he Texas Instruments Veloci Tl architecture is a

very long instruction word (VLIW) architec-

ture [1]. The TM3320C06x family of digital sig-

nal processors (DSPs) 1s the first to employ the

VelociTI architecture, with the TMS3206201
(C6201) being the first device i this family. The C6201
1s based on the fixed-point TMS$320C62x (C62x) CPU.
The C62x has eight independent functional units running
at 200 MHz for peak execution of 1600
million instructions per second (MIPS).
The C6201 also contains a memory archi-
tecture and peripheral set suitable for a va-
riety of applications including
multichannel modem, multichannel vo-
coding for telephony and wireless, single
and multichannel asymmetric digital sub-
scriber (ADSL) modems, and imaging.
The second VelocTT CPU is the floating-
point 167 MHz TMS320C67x (C67x).
The C67x is object-code compatible with
the C62x and has six floating-point units
overlaid on the existing fixed point units
for a total of 1 billion floating-point op-
erations per second (1 GigaFLOP or
GFLOP) or 1333 MIDs.

This article describes the VelociTI
VLIW architecture and discusses the
C62x, C67x, C6201, and the VelociTI de-
velopment tools. An overview of the Ve-
lociTT including architectural principles,
data path, instruction set, and pipeline op-
eration is presented, and both the C62x
fixed-point CPU and the recentdy dis-
closed C67x floating-point CPU are described. A sum-
mary of C62x benchmark performance is also presented.
The chip-level support ourside the CPU that allows the
C6201 to operate in a variety of high-performance DSP
environments is also described. An overview of the C6x
development environment is also given, demonstrating
the breadth of the development environment and illus-
trating the programming methodology. We conclude
with a performance analysis of the C compiler. Note that
the term C6x is used in statements that apply to both the
C62x and C67x CPUs.

86 IEEE SIGNAL PROCESSING MAGAZINE

gh VelociTl Processing

TMS320C6x VelociTl CPU

VelociTl Principles

Eight principles undetlic the VeloaiTI CPU architecture
upon which the Cox CPU is based. These focus on in-
creasing DSP performance while maintaining easc of pro-
gramming and reducing application development time
by allowing creation of a high-performance compiler.

Parallelism
VelociTl, like other VLIWs, allows parallel fetch, de-
code, and execution of multiple instructions that com-
pose the VLIW instruction word. During execution, each
instruction is performed on a single functional unit. In the
Cox, eight 32-bit instructions supply control for eight in-
dependent functional units.

Pipelining of Critical Speedpaths
The VelociTT architecture sets the simplest of CPU in-
structions to determine the cycle time for the processor.

MARCH 1998

1053-5888/98/$10.00© 1998IEEE

©1995 Ron Lowery/The Stock Market

In the C62x, the critical path is the time for a register-to-
register ALU operation such as an ADD instruction.
More complex instructions, such as multiply, are imple-
mented with a one-cycle latency. To access high-
performance, synchronous on-chip memories, instruc-
tion fetch and data access are performed in multiple pipe-
line stages. This pipelining allows the C62x CPU to
operate at 200 MHz—or 1600 MIPS. Similarly, the
floating-point operations on the C67x are pipelined to
achieve its 167 MHz operating frequency.

Reduced Instruction Set Computer (RISC)

The VelociTT instruction set consists of simple, atomic,
and completely independent instructions. DSP algorithm
performance results from program compilation tech-
niques such as software pipelining [2] and loop unrolling.
The RISC architecture provides ease of CPU design,
while providing flexibility for high-performance algo-
rithms not yet conceived at the time of conception of the
CPU architecture. Previously, more DSP-specific in-
struction sets have inhibited compilers from optimizing
performance [3, 4].

Load-Store Architecture

As an extension of its RISC architecture, VelociTl is a
load-store architecture. Memory operations have been
decoupled from arithmetic operations. This feature also

lowers the number of data fetches for a particular algo-
rithm, and thus CPU power consumption.

Orthogonality |

The most frequent instructions can be executed on the
largest number of functional units. In the C6x, the CPU is
divided into two identical data paths. Thus, every instruc-
tion can execute on at least two functional units. The most
frequent instructions such as ADD and SUB can execute
on six functional units. Like the instruction set, the regis-
ter file is highly orthogonal. Any register can be an oper-
and to any instruction or any type of functional unit.

Determinism

The VelociTI pipeline is unprotected and thus fully ex-
posed to the compiler. Run-time interdependencies such
as pipeline interlocks between phases used in other DSPs
are difficult to predict at compile-time. The VelociTI
CPU model at compiler time fully reflects the execution
and completion order of instructions at run time. Lack of
pipeline interlocks also reduces CPU complexity and de-
sign time while avoiding speed-limiting paths from the
control mechanism.

Conditional Instructions
Every VelociTl instruction is conditional. Conditional
instructions avoid branch latencies.

[soRamM |t
TMS320C6201 DIGITAL SIGNAL PROCESSOR
SBSRIE(—) Program Program < Internal
External Bus Access/Cache Program Memory
y
{ SRAM Memory I i, Controller Program Cache
Interface % (64 Kbytes)
(EMIF) Y A $
TMS320C62x CPU
| FLASm Timer0 1o) Instruction Fetch Control
Registers
Instruction Dispatch —
, n-Circuit | 5
Timer 1 1oyl tnstruction Decode Emulation 2
, ~bata Pami.. | bataPain 2-74| §
Multi-channel o
B Buffered {A Register File B Register Flle 11s
Framing Chips —» Serial Port0 e o R IR AR I
(H.100, MVIP, SCSA (McBSP 0) 2 g A |D¢1 =
T1, E1), AC97 2 ['—1 [31 l"’” o
Devices, Mutti-channel 2 g =
SPI Devices Bufferer:i * @ :
h Serial Port 1 - <>
Microcontrollers, (McBSP 1) <> Internal
General Purpose 2 Data &> oo
Microprocessors, - p Access ::-)_) Memory
Embedded Host Port Direct Memory ower | | Gontroller
RISG Processors, Interface || Access Controller Down ::: (64k Bytes)
PCt Bridge Chips (HPY) (DMA) Logic
A 1. TMS320C6201 block diagram.
MARCH 1998 IEEE SIGNAL PROCESSING MAGAZINE 87

Instruction Packing

A novel instruction packing technique allows the Ve-
lociTT architecture to achieve code size comparable with
scalar RISC processors.

Data Paths

The C6x has two identical data paths with four functional
units each (Fig. 2). Each data path has 16 32-bit registers.
The register files have 16 ports (10 read ports and six
write ports). In addition, each data path has a cross path

(1X, 2X) to read operands from the other file. Note that
addresses from one data path may be used to load and
store values to the other data path. 40-bit integer oper-
ands as well as C67x double-precision operands use two
registers for storage.

