PROBLEM: 2.1Let $x[n]$ be the complex exponential

$$
x[n] = 11e^{j(0.3\pi n + 0.5\pi)}
$$

If we define a new signal $y[n]$ to be the output of the difference equation:

$$
y[n] = 2x[n] + 4x[n - 1] + 2x[n - 2]
$$

it is possible to express $y[n]$ in the form

$$
y[n] = Ae^{j(\omega_0 n + \phi)}
$$

Determine the numerical values of A , ϕ and ω_0 .

$$
y[n] = \frac{1}{L} \sum_{k=0}^{L-1} x[n-k]
$$

for two different input signals. In both cases, compute the numerical values of $y[n]$ over the range $-5 \leq$ $n \leq 10$, assuming that $L = 4$. Then derive a general formula for $y[n]$ that will apply for any length L and for the index range $n > 0$. ate the "running" average:

ate the "running" average:

o different input signals. In

0, assuming that $L = 4$. The

index range $n \ge 0$.

A signal that turns on at $n =$

Make a plot of $u[n]$ before w

A signal that start

(a) A signal that turns on at $n = 0$. This is called the *unit step* signal, and is usually denoted by $u[n]$. Make a plot of $u[n]$ before working out the answer for $v[n]$.

$$
x[n] = u[n] = \begin{cases} 0 & \text{for } n < 0 \\ 1 & \text{for } n \ge 0 \end{cases}
$$

(b) A signal that starts increasing linearly at $n = 0$. This is called the *unit ramp* signal, and is usually denoted by $r[n]$. Make a plot of $r[n]$ before working out the answer for $y[n]$.

$$
x[n] = r[n] = \begin{cases} 0 & \text{for } n < 0 \\ n & \text{for } n \ge 0 \end{cases}
$$

(c) Use MATLAB to create a plot of the output for both over the range $0 \le n \le 15$. Let the length of the

PROBLEM: 2.3For a particular linear time-invariant system, when the input is

$$
x_1[n] = 4u[n] = \begin{cases} 0 & n < 0\\ 4 & n \ge 0 \end{cases}
$$

the corresponding output is

$$
y_1[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 4u[n-3] = \begin{cases} 0 & n < 0 \\ 1 & n = 0 \\ 2 & n = 1 \\ 3 & n = 2 \\ 4 & n \ge 3 \end{cases}
$$

(a) Using the concepts of linearity and time-invariance, determine the impulse response of the system.

- (b) The system is an FIR filter—determine the filter coefficients and the length of the filter.
- (c) State a general procedure for deriving the impulse response of a LTI system from a measurement of its step response, i.e., if *s*[*n*] is the step response of a LTI system, what simple operations can be done to $s[n]$ to produce the impulse response $h[n]$.
- (d) Using the concepts of linearity and time-invariance, determine the output signal when the input signal is $x_2[n] = 7u[n-1] - 7u[n-4]$. Give your answer as a formula expressing $y_2[n]$ in terms of known sequences or as an equation for each value of $y_2[n]$ for $-\infty < n < \infty$.

PROBLEM:

For each of the $\overline{\text{following systems}}$, determine if they are (1) linear; (2) time-invariant; (3) causal.

(a)
$$
y[n] = 3x[n-1] + x[n] + 3x[n+1]
$$

(b) $y[n] = x[n] \cos(.3\pi n)$

(c) $y[n] = |x[-n]|$

PROBLEM: The following signal flow graph structure defines a linear time-invariant system:

