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Introduction
Noise. It is the classical limitation of electronics. 
In measurements, noise and distortions limit the
dynamic range of test results.

In this four-part paper, the characteristics of noise
and its direct measurement are discussed in Part I.
Part II contains a discussion of the measurement
of noise-like signals exemplified by digital CDMA
and TDMA signals. Part III discusses using averag-
ing techniques to reduce noise. Part IV is about
compensating for the noise in instrumentation while
measuring CW (sinusoidal) and noise-like signals.

Simple noise—Baseband, Real, Gaussian
Noise occurs due to the random motion of elec-
trons. The number of electrons involved is large,
and their motions are independent. Therefore, 
the variation in the rate of current flow takes 
on a bell-shaped curve known as the Gaussian
Probability Density Function (PDF) in accordance
with the central limit theorem from statistics. 
The Gaussian PDF is shown in Figure 1.

The Gaussian PDF explains some of the character-
istics of a noise signal seen on a baseband instru-
ment such as an oscilloscope. The baseband signal
is a real signal; it has no imaginary components.

Bandpassed noise—I and Q
In RF design work and when using spectrum ana-
lyzers, we usually deal with signals within a pass-
band, such as a communications channel or the
resolution bandwidth (RBW, the bandwidth of the
final IF) of a spectrum analyzer. Noise in this
bandwidth still has a Gaussian PDF, but few RF
instruments display PDF-related metrics.

Instead, we deal with a signal’s magnitude and
phase (polar coordinates) or I/Q components. The
latter are the in-phase (I) and quadrature (Q) parts
of a signal, or the real and imaginary components
of a rectangular-coordinate representation of a sig-
nal. Basic (scalar) spectrum analyzers measure only
the magnitude of a signal. We are interested in the
characteristics of the magnitude of a noise signal.

Part I: Noise Measurements

Figure 1. The Gaussian PDF is maximum at zero current and falls off away from zero, as
shown (rotated 90 degrees) on the left. A typical noise waveform is shown on the right.
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We can consider the noise within a passband as
being made of independent I and Q components,
each with Gaussian PDFs. Figure 2 shows samples
of I and Q components of noise represented in the
I/Q plane. The signal in the passband is actually
given by the sum of the I magnitude, vI , multiplied
by a cosine wave (at the center frequency of the
passband) and the Q magnitude, vQ, multiplied 
by a sine wave. But we can discuss just the I and 
Q components without the complications of the
sine/cosine waves.

Spectrum analyzers respond to the magnitude 
of the signal within their RBW passband. The mag-
nitude, or envelope, of a signal represented by an
I/Q pair is given by:

Graphically, the envelope is the length of the vec-
tor from the origin to the I/Q pair. It is instructive
to draw circles of evenly spaced constant-amplitude
envelopes on the samples of I/Q pairs, as shown 
in Figure 3.

venv = √ (vI
2+vQ

2)

Figure 2. Bandpassed noise has a Gaussian PDF independently in both its I and Q components. 
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If one were to count the number of samples within
each annular ring in Figure 3, we would see that
the area near zero volts does not have the highest
count of samples. Even though the density of sam-
ples is highest there, this area is smaller than any
of the other rings. 

The count within each ring constitutes a histogram
of the distribution of the envelope. If the width of
the rings were reduced and expressed as the “count” 

per unit of ring width, the limit becomes a con-
tinuous function instead of a histogram. This 
continuous function is the PDF of the envelope 
of bandpassed noise. It is a Rayleigh distribution 
in the envelope voltage, v, that depends on the
sigma of the signal; for v ≥ 0:

The Rayleigh distribution is shown in Figure 4.

PDF (v) = (v–σ 2) exp (– 1—
2 ( v–σ )2)  

Figure 3. Samples of I/Q pairs shown with evenly spaced constant-amplitude envelope circles
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Figure 4. The PDF of the voltage of the envelope of a noise signal is a Rayleigh distribution.
The PDF is zero at zero volts, even though the PDFs of the individual I and Q components are
maximum at zero volts. It is maximum for v=sigma.
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Measuring the power of noise with an envelope
detector
The power of the noise is the parameter we 
usually want to measure with a spectrum analyzer.
The power is the “heating value” of the signal.
Mathematically, it is the average of v2/R, where R 
is the impedance of the signal and v is its instan-
taneous voltage.

At first glance, we might like to find the average
envelope voltage and square it, then divide by R.
But finding the square of the average is not the
same as finding the average of the square. In fact,
there is a consistent under-measurement of noise
from squaring the average instead of averaging 
the square; this under-measurement is 1.05 dB. 

The average envelope voltage is given by integrat-
ing the product of the envelope voltage and the
probability that the envelope takes on that voltage.
This probability is the Rayleigh PDF, so:

The average power of the signal is given by an analo-
gous expression with v2/R in place of the “v” part:

We can compare the true power, from the average
power integral, with the voltage-envelope-detected
estimate of v2/R and find the ratio to be 1.05 dB,
independent of s and R.

Thus, if we were to measure noise with a spectrum
analyzer using voltage-envelope detection (the “lin-
ear” scale) and averaging, an additional 1.05 dB
would need to be added to the result to compensate
for averaging voltage instead of voltage-squared.

10 log (v– 2

p–
/R ) 10 log (π–

4 ) = –1.05 dB= 

p– = ∫ ∞

0 (v–
R

2)PDF(v)dv = 2σ–
R

2

v– = ∫ ∞

0
vPDF(v)dv = σ √ π–

2
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Logarithmic processing
Spectrum analyzers are most commonly used in
their logarithmic (“log”) display mode, in which 
the vertical axis is calibrated in decibels. Let us
look again at our PDF for the voltage envelope 
of a noise signal, but let’s mark the x-axis with
points equally spaced on a decibel scale (in this

case with 1 dB spacing). See Figure 5. The area
under the curve between markings is the probability
that the log of the envelope voltage will be within
that 1 dB interval. Figure 6 represents the continu-
ous PDF of a logged signal which we predict from
the areas in Figure 5.

Figure 5. The PDF of the voltage envelope of noise is graphed. 1 dB spaced marks on the 
x-axis shows how the probability density would be different on a log scale. Where the decibel
markings are dense, the probability that the noise will fall between adjacent marks is reduced.
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Figure 6. The PDF of logged noise is about 30 dB wide and tilted toward the high end.
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Measuring the power of noise with a log-
envelope scale
When a spectrum analyzer is in a log (dB) display
mode, averaging of the results can occur in numer-
ous ways. Multiple traces can be averaged, the
envelope can be averaged by the action of the video
filter, or the noise marker (more on this below)
averages results across the x-axis.

When we express the average power of the noise 
in decibels, we compute a logarithm of that average
power. When we average the output of the log scale
of a spectrum analyzer, we compute the average of
the log. The log of the average is not equal to the
average of the log. If we go through the same kinds
of computations that we did comparing average
voltage envelopes with average power envelopes, we
find that log processing causes an under-response
to noise of 2.51 dB, rather than 1.05 dB.1

The log amplification acts as a compressor for
large noise peaks; a peak of ten times the average
level is only 10 dB higher. Instantaneous near-
zero envelopes, on the other hand, contain no
power but are expanded toward negative infinity
decibels. The combination of these two aspects 
of the logarithmic curve cause noise power to 
be underestimated.

Equivalent noise bandwidth
Before discussing the measurement of noise with a
spectrum analyzer “noise marker,” it is necessary to
understand the RBW filter of a spectrum analyzer.

The ideal RBW has a flat passband and infinite
attenuation outside that passband. But it must also
have good time domain performance so that it
behaves well when signals sweep through the pass-
band. Most spectrum analyzers use four-pole syn-
chronously tuned filters for their RBW filters. We
can plot the power gain (the square of the voltage
gain) of the RBW filter versus frequency, as shown
in Figure 7. The response of the filter to noise of
flat power spectral density will be the same as the
response of a rectangular filter with the same max-
imum gain and the same area under their curves.
The width of such a rectangular filter is the “equiv-
alent noise bandwidth” of the RBW filter. The noise
density at the input to the RBW filter is given by
the output power divided by the equivalent noise
bandwidth.

