large.

Example double result;

result = ldexp ( 1.5, 5 ); /* result is 48.0 */
result = ldexp ( 6.0, –3 ); /* result is 0.75 */

See div/ldiv on page 9-56.ldiv

Local Timelocaltime

Syntax #include <time.h>

struct tm *localtime (const time_t *timer);

Defined in localtime.c in rts.src

Description The localtime function converts a calendar time (pointed to by timer) into a
broken-down time, which is expressed as local time. The function returns a
pointer to the converted time.

For more information about the functions and types that the time.h header
declares and defines, see section 9.3.15, Time Functions (time.h), on page
9-22.
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Natural Logarithmlog/logf

Syntax #include <math.h>

double log (double x);
float logf (float x);

Defined in log.c and logf.c in rts.src

Description The log and logf functions return the natural logarithm of a real number x. A
domain error occurs if x is negative; a range error occurs if x is 0.

Example float x, y;

x = 2.718282;
y = logf ( x ); /* y = approx 1.0 */

Common Logarithmlog10/log10f

Syntax #include <math.h>

double log10 (double x);
float log10f (float x);

Defined in log10.c and log10f.c in rts.src

Description The log10 and log10f functions return the base-10 logarithm of a real number
x. A domain error occurs if x is negative; a range error occurs if x is 0.

Example float x, y;

x = 10.0;
y = log10f ( x ); /* y = approx 1.0 */

Base-2 Logarithmlog2/log2f

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double log2 (double x);
float log2f (float x);

Defined in log2.c and log2f.c in rts.src

Description The log2 and log2f functions return the base-2 logarithm of a real number x.
A domain error occurs if x is negative; a range error occurs if x is 0.

Example float x, y;

x = 2.0;
y = log2f ( x ); /* y = approx 1.0 */
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See setjmp/longjmp on page 9-80.longjmp

Convert Long Integer to ASCIIltoa

Syntax no prototype provided

int ltoa (long val, char *buffer);

Defined in ltoa.c in rts.src

Description The ltoa function is a nonstandard (non-ANSI) function and is provided for
compatibility. The standard equivalent is sprintf. The function is not prototyped
in rts.src. The ltoa function converts a long integer n to an equivalent ASCII
string and writes it into the buffer. If the input number val  is negative, a leading
minus sign is output. The ltoa function returns the number of characters placed
in the buffer.

Allocate Memorymalloc

Syntax #include <stdlib.h>

void *malloc (size_t size);

Defined in memory.c in rts.src

Description The malloc function allocates space for an object of size bytes and returns a
pointer to the space. If malloc cannot allocate the packet (that is, if it runs out
of memory), it returns a null pointer (0). This function does not modify the
memory it allocates.

The memory that malloc uses is in a special memory pool or heap. The con-
stant _ _SYSMEM_SIZE defines the size of the heap as 2K bytes. You can
change this amount at link time by invoking the linker with the –heap option and
specifying the desired size of the heap (in bytes) directly after the option. For
more information, see section 8.1.3, Dynamic Memory Allocation, on
page 8-5.

Align Heapmemalign

Syntax #include <stdlib.h>

void *memalign (size_t alignment, size_t _size);

Defined in memory.c in rts.src

Description The memalign function performs like the ANSI standard malloc function,
except that it returns a pointer to a block of memory that is aligned to an
alignment byte boundary. Thus if _size is 128, and alignment is 16, memalign
returns a pointer to a 128-byte block of memory aligned on a 16-byte boundary.
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Find First Occurrence of Bytememchr

Syntax #include <string.h>

void *memchr (const void *cs, int c, size_t n);

Defined in memchr.c in rts.src

Description The memchr function finds the first occurrence of c in the first n characters of
the object that cs points to. If the character is found, memchr returns a pointer
to the located character; otherwise, it returns a null pointer (0).

The memchr function is similar to strchr, except that the object that memchr
searches can contain values of 0 and c can be 0.

Memory Comparememcmp

Syntax #include <string.h>

int memcmp (const void *cs, const void *ct, size_t n);

Defined in memcmp.c in rts.src

Description The memcmp function compares the first n characters of the object that ct
points to with the object that cs points to. The function returns one of the
following values:

� 0 if *cs is less than *ct
0 if *cs is equal to *ct

� 0 if *cs is greater than *ct

The memcmp function is similar to strncmp, except that the objects that
memcmp compares can contain values of 0.

Memory Block Copy — Nonoverlappingmemcpy

Syntax #include <string.h>

void *memcpy (void *s1, const void *s2, register size_t n);

Defined in memcpy.c in rts.src

Description The memcpy function copies n characters from the object that s2 points to into
the object that s1 points to. If you attempt to copy characters of overlapping
objects, the function’s behavior is undefined. The function returns the value
of s1.

The memcpy function is similar to strncpy, except that the objects that memcpy
copies can contain values of 0.
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Memory Block Copy — Overlappingmemmove

Syntax #include <string.h>

void *memmove (void *s1, const void *s2, size_t n);

Defined in memmove.c in rts.src

Description The memmove function moves n characters from the object that s2 points to
into the object that s1 points to; the function returns the value of s1. The
memmove function correctly copies characters between overlapping objects.

Duplicate Value in Memorymemset

Syntax #include <string.h>

void *memset (void *mem, register int ch, register size_t length);

Defined in memset.c in rts.src

Description The memset function copies the value of ch into the first length characters of
the object that mem points to. The function returns the value of mem.

Reset Dynamic Memory Poolminit

Syntax no prototype provided

void minit (void);

Defined in memory.c in rts.src

Description The minit function resets all the space that was previously allocated by calls
to the malloc, calloc, or realloc functions.

The memory that minit uses is in a special memory pool or heap. The constant
_ _SYSMEM_SIZE defines the size of the heap as 2K bytes. You can change
this amount at link time by invoking the linker with the –heap option and
specifying the desired size of the heap (in bytes) directly after the option. For
more information, refer to section 8.1.3, Dynamic Memory Allocation, on page
8-5.

Note: No Previously Allocated Objects Are Available After minit

Calling the minit function makes all the memory space in the heap available
again. Any objects that you allocated previously will be lost; do not try to
access them.
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Convert to Calendar Timemktime

Syntax #include <time.h>

time_t mktime (register struct tm *tptr);

Defined in mktime.c in rts.src

Description The mktime function converts a broken-down time, expressed as local time,
into proper calendar time. The tptr argument points to a structure that holds
the broken-down time.

The function ignores the original values of tm_wday and tm_yday and does not
restrict the other values in the structure. After successful completion of time
conversions, tm_wday and tm_yday are set appropriately and the other
components in the structure have values within the restricted ranges. The final
value of tm_mday is not sent until tm_mon and tm_year are determined.

The return value is encoded as a value of type time_t. If the calendar time
cannot be represented, the function returns the value –1.

For more information about the functions and types that the time.h header
declares and defines, see section 9.3.15, Time Functions (time.h), on page
9-22.

Example This example determines the day of the week that July 4, 2001, falls on.

#include <time.h>
static const char *const wday[] = {

”Sunday”, ”Monday”, ”Tuesday”, ”Wednesday”,
”Thursday”, ”Friday”, ”Saturday” };

struct tm time_str;

time_str.tm_year  = 2001 – 1900;
time_str.tm_mon   = 7;
time_str.tm_mday  = 4;
time_str.tm_hour  = 0;
time_str.tm_min   = 0;
time_str.tm_sec   = 1;
time_str.tm_isdst = 1;

mktime ( &time_str );

/* After calling this function, time_str.tm_wday    */
/*    contains the day of the week for July 4, 2001 */
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Signed Integer and Fractionmodf/modff

Syntax #include <math.h>

double modf (double value, double *ip);
float modff (float value, float *ip);

Defined in modf.c and modff.c in rts.src

Description The modf and modff functions break a value into a signed integer and a signed
fraction. Each of the two parts has the same sign as the input argument. The
function returns the fractional part of value and stores the integer as a double
at the object pointed to by iptr.

Example double value, ipart, fpart;

value = –10.125;

fpart = modf ( value, &ipart );

/* After execution, ipart contains –10.0, */
/* and fpart contains –.125.              */

Map Error Numberperror

Syntax #include <stdio.h>

void perror (const char *_s);

Defined in perror.c in rts.src

Description The perror function maps the error number in _s to a string and prints the error
message.

Raise to a Powerpow/powf

Syntax #include <math.h>

double pow (double x, double y); 
float powf (float x, float y);

Defined in pow.c and powf.c in rts.src

Description The pow and powf functions return x raised to the power y. These pow func-
tions are equivalent mathematically to exp(y × log(x)) but are faster and more
accurate. A domain error occurs if x  = 0 and y ≤ 0, or if x is negative and y is
not an integer. A range error occurs if the result is too large to represent.

Example double x, y, z;

x = 2.0;
y = 3.0;
x = pow ( x, y ); /* return value = 8.0 */
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Raise to an Integer Powerpowi/powif

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double powi (double x, int y); 
float powif (float x, int y);

Defined in powi.c and powif.c in rts.src

Description The powi and powif functions return xi. These powi functions are equivalent
mathematically to pow(x, (double) i), but are faster and have similar accuracy.
A domain error occurs if x  = 0 and i ≤ 0, or if x is negative and i is not an integer.
A range error occurs if the result is too large to represent.

Write to Standard Outputprintf

Syntax #include <stdio.h>

int printf (const char *_format, ...);

Defined in printf.c in rts.src

Description The printf function writes to the standard output device. The string pointed to
by _format describes how to write the stream.

Write Characterputc

Syntax #include <stdio.h>

int putc (int _x, FILE *_fp);

Defined in fputc.c in rts.src

Description The putc function writes a character to the stream pointed to by _fp.

Write Character to Standard Outputputchar

Syntax #include <stdlib.h>

int putchar (int _x);

Defined in fputc.c in rts.src

Description The putchar function writes a character to the standard output device.
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Write to Standard Outputputs

Syntax #include <stdlib.h>

int puts (const char *_ptr);

Defined in fputs.c in rts.src

Description The puts function writes the string pointed to by _ptr to the standard output
device.

Array Sortqsort

Syntax #include <stdlib.h>

void qsort (void *base, size_t nmemb, size_t size, int (*compar) ());

Defined in qsort.c in rts.src

Description The qsort function sorts an array of nmemb members. Argument base points
to the first member of the unsorted array; argument size specifies the size of
each member.

This function sorts the array in ascending order.

Argument compar points to a function that compares key to the array
elements. Declare the comparison function as:

int  cmp(const void *ptr1, const void *ptr2)

The cmp function compares the objects that ptr1 and ptr2 point to and returns
one of the following values:

� 0 if *ptr1 is less than *ptr2
0 if *ptr1 is equal to *ptr2

� 0 if *ptr1 is greater than *ptr2

Example int list[10] = { 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };

 

 int intcmp(const void *ptr1, const void *ptr2)

 {

     return *(int*)ptr1 – *(int*)ptr2;

 }
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Random Integerrand/srand

Syntax #include <stdlib.h>

int rand (void);
void srand (unsigned int seed);

Defined in rand.c in rts.src

Description Two functions work together to provide pseudorandom sequence generation:

� The rand function returns pseudorandom integers in the range
0–RAND_MAX.

� The srand function sets the value of seed so that a subsequent call to the
rand function produces a new sequence of pseudorandom numbers. The
srand function does not return a value.

