
Ec332

1/9/2003

EC332 - Computer Architecture II
HW4 – Loop Unrolling

1. List all the dependences in the following
code fragment. Indicate whether the true
dependences are loop-carried or not.
Show why the loop is not parallel.

For (i=2;i<100;i++) {

a[i] = b[i] + a[i]; /* S1 */
c[i-1] = a[i] + d[i]; /* S2 */
a[i-1] = 2 * b[i]; /* S3 */
b[i+1] = 2 * b[i]; /* S4 */
}

2. Here is an unusual loop. First, list the
dependences and then rewrite the loop so
that it is parallel.

For (i=1;i<100;i++) {
a[i] = b[i] + c[i]; /* S1 */
b[i] = a[i] + d[i]; /* S2 */
a[i+1] = a[i] + e[i]; /* S3 */
}

3. Assume the pipeline latencies from below
and a one-cycle delayed branch. Unroll
the following loop a sufficient number of
times to schedule it without any delays.
Show the schedule after eliminating any
redundant overhead instructions. The
loop is a dot product (assuming $f2 is
initially 0) and contains a recurrence.
Despite the fact that the loop is not
parallel, it can be scheduled with no
delays.

Loop: ld $f0, 0($s1)
 ld $f4, 0($s2)
 multd $f0, $f0, $f4
 addd $f2, $f0, $f2
 subi $s1, $s1, 8

 subi $s2, $s2, 8
 bneqz $s1, Loop

Instruction producing result Instruction using result latency in clock cycles

FP ALU op Another FP ALU op 3
FP ALU op Store Double 2
Load double FP ALU op 1
Load double Store double 0