1. Most authors on this subject artificially state that this factor is due to 1.05 dB
from envelope detection and another 1.45 dB from logarithmic amplification, 
reasoning that the signal is first voltage-envelope detected, then logarithmically
amplified. But if we were to measure the voltage-squared envelope (in other
words, the power envelope, which would cause zero error instead of 1.05 dB) 
and then log it, we would still find a 2.51 dB under-response. Therefore, there 
is no real point in separating the 2.51 dB into two pieces.
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The table below shows the ratio of the equivalent
noise bandwidth to the –3 dB bandwidth (the
“name” of the RBW is usually its –3 dB BW).

Filter type Application NBW/–3 dB BW

4-pole sync Most SAs analog 1.128 (0.52 dB)
5-pole sync Some SAs analog 1.111 (0.46 dB)
Typical FFT FFT-based SAs 1.05  (0.23 dB)

The noise marker
As discussed above, the measured level at the out-
put of a spectrum analyzer must be manipulated in
order to represent the input spectral noise density
we wish to measure. This manipulation involves
three factors, which may be added in decibel units:

1. Under-response due to voltage envelope detection
(add 1.05 dB) or log-scale response (add 2.51 dB).

2. Over-response due to the ratio of the equivalent
noise bandwidth to the –3 dB bandwidth 
(subtract 0.52 dB).

3. Normalization to a 1 Hz bandwidth (subtract 
10 times the log of the RBW, where the RBW is
given in units of Hz).

A further operation of the noise marker in Agilent
spectrum analyzers is to average 32 measurement
cells centered around the marker location in order
to reduce the variance of the result.

The final result of these computations is a measure
of the noise density, the noise in a theoretical ideal
1 Hz bandwidth. The units are typically dBm/Hz.

Figure 7. The power gain versus frequency of an RBW filter can be modeled by a rectangular
filter with the same area and peak level, and a width of the “equivalent noise bandwidth.”
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Spectrum analyzers and envelope detectors  

A simplified block diagram of a spectrum ana-
lyzer is shown in Figure A.

The envelope detector/logarithmic amplifier
block is shown configured as they are used in
the Agilent 8560 E-Series spectrum analyzers.
Although the order of these two circuits can 
be reversed, the important concept to recognize 
is that an IF signal goes into this block and a
baseband signal (referred to as the “video” sig-
nal because it was used to deflect the electron
beam in the original analog spectrum analyzers)
comes out.

Notice that there is a second set of detectors 
in the block diagram: the peak/pit/sample hard-
ware of what is normally called the “detector
mode” of a spectrum analyzer. These “display
detectors” are not relevant to this discussion,
and should not be confused with the envelope
detector.

The salient features of the envelope detector 
are two:

1. The output voltage is proportional to the
input voltage envelope.

2. The bandwidth for following envelope varia-
tions is large compared to the widest RBW.

Figure A. Simplified spectrum analyzer block diagram

Figure B. Detectors: a) half-wave, b) full-
wave implemented as a “product detector,” 
c) peak. Practical implementations usually 
have their gain terms implemented elsewhere,
and implement buffering after the filters that
remove the residual IF carrier and harmonics.
The peak detector must be cleared; leakage
through a resistor or a switch with appropriate
timing are possible clearing mechanisms.
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Figure B shows envelope detectors and their
associated waveforms in (a) and (b). Notice that
the gain required to make the average output
voltage equal to the r.m.s. voltage of a sinusoidal
input is different for the different topologies.

Some authors on this topic have stated that 
“an envelope detector is a peak detector.” After
all, an idealized detector that responds to the
peak of each cycle of IF energy independently
makes an easy conceptual model of ideal behav-
ior. But real peak detectors do not reset on 
each IF cycle. Figure B, part c, shows a typical
peak detector with its gain calibration factor. It
is called a peak detector because its response 
is proportional to the peak voltage of the signal. 
If the signal is CW, a peak detector and an 
envelope detector act identically. 

But if the signal has variations in its envelope,
the envelope detector with the shown LPF (low
pass filter) will follow those variations with the
linear, time-domain characteristics of the filter;
the peak detector will follow nonlinearly, subject
to its maximum negative-going dv/dt limit, as
demonstrated in Figure C. The nonlinearity will
make for unpredictable behavior for signals 
with noise-like statistical variations. 

A peak detector may act like an envelope detec-
tor in the limit as its resistive load dominates
and the capacitive load is minimized. But practi-
cally, the nonideal voltage drop across the diodes
and the heavy required resistive load make 
this topology unsuitable for envelope detection. 
All spectrum analyzers use envelope detectors,
some are just misnamed.

Figure C. An envelope detector will follow the envelope of
the shown signal, albeit with the delay and filtering action of
the LPF used to remove the carrier harmonics. A peak detector
is subject to negative slew limits, as demonstrated by the
dashed line it will follow across a response pit. This drawing 
is done for the case in which the logarithmic amplification 
precedes the envelope detection, opposite to Figure A; in this
case, the pits of the envelope are especially sharp.
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Cautions when measuring noise with 
spectrum analyzers
There are three ways in which noise measure-
ments can look perfectly reasonable on the
screen of a spectrum analyzer, yet be signifi-
cantly in error.

Caution 1, input mixer level. A noise-like signal
of very high amplitude can overdrive the front
end of a spectrum analyzer while the displayed
signal is within the normal display range. This
problem is possible whenever the bandwidth 
of the noise-like signal is much wider than the
RBW. The power within the RBW will be lower
than the total power by about ten decibels times
the log of the ratio of the signal bandwidth to
the RBW. For example, an IS-95 CDMA signal
with a 1.23 MHz bandwidth is 31 dB larger 

than the power in a 1 kHz RBW. If the indicated
power with the 1 kHz RBW is –20 dBm at the
input mixer (i.e., after the input attenuator),
then the mixer is seeing about +11 dBm. Most
spectrum analyzers are specified for –10 dBm
CW signals at their input mixer; the level below
which mixer compression is specified to be under
1 dB for CW signals is usually 5 dB or more
above this –10 dBm. The mixer behavior with
Gaussian noise is not guaranteed, especially
because its peak-to-average ratio is much higher
than that of CW signals. 

Keeping the mixer power below –10 dBm is a
good practice that is unlikely to allow significant
mixer nonlinearity. Thus, caution #1 is:  Keep
the total power at the input mixer at or below
–10 dBm.

Figure D. In its center, this graph shows three curves: the ideal log amp behavior, that of a log amp
that clips at its maximum and minimum extremes, and the average response to noise subject to that
clipping. The lower right plot shows, on expanded scales, the error in average noise response due to
clipping at the positive extreme. The average level should be kept 7 dB below the clipping level for an
error below 0.1 dB. The upper left plot shows, with an expanded vertical scale, the corresponding error
for clipping against the bottom of the scale. The average level must be kept 14 dB above the clipping
level for an error below 0.1 dB.
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Caution 2, overdriving the log amp. Often, the
level displayed has been heavily averaged using
trace averaging or a video bandwidth (VBW)
much smaller than the RBW. In such a case,
instantaneous noise peaks are well above the
displayed average level. If the level is high
enough that the log amp has significant errors
for these peak levels, the average result will be
in error. Figure D shows the error due to over-
driving the log amp in the lower right corner,
based on a model that has the log amp clipping
at the top of its range. Typically, log amps are
still close to ideal for a few dB above their speci-
fied top, making the error model conservative.
But it is possible for a log amp to switch from
log mode to linear (voltage) behavior at high lev-
els, in which case larger (and of opposite sign)
errors to those computed by the model are pos-
sible. Therefore, caution #2 is: Keep the dis-
played average log level at least 7 dB below the
maximum calibrated level of the log amp.

Caution 3, underdriving the log amp. The
opposite of the overdriven log amp problem 
is the underdriven log amp problem. With 
a clipping model for the log amp, the results 
in the upper left corner of Figure D were
obtained. Caution #3 is: Keep the displayed
average log level at least 14 dB above the 
minimum calibrated level of the log amp.
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In Part I, we discussed the characteristics of noise
and its measurement. In this part, we’ll discuss
three different measurements of digitally modulat-
ed signals, after showing why they are very much
like noise.

The noise-like nature of digital signals
Digitally modulated signals are created by clocking
a DAC with the symbols (a group of bits simultane-
ously transmitted), then passing the DAC output
through a premodulation filter (to reduce the trans-
mitted bandwidth), then modulating the carrier
with the filtered signal; see Figure 8. The resulting
signal is obviously not noise-like if the digital sig-
nal is a simple pattern. It also does not have a
noise-like distribution if the bandwidth of observa-
tion is wide enough for the discrete nature of the
DAC outputs to significantly affect the distribution
of amplitudes.

But, under many circumstances, especially test
conditions, the digital signal bits are random. And,
as exemplified by the “channel power” measure-
ments discussed below, the observation bandwidth
is narrow. If the digital update period (the recipro-
cal of the symbol rate) is less than one-fifth the
duration of the majority of the impulse response 
of the resolution bandwidth filter, the signal within
the RBW is approximately Gaussian according to
the central limit theorem.

A typical example is IS-95 CDMA. Performing spec-
trum analysis, such as the adjacent-channel power
ratio (ACPR) test, is usually done using the 30 kHz
RBW to observe the signal. This bandwidth is only
one-fortieth of the symbol clock (1.23 Msymbols/s),
so the signal in the RBW is the sum of the impulse
responses to about forty pseudorandom digital
bits. A Gaussian PDF is an excellent approximation
to the PDF of this signal.

Channel-power measurements 
Most modern spectrum analyzers allow the meas-
urement of the power within a frequency range,
called the channel bandwidth. The displayed result
comes from the computation:

pch is the power in the channel, Bs is the specified
bandwidth (also known as the channel bandwidth),
Bn is the equivalent noise bandwidth of the RBW
used, N is the number of data points in the sum-
mation, and pi is the sample of the power in meas-
urement cell i in dB units (if pi is in dBm, pch is 
in milliwatts). Since n1 and n2 are the end-points 
for the index i within the channel bandwidth, 
N = (n2 – n1) + 1.

Pch = ( Bs–
Bn

)(1–
N)  

n2

i=n1
Σ 10(pi/10)

Part II:  Measurements of Noise-like Signals

Figure 8. A simplified model for the generation of digital communications signals.
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The computation works excellently for CW signals,
such as from sinusoidal modulation. The computa-
tion is a power-summing computation. Because 
the computation changes the input data points to 
a power scale before summing, there is no need to
compensate for the difference between the log of
the average and the average of the log as explained
in Part I of this article series, even if the signal 
has a noise-like PDF (probability density function).
However, if the signal starts with noise-like statis-
tics but is averaged in decibel form (typically with a
VBW filter on the log scale) before the power sum-
mation, some 2.51 dB under-response, as explained
in Part I, will be incurred. If we are certain that 
the signal is of noise-like statistics, and we fully
average the signal before performing the summa-
tion, we can add 2.51 dB to the result and have 
an accurate measurement. Furthermore, the aver-
aging reduces the variance of the result.

But if we don’t know the statistics of the signal, the
best measurement technique is to do no averaging
before power summation. Using a VBW ≥ 3RBW 
is required for insignificant averaging, and is thus
recommended. But the bandwidth of the video 
signal is not as obvious as it appears. In order 
to not peak-bias the measurement, the “sample”
detector must be used. Spectrum analyzers have
lower effective video bandwidths in sample detec-
tion than they do in peak detection mode, because
of the limitations of the sample-and-hold circuit
that precedes the A/D converter. Examples include
the Agilent 8560E-Series spectrum analyzer family
with 450 kHz effective sample-mode video band-
width, and 800 kHz bandwidth in the 8590E-Series
spectrum analyzer family.

Figure 9 shows the experimentally determined
relationship between the VBW:RBW ratio and the
under-response of the partially averaged logarith-
mically processed noise signal.

0

0

0.3             1              3             10            30           ∞

≈

≈
≈

–1.0

–2.0

–2.5 power summation
error

0.045 dB

1,000,000 point simulation 
experiment

RBW/VBW ratio
0.35 dB

Figure 9. For VBW ≥ 3 RBW, the averaging effect of the VBW filter does not significantly
affect power-detection accuracy.
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Adjacent-Channel Power (ACP)
There are many standards for the measurement of
ACP with a spectrum analyzer. The issues involved
in most ACP measurements were covered in detail
in an article in the May 1992 issue of Microwaves &
RF, “Make Adjacent-Channel Power Measurements.”
A survey of other standards is available in “Adjacent
Channel Power Measurements in the Digital
Wireless Era,” Microwave Journal, July 1994.