If you call rand before calling srand, rand generates the same sequence it
would produce if you first called srand with a seed value of 1. If you call srand
with the same seed value, rand generates the same sequence of numbers.

Change Heap Sizerealloc

Syntax #include <stdlib.h>

void *realloc (void *packet, size_t size);

Defined in memory.c in rts.src

Description The realloc function changes the size of the allocated memory pointed to by
packet to the size specified in bytes by size. The contents of the memory space
(up to the lesser of the old and new sizes) is not changed.

� If packet is 0, realloc behaves like malloc.

� If packet points to unallocated space, realloc takes no action and re-
turns 0.

� If the space cannot be allocated, the original memory space is not
changed and realloc returns 0.

� If size = = 0 and packet is not null, realloc frees the space that
packet points to.

If the entire object must be moved to allocate more space, realloc returns a
pointer to the new space. Any memory freed by this operation is deallocated.
If an error occurs, the function returns a null pointer (0).
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The memory that calloc uses is in a special memory pool or heap. The constant
_ _SYSMEM_SIZE defines the size of the heap as 2K bytes. You can change
this amount at link time by invoking the linker with the –heap option and
specifying the desired size of the heap (in bytes) directly after the option. For
more information, see section 8.1.3, Dynamic Memory Allocation, on
page 8-5.

Remove Fileremove

Syntax #include <stdlib.h>

int remove (const char *_file);

Defined in remove.c in rts.src

Description The remove function makes the file pointed to by _file no longer available by
that name.

Rename Filerename

Syntax #include <stdlib.h>

int rename (const char *old_name, const char *new_name);

Defined in lowlev.c in rts.src

Description The rename function renames the file pointed to by old_name. The new name
is pointed to by new_name.

Position File Position Indicator to Beginning of Filerewind

Syntax #include <stdlib.h>

int rewind (register FILE *_fp);

Defined in rewind.c in rts.src

Description The rewind function sets the file position indicator for the stream pointed to by
_fp to the beginning of the file.
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Round to Nearest Integerround/roundf

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double round (double x);
float roundf (float x);

Defined in round.c and roundf.c in rts.src

Description The round and roundf functions return a floating-point number equal to x
rounded to the nearest integer. When x is an equal distance from two integers,
the even value is returned.

Example float x, y, u, v, r, s, o, p;

x = 2.65;
y = roundf ( x ); /* y = 3  */

u = –5.28
v = roundf ( u); /* v = –5 */

r = 3.5
s = roundf ( s ); /* s = 4 */

o = 6.5
p = roundf ( o); /* p = 6.0 */

Reciprocal Square Rootrsqrt/rsqrtf

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double rsqrt (double x);
float rsqrtf (float x);

Defined in rsqrt.c and rsqrtf.c in rst.src

Description The rsqrt and rsqrtf functions return the reciprocal square root of a real number
x. The rsqrt(x) function is equivalent mathematically to 1.0 / sqrt(x), but is
much faster and has similar accuracy. A domain error occurs if the argument
is negative.
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Read Stream From Standard Inputscanf

Syntax #include <stdlib.h>

int scanf (const char *_fmt, ...);

Defined in fscanf.c in rts.src

Description The scanf function reads from the stream from the standard input device. The
string pointed to by _fmt describes how to read the stream.

Specify Buffer for Streamsetbuf

Syntax #include <stdlib.h>

void setbuf (register FILE *_fp, char *_buf);

Defined in setbuf.c in rts.src

Description The setbuf function specifies the buffer used by the stream pointed to by _fp.
If _buf is set to null, buffering is turned off. No value is returned.
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Nonlocal Jumpssetjmp/longjmp

Syntax #include <setjmp.h>

int setjmp (jmp_buf env)
void longjmp (jmp_buf env, int _val)

Defined in setjmp.asm in rts.src

Description The setjmp.h header defines a type and a macro and declares a function for
bypassing the normal function call and return discipline:

� The jmp_buf  type is an array type suitable for holding the information
needed to restore a calling environment.

� The setjmp  macro saves its calling environment in the jmp_buf argument
for later use by the longjmp function.

If the return is from a direct invocation, the setjmp macro returns the value
0. If the return is from a call to the longjmp function, the setjmp macro re-
turns a nonzero value.

� The longjmp  function restores the environment that was saved in the
jmp_buf argument by the most recent invocation of the setjmp macro. If
the setjmp macro was not invoked or if it terminated execution irregularly,
the behavior of longjmp is undefined.

After longjmp is completed, the program execution continues as if the cor-
responding invocation of setjmp had just returned the value specified by
_val. The longjmp function does not cause setjmp to return a value of 0,
even if _val is 0. If _val is 0, the setjmp macro returns the value 1.

Example These functions are typically used to effect an immediate return from a deeply
nested function call:

#include <setjmp.h>

jmp_buf env;

main()
{

int errcode;

if ((errcode = setjmp(env)) == 0)
nest1();

else
switch (errcode)

. . .
}

. . .
nest42()
{

if (input() == ERRCODE42)
/* return to setjmp call in main */

longjmp (env, ERRCODE42);
. . .

}
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Define and Associate Buffer With Streamsetvbuf

Syntax #include <stdlib.h>

int setvbuf (register FILE *_fp, register char *_buf, register int _type,
register size_t _size);

Defined in setvbuf.c in rts.src

Description The setvbuf function defines and associates the buffer used by the stream
pointed to by _fp. If _buf is set to null, a buffer is allocated. If _buf names a buff-
er, that buffer is used for the stream. The _size specifies the size of the buffer.
The _type specifies the type of buffering as follows:

_IOFBF Full buffering occurs

_IOLBF Line buffering occurs
_IONBF No buffering occurs

Sinesin/sinf

Syntax #include <math.h>

double sin (double x);
float sinf (float x);

Defined in sin.c and sinf.c in rts.src

Description The sin and sinf functions return the sine of a floating-point number x. The
angle x is expressed in radians. An argument with a large magnitude can pro-
duce a result with little or no significance.

Example double radian, sval;     /* sin returns sval        */

radian = 3.1415927;
sval = sin ( radian );      /* sin returns approx –1.0 */
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Hyperbolic Sinesinh/sinhf

Syntax #include <math.h>

double sinh (double x); 
float sinhf (float x);

Defined in sinh.c and sinhf.c in rts.src

Description The sinh and sinhf functions return the hyperbolic sine of a floating-point num-
ber x. A range error occurs if the magnitude of the argument is too large. These
functions are equivalent to (ex – e–x) / 2, but are computationally faster and
more accurate.

Example double x, y;

x = 0.0;
y = sinh ( x );      /* y = 0.0 */

Write Streamsprintf

Syntax #include <stdlib.h>

int sprintf (char *_string, const char *_format, ...);

Defined in sprintf.c in rts.src

Description The sprintf function writes to the array pointed to by _string. The  string pointed
to by _format describes how to write the stream.

Square Rootsqrt/sqrtf

Syntax #include <math.h>

double sqrt (double x);
float sqrtf (float x);

Defined in sqrt.c and sqrtf.c in rts.src

Description The sqrt function returns the nonnegative square root of a real number x. A
domain error occurs if the argument is negative.

Example double x, y;

x = 100.0;
y = sqrt ( x );      /* return value = 10.0 */
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See rand/srand on page 9-76.srand

Read Streamsscanf

Syntax #include <stdlib.h>

int sscanf (const char *_str, const char *_fmt, ...);

Defined in sscanf.c in rts.src

Description The sscanf function reads from the string pointed to by str. The string pointed
to by _format describes how to read the stream.

Concatenate Stringsstrcat

Syntax #include <string.h>

char *strcat (char *string1, const char *string2);

Defined in strcat.c in rts.src

Description The strcat function appends a copy of string2 (including a terminating null
character) to the end of string1. The initial character of string2 overwrites the
null character that originally terminated string1. The function returns the value
of string1. String1 must be large enough to contain the entire string.

Example In the following example, the character strings pointed to by *a, *b, and *c are
assigned to point to the strings shown in the comments. In the comments, the
notation \0 represents the null character:

char *a, *b, *c;
.
.
.

/* a ––> ”The quick black fox\0” */
/* b ––> ” jumps over \0” */
/* c ––> ”the lazy dog.\0” */

strcat ( a,b );

/* a ––> ”The quick black fox jumps over \0” */
/* b ––> ” jumps over \0” */
/* c ––> ”the lazy dog.\0” */

strcat ( a,c );

/*a ––> ”The quick black fox jumps over the lazy dog.\0”*/
/* b ––> ” jumps over \0” */
/* c ––> ”the lazy dog.\0” */
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Find First Occurrence of a Characterstrchr

Syntax #include <string.h>

char *strchr (const char *string, int c);

Defined in strchr.c in rts.src

Description The strchr function finds the first occurrence of c in string. If strchr finds the
character, it returns a pointer to the character; otherwise, it returns a null
pointer (0).

Example char *a = ”When zz comes home, the search is on for zs.”;

char *b;

char the_z = ’z’;

b = strchr ( a,the_z );

After this example, *b points to the first z in zz.

String Comparestrcmp/strcoll

Syntax #include <string.h>

int strcmp (const char *string1, register const char *string2);
int strcoll (const char *string1, const char *string2);

Defined in strcmp.c and strcoll.c in rts.src

Description The strcmp and strcoll functions compare string2 with string1. The functions
are equivalent; both functions are supported to provide compatibility with
ANSI C.

The functions return one of the following values:

� 0 if *string1 is less than *string2

0 if *string1 is equal to *string2
� 0 if *string1 is greater than *string2

Example char *stra = ”why ask why”;

char *strb = ”just do it”;

char *strc = ”why ask why”;

if ( strcmp ( stra, strb ) > 0)
{

/*    statements here execute        */
}

if ( strcoll ( stra, strc ) == 0)
{

/* statements here execute also      */
}
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String Copystrcpy

Syntax #include <string.h>

char *strcpy (register char *dest, register const char *src);

Defined in strcpy.c in rts.src

Description The strcpy function copies src (including a terminating null character) into dest.
If you attempt to copy strings that overlap, the function’s behavior is undefined.
The function returns a pointer to dest.

Example In the following example, the strings pointed to by *a and *b are two separate
and distinct memory locations. In the comments, the notation \0 represents the
null character:

char a[] = ”The quick black fox”;
char b[] = ” jumps over ”;

/* a ––> ”The quick black fox\0” */
/* b ––> ” jumps over \0” */

strcpy ( a,b );

/* a ––> ” jumps over \0” */
/* b ––> ” jumps over \0” */
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Find Number of Unmatching Charactersstrcspn

Syntax #include <string.h>

size_t strcspn (register const char *string, const char *chs);

Defined in strcspn.c in rts.src

Description The strcspn function returns the length of the initial segment of string, which
is made up entirely of characters that are not in chs. If the first character in
string is in chs, the function returns 0.

Example char *stra = ”who is there?”;

char *strb = ”abcdefghijklmnopqrstuvwxyz”;

char *strc = ”abcdefg”;

size_t length;

length = strcspn ( stra,strb ); /* length = 0 */
length = strcspn ( stra,strc ); /* length = 9 */

String Errorstrerror

Syntax #include <string.h>

char *strerror (int errno);

Defined in strerror.c in rts.src

Description The strerror function returns the string “string error.” This function is supplied
to provide ANSI compatibility.
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Format Timestrftime

Syntax #include <time.h>

size_t *strftime (char *out, size_t maxsize, const char *format, 
const struct tm *time);

Defined in strftime.c in rts.src

Description The strftime function formats a time (pointed to by time) according to a format
string and returns the formatted time in the string out. Up to maxsize characters
can be written to out. The format parameter is a string of characters that tells
the strftime function how to format the time; the following list shows the valid
characters and describes what each character expands to.