Functional Units

Each functional unit can begin execution of a new instruc-
tion every cycle. The four functional units in each data
path are actually a grouping of operational subunits.
Subunits on the same functional unit share the same inter-

Sre 1 connect to the register file to save register porting. This
Sre 2 port sharing reduces CPU area since register file area
1 ’ grows with the square of the number of ports. Also, re-
Dst duced porting allows the processor to achieve its operat-
| Upper Dest ing frequency. Tables 1 and 2 show how these subunits
SS”;? Upper Ste [« | map to the functional units. The total number of subunits
R s——— T in both data paths is 24 for the C62x and 36 for the C67x.
'_) ~
U)7
pper = | [2
Load | UPPerSre e ~ -y Data Types
Data | Upper Dest | o In general, the functional units perform 32-bit integer
S1 Dst = - —> 2 operations. The S-Units and L-Units also perform 40-
Sro 1 i< ° bit integer operations to handle overflow. The integer
Sre 2 je— < = multipliers in the M-Units generate 32-bit ourputs from
Dat - 16-bit inputs. The compiler types are 40bit Longs, 32-
Mo 1 bit ints, 16-bit shorts and 8-bit chars. In cases
Src 2 ke where source operands of different types are used,
Load N : : ; : ;
signed (sign extension) or unsigned (zero-filling) of op-
Data >) g g g p
E"g) erands can be specified. The C67x adds both single (32-
S(zire E{ F’* Sre 1 I 62x functional un
Address N\ Sre2 | T
: v/) o2X
\ :
-
: ; foy— = .
Load’ - rd Src 2"(j
: Store rD2g0q 1
Address N\ el ——
 Dst ’_____. —>
loaed ~—— =
Data - <—¢
. M 2Src 2 |< - |
Sre 1 e
; | Dst'|—-——-- > 2
- e
|_ Sr6 2 j« -{ 5 %
52 9o ke - %_
Dst 1
Uppur Upper Dest ™
Load | UpperSric (€ |, o
Data — ——<~‘ aD»-- >
H).
- | L
" Store | Upper Src 4]
Data | ypper Dest _ '
12 Dst :
Src 2
Src1
A 2. C6x CPU data paths.
88 IEEE SIGNAL PROCESSING MAGAZINE MARCH 1998

bit) and (64-bit) IEEE format floating-point computa-
tions including a variety of rounding modes as well as ex-

Table 3. CG2x mstructlon set. .

: i
Subumt

rion statu i Mnemomc Acuon
ception status generation. — :
P g LSDM Int Add. | ZERO . = Leio'Reglstu _;‘_'_'.-,.I
F,, $,D |IntAdd. |ADD(U) lAdd (Unsigned) . |
Instruction Set LS, D |IntAdd, SUB(U) | Subrract (Unsvgncd) S
Tables 3 and 4 summarize the C62x and C67x instruction |L5D Int Add. . |MOV I Move]
sets and the mapping of these instructions to functional 'L S |Logical |NEG Ncgate , o
units. This mapping is done at code-generation time. ~ [L,$ _ |Togical | AND | Bitwise And R
Note that the most common integer operations can occur LS. |Logicat XOR. . { Bitwise Exdus;véiﬂor”
on four to eight units. Also, each functional unit has 1,$ 1Logical - |OR | Bitwise OR. | 0
special-purpose features: LS Logical {NOT Invert ail Bits Sl
A Saturated Operatlons (L-, S-, M-Units): These pro- |L*" IntAdd. - {SUBC - | Subtract Condmonal B
vide for saturation on overflow. Such functions are used ol - . . | Divide Srep. P
heavily in bit-exact ITU standards in the areas of voice L o jlorAdd [SADD Addand Saturate” :
coding for digital cellular and digital telephony. L. oo InvAdd. - SSUB | Subtrace and Saturate |
A Subtract Conditional (L-Unit): Integer division L foc Add. . | ABS ‘;‘bt:‘;h;” Vahie ‘md‘ J
step. U _ :
L . dd. “MPE | C
A Bit Counting (L-Unit): Bit counting allows counting |- {locAdd. | CME Q oinpaie for Equa]s ‘
’L : Int Add, - |CMPGT(U) :Comparé for (-,-rLater Th.ln
of runs of bits used in image coding. Bit counting also al- 1 R : o
1OVYS norma'\lization for scaling counts in block floating- [T jneAdd. . | CMPLT(U}. .
point algorithms. CopTR T ‘
L iBitCou |LMBD. . ;. |CountPsor0s
VelociTl VLIW Traditional VLIW L TBitCnt - [NORM "~]
p-bit Shown Ungder Instruction n=nop .‘ S |IntAdd. . | ADDK .
Fully Serial Fetch Packet (S : e
© 8.x1 Ihstruction Execute Packets E - Int Add. .| ADD2 -
L ABGDERGH S Tieraaa | suBs
. \ - ¢ ntAdd. .
, .{_A,BCD'E’F‘G,HI (nnAnnnFn! S ,
[ofojofolofolato’l [n]Bfnjn{n|ninin| §....) Const. MVK. " Toad with, 16bxt$1gnwd 1
- P e P P I R P e : s Constant. ¢ N
8 Instriictions St ' S |Comst. |MVKH . |Load 16:MS /Can
angnfnn|n Din rj R RS 4 mnt M:untam 16-LSBs.
{n|n{E{n}inin|n, 1S Shiffer - |SHL " " Shift, Left]
Flnininlatntnlnl |-§) Shifter SSHL) : Shi{t Lnft and ’»atumte ‘ I
_ '_ T Reile :
ninjajnain|Gin| |s— 1Shifer [SHR(U) !Shift R hr (Urm 1cd) B
[Pqrrynyngngn L S Bit Man. | EXT(U) ‘Extragt Fneld (Unslgned) |
64 Instructions . S Rit MQH. . SET _ t Set I,‘\ﬁld Ll Vo :
'S . |BitMan., |CLR | |ClearField]
, § - AByCod 1B i Branch Displaccment or !
Mixed Paratlelism S Register - i
AIBIC,DHEFGIH 5. BfCal IMVC | Move Contedl Reg T
WETCBEF R T MR | 5 G |eofomBegiier
Sl ;o LT [D7 " " {intAdd. |ADDA(BH, | Add With Prescale ﬁ;r'- 7
tdrfoltjojofijo] injnin|EiniDnin. Lo W DataTvpe(theHalf-
.8 ‘ : ! FlnTanalnts nl' L S , ‘ Word, Word)
Instructions AN | D |1nt Add. ‘LD(BHW)(Tooad (Byte. Hﬂf‘Nord
' ‘” pingngngn [i"_"J | . i Ldyst v o ‘| or Woid) (Unmg,ncd) -
. D [larAdd. . |ST (B,H,W)' | Stare (Byre, Halfmord
| 40 Instructions I A Ldfst | qur d) L #——
~ Fully Parallel Fetch Packet 'mp ;-Iﬁ_i" Muk, |[MPY . .]Intmxlﬁ =32 I
" 1 x 8-instruction Execute Packet L : : Can Choose Unsigned or |
AHBIICIIDIIEIIFIIGHH] e o Slggch‘:BSQrLSBsaf I
Ep— : : |A slclo F A | I Eitl eercrand i
A8 c o[elFle[n] H—_I IT e Int Mult, | SMPY | Multiply 2. Q15.and |
|_1_1 11 1,[1 110! 8 Instructions ' h.‘gmeratLqQ%l Restit.
cndod e L » ‘ .| Satorate, . .’ ___]
8 Instructions i- - NOPn Muigxgydu n()p. c
- ; ; l : IDLE - | Wait for Interrapt - .|
A 3. VelociTl instruction packing. - E— —_— e
MARCH 1998 IEEE SIGNAL PROCESSING MAGAZINE 89 -

A Integer Comparison (L-Unit): Rather than having
multiple status bits for each functional unit, the Cox em-
ploys explicit comparison instructions that generate a 1
or 0 result in a general-purpose register. Placing the re-
sult in a general-purpose register allows the value to be
used directly in computation. Examples of this use include
generation of cyclical redundancy codes (CRCs) as well as
generation of bit-decision vectors in Viterbi Traceback al-
gorithms.

A Dual 16-Bit Pair Arithmetic (S-Unit): The ADD2
and SUB2 instructions add two 32-bit registers while in-
hibiting the carry between the 15th and 16th bit positions.
These instructions allow increased add/subtract through-
put of 16-bit values. Examples of use include vector addi-
tion and complex addition. This feature greatly improves
FFT performance.

A Bit Manipulation (S-Unit): Bit-field extraction, set-
ting, and clearing.

90 IEEE SIGNAL PROCESSING MAGAZINE

A Memory Data Types (D-Unit): The Céx can load or
store bytes, 16-bit half-words, and 32-bit words. Byte and
half-word loads are sign-extended (signed) or zero-filled
(unsigned). In addition, certain registers have the option
of having circular arithmetic performed during address
calculation (for circular buffers). The C67x can also per-
form 64-bit load operations and the associated address
computations.

A Constant Generation (S-Unit): 32-Bit constants may
be loaded with successive MVK and MVKH instructions.
A Seed Generation (C67x S-Unit): Provides single and
double seeds for reciprocal and reciprocal square root al-
gorithms.

A Floating-Point Comparison (C67x S-Unit): This
provides single- and double-precision comparison, gener-
ating a 0/1 result of a general-purpose register.

A Floating-Point Conversion: (C67x L-Unit, S-
Unit): Conversion to and from single and to and from
double precision as well as floating-point to and from un-
signed and signed integers is provided. Conversions to in-
tegers can occur with rounding or truncation.

S

A 4. Conditional execution example C code (Unit indicates the
units used. These unit indicators are optional but are shown for
clarity. “||” indicates that a an instruction is in parallel with the
one before it ;" indicates a termination of a line—all that fol-
lows is comment,

A 5. Conditional execution example assembly code.

Cg

A 6. C code for run-length coding example.

MARCH 1998

.I* Table 5. Execute pngelme operation of mstruct:ons I
b ' Delay |.* Functional -
|t |ty | S | ey |

A Al C62x instruc- I 0 1 l
ltu)ns eucptTD MPY‘. ‘ , |
land SMPY, and B. - '
A'C67x SUnirsP "~ | 1 ‘ l
E._mtmct_lﬁom,‘ ADDAD, - ' ' ' |
AMPY,SMPY . | 2 . 1 . 1 |
o C67x S-Unit DB | 2 1 2|
E[nbtructmns N - __1"-_] o
A C67xL-Unitand | 4 | 3 |]

-Unit SP Instruc- i S
thns MPY24(H) - |* -
i‘ LD(B,H,W;D) 5 4 1
| _ - i
A C67x L-UnitSP .- 5 4 52
Ilnstructions o ' co
AB . 6 5
rAcmMPYI 9 .8 4 j
la o7 MPYID,. . 10 o | 4 |

MPYDP |

Instruction Packing

The following terms are used in describing VelociTT’s in-
struction packing:

A Fetch Packet: A group of instructions fetched simulta-
neously.

A Execute Packet: A group of instructions beginning exe-
cution in paralle].

The C62x CPU has a 256-bit path for internal program
access to fetch eight 32-bit instructions every cycle. In typi-
cal VLIW architectures, each instruction would corre-
spond to a particular functional unit. If that functional unit
were idle on any particular cycle a NOP would be placed in
that functional unit’s instruction slot. In contrast, VelociTI
decouples fetch packets from execute packets through a
novel instruction encoding system. The Jeast-significant
bit of every C62x instruction is a called the parallel or p-bit.
The p-bit of a particular instruction is set if the instruction

_lmbd(bit,val)

IMED.L2X A0, Bl, B0 "; ont -~
CMPLT.L1X BO, A5, Al ; Al = (ent < lef
= run+cnt

i ADD.L2 B4, BD, B5 ; B4

[Al] SHL.S2 Bl, B0, Bl ; val <<= cnt
fAl] SUB.L1X A5, B0, A5 ; left -= cnt

iy ;

|| [A1] STW.D1 B5, *A6++ ; *code++ =run+cnt
|l (A11] MpPY.M2 B4, 0, B4 ; run = 0

I} 1:A1] ADD.L2X B4, A5, B4 ; run += left

|| [!All LDW.D2 *B2++, Bl ; val = *input++
J1 t1a1) MVvK.s1 32, AS ; left = 22

A 7. Assembly code of run-length coding example.

MARCH 1998

starts execution in parallel with the next instruction. Figure
3 shows three examples of VelociTI instruction packing
and the resulting code-size savings. In addition, reduced
code size also results in fewer program fetch accesses and
thus lower power consumption.

Conditional Instructions

Every C6x instruction can be conditioned on either the
zero (false) or the nonzero value (true) of one of five
general-purpose registers (Al, A2, BO, B1, B2). All in-
structions will enter the first phase of execution regard-
less of the evaluation of their condition. However, if the
condition is not met by the end of the first phase, the in-
struction will not have its results written back to the reg-
ister file. In addition, a conditional load or store
instruction whose condition is not met is canceled be-
fore entering the data memory portion of the execution
pipeline. This prevents any undesired accesses to mem-
ory, including memory-mapped peripherals where sim-
ple accessing has undesired side-effects. This feature is
an improvement over the TMS320C3x/C4x conditional
load instructions where memory was accessed but not
written to the register file.

Conditional instructions can be used to avoid branch
latency. In control code, conditional instructions allow
increased parallelism as multiple paths can be executed si-
multaneously. In the example, both if paths as well as
the el se path are executed in a single fetch packet (Figs.
4 and 5). In the inner loop of a run-length-coding algo-
rithm, all seven statements in the 1 £ and else clauses are
performed in a single instruction (Figs. 6 and 7).

Pipeline

The pipeline phases are divided into three stages (Fig. 8):
A Fetch, which covers four pipeline phases.

A Decode, which covers two pipeline phases.

A Execute, which covers a maximum of 10 phases. Over
90% of C62x instructions use only the first five phases.
The last five phases are only used for double-precision
multiplies and adds on the C67x.

Every execute packet spends one cycle in each phase
(Fig. 9).There are no hardware interlocks within the
CPU to stall the pipeline. Instead, during execution, each
instruction has a fixed predictable delay for arrival of its
results. This is discussed later in the article.

Fetch

The fetch phases of the pipeline (Fig. 10) are:

A PG: Program address generate—the next sequential
fetch packet address or a branch address computed.

A PS: Program address send—program address sent to
memory.

A PW: Program access ready wait. Either a memory ac-
cess or tag compare is completed. In cases of cache miss or
external access the CPU is stalled by the memory system
in this phase. All other phases stop inlock step. A memory

IEEE SIGNAL PROCESSING MAGAZINE 91

Ivecue
PGPS W PR DP be kD E2 .3
A 8. Pipeline stages and phases.

I \“!\‘l'. l)\‘k‘-(‘\il‘

stall is the only case where the C6x pipeline stalls. Thus,
the predictability of execution delays is maintained.

A PR: Program fetch packet receive—fetch packet sent
from memories to CPU.

Decode

The decode phases of the pipeline are:

A DP: Instruction dispatch. Fetch packets are separated
into execute packets. The instructions of execute packets
are routed to the decode of the appropriate functional
unit.

A DC: Instruction decode. Consider a fetch packet con-
taining three execute packets: A||B||C, D||E, G| |H
(Fig. 11). The dashed arrows indicate instructions in the
first execute packet (A][B]|C) that were sent from dis-
patch to decode on the previous cycle. In the current cy-
cle, the solid arrows indicate instructions in the second
execute packet (E| |D) being sent to decode. In the next
cycle (not shown), G and H will be sent to the appropri-
ate functional units for decode. In cases such as this where
a single fetch packet contains multiple execute packets,
the C6x has fetched ahead. In this case, program fetch
halts until new instructions are needed (Fig. 12).

Execute

The execute portion of the pipeline is subdivided into 10
phases (E1-E10). Each instruction requires a fixed
number of phases to complete execution. Table 5 details
the execute operation of all C62x and C67x instructions.
The following terms are used.

A Result Latency: The number of execute stages used by
an instruction. For example, the MPY instruction uses E1
and E2.

4 Delay Slots: Based on the latency of instructions the
number of subsequent execute packets after which the re-

sults of an instruction are
ready. This is the latency mi-
nus 1. For example, the results
of an ADD are available for use
in the next execute packet. In
contrast, the results of a MPY are available for the second
execute packet after the one containing the MPY. Over
90% of C62x instructions have 1 cycle result latency (no
delay slots) and are available for use the next cycle. In the
delay slots of an instruction, execute packets that are not
dependent on that register result or using the previous
value in that register may be scheduled. In cases where
sufficient parallelism does not exist a multicycle NOP is
provided to reduce code size.

A Functional Unit Latency: The number of cycles after
an instruction begins execution that another instruction
can begin execution on the same functional unit. All C62x
instructions and all C67x single-precision instructions
have a functional unit latency of 1, and thus can be exe-
cuted every cycle. Only double-precision instructions on
the C67x have a functional unit latency more than 1.

DU e

B9 LA,

Data Access Executions. Loads and stores follow the
same pipeline flow (Fig. 13). Loads following a store ac-
cess the memory after the store has completed. Results
stored in one execute packet can be read in the next exe-
cute packet. Thus, this memory pipeline avoids the read-
after-write conflicts typically found in DSPs. Two 32-bit
load or store access can be executed by the C6x every cy-
cle. In addition, the C67x loads can be 64-bits using the
LDDW instruction.

Branch Execution. Figure 14 shows a branch from exe-
cute packet N to execute packet M. Notice that there are
five subsequent execute packets (five delay slots) before
the branch occurs. The branch executes in the E1 phase of
the pipeline and affects the execute packet currently in the
PG phase. Branches can be executed every cycle, permit-
ting single cycle loops despite the branch latency. This
feature allows nesting of loops with no overhead. Two
branches can be executed in parallel allowing multiple si-

a 0. 111 13

? 3 q) 5] /
D PV DH: P ne] E“u‘ E2 B3 . E4 : s ' FE; E7
‘ PG P& PW PR DP DC k1 EZ k3 F4 e “EG Bz
N o G o} Py PR D ne cEr k—zt:o ’ t-1l g
N-3 - PGPS PWPRODP DC Ef . k2 F3 . b4
Nl - . PGPS W OPR O DP DG ET t2 13 ‘ ‘
N5 _ _ : _ . PGPS PW PR DP CDC E1. B2 K3 £4 ES
N 4 ' o PGPS PW PRDP DG EI Eg E3 (B
NI ' MG PS PW PR DP DG B L2 Ty
N 8 PGPS PW PR DP DG El . L2
NG PGPS PW PR DLP DG b1
Nt10 | ‘ PGPS PW PR DP DO
A 9. Complete pipeline flow.
92 IEEE SIGNAL PROCESSING MAGAZINE MARCH 1998

Internal

Céx CPU
.| Program
PG Memory ‘
PW

Data Latch

A 10. Fetch pipeline flow.

 FEB b IETF el

.,
.

~{pc W p P M p
e | | |8 |aA *Tc
Unit L1 St DI M1 M2 D2 82 L2

A 11. Decode pipeline flow.

multaneous program flows. Coupled with appropriate
conditioning of instructions in the delay slots of these
branches, two branch. paths as well as the nonbranching
program flow can execute in parallel.

Benchmark Performance

Table 6 shows TMS320C62x benchmark performance.
On average, the architecture performs an application in
10-20% the execution time (5 to 10 times the perform-
ance) of contemporary DSPs. In multiply-accumulate al-
gorithms, the dual multipliers would only give 50% the
number of cycles or twice the performance. The proces-
sor operates at 2-4 times the cycle time of its 50-100 MHz
contemporary DSPs, delivering 4-8 times the
comparative performance. The additional improvement
comes from its orthogonal architecture and additional
ALUs. Unlike other DSPs these ALUs are not special-
purpose functional units restricted to address calculation
and looping. In general, these units add another 1.25x to
the overall performance. Thus, the overall performance
- improvement on the C6x is 5x to 10x.

from all peripherals and memory. An external memory in-
terface (EMIF) connects the C6201 to external memory
and peripherals. Two multichannel buffered serial ports
(McBSPs) interface the C6201 to many industry-
standard serial peripherals. The host port interface (HPT)
allows external processors to make direct data requests of
the C6201°s memory space. Power-down logic allows re-
duced power modes while not in operation.

Memory Architecture
The C6201 memory architecture consists of four compo-
nents: the EMIF, the DMA controller; 64K bytes of on-
chip program memory configurable as mapped memory
or as a direct mapped cache; and 64 Kbytes of interleaved
data memory.

The C6x supports both little and big endian for all its
memory spaces. Endianness is set by a device pin and
sampled once at device reset.

External Memory Interface

The 32-bit EMIF provides:

A Glueless interconnect to a broad spectrum of memory
devices.

4 800 Mbytes/second of throughput using synchronous
burst SRAM (SBSRAM).

A 52 total Mbytes of external address reach in four sepa-
rate chip-enable (CE) spaces. These CE spaces consist of
three 16 Mbyte spaces and one 4 Mbyte space.

A Byte addressibility though four byte enables.

A Ability to unpack data from 8-bit and 16-bit-wide
ROM devices.

A An external bus hold input for shared memory inter-
faces.

Supported Memories. The EMIF provides glueless con-
nection to a variety of external devices including:

A Pipelined early write synchronous burst SRAM
(SBSRAM) running at 1x or 1/2x the CPU clock rate.

. A Synchronous DRAM (SDRAM) running at 1/2 the
- CPU clock rate. The EMIF provides necessary page man-
. agement and refresh control.

Other evaluation of C62x performance

is available in [6].

6t |- Packet -

The TMS320C6201 Device

The TMS32C6201 consists of the C62x

CPU. The memory architecture in-

cludes 64 Kbytes each of on-chip pro-
gram memory and on-chip data

memory. The program memory is con-

figurable for use as mapped memory or

as direct mapped cache. A direct mem-

ory access (DMA) controller provides
background memory transfers to and

MARCH 1998

A 12. Fetch/decode pipeline operation with serial operation [5]

IEEE SIGNAL PROCESSING MAGAZINE 93

A An asynchronous memory interface with programma-
ble memory timing. This feature allows programmable
setup, strobe, and hold timings to allow interface to a va-
riety of asynchronous devices. These devices include stan-
dard asynchronous SRAM, ROM, flash ROM, and
parallel interface-controlled external peripherals. The
asynchronous interface also has an external RDY input
for variable-rate external devices.

DMA Controller
The on-chip DMA controller per-
forms background data transfer

Internal Program Memory

The 64 Kbytes of on-chip program memory is configur-
able as either mapped memory or as direct mapped cache.
In either case, the internal program contains 16K 32-bit
instructions or 2K 256-bit fetch packets. The block size of
the cache is a fetch packet or eight instructions.

Internal Data Memory
The 64 Kbyte C6201 internal data memory is organized
into eight 8 Kbyte 16-bit-wide banks of memory (Fig.

without CPU intervention to and
from on-chip peripherals, internal
data memory, internal program
memory when not used as cache,
and external memory

The DMA can perform 32-bit
burst transfers at a 200 MHz rate
for 800 Mbytes/second. The DMA
controller consists of four pro-
grammable channels. A fifth auxil-
iary (AUX) channel services
requests from the HPI, which has
its own address-generation capa-
bility. All five channels have inde-
pendently selectable priority versus
the CPU. At system initialization,

the DMA can be selected to boot
the internal memory from an exter-
nal ROM device.

Each programmable channel
has a programmable source ad-
dress, destination address, and
transfer count. Address indexing
supports fixed address, linear ad-

dress striding, two-dimensional ar-
ray movement, and ddta
interleaving. Both individual and

block transfers may have their read
and/or write operations transfers

triggered by events from internal

or external peripherals. Each pro-
grammable channel can generate
independent interrupt conditions
to the CPU upon transfer comple-
tion or error conditions. These
channels also have an auto-
initialization mode that allows for
continuous block data transfers
without restart by the CPU. Fi-
nally, each channel may be config-
ured in split-mode operation,
which enables it to service both the
transmit and receive data flow
from a peripheral.