For digitally modulated signals, ACP and channel-
power measurements are similar, except ACP is
easier. ACP is usually the ratio of the power in the
main channel to the power in an adjacent channel.
If the modulation is digital, the main channel will
have noise-like statistics. Whether the signals in
the adjacent channel are due to broadband noise,
phase noise, or intermodulation of noise-like sig-
nals in the main channel, the adjacent channel will
have noise-like statistics. A spurious signal in the
adjacent channel is most likely modulated to appear
noise-like, too, but a CW-like tone is a possibility.

If the main and adjacent channels are both noise-
like, then their ratio will be accurately measured
regardless of whether their true power or log-
averaged power (or any partially averaged result
between these extremes) is measured. Thus, unless
discrete CW tones are found in the signals, ACP 
is not subject to the cautions regarding VBW and
other averaging noted in the section on channel
power above.

But some ACP standards call for the measurement
of absolute power, rather than a power ratio. In such
cases, the cautions about VBW and other averaging
do apply.

Carrier power
Burst carriers, such as those used in TDMA mobile
stations, are measured differently than continuous
carriers. The power of the transmitter during the
time it is on is known as the “carrier power.”

Carrier power is measured with the spectrum 
analyzer in “zero span.” In this mode, the LO of the
analyzer does not sweep, thus the span swept is
zero. The display then shows amplitude normally
on the y axis, and time on the x axis. If we set the
RBW large compared to the bandwidth of the burst
signal, then all the display points include all the
power in the channel. The carrier power is computed
simply by averaging the power of all the signals
that represent the times when the burst is on.
Depending on the modulation type, this is often
considered to be any point within 20 dB of the
highest registered amplitude. (A trigger and gated
spectrum analysis may be used if the carrier power
is to be measured over a specified portion of a
burst-RF signal.)
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Using a wide RBW for the carrier-power measure-
ment means that the signal will not have noise-like
statistics. It will not have CW-like statistics, either,
so it is still wise to set the VBW as wide as possi-
ble. But let’s consider some examples to see if the
sample-mode bandwidths of spectrum analyzers
are a problem.

For PDC, NADC, and TETRA, the symbol rates are
under 25 kb/s, so a VBW set to maximum will work
excellently. It will also work well for PHS and GSM,
with symbol rates of 380 and 270 kb/s. For IS-95
CDMA, with a modulation rate of 1.2288 MHz, we
could anticipate a problem with the 450 and 800
kHz effective video bandwidths discussed in the
section on channel power above. Experimentally,
an instrument with an 800 kHz sample-mode band-
width experienced a 0.2 dB error, and one with 
a 450 kHz BW had a 0.6 dB error with an OQPSK
(mobile) burst signal.
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Peak-detected noise and TDMA ACP 
measurements
TDMA (time-division multiple access, or burst-
RF) systems are usually measured with peak
detectors, in order that the burst “off” events
are not shown on the screen of the spectrum
analyzer, potentially distracting the user.
Examples include ACP measurements for PDC
(Personal Digital Cellular) by two different
methods, PHS (Personal Handiphone System),
and NADC (North American Dual-mode
Cellular). Noise is also often peak detected in
the measurement of rotating media, such as
hard disk drives and VCRs.

The peak of noise will exceed its power average
by an amount that increases (on average) with
the length of time over which the peak is observed.
A combination of analysis, approximation and
experimentation leads to this equation for vpk,
the ratio of the average power of peak measure-
ments to the average power of sampled meas-
urements:

Tau (t) is the observation period, usually given
by either the length of an RF burst, or by the
spectrum analyzer sweep time divided by the
number of cells in a sweep. BWi is the “impulse
bandwidth” of the RBW filter, which is 1.62 times
the –3 dB BW for the four-pole synchronously
tuned filter used in most spectrum analyzers.
Note that vpk is a “power average” result; the
average of the log of the ratio will be different.

The graph in Figure E shows a comparison of
this equation with some experimental results.
The fit of the experimental results would be
even better if 10.7 dB were used in place of 10 dB
in the equation above, even though analysis 
does not support such a change.

vpk = [10 dB] log10[ln(2πτBWi+e)]
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Figure E. The peak-detected response to noise increases with the observation time.
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The results of measuring noise-like signals are, 
not surprisingly, noisy. Reducing this noisiness 
is accomplished by three types of averaging: 

• increasing the averaging within each measure-
ment cell of a spectrum analyzer by reducing 
the VBW;

• increasing the averaging within a computed
result like channel power by increasing the 
number of measurement cells contributing to
the result;

• averaging a number of computed results.

Variance and averaging
The variance of a result is defined as the square of
its standard deviation; therefore it is symbolically
s2. The variance is inversely proportional to the
number of independent results averaged; thus
when N results are combined, the variance of the
final result is s2/N.

The variance of a channel-power result computed
from N independent measurement cells is likewise
s2/N, where s is the variance of a single measure-
ment cell. But this s2 is a very interesting parameter.

If we were to measure the standard deviation of
logged envelope noise, we would find that the s is
5.57 dB. Thus, the s of a channel-power measure-
ment that averaged log data over, for example, 100
measurements cells would be 0.56 dB (5.6/sqrt(100)).
But averaging log data not only causes the afore-
mentioned 2.51 dB under-response, it also has a
higher than desired variance. Those not-rare-enough
negative spikes of envelope, such as –30 dB, add
significantly to the variance of the log average even
though they represent very little power. The vari-
ance of a power measurement made by averaging
power is lower than that made by averaging the 
log of power by a factor of 1.64. 

Thus, the s of a channel-power measurement is
lower than that of a log-averaged measurement by
a factor of the square root of this 1.64:

σnoise = 4.35 dB/√N   [power averaging]

σnoise = 5.57 dB/√N   [log processing]

Part III:  Averaging and the Noisiness of Noise Measurements
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Averaging a number of computed results
If we average individual channel-power measure-
ments to get a lower-variance final estimate, we do
not have to convert dB-format answers to absolute
power to get the advantages of avoiding log averag-
ing. The individual measurements, being the results
of many measurement cells summed together, no
longer have a distribution like the “logged Rayleigh”
but rather look Gaussian. Also, their distribution 
is sufficiently narrow that the log (dB) scale is 
linear enough to be a good approximation of the
power scale. Thus, we can dB-average our inter-
mediate results.

Swept versus FFT analysis
In the above discussion, we have assumed that 
the variance reduced by a factor of N was of inde-
pendent results. This independence is typically 
the case in swept-spectrum analyzers, due to the
time required to sweep from one measurement cell
to the next under typical conditions of span, RBW
and sweep time. FFT analyzers will usually have
many fewer independent points in a measurement
across a channel bandwidth, reducing, but not
eliminating, their theoretical speed advantage for
true noise signals. 

For digital communications signals, FFT analyzers
have an even greater speed advantage than their
throughput predicts. Consider a constant-envelope
modulation, such as used in GSM cellular phones.
When measured with a sweeping analyzer, with 
an RBW much narrower than the symbol rate, the
spectrum looks noise-like. But in an FFT span
wider than the spectral width of the signal, the
total power looks constant, so channel power
measurements will have very low variance.

Zero span
A zero-span measurement of carrier power is 
made with a wide RBW, so the independence 
of data points is determined by the symbol rate 
of the digital modulation. Data points spaced 
by a time greater than the symbol rate will be
almost completely independent.

Zero span is sometimes used for other noise and
noise-like measurements where the noise band-
width is much greater than the RBW, such as in
the measurement of power spectral density. For
example, some companies specify IS-95 CDMA
ACPR measurements that are spot-frequency
power spectral density specifications; zero span
can be used to speed this kind of measurement.
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The standard deviation of measurement noise
Figure 10 summarizes the standard deviation of
the measurement of noise. The figure represents
the standard deviation of the measurement of a
noise-like signal using a spectrum analyzer in zero
span, averaging the results across the entire screen
width, using the log scale. tINT is the integration
time (sweep time). The curve is also useful for
swept spectrum measurements, such as channel-
power measurements. There are three regions 
to the curve.