Character Expands to

%a The abbreviated weekday name (Mon, Tue, . . . )

%A The full weekday name

%b The abbreviated month name (Jan, Feb, . . . )

%B The locale’s full month name

%c The date and time representation

%d The day of the month as a decimal number (0–31)

%H The hour (24-hour clock) as a decimal number (00–23)

%I The hour (12-hour clock) as a decimal number (01–12)

%j The day of the year as a decimal number (001–366)

%m The month as a decimal number (01–12)

%M The minute as a decimal number (00–59)

%p The locale’s equivalency of either a.m. or p.m.

%S The seconds as a decimal number (00–59)

%U The week number of the year (Sunday is the first day of the week) as
a decimal number (00–52)

%x The date representation

%X The time representation

%y The year without century as a decimal number (00–99)

%Y The year with century as a decimal number

%Z The time zone name, or by no characters if no time zone exists

For more information about the functions and types that the time.h header
declares and defines, see section 9.3.15, Time Functions (time.h), on page
9-22.
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Find String Lengthstrlen

Syntax #include <string.h>

size_t strlen (const char *string);

Defined in strlen.c in rts.src

Description The strlen function returns the length of string. In C, a character string is termi-
nated by the first byte with a value of 0 (a null character). The returned result
does not include the terminating null character.

Example char *stra = ”who is there?”;

char *strb = ”abcdefghijklmnopqrstuvwxyz”;

char *strc = ”abcdefg”;

size_t length;

length = strlen ( stra ); /* length = 13 */
length = strlen ( strb ); /* length = 26 */
length = strlen ( strc ); /* length = 7  */

Concatenate Stringsstrncat

Syntax #include <string.h>

char *strncat (char *dest, const char *src, size_t n);

Defined in strncat.c in rts.src

Description The strncat function appends up to n characters of src (including a terminating
null character) to dest. The initial character of src overwrites the null character
that originally terminated dest; strncat appends a null character to the result.
The function returns the value of dest.
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Example In the following example, the character strings pointed to by *a, *b, and *c were
assigned the values shown in the comments. In the comments, the notation
\0 represents the null character:

char *a, *b, *c;
size_t size = 13;
.
.
.

/* a––> ”I do not like them,\0”                           */;
/* b––> ” Sam I am, \0”                                   */;
/* c––> ”I do not like green eggs and ham\0”              */;

strncat ( a,b,size );

/* a––> ”I do not like them, Sam I am, \0”                */;
/* b––> ” Sam I am, \0”                                   */;
/* c––> ”I do not like green eggs and ham\0”              */;

strncat ( a,c,size );

/* a––> ”I do not like them, Sam I am, I do not like\0”   */;
/* b––> ” Sam I am, \0”                                   */;
/* c––> ”I do not like green eggs and ham\0”              */;

Compare Stringsstrncmp

Syntax #include <string.h>

int strncmp (const char *string1, const char *string2, size_t n);

Defined in strncmp.c in rts.src

Description The strncmp function compares up to n characters of string2 with string1. The
function returns one of the following values:

� 0 if *string1 is less than *string2
0 if *string1 is equal to *string2

� 0 if *string1 is greater than *string2

Example char *stra = ”why ask why”;

char *strb = ”just do it”;

char *strc = ”why not?”;

size_t size = 4;

if ( strcmp ( stra, strb, size ) > 0)
{

/* statements here execute       */
}

if ( strcomp ( stra, strc, size ) == 0)
{

/* statements here execute also  */
}
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String Copystrncpy

Syntax #include <string.h>

char *strncpy (register char *dest, register const char *src,
register size_t n);

Defined in strncpy.c in rts.src

Description The strncpy function copies up to n characters from src into dest. If src is n
characters long or longer, the null character that terminates src is not copied.
If you attempt to copy characters from overlapping strings, the function’s
behavior is undefined. If src is shorter than n characters, strncpy appends null
characters to dest so that dest contains n characters. The function returns the
value of dest.

Example Note that strb contains a leading space to make it five characters long. Also
note that the first five characters of strc are an I, a space, the word am, and
another space, so that after the second execution of strncpy, stra begins with
the phrase I am followed by two spaces. In the comments, the notation \0 rep-
resents the null character.

char stra[100] = ”she is the one mother warned you of”;
char strb[100] = ” he is”;
char strc[100] = ”I am the one father warned you of”;
char strd[100] = ”oops”;
int length = 5;

strncpy ( stra,strb,length );

/* stra––> ” he is the one mother warned you of\0” */;
/* strb––> ” he is\0”                              */;
/* strc––> ”I am the one father warned you of\0”   */;
/* strd––> ”oops\0”                                */;

strncpy ( stra,strc,length );

/* stra––> ”I am  the one mother warned you of\0”  */;
/* strb––> ” he is\0”                              */;
/* strc––> ”I am the one father warned you of\0”   */;
/* strd––> ”oops\0”                                */;

strncpy ( stra,strd,length );

/* stra––> ”oops\0”                                */;
/* strb––> ” he is\0”                              */;
/* strc––> ”I am the one father warned you of\0”   */;
/* strd––> ”oops\0”                                */;
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Find Any Matching Characterstrpbrk

Syntax #include <string.h>

char *strpbrk (const char *string, const char *chs);

Defined in strpbrk.c in rts.src

Description The strpbrk function locates the first occurrence in string of any character in
chs. If strpbrk finds a matching character, it returns a pointer to that character;
otherwise, it returns a null pointer (0).

Example char *stra = ”it was not me”;

char *strb = ”wave”;

char *a;

a = strpbrk ( stra,strb );

After this example, *a points to the w in was.

Find Last Occurrence of a Characterstrrchr

Syntax #include <string.h>

char *strrchr (const char *string, int c);

Defined in strrchr.c in rts.src

Description The strrchr function finds the last occurrence of c in string.  If strrchr finds the
character, it returns a pointer to the character; otherwise, it returns a null
pointer (0).

Example char *a = ”When zz comes home, the search is on for zs”;

char *b;

char the_z = ’z’;

After this example, *b points to the z in zs near the end of the string.
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Find Number of Matching Charactersstrspn

Syntax #include <string.h>

size_t strspn (register const char *string, const char *chs);

Defined in strspn.c in rts.src

Description The strspn function returns the length of the initial segment of string, which is
entirely made up of characters in chs. If the first character of string is not in chs,
the strspn function returns 0.

Example char *stra = ”who is there?”;

char *strb = ”abcdefghijklmnopqrstuvwxyz”;

char *strc = ”abcdefg”;

size_t length;

length = strspn ( stra,strb ); /* length = 3 */
length = strspn ( stra,strc ); /* length = 0 */

Find Matching Stringstrstr

Syntax #include <string.h>

char *strstr (register const char *string1, const char *string2);

Defined in strstr.c in rts.src

Description The strstr function finds the first occurrence of string2  in string1 (excluding the
terminating null character). If strstr finds the matching string, it returns a pointer
to the located string; if it does not find the string, it returns a null pointer. If
string2 points to a string with length 0, strstr returns string1.

Example char *stra = ”so what do you want for nothing?”;

char *strb = ”what”;

char *ptr;

ptr = strstr ( stra,strb );

The pointer *ptr now points to the w in what in the first string.
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String to Numberstrtod/strtol/
strtoul

Syntax #include <stdlib.h>

double strtod (const char *st, char **endptr);
long strtol (const char *st, char **endptr, int base);
unsigned long strtoul (const char *st, char **endptr, int base);

Defined in strtod.c,
strtol.c, and
strtoul.c in rts.src

Description Three functions convert ASCII strings to numeric values. For each function,
argument st points to the original string. Argument endptr points to a pointer;
the functions set this pointer to point to the first character after the converted
string.The functions that convert to integers also have a third argument, base,
which tells the function what base to interpret the string in.

� The strtod function converts a string to a floating-point value. The string
must have the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

The function returns the converted string; if the original string is empty or
does not have the correct format, the function returns a 0. If the converted
string would cause an overflow, the function returns ±HUGE_VAL; if the
converted string would cause an underflow, the function returns 0. If the
converted string overflows or underflows, errno is set to the value of
ERANGE.

� The strtol function converts a string to a long integer. The string must have
the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

� The strtoul function converts a string to an unsigned long integer. Specify
the string in the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

The space is indicated by a horizontal or vertical tab, space bar, carriage
return, form feed, or new line. Following the space is an optional sign and digits
that represent the integer portion of the number. The fractional part of the num-
ber follows, then the exponent, including an optional sign.

The first unrecognized character terminates the string. The pointer that endptr
points to is set to point to this character.
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Break String into Tokenstrtok

Syntax #include <string.h>

char *strtok (char *str1, const char *str2);

Defined in strtok.c in rts.src

Description Successive calls to the strtok function break str1 into a series of tokens, each
delimited by a character from str2. Each call returns a pointer to the next token.

Example After the first invocation of strtok in the example below, the pointer stra points
to the string excuse\0; because strtok has inserted a null character where the
first space used to be. In the comments, the notation \0 represents the null
character.

char stra[] = ”excuse me while I kiss the sky”;
char *ptr;

ptr =  strtok (stra,” ”); /* ptr ––> ”excuse\0” */
ptr = strtok  (0,” ”); /* ptr ––> ”me\0” */
ptr = strtok (0,” ”); /* ptr ––> ”while\0” */

Convert Charactersstrxfrm

Syntax #include <string.h>

size_t strxfrm (register char *to, register const char *from, register size_t n);

Defined in strxfrm.c in rts.src

Description The strxfrm function converts n characters pointed to by from into the n
characters pointed to by to.

Tangenttan/tanf

Syntax #include <math.h>

double tan (double x);
float tanf (float x);

Defined in tan.c and tanf.c in rts.src

Description The tan and tanf functions return the tangent of a floating-point number x. The
angle x is expressed in radians. An argument with a large magnitude can
produce a result with little or no significance.

Example double x, y;

x = 3.1415927/4.0;
y = tan ( x );            /* y = approx 1.0 */
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Hyperbolic Tangenttanh/tanhf

Syntax #include <math.h>

double tanh (double x);
float tanhf (float x);

Defined in tanh.c and tanhf.c in rts.src

Description The tanh and tanhf functions return the hyperbolic tangent of a floating-point
number x.

Example double x, y;

x = 0.0;
y = tanh ( x ); /* return value = 0.0 */

Timetime

Syntax #include <time.h>

time_t time (time_t *timer);

Defined in time.c in rts.src

Description The time function determines the current calendar time, represented in sec-
onds. If the calendar time is not available, the function returns –1. If timer is
not a null pointer, the function also assigns the return value to the object that
timer points to.

For more information about the functions and types that the time.h header
declares and defines, see section 9.3.15, Time Functions (time.h), on page
9-22.

Note: The time Function Is Target-System Specific

The time function is target-system specific, so you must write your own time
function.

Create Temporary Filetmpfile

Syntax #include <stdlib.h>

FILE *tmpfile (void);

Defined in tmpfile.c in rts.src

Description The tmpfile function creates a temporary file.
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Generate Valid Filenametmpnam

Syntax #include <stdlib.h>

char *tmpnam (char *_s);

Defined in tmpnam.c in rts.src

Description The tmpnam function generates a string that is a valid filename.

Convert to ASCIItoascii

Syntax #include <ctype.h>

char toascii (int c);

Defined in toascii.c in rts.src

Description The toascii function ensures that c is a valid ASCII character by masking the
lower seven bits. There is also an equivalent macro call _toascii.

Convert Casetolower/toupper

Syntax #include <ctype.h>

char tolower (int char c);
char toupper (int char c);

Defined in tolower.c in rts.src
toupper.c in rts.src

Description Two functions convert the case of a single alphabetic character c into upper-
case or lowercase:

� The tolower function converts an uppercase argument to lowercase. If c
is already in lowercase, tolower returns it unchanged.

� The toupper function converts a lowercase argument to uppercase. If c is
already in uppercase, toupper returns it unchanged.

The functions have macro equivalents named _tolower and _toupper.
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Truncate Toward 0trunc/truncf

Syntax #define _TI_ENHANCED_MATH_H 1
#include <math.h>

double trunc (double x);
float truncf (float x);

Defined in trunc.c and truncf.c in rts.src

Description The trunc and truncf functions return a floating-point number equal to the
nearest integer to x in the direction of 0.

Example float x, y, u, v;

x = 2.35;
y = truncf ( x ); /* y = 2 */

u = –5.65;
v = truncf ( v ); /* v = –5 */

Write Character to Streamungetc

Syntax #include <stdlib.h>

int ungetc (int _c, register FILE *_fp);

Defined in ungetc.c in rts.src

Description The ungetc function writes the character _c to the stream pointed to by _fp.
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Variable-Argument Macrosva_arg/va_end/
va_start

Syntax #include <stdarg.h>

typedef char *va_list ;
type va_arg (va_list, _type);
void va_end (va_list);
void va_start (va_list, parmN);

Defined in stdarg.h

Description Some functions are called with a varying number of arguments that have vary-
ing types. Such a function, called a variable-argument function, can use the
following macros to step through its argument list at runtime. The _ap param-
eter points to an argument in the variable-argument list.

� The va_start macro initializes _ap to point to the first argument in an
argument list for the variable-argument function. The parmN parameter
points to the right-most parameter in the fixed, declared list.

� The va_arg macro returns the value of the next argument in a call to
a variable-argument function. Each time you call va_arg, it modifies _ap
so that successive arguments for the variable-argument function can be
returned by successive calls to va_arg (va_arg modifies _ap to point to
the next argument in the list). The type parameter is a type name; it is
the type of the current argument in the list.

� The va_end macro resets the stack environment after va_start and
va_arg are used.

Note that you must call va_start to initialize _ap before calling va_arg or
va_end.

Example int printf (char *fmt...)
va_list ap;
va_start(ap, fmt);
.
.
.
i = va_arg(ap, int); /* Get next arg, an integer */
s = va_arg(ap, char *); /* Get next arg, a string   */
l = va_arg(ap, long); /* Get next arg, a long     */
.
.
.
va_end(ap); /* Reset                    */

}
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Write to Streamvfprintf

Syntax #include <stdlib.h>

int vfprintf (FILE *_fp, const char *_format, va_list _ap);

Defined in vfprintf.c in rts.src

Description The vfprintf function writes to the stream pointed to by _fp. The string pointed
to by _format describes how to write the stream. The argument list is given
by _ap.

Write to Standard Outputvprintf

Syntax #include <stdlib.h>

int vprintf (const char *_format, va_list _ap);

Defined in vprintf.c in rts.src

Description The vprintf function writes to the standard output device. The string pointed to
by _format describes how to write the stream. The argument list is given
by _ap.

Write Streamvsprintf

Syntax #include <stdlib.h>

int vsprintf (char *_string, const char *_format, va_list _ap);

Defined in vsprintf.c in rts.src

Description The vsprintf function writes to the array pointed to by _string. The string pointed
to by _format describes how to write the stream. The argument list is given
by _ap.
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Library-Build Utility

When using the C compiler, you can compile your code under a number of dif-
ferent configurations and options that are not necessarily compatible with one
another. Since it would be cumbersome to include all possible combinations
in individual runtime-support libraries, this package includes the source
archive, rts.src, which contains all runtime-support functions.

You can build your own runtime-support libraries by using the mk6x utility
described in this chapter and the archiver described in the TMS320C6000
Assembly Language Tools User’s Guide.

The runtime-support libraries that are shipped with the ’C6000 code genera-
tion tools are built as follows:

Command Comment

mk6x –o –ml rts.src –l rts6201.lib base, ’C6201

mk6x –o –ml –me rts.src –l rts6201e.lib base, ’C6201, big endian

mk6x –o –ml –mv6700 rts.src –l rts6701.lib base, ’C6701

mk6x –o –ml –mv6701 –me rts.src –l rts6701e.lib base, ’C6701, big endian

The base option set for every library is optimization level 2 (–o2 option) and
global structures and arrays accessed as far data (–ml option).
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10.1 Invoking the Library-Build Utility

The syntax for invoking the library-build utility is:

mk6x  [options] src_arch1 [–lobj.lib1] [src_arch2 [–lobj.lib2] ] ...

mk6x Command that invokes the utility.

options Options affect how the library-build utility treats your files. Options
can appear anywhere on the command line or in a linker command
file. (Options are discussed in section 10.2 and 10.3.)

src_arch The name of a source archive file. For each source archive
named, mk6x builds an object library according to the runtime
model specified by the command-line options.

–lobj.lib The optional object library name. If you do not specify a name for
the library, mk6x uses the name of the source archive and
appends a .lib suffix. For each source archive file specified, a cor-
responding object library file is created. You cannot build an object
library from multiple source archive files.

The mk6x utility runs the shell program on each source file in the archive to
compile and/or assemble it. Then, the utility collects all the object files into the
object library. All the tools must be in your PATH environment variable. The util-
ity ignores the environment variables TMP, C_OPTION, and C_DIR.

Invoking the Library-Build Utility
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10.2 Library-Build Utility Options

Most of the options that are included on the command line correspond directly
to options of the same name used with the compiler, assembler, linker, and
shell. The following options apply only to the library-build utility.

––c Extracts C source files contained in the source archive from the
library and leaves them in the current directory after the utility
completes execution.

––h Uses header files contained in the source archive and leaves
them in the current directory after the utility completes execution.
Use this option to install the runtime-support header files from the
rts.src archive that is shipped with the tools.

––k Overwrites files. By default, the utility aborts any time it attempts
to create an object file when an object file of the same name al-
ready exists in the current directory, regardless of whether you
specified the name or the utility derived it.

––q Suppresses header information (quiet).

––u Does not use the header files contained in the source archive
when building the object library. If the desired headers are already
in the current directory, there is no reason to reinstall them. This
option gives you flexibility in modifying runtime-support functions
to suit your application.

––v Prints progress information to the screen during execution of the
utility. Normally, the utility operates silently (no screen messages).
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10.3 Options Summary

The other options you can use with the library-build utility correspond directly
to the options used with the compiler and assembler. Table 10–1 lists these
options. These options are described in detail on the indicated page below.

Table 10–1. Summary of Options and Their Effects

(a) Options that control the compiler/shell

Option Effect Page

–dname[=def ] Predefines name 2-15

–g Enables symbolic debugging 2-15

–uname Undefines name 2-17

(b) Options that are machine-specific

Option Effect Page

–ma Assumes aliased variables 3-21

–me Produces object code in big-endian format 2-16

–mg Allows you to profile optimized code 3-30

–mhn Allows speculative execution 3-10

–min Specifies an interrupt threshold value 2-41

–mln Changes near and far assumptions on four levels
(–ml0, –ml1, –ml2, and –ml3)

2-16

–mrn Makes calls to runtime-support functions near (–mr0)
or far (–mr1)

2-16

–msn Controls code size on three levels (–ms0, –ms1, –ms2,
and –ms2)

3-14

–mt Indicates that specific aliasing techniques are not used 3-22

–mu Turns off software pipelining 3-5

–mvn Selects target version 3-12

–mw Embeds software pipelined loop information in the .asm
file

3-5
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Table 10–1. Summary of Options and Their Effects (Continued)

(c) Options that control the parser

Option Effect Page

–pi Disables definition-controlled inlining (but –o3 opti-
mizations still perform automatic inlining)

2-36

–pk Makes code K&R compatible 7-23

–pr Enables relaxed mode; ignores strict ANSI violations 7-25

–ps Enables strict ANSI mode (for C, not K&R C) 7-25

(d) Parser options that control diagnostics

Option Effect Page

–pdr Issues remarks (nonserious warnings) 2-29

–pdv Provides verbose diagnostics that display the original
source with line wrap

2-30

–pdw Suppresses warning diagnostics (errors are still
issued)

2-30

(e) Options that control the optimization level

Option Effect Page

–o0 Compiles with register optimization 3-2

–o1 Compiles with –o0 optimization + local optimization 3-2

–o2 (or –o) Compiles with –o1 optimization + global optimization 3-2

–o3 Compiles with –o2 optimization + file optimization.
Note that mk6x automatically sets –oI0 and –op0.

3-2

(f) Options that control the definition-controlled inline function expansion

Option Effect Page

–x0 Disables intrinsic function inlining, the inline key-
word, and automatic inlining

2-36

–x1 Disables the inline keyword and automatic inlining 2-36

–x2 (or –x) Defines _INLINE and invokes optimizer (at –o2 if not
specified differently)

2-36
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Table 10–1. Summary of Options and Their Effects (Continued)

(g) Option that controls the assembler

Option Effect Page

–as Keeps labels as symbols 2-20

(h) Options that change the default file extensions

Option Effect Page

–ea[.]new extension Sets default extension for assembly files 2-18

–eo[.]new extension Sets default extension for object files 2-18
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Glossary

A
ANSI: See American National Standards Institute.

alias disambiguation: A technique that determines when two pointer ex-
pressions cannot point to the same location, allowing the compiler to
freely optimize such expressions.

aliasing: The ability for a single object to be accessed in more than one way,
such as when two pointers point to a single object. It can disrupt optimiza-
tion, because any indirect reference could refer to any other object.

allocation: A process in which the linker calculates the final memory
addresses of output sections.

American National Standards Institute(ANSI):  An organization that esta-
blishes standards voluntarily followed by industries.

archive library: A collection of individual files grouped into a single file by
the archiver.

archiver: A software program that collects several individual files into a sin-
gle file called an archive library. With the archiver, you can add, delete,
extract, or replace members of the archive library.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, direc-
tives, and macro definitions. The assembler substitutes absolute opera-
tion codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

assembly optimizer: A software program that optimizes linear assembly
code, which is assembly code that has not been register-allocated or
scheduled. The assembly optimizer is automatically invoked with the
shell program, cl6x, when one of the input files has a .sa extension.

assignment statement: A statement that initializes a variable with a value.

Appendix A
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autoinitialization: The process of initializing global C variables (contained
in the .cinit section) before program execution begins.

autoinitialization at run time: An autoinitialization method used by the
linker when linking C code. The linker uses this method when you invoke
the linker with the –c option. The linker loads the .cinit section of data ta-
bles into memory, and variables are initialized at run time.

B

big endian: An addressing protocol in which bytes are numbered from left
to right within a word. More significant bytes in a word have lower
numbered addresses. Endian ordering is hardware-specific and is deter-
mined at reset. See also little endian

block: A set of statements that are grouped together within braces and
treated as an entity.