94 IEEE SIGNAL PROCESSING MAGAZINE

MARCH 1998

Céx CPU the DMA and CPU Data Ports do contend for the same
) ol bank, the priority versus of the requesting DMA channel
- Address |— Program determines the winner. If the DMA channel is higher pri-
gp L tateh Memory ority, the CPU is held as long as it is contending with a
Ea DMA channel access. To maintain a fixed programming
Register L StOLret Dhata L model, the entire CPU pipeline is frozen in this case. If
Files At 3 the CPU has higher priority, the DMA is held until the
" ond Data CPU no longer is accessing the requested bank. When no
Latch conflict occurs, the DMA and CPU can cycle-steal ac-
=S < B4] cesses to the unused banks with neither being stalled.
A 13. Execute pipeline flow for load and store. Peripherals
The peripherals on the C6201 include two
el v T2 T %1 2 151 & — multichannel buffered serial ports, two 32-bit
Packet | . | -1 | T timers, a 16-bit-wide HPI, and power-down
N_.. .PG_PS|PW |PR logic.
Nt | (PGPS [PW
[N+2. BB L PG I PS Multichannel Buffered Serial Port
N+3 N 1T pa The McBSP is a full duplex serial port capable
Ned ' of running at up to 100 MHz (two 100
N+5 . . Mbits/second streams). The McBSP has inde-
— b o pendent frame synchronization, bit clocking,
M PG__|PS | PW | anddatalines (Fig. 16). In addition, an exter-
Mi1 o | | {PG | PS | nalCLKS input allows the transmitter and/or

A 14. Branch pipeline execution.

Block 0

Bank 0000-7FF8

Bank 0002-7FFA

Bank 0004-7FFC

Cé2x CPU

Bank 0006-7FFE

Data Port A}
Data Port B

Block 1

Bank 8000-FFF8

Bank 8000-FFFA

Bank 8000-FFFC

Bank 8000-FFFE

A 15. Internal data memory organization.

receiver to run from a divide down of an exter-

nally provided clock. Alternatively, an internal

clock running at 1/2 the CPU clock rate can
drive this clock divider. For both the transmitter and re-
ceiver, each clock and frame may be configured independ-
ently to be driven from an external source (slave) or from
the McBSP’s sample rate generator (master). This
sample-rate generator can program both the width and
active period of internally generated frame synchroniza-
tion.

Each serial frame consists of one or two phases of up to
128 serial words each. The McBSP supports programma-
ble word sizes of 8-, 12-, 16-, 20-, 24-, and 32-bits.
Wordsize and words per phase are independently pro-
grammable for each phase of the transmitter and receiver.
Multichannel selection mode allows the McBSP to pick
specific serial word slots to receive or transmit and ignore
the others. This feature reduces data storage transfer to
only those words the C6x processes from the serial
stream. Data transfer for both the receiver and transmit-

15). These banks are grouped into two blocks consisting
of four banks each. The address of each bank in a block is
interleaved. The banks are arbitrated on a 16-bit cycle-
by-cycle basis. Pairs of banks are used if 32-bit CPU or
DMA accesses are requested. Like the EMIF the internal
data memory has byte enables to support byte and half-
word accesses.

Both CPU data ports and the DMA have access to each
bank. Thus, the three requesters (CPU Data Port A, CPU
Data Port B, and the DMA) compete for eight banks, re-
ducing the possibility of conflict. In addition, the two
blocks are in distinct spaces allowing a ping-pong buffer
approach—avoiding any DMA/CPU contention. When

MARCH 1998

ter may be serviced in the

background by a single DMA —VicBSP
channel operating in split || pansmitter
mode. The McBSP’s pro- " FSX
grammability allows in- CLS))E
teroperability with a variety of Receiver
standards: 'FSR
& ST-BUS (MVIP switching CLKR 1<
compatible), which allows di- R
rect interface to T1, E1, ~CLKS’
H.100, MVIP, and SCSA)
framing chips. A 16. McBSP.

IEEE SIGNAL PROCESSING MAGAZINE

A AC97 compliant codecs.
A IS compliant devices.
A SPI™

Timers

Each 32-bit timer has a dedicated input and output pin.
An external signal or an internal clock running at 1/4 the
CPU clock rate may clock the timer. The timer generates
a pulse or square wave output with a frequency deter-
mined by the period programmed into the timer. The
timer can generate interrupts to the CPU on counting the
required period. The timers can be used for time-slice in-

terrupt generation for a real-time operating system
(RTOS), event counting, and pulse and clock generation.

Host Port Interface

The HPI is a 16-bit wide bi-directional port that inter-
faces with little or no logic to a variety of industry-
standard microprocessors, microcontrollers, and embed-
ded RISC processors. This interface can operate at up to
50 MHz for 100 Mbytes/second of data throughput.

Power-Down Modes
The user may enable any one of three power-down modes
to reduce power consumption

while the CPU is idle:

A Power Down 1: The CPU
clocks are halted. All other periph-

crals continue running as pro-

grammed. In this mode, the CPU

wakes up through an external or
internal interrupt.

A Power Down 2: All internal

clocks are halted, and the C6201

wakes up through device reset.

The on-chip PLL continues run-
ning,.

A Power Down 3: Same as power
down 2, but the PLL is halted.

System Examples

This section describe the use of

the (6201 in three systems:
A A\ multichannel telecommuni-

cations or data communications

S_\'S(’CIH.

A A 2-4 channel high sample rate
svstem.

A \ multichannel high-fidelity

audio system.

Multichannel Datacom or Telecom
‘Ihe system shown in Fig. 17 is a
multichannel datacom system

similar to those used for pooled

modem for remote access servers;

multichannel vocoding for wire-
less, cellular, and personal com-
munication system (PCS)

bascstations as well as for digital

tclephony; and multichannel
line-echo cancellation.

SDRAM provides high-

96 IEEE SIGNAL PROCESSING MAGAZINE

density, low-cost-per-bit external
storage. The EMIF services pro-
gram fetch requests from the
cache controller. External pro-

MARCH 1998

gram memory is necessary to support program store for a
variety of vocoding standards in multichannel vocoding
as well as for all fallback modes in a x2™ or V.34 modem

| EMIF]
v A
L Cache Centroller]

v

400 MBytes/sec
Ce201

internal N
C62x ’;A“’g'am DMA | [DMA
CPY < emory | | cH2 | | cH3

X I)

Internal
° A

Data Memory
A X
DMA
[smit DMA CH 01 [Split DMA cﬂ

B I S R

system. The external program is unnecessary in line-echo
cancellation systems. DMA channels 2 and 3 move the
context for the various channels on- and off-chip as
needed. Through the HPI, a host CPU provides system
control. McBSP 0 interfaces toa T1 or E1 line for connec-
tion to the communications infrastructure. McBSP 1 in-
terfaces to a internal system bus that routes data between
similar processing blocks. DMA channels 0 and 1 config-
ured in split mode serve the full-duplex streams of the two
McBSPs.

