Signal Processing First

Lecture 12
Frequency Response
of FIR Filters

1/5/2004

2003, JH McClellan & RW Schafer

LECTURE OBJECTIVES

- SINUSOIDAL INPUT SIGNAL
 - DETERMINE the FIR FILTER OUTPUT

■ FREQUENCY RESPONSE of FIR MAG

■ PLOTTING vs. Frequency

MAGNITUDE vs. Freq

■ PHASE vs. Freq

 $H(e^{j\hat{\omega}}) = |H(e^{j\hat{\omega}})| e^{j\angle H(e^{j\hat{\omega}})}$

PHASE

1/5/2004 © 2003, JH McClellan & RW Schafer

DOMAINS: Time & Frequency

- <u>Time-Domain: "n" = time</u>
 - x[n] discrete-time signal
 - x(t) continuous-time signal
- Frequency Domain (sum of sinusoids)
 - Spectrum vs. f (Hz)
 - ANALOG vs. DIGITAL
 - Spectrum vs. omega-hat
- Move back and forth QUICKLY

1/5/2004

003, JH McClellan & RW Schafer

DIGITAL "FILTERING"

- CONCENTRATE on the <u>SPECTRUM</u>
- SINUSOIDAL INPUT
 - INPUT x[n] = SUM of SINUSOIDS
 - Then, OUTPUT y[n] = SUM of SINUSOIDS

1/5/2004 © 2003, JH McClellan & RW Schafer

FILTERING EXAMPLE

- 7-point AVERAGER
- $y_7[n] = \sum_{k=0}^{6} (\frac{1}{7})x[n-k]$
- Removes cosine
 - By making its amplitude (A) smaller
- 3-point AVERAGER
 - Changes A slightly

$$y_3[n] = \sum_{n=0}^{\infty} (\frac{1}{3})x[n-k]$$

1/5/2004

© 2003. JH McClellan & RW Schafe

SINUSOIDAL RESPONSE

■ INPUT: x[n] = SINUSOID

OUTPUT: y[n] will also be a SINUSOID

■ Different Amplitude and Phase

■ **SAME** Frequency

AMPLITUDE & PHASE CHANGE

Called the <u>FREQUENCY RESPONSE</u>

12

1/5/2004 © 2003, JH McClellan & RW Schafer

COMPLEX EXPONENTIAL

$$x[n] = Ae^{j\varphi}e^{j\hat{\omega}n} - \infty < n < \infty$$

$$x[n] \text{ is the input signal} - a \text{ complex exponential}$$

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = \sum_{k=0}^{M} h[k]x[n-k]$$
FIR DIFFERENCE EQUATION

1/5/2004 © 2003, JH McClellan & RW Schafer

COMPLEX EXP OUTPUT

Use the FIR "Difference Equation"

1/5/2004 © 2003, JH McClellan & RW Schafer

FREQUENCY REPONSE

At each frequency, we can DEFINE

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}$$
FREQUENCY RESPONSE

- Complex-valued formula
 - Has MAGNITUDE vs. frequency
 - And PHASE vs. frequency
- Notation: $H(e^{j\hat{\omega}})$ in place of $H(\hat{\omega})$

1/5/2004 © 2003, JH McClellan & RW Schafer 17

EXAMPLE 6.1

Given: $\{b_k\} = \{1, 2, 1\}$

Find: $H(e^{j\omega})$

1/5/2004 © 2003, JH McClellan & RW Schafer

EXAMPLE 6.2 (answer)

Find y[n] when $x[n] = 2e^{j\pi/4}e^{j(\pi/3)n}$ One Step - evaluate $H(e^{j\hat{\omega}})$ at $\hat{\omega} = \pi/3$

1/5/2004 © 2003, JH McClellan & RW Schafer

MATLAB: FREQUENCY RESPONSE

- ■HH = freqz(bb,1,ww)
 - VECTOR bb contains Filter Coefficients
 - SP-First: HH = freekz(bb,1,ww)
- FILTER COEFFICIENTS {b,}

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}$$

1/5/2004 © 2003, JH McClellan & RW Schafer

LTI SYSTEMS

- LTI: Linear & Time-Invariant
- COMPLETELY CHARACTERIZED by:
 - FREQUENCY RESPONSE, or
 - IMPULSE RESPONSE h[n]
- Sinusoid IN ----> Sinusoid OUT
 - At the SAME Frequency

1/5/2004 © 2003, JH McClellan & RW Schafer

Time & Frequency Relation

- Get Frequency Response from h[n]
 - Here is the FIR case:

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k} = \sum_{k=0}^{M} h[k] e^{-j\hat{\omega}k}$$
IMPULSE RESPONSE

1/5/2004 © 2003. JH McClellan & RW Scha

26

© 2003, JH McClellan & RW Schafer

1/5/2004