.bss section: One of the default COFF sections. You use the .bss directive
to reserve a specified amount of space in the memory map that you can
use later for storing data. The .bss section is uninitialized.

byte: A sequence of eight adjacent bits operated upon as a unit.

C

C compiler: A software program that translates C source statements into
assembly language source statements.

C optimizer: See optimizer

code generator: A compiler tool that takes the file produced by the parser
or the optimizer and produces an assembly language source file.

COFF: See common object file format.

command file: A file that contains linker or hex conversion utility options and
names input files for the linker or hex conversion utility.

comment: A source statement (or portion of a source statement) that docu-
ments or improves readability of a source file. Comments are not com-
piled, assembled, or linked; they have no effect on the object file.

common object file format(COFF): A system of object files configure ac-
cording to a standard developed by AT&T.  These files are relocatable in
memory space.
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constant: A type whose value cannot change.

cross-reference listing: An output file created by the assembler that lists
the symbols it defined, what line they were defined on, which lines refer-
enced them, and their final values.

D
.data section: One of the default COFF sections. The .data section is an in-

itialized section that contains initialized data. You can use the .data direc-
tive to assemble code into the .data section.

direct call: A function call where one function calls another using the func-
tion’s name.

directives: Special-purpose commands that control the actions and
functions of a software tool.

disambiguation: See alias disambiguation

dynamic memory allocation: A technique used by several functions (such
as malloc, calloc, and realloc) to dynamically allocate memory for vari-
ables at run time. This is accomplished by defining a large memory pool
(heap) and using the functions to allocate memory from the heap.

E
emulator: A hardware development system that duplicates the

TMS320C6000 operation.

entry point: A point in target memory where execution starts.

environment variable: A system symbol that you define and assign to a
string. Environmental variables are often included in batch files, for ex-
ample, .cshrc.

epilog: The portion of code in a function that restores the stack and returns.
See also pipelined-loop epilog

executable module: A linked object file that can be executed in a target sys-
tem.

expression:  A constant, a symbol, or a series of constants and symbols
separated by arithmetic operators.

external symbol: A symbol that is used in the current program module but
defined or declared in a different program module.
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F

file-level optimization: A level of optimization where the compiler uses the
information that it has about the entire file to optimize your code (as op-
posed to program-level optimization, where the compiler uses informa-
tion that it has about the entire program to optimize your code).

function inlining: The process of inserting code for a function at the point
of call. This saves the overhead of a function call and allows the optimizer
to optimize the function in the context of the surrounding code.

G

global symbol: A symbol that is either defined in the current module and
accessed in another or accessed in the current module but defined in
another.

H

hex conversion utility: A utility that converts COFF object files into one of
several standard ASCII hexadecimal formats, suitable for loading into an
EPROM programmer.

I

indirect call: A function call where one function calls another function by giv-
ing the address of the called function.

initialization at load time: An autoinitialization method used by the linker
when linking C code. The linker uses this method when you invoke the
linker with the –cr option. This method initializes variables at load time
instead of run time.

initialized section: A COFF section that contains executable code or data.
An initialized section can be built with the .data, .text, or .sect directive.

integrated preprocessor: A C preprocessor that is merged with the parser,
allowing for faster compilation. Stand-alone preprocessing or prepro-
cessed listing is also available.

interlist utility: A utility that inserts as comments your original C source
statements into the assembly language output from the assembler. The
C statements are inserted next to the equivalent assembly instructions.
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K

kernel: The body of a software-pipelined loop between the pipelined-loop
prolog and the pipelined-loop epilog.

K&R C: Kernighan and Ritchie C, the de facto standard as defined in the first
edition of The C Programming Language (K&R). Most K&R C programs
written for earlier, non-ANSI C compilers should correctly compile and
run without modification.

L

label: A symbol that begins in column 1 of an assembler source statement
and corresponds to the address of that statement. A label is the only
assembler statement that can begin in column 1.

linear assembly: Assembly code that has not been register-allocated or
scheduled, which is used as input for the assembly optimizer. Linear as-
sembly files have a .sa extension.

linker: A software program that combines object files to form an object mod-
ule that can be allocated into system memory and executed by the de-
vice.

listing file: An output file created by the assembler that lists source state-
ments, their line numbers, and their effects on the section program
counter (SPC).

little endian: An addressing protocol in which bytes are numbered from right
to left within a word. More significant bytes in a word have higher num-
bered addresses. Endian ordering is hardware-specific and is deter-
mined at reset. See also big endian

live in: A value that is defined before a procedure and used as an input to
that procedure.

live out: A value that is defined within a procedure and used as an output
from that procedure.

loader: A device that places an executable module into system memory.

loop unrolling: An optimization that expands small loops so that each itera-
tion of the loop appears in your code. Although loop unrolling increases
code size, it can improve the efficiency of your code.
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M

macro: A user-defined routine that can be used as an instruction.

macro call: The process of invoking a macro.

macro definition: A block of source statements that define the name and
the code that make up a macro.

macro expansion: The process of inserting source statements into your
code in place of a macro call.

map file: An output file, created by the linker, that shows the memory
configuration, section composition, section allocation, symbol defini-
tions, and the addresses at which the symbols were defined for your pro-
gram.

memory map: A map of target system memory space that is partitioned into
functional blocks.

O

object file: An assembled or linked file that contains machine-language ob-
ject code.

object library: An archive library made up of individual object files.

operand: An argument of an assembly language instruction, assembler di-
rective, or macro directive that supplies information to the operation per-
formed by the instruction or directive.

optimizer: A software tool that improves the execution speed and reduces
the size of C programs. See also assembly optimizer

options: Command-line parameters that allow you to request additional or
specific functions when you invoke a software tool.

output module: A linked, executable object file that is downloaded and
executed on a target system.

output section: A final, allocated section in a linked, executable module.
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P
parser: A software tool that reads the source file, performs preprocessing

functions, checks the syntax, and produces an intermediate file used as
input for the optimizer or code generator.

partitioning: The process of assigning a data path to each instruction.

pipelined-loop epilog: The portion of code that drains a pipeline in a soft-
ware-pipelined loop. See also epilog

pipelined-loop prolog: The portion of code that primes the pipeline in a
software-pipelined loop. See also prolog

pop: An operation that retrieves a data object from a stack.

pragma: A preprocessor directive that provides directions to the compiler
about how to treat a particular statement.

preprocessor: A software tool that interprets macro definitions, expands
macros, interprets header files, interprets conditional compilation, and
acts upon preprocessor directives.

program-level optimization: An aggressive level of optimization where all
of the source files are compiled into one intermediate file. Because the
compiler can see the entire program, several optimizations are per-
formed with program-level optimization that are rarely applied during file-
level optimization.

prolog: The portion of code in a function that sets up the stack. See also pi-
pelined-loop prolog

push: An operation that places a data object on a stack for temporary stor-
age.

R
redundant loops: Two versions of the same loop, where one is a software-

pipelined loop and the other is an unpipelined loop. Redundant loops are
generated when the TMS320C6000 tools cannot guarantee that the trip
count is large enough to pipeline a loop for maximum performance.

relocation: A process in which the linker adjusts all the references to a
symbol when the symbol’s address changes.

runtime environment: The run time parameters in which your program
must function. These parameters are defined by the memory and regis-
ter conventions, stack organization, function call conventions, and sys-
tem initialization.
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runtime-support functions: Standard ANSI functions that perform tasks
that are not part of the C language (such as memory allocation, string
conversion, and string searches).

runtime-support library: A library file, rts.src, that contains the source for
the run time-support functions.

S

section: A relocatable block of code or data that will ultimately be
contiguous with other sections in the memory map.

section header: A portion of a COFF object file that contains information
about a section in the file. Each section has its own header. The header
points to the section’s starting address, contains the section’s size, etc.

shell program: A utility that lets you compile, assemble, and optionally link
in one step. The shell runs one or more source modules through the com-
piler (including the parser, optimizer, and code generator), the assem-
bler, and the linker.

software pipelining: A technique used by the C optimizer and the assembly
optimizer to schedule instructions from a loop so that multiple iterations
of the loop execute in parallel.

source file: A file that contains C code or assembly language code that is
compiled or assembled to form an object file.

stand-alone preprocessor: A software tool that expands macros, #include
files, and conditional compilation as an independent program. It also per-
forms integrated preprocessing, which includes parsing of instructions.

stand-alone simulator: A software tool that loads and runs an executable
COFF .out file. When used with the C I/O libraries, the stand–alone simu-
lator supports all C I/O functions with standard output to the screen.

static variable: A variable whose scope is confined to a function or a
program. The values of static variables are not discarded when the func-
tion or program is exited; their previous value is resumed when the func-
tion or program is reentered.

storage class: An entry in the symbol table that indicates how to access a
symbol.

structure: A collection of one or more variables grouped together under a
single name.
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symbol: A string of alphanumeric characters that represents an address or
a value.

symbol table: A portion of a COFF object file that contains information
about the symbols that are defined and used by the file.

symbolic debugging: The ability of a software tool to retain symbolic infor-
mation that can be used by a debugging tool such as a simulator or an
emulator.

T

target system: The system on which the object code you have developed
is executed.

.text section: One of the default COFF sections. The .text section is initial-
ized and contains executable code. You can use the .text directive to as-
semble code into the .text section.

trigraph sequence: A 3-character sequence that has a meaning (as de-
fined by the ISO 646-1983 Invariant Code Set). These characters cannot
be represented in the C character set and are expanded to one charac-
ter. For example, the trigraph ??’ is expanded to ^.

trip count:  The number of times that a loop executes before it terminates.

U

uninitialized section: A COFF section that reserves space in the memory
map but that has no actual contents. These sections are built with the
.bss and .usect directives.

unsigned value: A value that is treated as a nonnegative number, regard-
less of its actual sign.

V

variable: A symbol representing a quantity that can assume any of a set of
values.
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Index

; in linear assembly source 4-14
#include directive, generating list of files

included 2-27
–@ shell option 2-15
* in linear assembly source 4-14
>> symbol 2-31

A
–a linker option 5-6

–aa shell option 2-20
abort function 9-42
.abs extension 2-17
abs function, described 9-42
absolute compiler limits 7-27
absolute listing, creating 2-20
absolute value

abs/labs functions 9-42
fabs function 9-58
fabsf function 9-58

acos function 9-43
acosf function 9-43
acosh function 9-43
acoshf function 9-43

acot function 9-43
acot2 function 9-44
acot2f function 9-44
acotf function 9-43
acoth function 9-44
acothf function 9-44
add_device function 9-45
–ahc shell option 2-20
–ahi shell option 2-20
–al shell option 2-20

alias disambiguation
defined A-1
described 3-34

aliasing, defined A-1

align help function 9-69
allocate memory

allocate and clear memory function 9-51
allocate memory function 9-69
sections 5-11

allocation, defined A-1
alt.h pathname 2-25

ANSI
C

compatibility with K&R C 7-23
TMS320C6x C differences from 7-2

defined A-1
standard overview 1-5

–ar linker option 5-6
arc

cosine functions 9-43
cotangent

cartesian functions 9-44
hyperbolic functions 9-44
polar functions 9-43

sine functions 9-47
tangent

cartesian functions 9-49
hyperbolic functions 9-49
polar functions 9-48

archive library
defined A-1
linking 5-8

archiver
defined A-1
described 1-3

arguments, accessing 8-20
arithmetic operations 8-33
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array
search function 9-51
sort function 9-75

–as shell option 2-20
ASCII string conversion functions 9-50

asctime function 9-46
asin function 9-47
asinf function 9-47

asinh function 9-47
asinhf function 9-47
.asm extension 2-17

asm statement
described 7-13
in optimized code 3-24
using 8-29

assembler
defined A-1
described 1-3
options summary 2-13

assembler control 2-20

assembly language
accessing

constants 8-31
variables 8-30

accessing global, global variables 8-30
calling with intrinsics 8-24
code interfacing 8-21
embedding 7-13
including 8-29
interlisting with C code 2-42
interrupt routines 8-32
module interfacing 8-21
retaining output 2-15

assembly listing file, creating 2-20
assembly optimizer

defined A-1
described 1-3
invoking 4-4
using 4-1 to 4-17

assembly source debugging 2-15

assert function 9-48
assert.h header

described 9-14
summary of functions 9-31

assignment statement, defined A-1
atan function 9-48
atan2 function 9-49

atan2f function 9-49
atanf function 9-48
atanh function 9-49
atanhf function 9-49
atexit function 9-49
atof function 9-50
atoi function 9-50
atol function 9-50
–au shell option 2-20
autoinitialization

at runtime
defined A-2
described 8-40

defined A-2
initialization tables 8-37
of variables 8-5, 8-36
types of 5-9

–ax shell option 2-20

B
–b option

linker 2-14, 5-6
standalone simulator 6-4

banner suppressing 2-16
base-10 logarithm 9-68
base-2 logarithm 9-68
big endian

defined A-2
producing 2-16

_BIG_ENDIAN macro 2-23
bit fields 7-3

allocating 8-13
size and type 7-24

block
copy functions

nonoverlapping memory 9-70
overlapping memory 9-71

defined A-2
memory allocation 5-11

boot.obj 5-8, 5-10
branch optimizations 3-34
bsearch function 9-51
.bss section

allocating in memory 5-11
defined A-2
described 8-3
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buffer
define and associate function 9-81
specification function 9-79

BUFSIZE macro 9-20
byte, defined A-2

C
C compiler

defined A-2
described 1-3

.c extension 2-17
C language

accessing assembler constants 8-31
accessing assembler global variables 8-30
accessing assembler variables 8-30
characteristics 7-2 to 7-4
const keyword 7-6
cregister keyword 7-7
far keyword 7-9 to 7-11
interlisting with assembly 2-42
near keyword 7-9 to 7-11
placing assembler statements in 8-29

– –c library-build utility option 10-3
–c option

how shell and linker options differ 5-5
linker 5-2, 5-9
shell 2-15

_c_int00, described 5-10
C_OPTION environment variable 2-21
calendar time

ctime function 9-55
described 9-22
difftime function 9-55
mktime function 9-72
time function 9-95

calloc function 9-71
described 9-51
dynamic memory allocation 8-5
reversing 9-62

ceil function 9-52
ceilf function 9-52
ceiling functions 9-52
character

conversion functions
a number of characters 9-94
described 9-14
summary of 9-31

character (continued)
escape sequences in 7-24
find function 9-84
matching functions

strpbrk 9-91
strrchr 9-91
strspn 9-92

read functions
multiple characters 9-59
single character 9-59

string constants 8-14
type testing function 9-66
unmatching function 9-86

character sets 7-2
.cinit section

allocating in memory 5-11
assembly module use of 8-22
described 8-3
use during autoinitialization 5-10

cl6x command 2-4
clear EOF functions 9-52
clearerr function 9-52
clearerrf function 9-52
CLK_TCK macro, described 9-22
clock function 9-53
clock_t data type 9-22
CLOCKS_PER_SEC macro 9-22

usage 9-53
close file function 9-58
close I/O function 9-7
code generator, defined A-2
code size, reducing 3-5, 3-14
CODE_SECTION pragma 7-14
COFF, defined A-2
command file

appending to command line 2-15
defined A-2
linker 5-12

comment, defined A-2
comments

in linear assembly source code 4-14
linear assembly 4-6

common logarithm functions 9-68
compare strings functions

any number of characters in 9-89
entire string 9-84

compatibility with K&R C 7-23



Index

Index-4  

compiler
described 2-1 to 2-42
diagnostic messages 2-28 to 2-31
limits 7-26, 7-27
optimizer 3-2 to 3-3
options

conventions 2-6
summary 2-7 to 2-20

overview 1-5 to 1-8
sections 5-11

preprocessor
controlling 2-23 to 2-27
error messages 2-23
_INLINE symbol 2-38
options 2-26 to 2-27
predefining constant names for 2-15
symbols 2-24

compiling after preprocessing 2-26

compiling C code
compile only 2-16
overview, commands, and options 2-2 to 2-3
with the optimizer 3-2 to 3-3

concatenate strings functions
any number of characters 9-88
entire string 9-83

const keyword 7-6

.const section
allocating in memory 5-11
described 8-3

constant
assembler, accessing from C 8-31
character, escape sequences in 7-24
character strings 8-14
defined A-3
string 7-24

constants, C language 7-2

control registers, accessing, from C 7-7

control-flow simplification 3-34

controlling diagnostic messages 2-29 to 2-30

conventions
function calls 8-17
notational iv
register 8-15

conversions 7-3
C language 7-3
described 9-14

convert
case function 9-96
long integer to ASCII 9-69
string to number 9-50
time to string function 9-46
to ASCII function 9-96

copy file, –ahc assembler option 2-20

copy string function 9-85

cos function 9-53

cosf function 9-53

cosh function 9-54

coshf function 9-54

cosine functions 9-53

cost-based register allocation optimization 3-32

cot function 9-54

cotangent
hyperbolic functions 9-54
polar functions 9-54

cotf function 9-54

coth function 9-54

cothf function 9-54

–cr linker option 5-9

–cr option 5-2

cregister keyword 7-7

cross-reference listing
defined A-3
generating with assembler 2-20
generating with compiler shell 2-32

cross-reference utility, described 1-4

ctime function 9-55

ctype.h header
described 9-14
summary of functions 9-31

D
–d option

shell 2-15
standalone simulator 6-4

–d shell option 2-20

data, object representation 8-8

data flow optimizations 3-37

data page pointer (DP) 7-9

data section, defined A-3
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data types
C language 7-2
clock_t 9-22
div_t 9-21
how stored in memory 8-8
ldiv_t 9-21
list of 7-5
storage 8-8
struct_tm 9-22
time_t 9-22

DATA_ALIGN pragma 7-15

DATA_MEM_BANK pragma 7-15

DATA_SECTION pragma 7-17

_ _DATE_ _ macro 2-24

daylight savings time 9-22

deallocate memory function 9-62

debugging, optimized code 3-29

declarations, C language 7-3

development flow diagram 1-2

device
adding 9-11
functions 9-45

diagnostic identifiers, in raw listing file 2-34

diagnostic messages
assert function 9-48
controlling 2-29
described 9-14
description 2-28 to 2-29
errors 2-28
fatal errors 2-28
format 2-28
generating 2-29 to 2-30
other messages 2-31
remarks 2-28
suppressing 2-29 to 2-31
warnings 2-28

difftime function 9-55

direct call, defined A-3

directives
assembly optimizer 4-17
defined A-3

directories
alternate for include files 2-25
for include files 2-15, 2-25
specifying 2-19

div function 9-56

div_t data type 9-21

division 7-3
division functions 9-56
documentation v, vi
DP (data page pointer) 7-9
duplicate value in memory function 9-71
dynamic memory allocation

defined A-3
described 8-5

E
–e option, linker 5-6
–ea shell option 2-18
EDOM macro 9-15
EFPOS macro 9-15
–el shell option 2-18
emulator, defined A-3
.endproc directive 4-30
ENOENT macro 9-15
entry point, defined A-3
environment information function 9-65
environment variable

C_OPTION 2-21
defined A-3
TMP 2-22

–eo shell option 2-18
EOF macro 9-20
epilog, defined A-3
epilog removal 3-10

aggressive 3-11
disqualifying 3-10
speculative execution 3-10

EPROM programmer 1-4
ERANGE macro 9-15
errno.h header 9-15
error

errno.h header file 9-15
handling 7-24
indicators functions 9-52
mapping function 9-73
message macro 9-31
messages, preprocessor 2-23

error messages
See also diagnostic messages
handling with options 2-30

escape sequences 7-2, 7-24
executable module, defined A-3
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exit functions
abort function 9-42
atexit 9-49
exit function 9-56

exp function 9-57
exp10 function 9-57
exp10f function 9-57
exp2 function 9-57
exp2f function 9-57
expf function 9-57
exponential math function, described 9-18
exponential math functions

exp function 9-57
exp10 function 9-57
exp10f function 9-57
exp2 function 9-57
exp2f function 9-57
expf function 9-57

expression
defined A-3
simplification 3-37

expressions 7-3
C language 7-3

extensions
abs 2-17
asm 2-17
c 2-17
nfo 3-16
obj 2-17
s 2-17
sa 2-17, 4-4
specifying 2-18

external declarations 7-24
external symbol, defined A-3

F
–f option, linker 5-6
–fa shell option 2-18
fabs function, described 9-58
fabsf function, described 9-58
far keyword 7-9
.far section

allocating in memory 5-11
described 8-3

fatal error 2-28
–fb shell option 2-19

–fc shell option 2-18
fclose function 9-58
feof function 9-58
ferror function 9-58
–ff shell option 2-19
fflush function 9-59
fgetc function 9-59
fgetpos function 9-59
fgets function 9-59
file

copy 2-20
include 2-20
removal function 9-77
rename function 9-77

FILE data type 9-20
_ _FILE_ _ macro 2-24
file.h header 9-15
file-level optimization 3-15

defined A-4
filename

extension specification 2-18
generate function 9-96
specifying 2-17

FILENAME_MAX macro 9-20
find first occurrence of byte function 9-70
–fl shell option 2-18
float.h header 9-16
floating-point

math functions, described 9-18
remainder functions 9-60
summary of functions 9-32 to 9-34

floor function 9-60
floorf function 9-60
flush I/O buffer function 9-59
fmod function 9-60
fmodf function 9-60
–fo shell option 2-18
fopen function 9-61
FOPEN_MAX macro 9-20
fpos_t data type 9-20
fprintf function 9-61
fputc function 9-61
fputs function 9-61
–fr shell option 2-19
fraction and exponent functions 9-63
fread function 9-62
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free function 9-62
freopen function, described 9-62

frexp function 9-63
frexpf function 9-63
–fs shell option 2-19
fscanf function 9-63
fseek function 9-63
fsetpos function 9-64
–ft shell option 2-19
ftell function 9-64

FUNC_CANNOT_INLINE pragma 7-17
FUNC_EXT_CALLED pragma

described 7-18
use with –pm option 3-19

FUNC_INTERRUPT_THRESHOLD pragma 7-18
FUNC_IS_PURE pragma 7-19
FUNC_IS_SYSTEM pragma 7-19

