
Problem 1: (25 points)
The code below is to be run on the pipelined datapath shown below. Assume the datapath has
hardware support for forwarding and the branch operation is performed in the Decode stage. Also
a register can be written and read during the same clock cycle.

Show the state of the datapath for the following code when the first lw instruction is in the WB
stage by filling in the boxes on the datapath with the values for the indicated lines. If you do not
know the value in a register, use the notation $X to indicate the contents of register X and M($X)
to indicate the contents at memory location X. Assume the branch IS taken, but that branch-delay
slots are not filled. Be sure to write the instruction above each stage.

PC
A000h li $1,8
A004h li $2,5
A008h li $3,1
A00Ch Loop: lw $1, 0($2)
A010h sub $3, $3, $2
A014h add $4, $3, $1
A018h bne $3, $0, Loop
A01Ch lw $5, 0($2)

IF: ID: EX: MEM: WB:
0

Problem 2: (25 pts)
For the following code, assume that the branch is taken. Draw the multicycle diagram for the first
three cycles assuming that NO data forwarding takes place. Make sure that your diagram accounts
for any control and data hazards by stalling or flushing the pipeline. Assume that all instructions
are stalled in the ID stage and flushed in the IF stage (like the MIPS pipeline). If you need more
cycles, add them to the end.

Loop: lw $1, 0($2)
add $1, $1, $8
subi $3, $1, 4
sw $2, 4($1)
bne $3, $0, Loop
addi $10, $9, 10

(b) Redraw the diagram assuming that data can be forwarded to any other stage. Indicate forward-
ing with an arrow.

(c) If the branch delay slot was filled by the compiler with an independent instruction, what would
happen to the code listed above, as it is written? (Assume the code has been written to fill the
delay slot)

(d) If the branch delay slot was filled using dynamic branch prediction, which predicted correctly
that the branch was taken, what instruction would occur after the branch?

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

lw

add

subi

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

lw

add

subi
1

2

Problem 3: (25 points)
A new processor has been designed that executes floating point and integer operations in parallel
with latencies as shown in the table below. This pipelined data path performs it’s branch decisions
in the decode stage with one delay slot after the branch. There is hardware support for data for-
warding.

(a) Insert nop instructions so that the loop executes correctly on the new pipeline. Assign multiple
nops as “# nop” to decrease clutter.

Loop ld $f0, 0($t1)

multd$f0, $f0, $f2
\

ld $f4, 0($t2)

addd $f0, $f0, $f4

sd $f0, 0($t2)

subi $t1, $t1, 8

subi $t2, $t2, 8

bne $t1, $0, Loop

(b) Unroll the code once (i.e. two iterations) and schedule to minimize nops. Assume the number
of iterations of the loop is an even number. Show your nops in your scheduled/unrolled code.

Unit Latency

Integer Exec 0

Data Memory 1

FP Add 2

FP Mult 4

IF ID M1 M2 M3 M4

A1 A2

EX

MEM WBM5

A3

3

Problem 4: (25 points)
Short Answer - Please underline the key words in your answer.

(a) For an index with a given number of bits, why should gshare perform better than gselect?

(b) You just bought the newest CPU for your machine that has the latest and greatest branch pre-
diction algorithm, which can achieve an accuracy of 97% for the SPEC’2000 benchmark. You
program your machine and find out that the branch predictor only achieves a 60% accuracy. Why
would this occur? Relate your answer specifically to the assumptions that make branch prediction
successful.

(c) What are precise vs. imprecise exceptions? How does the non-superscalar MIPS pipeline
maintain precise exceptions?

	Problem 3: (25 points)
	Problem 1: (25 points)
	Problem 2: (25 pts)
	Problem 4: (25 points)