High Sample-Rate Processing

The system in Fig. 18 represents both ADSL modems
and antenna array processing as found in digital wireless
basestations. A single McBSP services sporadic commu-
nications requests from a system serial control bus. The
rate of these requests is low enough for the CPU to serv-
ice them directly with no performance loss. In these sys-
tems, the amount of required program and data memory
is lower and can fit into high-performance SBSRAMs. In
contrast to the previous example, the DMA moves pro-
gram memory in the background to completely avoid any
cache miss penalty. Two paralle] analog front-end (AFE)
chips are serviced through the asynchronous interface of
the EMIF by DMA 0 and 1 configured in split mode. In
an ADSL system, the HPI may serve as the interface to

HP | [meBsPoO | McBSP 1]
_ . J,

100 2x 2x
MBytes | 1.5-2 8 Mbit/
/sec Mbits/ sec

sec
4 A A
. Host T1 or E1 MVIP, SCSA,
CPU | | Framing Chip or H.100
’ and Line VF System Bus
Framing Chip

A 17. Multichannel datacom or telecom system.

R ~ 32Mbyte/sec
Sporadic 800 {smuzl (2 MHz
LT Mbytelsec | ygpit | | 16bit

Serial:Controt ' .
{. Bus . | |SHSRAM | | AFE | | AFE
L TR T T A Tk
S N YV VT
i MaBsP O] |- CEMIF
kL AR
- Data
<7t Acoess: ’
<L Gontraler, . "‘V .
: 1‘ ¢ 1 Intérnal 'Split | | Split -
: ‘[Ggax-| - | Program | | DMA | ['DMA
o Py fe | Memory. || CHO | fOH
Ry v 1oy]
: o © " Internal :
St Data Memory

o1 | HPl e DMA
| cezo1 L7_—h AUX,
'\ "

o @aﬁaw]

800 400
MBytes/sec MBytes/sec
[SBSRAhﬂ [SDRAM |
T A A
C6201 Y Y J
[EMIF]
| Cache Controller l
- Y
* Internal ! B 28
ce2x | | Program : ['pya - ["pMA
CPU «—-1 Memory , | GH2 | | CH3

[v)

Internal
Data Memary

@ \ \

DMA)
AUX | | Spiit DMA GH 0 | Spiit DMA CH 1

{

| HPI | LMcBSPO,

R
,T:AcBSP q

1100 MBytes/sec

100 g x % 5
MBYLeS | Mot Mbit
/sec 4 /sec \
PCI 48KHz 24-Bit 16 Channel
Bridge | | Stereo Codec 20-Bit
48 KHz
AC97 Audio

A 18. High sample-rate processing system.

MARCH 1998

A 19. Multichannel high-fidelity audio system.

IEEE SIGNAL PROCESSING MAGAZINE

97

the backbone network in the central office or to a local

network in a small office or home-office environment.

(o
\

Codae

-

L »‘“ Furthe €
Ogtimahion
P si

‘02‘:“

H

~
.

Yos

hia

‘Refino G

P

A 21]. Saturated add without intrinsics.

‘result - _sadda ifa,b)

A 22. Saturated add with intrinsics.

Multichannel High-Fidelity Audio .

A multchannel high-fidelity audio system (Fig. 19)
might be used in theater, audiophile home theater, as well
as studio-quality digital synthesizer, mixing, and record-
ing equipment. External SBSRAM serves as a high-rate
memory system to store external programs. SDRAM
provides high-volume storage for audio samples. DMA
channels 2 and 3 retrieve and store samples in external
memory as needed. The HPI interfaces to a PCI bus
through a PCl interface chip allowing the system to reside
on a personal computer. McBSP 0 interfaces to a local ste-
reo codec, whereas McBSP 1 interfaces to an AC97 sys-
tem audio stream. DMA channels 0 and 1 in split mode
serve the McBSPs’ data streams.

Development Environment
Like other TMS320 DSPs the VelociTI development en-

vironment includes:
A Code-generation tools including a C compiler, an as-
sembler, a linker, and a ROM hex output utility.
A Debug rools including a standalone loader and a
source-level debugger. Both the loader and debugger in-
terfaces are available in a software simulator and in a hard-
ware JTAG scan-based emulation interface. The loader
and debugger also provide support for all C stdio li-
brary commands such as printf and scanf.
A Board-level test via JTAG boundary scan.
A Hardware development boards such as a PC-based
evaluation module (EVM).

The remainder of this section concentrates on the pro-
gramming environment for the C6x. This includes:
A An overview of the programming methodology.
A A description of optimization techniques available
with the C6x compiler and assembly optimizer focusing
on unique capabilities versus other DS development en-
vironments.
A Abrief demonstration of the capabilities of the tools to
extract parallelism with low effort.
A A summary of available benchmark performance of the
C compiler.

Programming Environment

Two new capabilities are available in the VelociTI pro-
gramming environment. These capabilities allow im-
proved optimization technology that allows C code to
achieve on average 70-80% of theoretical performance,
and an assembly language optimizer that automati-

cally generates parallel assembly with all resources
and registers allocated from linear symbolic assem-
bly source.

The phases in the three-step software develop-
ment flow shown in Fig. 20 are listed below. The
first two steps are comumon to most processors.
However, there are techniques in the second step
not used extensively in previous DSP compilers

A 23, TMS320C3x dot product assembly.

that are described later in this section. The third

98 IEEE SIGNAL PROCESSING MAGAZINE MARCH 1998

2. Refine C Code: C code can be refined by using pro-
cedures such as compiler options, intrinsics, statements,
data type modifiers, and code transformations.

3. Develop and Refine Linear Assembly: Extract the
inefficient areas from the C code and rewrite them in as-

short *a, *b;.
Cint ¢;
o fordi=0; 1<100: i++) c += alil * blil;
A 24. Dot product C.
« LDH .D1 *AA++, AI ; load afil
- LDH .D2 *AB++, BI ; load b{il]
- MPY .M1X AI, BI, AP ; alil * biil
- ADD .L1 AP, AC, AC p o += alil * bli]
[BLC] SUB.&2 BL(, 1, BLC ; decrement loop counter
[BLC] B .S1 LOOP ; branch to loop

sembly optimizer source code.

Code-Scheduling Optimization
Optimizations specific to the C6x compiler in-
clude:

A Intrinsic functions that allow access to special-

A 25, List of instructions used in dot product with shown with symbolic

registers.

- LDW .D1 *AA++, AT ; load afil & af[i+1]

- LDW .D2 *BA++, BI ; load b{i] & b[i+1]

+ MPY _.M1X AT, BI, AP ; alil * bilil

+ MPYH .M2X AI, BI, BP ;oali+l] * bli+1)

- ADD .L1 AP, BP, ACA ; ca += afi] * bli]
- ADD .L2 BP, BP, BCB ; ¢cb += al[i+l] * bli+l

decrement loop counter

- [BO] BUB.S2 BO. 1, BO :
. branch to loop

[BO}] B .S1 LOOP ;

A 26. Refined list of instructions used in dot product.

B .51 LOOP ; branch to loop

B .S1 LOOP ; branch to loop

B .S1 LOOP ; branch to loop

B .81 LOOP) ; branch to loop
{1 ZERO LI A2 ; zero A side product
B ZERO .L2.B2 ; zero B side product

B ‘Sl LOOP branch to loop

| ZERO.L1 A3 ; zero A side accumulator
| ZERO.L2 B3 ; zero B side accumulator
| ZERO.D1 Al ; zero A side load value
| ; zero B side load value

ZERO.D2 Bl

OOF:LDW .p1 *Ad++, AL
LDW .D2 #*Bd++, Bl

L load afil & ali+l]
]

| MPY .M1X Al, BL, A2

|

|

!

!

|

load blil & bli+l]
ali) * pbtil

af{i+l] * bli+1]

ca += alil * blil

ch += af{i+l] * b[i+1}
decrement loop counter
branch to loop

MPYH.M2X Al, B., B2
} ADD .L1 A2, A3, A3
| ADD .12 B2, B3, B3
|{BO]SUB.S2 BO, 1. BO
| {BOIB .81 LOOP

ADD ,L1X A3, B2, A3 ; ¢ = ca + cb

A 27. Scheduled software pipelined loop from symbolic assembly.

step is enabled by the first production DSP assembly lan-
guage optimizer, which schedules, parallelizes, and allo-
cates resources and registers from a serial input source. A
tutorial on using the C6x tools to optimize performance
is available in {7].