FUNC_NEVER_RETURNS pragma 7-19
FUNC_NO_GLOBAL_ASG pragma 7-20
FUNC_NO_IND_ASG pragma 7-20
function

alphabetic reference 9-42
call

bypassing normal calls 9-19
conventions 8-17 to 8-20
using the stack 8-4

general utility 9-21, 9-38
inline expansion 2-35 to 2-40
inlining defined A-4
prototype, effects of –pk option 7-23
responsibilities of called function 8-18
responsibilities of calling function 8-17
structure 8-17

fwrite function 9-64

G
–g option

linker 5-6
shell 2-15

general-purpose registers
32-bit data 8-9, 8-10, 8-11
double-precision floating-point data 8-12
halfword 8-9

general utility functions, minit 9-71
generating list of #include files 2-27

get file-position function 9-64
getc function 9-64
getchar function 9-65
getenv function 9-65
gets function 9-65
global symbol, defined A-4
global variables

assembler, accessing from C 8-30
autoinitialization 8-36
initializing 7-22
reserved space 8-3

gmtime function 9-65
Greenwich mean time function 9-65
Gregorian time 9-22

H
– –h library-build utility option 10-3
–h option

linker 5-6
standalone simulator 6-4

header files
assert.h header 9-14
ctype.h header 9-14
errno.h header 9-15
file.h header 9-15
float.h header 9-16
limits.h header 9-16
list of 9-13
math.h header 9-18
setjmp.h 9-19
stdarg.h header 9-19
stddef.h header 9-20
stdio.h header 9-20
stdlib.h header 9-21
string.h header 9-22
time.h header 9-22

heap
align function 9-69
described 8-5
reserved space 8-3

–heap linker option 5-6
–heap option, with malloc 9-69
heap size function, size function 9-76
hex conversion utility

defined A-4
described 1-4

HUGE_VAL 9-18
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hyperbolic math functions
described 9-18
hyperbolic arc cosine functions 9-43
hyperbolic arc cotangent functions 9-44
hyperbolic arc sine functions 9-47
hyperbolic arc tangent functions 9-49
hyperbolic cosine functions 9-54
hyperbolic cotangent functions 9-54
hyperbolic sine functions 9-82
hyperbolic tangent functions 9-95

I
–i option

linker 5-6
shell 2-25

description 2-15
I/O

adding a device 9-11
definitions, low-level 9-15
described 9-4
functions

close 9-7
flush buffer 9-59
lseek 9-7
open 9-8
read 9-9
rename 9-9
unlink 9-10
write 9-10

implementation overview 9-5
summary of functions 9-35 to 9-37

identifiers, C language 7-2
implementation-defined behavior 7-2 to 7-4
#include

files
adding a directory to be searched 2-15
specifying a search path 2-24

preprocessor directive 2-24
include files 2-20
indirect call, defined A-4
initialization

at load time
defined A-4
described 8-41

of variables 7-22
at load time 8-5
at runtime 8-5

types 5-9

initialization tables 8-37
initialized sections

allocating in memory 5-11
defined A-4
described 8-3

_INLINE, preprocessor symbol 2-38
inline

assembly language 8-29
declaring functions as 2-36
definition-controlled 2-36
disabling 2-36
function expansion, summary of options 2-13
keyword 2-37
static functions 2-38
strict ANSI C compatibility 2-36

_ _inline keyword 2-36
inline keyword 2-36
_INLINE macro, described 2-24
inlining

automatic expansion 3-25
function expansion 2-35
intrinsic operators 2-35
specifying a function for 2-37

input file
extensions, summary of options 2-8
summary of options 2-8

input/output definitions 9-15
integer, division 9-56
integrated preprocessor, defined A-4
interfacing C and assembly 8-21 to 8-31
interlist utility

defined A-4
described 1-3
invoking 2-16, 2-17
invoking with shell program 2-42
used with the optimizer 3-26

interrupt
flexibility options 2-41
handling

described 8-32
saving registers 7-8

interrupt keyword 7-8
INTERRUPT pragma 7-20
intrinsics

inlining operators 2-35
using to call assembly language state-

ments 8-24
inverse tangent of y/x 9-49
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invoking
library-build utility 10-2
linker 5-2
shell program 2-4
standalone simulator 6-2

isalnum function 9-66

isalpha function 9-66
isascii function 9-66

iscntrl function 9-66
isdigit function 9-66

isgraph function 9-66
islower function 9-66
isprint function 9-66

ispunch function 9-66
ispunct function 9-66

isspace function 9-66
isupper function 9-66

isxdigit function 9-66
isxxx function 9-14, 9-66

J
jump function 9-35
jump macro 9-35
jumps (nonlocal) functions 9-80

K
– –k library-build utility option 10-3
–k option, shell 2-15

K&R
compatibility with ANSI C 7-23
related document vi

K&R C, defined A-5
kernel

defined A-5
described 3-4

keyword
cregister 7-7
far 7-9 to 7-11
near 7-9 to 7-11

keywords
const 7-6
inline 2-36, 2-37
_ _inline 2-36

interrupt 7-8
volatile 7-11

L
–l option

library-build utility 10-2
linker 5-2, 5-8

L_tmpnam macro 9-20
label

defined A-5
retaining 2-20

labs function, described 9-42
large memory model 2-16, 8-6
_LARGE_MODEL macro 2-23
ldexp function 9-67
ldiv function 9-56
ldiv_t data type 9-21
libraries, runtime support 9-2 to 9-3
library-build utility 10-1 to 10-6

compiler and assembler options 10-4 to 10-6
described 1-4
optional object library 10-2
options 10-3 to 10-6

limits
absolute compiler 7-27
compiler 7-26
floating-point types 9-16
integer types 9-16

limits.h header 9-16
_ _LINE_ _ macro 2-23
linear assembly

defined A-5
described 4-1
source comments 4-6
specifying functional units 4-6
writing 4-4 to 4-16

linker
command file 5-12
controlling 5-8
defined A-5
described 1-3
disabling 5-5
invoking 2-17
invoking individually 5-2
options 5-6 to 5-7
summary of options 2-14
suppressing 2-15
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linking
C code 5-1 to 5-12
individually 5-2
object library 9-2
with runtime-support libraries 5-8
with the shell program 5-4

listing file
creating cross-reference 2-20
defined A-5
generating with preprocessor 2-33

little endian
changing to big 2-16
defined A-5

_LITTLE_ENDIAN macro 2-23

lnk6x 5-2

load6x 6-2

loader
defined A-5
using with linker 7-22

local time
convert broken-down time to local time 9-72
convert calendar to local time 9-55
described 9-22

local variables, accessing 8-20

localtime function 9-67

log function 9-68

log10 function 9-68

log10f function 9-68

log2 function 9-68

log2f function 9-68

logf function 9-68

longjmp function 9-80

loop rotation optimization 3-40

loop unrolling, defined A-5

loop-invariant optimizations 3-40

loops
expand compiler knowledge with _nassert 8-28
optimization 3-39
redundant 3-13
software pipelining 3-4 to 3-12

low-level I/O functions 9-15

lseek I/O function 9-7

ltoa function 9-69

M
–m linker option 5-6

macro
defined A-6
macro call, defined A-6
macro definition, defined A-6
macro expansion, defined A-6

macros
alphabetic reference 9-42
CLOCKS_PER_SEC 9-22
expansions 2-23 to 2-24
predefined names 2-23 to 2-24
SEEK_CUR 9-21
SEEK_END 9-21
SEEK_SET 9-21
stden 9-21
stdin 9-21
stdout 9-21

malloc function 9-71
allocating memory 9-69
dynamic memory allocation 8-5
reversing 9-62

map file, defined A-6

math.h header
described 9-18
summary of functions 9-32 to 9-34

.mdep 4-56

–me option, shell 2-16

memalign function 9-69

memchr function 9-70

memcmp function 9-70

memcpy function 9-70

memmove function 9-71

memory alias disambiguation 4-55

memory aliasing 4-55
examples 4-58

memory bank scheme, interleaved 4-45
four-bank memory 4-45

with two memory spaces 4-46

memory banks 4-45

memory compare function 9-70

memory dependence 4-55, 4-56
exceptions 4-55
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memory management functions
calloc 9-51
free 9-62
malloc function 9-69
minit 9-71
realloc function 9-76

memory map, defined A-6

memory model
described 8-2
dynamic memory allocation 8-5
large memory model 8-6
sections 8-3
small memory model 8-6
stack 8-4
variable initialization 8-5

memory pool
malloc function 9-69
reserved space 8-3

memory reference, annotating 4-56

memory references 4-55

memset function 9-71

–mh shell option 3-11

–mi option, shell 2-41

minit function 9-71

mk6x 10-2

mktime function 9-72

–ml option 2-16
shell 2-16

modf function 9-73

modff function 9-73

modulus 7-3

–mr shell option 7-10

–mt 4-55

multibyte characters 7-2

multiply by power of 2 function 9-67

N
–n option

linker 5-7
shell 2-16

_nassert intrinsic 8-28

natural logarithm functions 9-68

NDEBUG macro 9-14, 9-48

near data, position\–independent data 8-7

near keyword 7-9
.nfo extension 3-16
NMI_INTERRUPT pragma 7-21
.no_mdep 4-55
nonlocal jump function 9-35
nonlocal jump functions and macros

described 9-80
summary of 9-35

notation conventions iv
NULL macro 9-20

O
–o option

linker 5-7
shell 3-2

–o3 with –pi 2-37
standalone simulator 6-4

.obj extension 2-17
object file, defined A-6
object library

defined A-6
linking code with 9-2

offsetof macro 9-20
–oi shell option 3-25
–ol shell option 3-15
–on shell option 3-16
–op shell option 3-17 to 3-19
open file function 9-61, 9-62
open I/O function 9-8
operand, defined A-6
optimizations

alias disambiguation 3-34
branch 3-34
control-flow simplification 3-34
controlling the level of 3-17
cost based register allocation 3-32
data flow 3-37
expression simplification 3-37
file-level, defined 3-15, A-4
induction variables 3-39
information file options 3-16
inline expansion 3-38
levels 3-2
list of 3-31 to 3-42
loop rotation 3-40
loop-invariant code motion 3-40
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optimizations (continued)
program-level

defined A-7
described 3-17

register targeting 3-40
register tracking 3-40
register variables 3-40
strength reduction 3-39

optimized code, debugging 3-29
optimizer

defined A-6
described 1-3
invoking with shell options 3-2
summary of options 2-12

options
assembler 2-20
compiler shell summary 2-7
conventions 2-6
defined A-6
diagnostics 2-11, 2-29
library-build utility 10-3 to 10-5
linker 5-6 to 5-7
preprocessor 2-10, 2-26 to 2-27
standalone simulator 6-4

output
file options summary 2-8
module, defined A-6
overview of files 1-5
section, defined A-6
suppression 2-16

P
parser

defined A-7
summary of options 2-10

partitioning, defined A-7

–pdel shell option 2-29

–pden shell option 2-29
–pdr shell option 2-29

–pds shell option 2-30

–pdse shell option 2-30

–pdsr shell option 2-30
–pdsw shell option 2-30

–pdv shell option 2-30

–pdw shell option 2-30
perror function 9-73

–pi shell option 2-36
pipelined-loop epilog

defined A-7
described 3-4

pipelined-loop prolog
defined A-7
described 3-4

–pk parser option 7-23, 7-24
placing runtime-support off-chip

changing runtime-support data to near 9-29
example compiler invocation 9-27
header files 9-24
how to link 9-25
linker error messages 9-28
runtime-support data 9-25
controlling function calls 7-10
saving memory 9-24