1. Develop C Code: Once developed and compiled
the code is then debugged through the source debugger.
In addition to functional debug the tools provide per-
formance debug from automated cycle counts from pro-
filing, interactive debug cycle counts, and a library of
functions used for run-time performance analysis by the
program.

MARCH 1998

purpose DSP instructions from C.

A Software pipelining allows a more general-

purpose instruction set and data path than is typi-
cally found on DSPs to still provide high performance on
DSP algorithms. A brief example is provided later. A
more complete tutorial is available in [8].
A “If” conversion/predicated execution. The compiler
can turn if/else and case statements into concurrent linear
code through use of conditional instructions.
A Memory address cloning. This allows vectorization
and unrolling of memory accesses across the D and load-
store units on the two data paths.
A Memory address-dependence elimination. The com-
piler eliminates the possibility of pointer aliasing and
schedules code more optimally. The user can indicate that
a pointer or array variable overlaps with no other pointers
through use of the const type modifier in declaration or
casting.
A Memory-bank disambiguation: In many cases, the
compiler and assembly optimizer can detect and avoid
memory-bank conflicts between the two data port ac-
cesses at compile time.

Optimizations available on all TMS320 compilers in-
clude: branch optimizations/control-flow simplification;
alias disambiguation, copy propagation; common subex-
pression elimination; redundant assignment elimination;
loop-induction variable optimizations/strength reduc-
tion; loop rotation; loop-invariant code motion; inline
expansion of function calls; file-level optimizations;
data-flow optimizations; expression simplification; regis-
ter variables; register tracking/targeting; and cost-based
register allocation. All optimization techniques are used
by both the compiler as well as the assembly language

optimizer.

Intrinsic Functions

Intrinsic functions map C directly to inlined C6x instruc-
tions. All instructions that are not easily expressed in C
code are supported as intrinsics by the C6x compiler. The
following C62x instructions are available as intrinsics:
ADD2, SUB2, CLR, SET, EXT(U), LMBD, SMPY,
MPY, NORM, SADD, SSUB, SAT, SSHL, SUBC. Fig-
ures 21 and 22 compare the C code for a 32-bit saturated
add without and with intrinsics, respectively. For the

IEEE SIGNAL PROCESSING MAGAZINE 99

i T

A 28 1IR C source with minimal refinements.

Lo e i T

A 29. Compiler 5-cycle loop from Fig. 28.

L

A 30. IR C source with intrinsics.

compiler as well as the programmer, intrinsics make DSP
instructions easily accessible from C.

100 IEEE SIGNAL PROCESSING MAGAZINE

Software Pipelining

Rather than encode special-purpose multipipeline
phase instructions, the VelociTl architecture em-
ploys high-throughput RISC-like instructions that
can be combined to execute various software pipe-
lined loops including the benchmarks shown in Ta-
ble 6. This section provides an overview for
software pipelining as it has not been widely de-
ployed on DSPs. Software pipelining has its origins
in vector processors built in the 1960s and to a lim-
ited extent on DSPs such as the Texas Instruments
TMS320C3x where a floating-point dot product
was expressed as shown in Fig. 23. Note that in the
inner loop the next product is being multiplied
while the previous product is accumulated.

Figure 25 shows the list of C6x instructions
needed to perform a dot product shown in Fig. 24.
These are listed in serial format with symbolic registers.
Resource allocation is done for explanatory purposes.
When using the assembly optimizer neither the side of the
registers or the functional units must be specified. The as-
sembly optimizer will perform all necessary resource and
register allocation when not specified. Figure 26 shows
an extension to that list with some optimizing refine-
ments. For example, a LDW instruction is used to load a
pair of 16-bit operands. Second, two iterations of the
loop, iand i+1, are listed to fully use the dual multipliers.
This technique is referred to as loop unrolling. Figure 27
shows a dot product after software pipelining. Note that
the five branch instructions precede the loop to fill the
pipeline with branches for the single cycle loop. Since, the
load latency is 5, the first intended product is generated
on the sixth iteration of the loop. Since the multiply la-
tency is 2, the first intended multiply is performed on the
eighth iteration of the loop. The load and product regis-
ters are zeroed to avoid spurious adds and multiplies
while the first loads are completing in the first iteration of
the loop. To complete both sums a final add is necessary
after the loop. Both the compiler and assembly optimizer
use software pipelining in achieving their performance.

Demonstration of Compiler and Assembly Optimizer
This section briefly illustrates the optimizations possible
with the C6x code-generation tools. This example is cov-
ered more thoroughly in [7]. Figure 28 shows C code for
an IIR filter with minimal refinements. The pointers are
declared to const to indicate no overlap of arrays.
The _nassert () statement sets the minimum
amount of times the loop will iterate. This results in an in-
ner loop of five cycles (Fig. 29). Figure 30 shows code
re-written to access the coefficients as 16-bit pairs and
performs multiplies using intrinsics. This results in a
four-cycle inner loop (Fig. 31). Figure 32 shows the as-
sembly optimizer source for the ITR. This results in a
three-cycle inner loop (Fig. 33).

MARCH 1998

ADD .L2 D7,B8,B7 ; Compiler Performance

: ADD . L1 -A0.A3,A0 H .
li_ i‘ W friogine ‘e Table 7 shows C62x C compiler benchmark perform-
RN "R TS SURY VY () ST S ance. This performance reflects refined C code without
G IR D AR (B), B ced . .- :
- . : any usc of the assembly opumizer. Depending on the
’ SHR .52, WT.L5.BT metric used from the table, the C compiler achieves 72-
b RXT .S AO.i6,16,a0 ; o . .
|1(e0) cvp .12 B0.1,B0 " . 829% across thls.set of algonthms. In larger lqops’ where
1L MY oI Rs.svRE . ;@ ‘ ., the assembly writer has more difficulty managing the par-
i “ADD - LLL¥ BG,AJAY ¢ U ' ' '
i L oz ~ind(i4).56)eee allelism, the compiler provides comparable performance

with greatly reduced development time. For more analy-

ADD .L1X'A0,57,A6 ; sis of the C6x compiler performance see [9] and [10].

I MPYHL .M2 BS,B9,B7 ;@
| _ BHR . .51 A3,15,A3 ;@
H{isoy 3+ .52 13 : 1@
} o nowW .02 . *eE5(4), B7 ;eee Summary

DH .D1 *+a4{12),A5 ;@@e

The TMS320C62x and TMS32067x are the first CPUs

ADD .L2 4,34,B4 ; . . : A
1 ST .DL A0, *A4er(4) ; based on the VelociTI architecture. The VelociTI archi-
l . 5§$m I‘fi; i?;: ig“"o e tectural principles allow performance of 1600 MIPS and

A] NI . , AT
i MPY .MIX B7,AS,A3 ;8@ 1 GFLOP, respectively. In addition, these principles al-
- low creation of an optimizing tool set that reduces system

A 31. Compiler 4-cycle loop from Fig. 30. development time. The TMS3206201 is the
. T , first device based on the VelociTI architecture.
iir .cproc cptrl,sptrld T

.reg cptrl, s0l, sl), si3, cl0, ¢32, sl0_s, s10.t Advanced release samples have been shipping

v 0. f;alr'f§2épf;1' s23.s. sl, t, x, mask, sptrl, sl0p, ctr to customers since March 1997. Devices with
MY - sptr0,sptrl ' _ the full production peripheral set have been

: Ong : 'igf;;“‘;o ‘ i setup loop counter : available since October 1997. This peripheral

- H . "1
LDW.DITL *cptr0,c32 ; CocfAddri3d] & CoefAddri2} . set is suited for a wide variety of multichannel
LIDW,.D2T2 *cptrl,cld ; CoefAddr [1] & CoefAddr{0] and hlgh performance Systems ln Communica_
LIW.DITZ *sptr0,sl0 ; StateAddr(l] & StateAddr{0}

MY s10,510p . save Stateaddr{l] & StateAddr[0] tions and multimedia. The C6201 will mlgrate
MPY.Mi c32,810,p2 ; Coefaddr [2.] * StateAddr!0] C, to a .18 micro PrOCCSS and 1.8V internal Sup-
MPYH ©32,810,p3 ; CoefAddr[3] * StateAddr({l] . 1 1 . d 1
ADD. p?.p3 /s23 ; CAI2] * SA[0] + CAT31 * SA[1] ' ply voltage in mid 1998 for even lower power

‘SHR 823,15,823_s ; (CA[2] * SA[O] + CA[3] * SA[1l) >> 15 consumption.

ADD.Z 823_8,%.t. ;€= x+{(CA[2]1*SA[0]+CA[3]*SA[1))>>15)
AND ct,mask,t . ; clear upper 16 bits .
MPY c10,s10,00 ; CocfAddr[0] * Stateaddr[0} Nat Seshan is an architect, product applications
MEYI ¢10,s10,pl ; CoefAddr[l] * Statehddrilj .
DD p0.pl.slot 1 CALO] * SALO} + CA{1] * SA[1] manger, and member of the Group Technical
SHR s10_t,15,810_s ; (CA[0] = SA[0] + CA[1] * SAl1)) >> 15 Staff for the Texas Instruments Semiconductor
ADD s10_s,.t,x ;% = t+{(CALO1*SA[0]4CA[11*SAL1])>>15) .
SHL s10p,16.81 » Stateaddr(l] = StateAddr (0} TMS320C62x DSP Group in Houston, Texas.
OR t,s1,s01 ; StateAddr[0} = t
STW.D1 s01, *sperl ; store StateAddr|l} & Statehddrio}
{ctr] ADD ~1,ctr,ctr ; dec outer lp entr References
letr] B LOOP ; Branch outer lcop
~endproc Web Sites

For a product overview, access to the literature
listed below, and more detail on the
TMS320C6201 as well as the source of the as-
sembly benchmarks see: http://www.ti.
com/sc/docs/dsps/products/c6x/index.htm

A 32. liR assembly optimizer source.

* sa[i;'_-" '

: 'taLEAdcrfll
¥ StateAddr[Ol

TMS320C6x Literature

The following books provide more detail on
the TMS320C62x processor. Documentation
and further details on the C67x will be available
in the first quarter of 1998.

TMS320C62x Technical Brief: SPRU197

TMS320C62x CPU and Instruction Set Reference Guide:
SPRUI189B

TMS320C62x Peripherals Reference Guide: SPRU190.
TMS$320C62x Programmer’s Guide: SPRU198
TMS$320C6201 Digital Signal Processor Data Sheet: SPRS051

A 33 Assembly optlmlze-r 3-cycle Ioop from F/g 31 (continued on page 117)

MARCH 1998 IEEE SIGNAL PROCESSING MAGAZINE 101

takes care of the register allocation, operation packing,
and flow analysis.

Applications

TM-1000 has been designed into many multimedia ap-
plications such as video conferencing, multimedia accel-
erators in personal computers, DVD players, and
high-definition television.

Summary

The TM-1000 is the first programmable multimedia
processor from the Trimedia division of Philips Semicon-
ductors. This article mainly discussed the VLIW CPU
core in TM-1000. The VLIW CPU core is powerful
enough to implement the MPEG?2 video/audio decoder,
video-conferencing applications, and the MPEG-1 en-
coder applications. Peripheral units such as an image co-
processor, video-in/video-out, audio-infaudio-out, PCI
interface, and modem interface make up a complete mul-
timedia system on a chip.

Selliah Rathnam is a Trimedia system architect and Gert
Slavenbury is the Trimedia Chief Technology Officer
with Philips Semiconductors in Sunnyvale, California.

References

1.J. Labrousse and G.A Slavenburg, “A 50 MHz Microprocessor with a VLIW
Architecture.” ISSCC, 1990.

2.J. Labrousse and G.A. Slavenburg, “CREATE-LIFE: A Design System for
High Performances VLSI Circuits® ICCD-88. 1988.

3.]. Labrousse and G.A. Slavenburg, “CREATE-LIFE: A Modular Design
Approach for High Performances ASICs.” Compcon Conference, 1990.

4. Brian Case, “Philips Hopes to Displace DSPs with VLIW> Microprocessor Re-
port, December 5, 1994.

5. Brian Case, “First Trimedia Chip Boards PCI Bus.” Microprocessor Report,
November 1995.

6. Gert Slavenburg, “The Trimedia VLIW-Based PCI Multimedia Processor”
Microprocessor Forum, October 1995.

7. A.S. Huang, G. Slavenburg, and J.P. Shen, “Speculative Disambiguation: A
Compilation Technique for Dynamic Memory Disambiguation”. In 21st
Annual International Symposium on Computer Architecture, April 1994.

8. R.P. Colwell, R.P. Nix, J.J] O’Donnell, D.B. Papworth, and P.K. Rodman,
A VLIW Architecture for a Trace Scheduling Compiler.” Proc. of ASPLOS
II. October 1987.

9. J.A. Fisher. “Trace Scheduling: A Technique for Global Microcode Compac-
tion.” IEEE Trams. on Computers, July 1981.

10. P.Y.T. Hsu and E.S. Davidson. “Highly Concurrent Scalar Processing.”
Proc. of the 13th Symposinm on Computey Architecture, 1986

11. Selliah Rathnam and Gert Slavenburg. “An Architectural Overview of the
Programmable Multimedia Processor, TM-1, 1996.

High VelociTl Processing
(continued from page 101)

Trademarks
TMS320 and VelociTI are trademarks of Texas Instru-
ments. SPI is a Motorola trademark

Publications Referenced in this Article

1. J.A. Fisher, Very Lony Instruction Word Architecrures. 253, Yale University,
1983.

2. M. Lam, Software Pipelining: An effective scheduling technique for VLIW
machines. SIGPLAN °88 Confevence on Progyamming Language Design and
Implementation, June 1988, pp. 318-328.

3. A. Davis, E. Stotzer, R. Tatge, and A. Ward, Approaching Peak Performance
wirh Compiled Code on a VLIW DSP, July 1997, Texas Instruments.

4. D.A. Patterson and D.R. Ditzel, The case for the reduced instruction set
computer. Computer Architecture News 8(6), October 1980, pp. 25-33.

MARCH 1998

5.T.J. Dillon, The VelociTI™ Architecture of the TMS320C6x, Proceedings of
the International Conference on Signal Processing & Teckmology, San Diego,
Sept. 1997.

6. P. Lapsley, J. Bier, A. Shohan, and E.A. Lee, DSP Processor Fundamentals -
Avrchitectnres and Features, Berkeley Design Technology, Inc., 1996.

7. R. Scales, Approaching Optimal Pevformance with the C62x Assesnbly Opti-
mizer, October 1997, Texas Instruments.

8. T.J. Dillon, The Use of Software Pipelining in Developing DSP Algorithms
for the TMS320C6x, Proceedings of the Intevnavional Conference on Signal
Processing & Technology, Sept. 1997.

9. Loughborough Sound Images, PLC, Evaluation of the Performance of the
C6201 Processor & Compiler, White Paper Version 1.1, 1997.

10. M. Levy, C Compilers for DSPs Flex Their Muscles, EDN, pp 93-107,
June 5, 1997.

IEEE SIGNAL PROCESSING MAGAZINE 117