–pm shell option 3-17
pointer, combinations 7-24
pop, defined A-7
position file indicator function 9-77
position-independent data 8-7
pow function 9-73
power functions 9-73, 9-74
powf function 9-73
powi function 9-74
powif function 9-74
–ppa shell option 2-26
–ppc shell option 2-26
–ppd shell option 2-27
–ppf shell option 2-27
–ppi shell option 2-27
–ppl shell option 2-26
–ppo shell option 2-26
–pr shell option 7-25
pragma

defined A-7
directives

CODE_SECTION 7-14
DATA_ALIGN 7-15
DATA_MEM_BANK 7-15
DATA_SECTION 7-17
FUNC_CANNOT_INLINE 7-17
FUNC_EXT_CALLED 7-18
FUNC_INTERRUPT_THRESHOLD 7-18
FUNC_IS_PURE 7-19
FUNC_IS_SYSTEM 7-19
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pragma, directives (continued)
FUNC_NEVER_RETURNS 7-19
FUNC_NEVER_RETURNS 7-19
FUNC_NO_GLOBAL_ASG 7-20
FUNC_NO_IND_ASG 7-20
INTERRUPT 7-20
NMI_INTERRUPT 7-21
STRUCT_ALIGN 7-21

#pragma directive 7-4

predefined names
–ad shell option 2-20
undefining with –au shell option 2-20

preinitialized variables, global and static 7-22

preprocessed listing file
generating raw information 2-33
generating with #line directives 2-26
generating with comments 2-26

preprocessor, defined A-7

preprocessor directives, C language 7-4

printf function 9-74

.proc directive 4-30

processor time function 9-53

program termination functions
abort function 9-42
atexit function 9-49
exit function 9-56

program-level optimization
controlling 3-17
defined A-7
performing 3-17

progress information suppressing 2-16

prolog, defined A-7

–ps shell option 7-25

pseudorandom integer generation functions 9-76

ptrdiff_t 7-2

ptrdiff_t data type 9-20

push, defined A-7

putc function 9-74

putchar function 9-74

puts function 9-75

Q
– –q library-build utility option 10-3
–q option

linker 5-7
shell 2-16
standalone simulator 6-4

–qq shell option 2-16
qsort function 9-75

R
–r option

linker 5-7
standalone simulator 6-5

raise to a power functions 9-73, 9-74
rand function 9-76
RAND_MAX macro 9-21
random integer functions 9-76
raw listing file

generating with –pl option 2-33
identifiers 2-33

read
character functions

multiple characters 9-59
next character function 9-64, 9-65
single character 9-59

stream functions
from standard input 9-79
from string to array 9-62
string 9-63, 9-83

read function 9-65
read I/O function 9-9
realloc function 8-5, 9-71

change heap size 9-76
reversing 9-62

reciprocal square root functions 9-78
redundant loops

defined A-7
described 3-13

.reg directive 4-34
register storage class 7-3
register variables, optimizations 3-40 to 3-42
registers

allocation 8-15
control, accessing from C 7-7
conventions 8-15 to 8-16
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registers (continued)
live-in 4-30
live-out 4-30
saving during interrupts 7-8
use in interrupts 8-32
variables 8-15

compiling 7-12

related documentation v, vi

relaxed ANSI mode 7-25

relocation, defined A-7
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remove function 9-77

removing epilogs 3-10
aggressively 3-11
disqualifying 3-10
speculative execution 3-10

rename function 9-77

rename I/O function 9-9

rewind function 9-77

round function 9-78

roundf function 9-78

rounding functions 9-78

rsqrt function 9-78

rsqrtf function 9-78

rts.src 9-21

rts6201.lib 5-2

rts6201e.lib 5-2

runtime environment
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function call conventions 8-17 to 8-20
interfacing C with assembly language 8-21 to

8-31
interrupt handling

described 8-32
saving registers 7-8

introduction 8-1
memory model

during autoinitialization 8-5
dynamic memory allocation 8-5
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register conventions 8-15 to 8-16
stack 8-4
system initialization 8-35 to 8-42

runtime initialization of variables 8-5

runtime-support, libraries placed off-chip 9-24
changing runtime-support data to near 9-29
controlling function calls 7-10
example compiler invocation 9-27
function data 9-25
header files 9-24
how to link 9-25
linker error messages 9-28

runtime-support
functions

defined A-8
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summary 9-30

libraries
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library-build utility 10-1
linking C code 5-2, 5-8

library
defined A-8
described 1-4

library function inline expansion 3-38
macros, summary 9-30

S
.s extension 2-17
–s option

linker 5-7
shell 2-16, 2-42

.sa extension 2-17
SAT bit side effects 8-28
saving registers during interrupts 7-8
scanf function 9-79
searches 9-51
section

allocating memory 5-11
.bss 8-3
.cinit 8-3
.const 8-3
compiler created sections 5-11
defined A-8
described 8-3
.far 8-3
initialized 8-3
.stack 8-3
.switch 8-3
.sysmem 8-3
.text 8-3
uninitialized 8-3



Index

Index-15

section header, defined A-8

SEEK_CUR macro 9-21

SEEK_END macro 9-21

SEEK_SET macro 9-21

sending preprocessed output to a file 2-27

set file-position functions
fseek function 9-63
fsetpos function 9-64

setbuf function 9-79

setjmp function 9-80

setjmp.h header
described 9-19
summary of functions and macros 9-35

setvbuf function 9-81

shell program
defined A-8
described 1-3
diagnostic options 2-29 to 2-30
frequently used options 2-15 to 2-18
invoking 2-4
options

assembler 2-13
compiler 2-7
inline function expansion 2-13
input file extension 2-8
input files 2-8
linker 2-14
optimizer 2-12
output files 2-8
parser 2-10
type-checking 2-9

overview 2-2
preprocessor options 2-26 to 2-27

shift 7-3

signed integer and fraction functions 9-73

SIMD, using _nassert to enable 8-28

sin function 9-81

sine functions 9-81

sinf function 9-81

sinh function 9-82

sinhf function 9-82

size_t 7-2

size_t data type 9-20

small memory model 8-6

_SMALL_MODEL macro 2-23

software development tools overview 1-2 to 1-4

software pipelining
assembly optimizer code 4-4
defined A-8
description 3-4 to 3-12
disabling 3-5
information 3-5

software piplining, C code 3-4
sort array function 9-75

source file
defined A-8
extensions 2-18

specifying functional units, linear assembly 4-6
sprintf function 9-82
sqrt function 9-82

sqrtf function 9-82
square root functions 9-82

srand function 9-76
–ss option, shell 2-17

–ss shell option 3-26
sscanf function 9-83
stack

pointer 8-4
reserved space 8-3

.stack section
allocating in memory 5-11
described 8-3

__STACK_SIZE, using 8-4
standalone preprocessor, defined A-8

standalone simulator 6-1 to 6-12
defined A-8
invoking 6-2
options 6-4

static inline functions 2-38

static variable
defined A-8
initializing 7-22

stdarg.h header
described 9-19
summary of macros 9-35

_ _STDC_ _ macro 2-24

stddef.h header 9-20
stden macro 9-21
stdin macro 9-21

stdio.h header
described 9-20
summary of functions 9-35 to 9-37
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stdlib.h header
described 9-21
summary of functions 9-38

stdout macro 9-21
storage class, defined A-8
store object function 9-59
strcat function 9-83

strchr function 9-84
strcmp function 9-84
strcoll function 9-84
strcpy function 9-85
strcspn function 9-86

strength reduction optimization 3-39
strerror function 9-86
strftime function 9-87
strict ANSI mode 7-25
string constants 7-24

string functions 9-22, 9-39
break into tokens 9-94
compare

any number of characters 9-89
entire string 9-84

conversion 9-93
copy 9-90
length 9-88
matching 9-92
string error 9-86

string.h header
described 9-22
summary of functions 9-39

strlen function 9-88

strncat function 9-88
strncmp function 9-89
strncpy function 9-90
strpbrk function 9-91
strrchr function 9-91

strspn function 9-92
strstr function 9-92
strtod function 9-93
strtok function 9-94
strtol function 9-93

strtoul function 9-93
STRUCT_ALIGN pragma 7-21
struct_tm data type 9-22
structure, defined A-8

structure members 7-3
strxfrm function 9-94
STYP_CPY flag 5-10
suppressing, diagnostic messages 2-29 to 2-31
.switch section

allocating in memory 5-11
described 8-3

symbol, defined A-9
symbol table

creating labels 2-20
defined A-9

symbolic
cross-reference 2-20
debugging

defined A-9
generating directives 2-15

symbols
assembler-defined 2-20
undefining assembler-defined symbols 2-20

.sysmem section
allocating in memory 5-11
described 8-3

_SYSMEM_SIZE 8-5
system constraints, _SYSMEM_SIZE 8-5
system initialization

described 8-35
initialization tables 8-37

system stack 8-4

T
–t standalone simulator option 6-5
tan function 9-94
tanf function 9-94
tangent functions 9-94, 9-95
tanh function 9-95
tanhf function 9-95
target system, defined A-9
temporary file creation function 9-95
test an expression function 9-48
test EOF function 9-58
test error function 9-58
.text section

allocating in memory 5-11
defined A-9
described 8-3
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_TI_ENHANCED_MATH_H symbol 9-18

time function 9-95

time functions
asctime function 9-46
clock function 9-53
ctime function 9-55
described 9-22
difftime function 9-55
gmtime function 9-65
localtime 9-67
mktime 9-72
strftime function 9-87
summary of 9-41
time function 9-95

_ _TIME_ _ macro 2-24

time.h header
described 9-22
summary of functions 9-41

time_t data type 9-22

TMP environment variable 2-22

TMP_MAX macro 9-20

tmpfile function 9-95

tmpnam function 9-96

TMS3206700 2-23

_TMS320C6200 macro 2-23

_TMS320C6X macro 2-23

toascii function 9-96

tokens 9-94

tolower function 9-96

toupper function 9-96

trigonometric math function 9-18

trigraph, sequence, defined A-9

trip count
defined A-9
described 3-13

.trip directive 4-40

trunc function 9-97

truncate functions 9-97

truncf function 9-97

type-checking, summary of options 2-9

U
– –u library-build utility option 10-3
–u option

linker 5-7
shell 2-17

undefining a constant 2-17
ungetc function 9-97
uninitialized sections

allocating in memory 5-11
defined A-9
list 8-3

unlink I/O function 9-10
unsigned, defined A-9
utilities, overview 1-7

V
– –v library-build utility option 10-3
va_arg function 9-98
va_end function 9-98
va_start function 9-98
variable argument macros

described 9-19
summary of 9-35

variable-argument macros, usage 9-98
variables

assembler, accessing from C 8-30
autoinitialization 8-36
defined A-9
initializing

global 7-22
static 7-22

local, accessing 8-20
register, compiling 7-12

vfprintf function 9-99
volatile keyword 7-11
vprintf function 9-99
vsprintf function 9-99

W
–w option, linker 5-7
warning messages 2-28

converting errors to 7-24
wildcards, use 2-17
write block of data function 9-64
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write functions
fprintf 9-61
fputc 9-61
fputs 9-61
printf 9-74
putc 9-74
putchar 9-74
puts 9-75
sprintf 9-82
ungetc 9-97
vfprintf 9-99
vprintf 9-99
vsprintf 9-99

write I/O function 9-10

X
–x option

linker 5-7
shell 2-36

Z
–z option

overriding 5-5
shell 2-4, 2-17, 5-4
standalone simulator 6-5
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