The left region applies whenever the integration
time is short compared to the rate of change of the
noise envelope. As discussed above, without VBW
filtering, the s is 5.6 dB. When video filtering is
applied, the standard deviation is improved by a
factor. That factor is the square root of the ratio of
the two noise bandwidths: that of the video band-
width, to that of the detected envelope of the
noise. The detected envelope of the noise has half
the noise bandwidth of the undetected noise. For
the four-pole synchronously tuned filters typical 
of most spectrum analyzers, the detected envelope
has a noise bandwidth of ( 1—2 ) x 1.128 times the
RBW. The noise bandwidth of a single-pole VBW
filter is π/2 times its bandwidth. Gathering terms
together yields the equation: 

σ = (9.3 dB)√VBW/RBW

1.0            10         100                     1k                 10k

center curve:
5.2 dB

tINT . RBW

5.6 dB

1.0 dB
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 [left asymptote]
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                         for VBW ≤ 1/3 RBW: 9.3 dB VBW
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tINT . RBW

N=600,VBW=0.03 . RBW

σ

right asymptote:

Figure 10. Noise measurement standard deviation for log-response spectrum analysis depends on the
sweep-time/RBW product, the VBW/RBW ratio, and the number of display cells.
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The middle region applies whenever the envelope
of the noise can move significantly during the inte-
gration time, but not so rapidly that individual
sample points become uncorrelated. In this case,
the integration behaves as a noise filter with fre-
quency response of sinc(πtINT) and an equivalent
noise bandwidth of 1/(2tINT). The total noise should
then be 5.6 dB times the square root of the ratio 
of the noise bandwidth of the integration process
to the noise bandwidth of the detected envelope,
giving

In the right region, the sweep time of the spectrum
analyzer is so long that the individual measure-
ment cells are independent of each other. In this
case, the standard deviation is reduced from that
of the left-side case (the sigma of an individual
sample) by the square root of the number of meas-
urement cells in a sweep.

The noise measurement sigma graph should be
multiplied by a factor of about 0.8 if the noise
power is filtered and averaged, instead of the log
power being so processed. (Sigma goes as the
square root of the variance, which improves by the
cited 1.64 factor.) This factor applies to channel-
power and ACP measurements, but does not apply
to VBW-filtered measurements by any current-
generation spectrum analyzers.

Examples 
Let’s use the curve in Figure 10 in two examples.
In the measurement of CDMA ACPR, we can power-
average a 400-point zero-span trace for a frame
(20.2 ms) in the specified 30 kHz bandwidth. Power
averaging requires VBW>RBW. For these condi-
tions, we find tINT RBW = 606, and we approach the
right-side asymptote of or
0.28 dB. But we are power averaging, so we multi-
ply by 0.8 to get sigma=0.22 dB.

In a second example, we are measuring noise in 
an adjacent channel in which the noise spectrum 
is flat. Let’s use a 600-point analyzer with a span
of 100 kHz and a channel BW of 25 kHz, giving 
150 points in our channel. Let’s use an RBW of 
300 Hz and a VBW=10 Hz; this narrow VBW will
prevent power detection and lead to about a 2.3 dB
under-response (see Figure 9) for which we must
manually correct. The sweep time will be 84 s, or
21 s within the channel. tINTRBW=6300; if the cen-
ter of Figure 10 applied, sigma would be 0.066 dB.
Checking the right asymptote, it works out to be
0.083 dB, so this is our final predicted standard
deviation. If the noise in the adjacent channel is
not flat, the averaging will effectively extend over
many fewer samples and less time, giving a higher
standard deviation.

5.6 dB ⁄ √ 400 points

5.2 dB/√ tINT RBW
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In Parts I, II and III, we discussed the measure-
ment of noise and noise-like signals respectively. 
In this part, we’ll discuss measuring CW and 
noise-like signals in the presence of instrumenta-
tion noise. We’ll see why averaging the output 
of a logarithmic amplifier is optimum for CW 
measurements, and we’ll review compensation 
formulas for removing known noise levels from
noise-plus-signal measurements.

CW signals and log versus power detection
When measuring a single CW tone in the presence
of noise, and using power detection, the level
measured is equal to the sum of the power of the
CW tone and the power of the noise within the
RBW filter. Thus, we could improve the accuracy 
of a measurement by measuring the CW tone first
(let’s call this the “S+N” or signal-plus-noise), then
disconnect the signal to make the “N” measure-
ment. The difference between the two, with both
measurements in power units (for example, milli-
watts, not dBm) would be the signal power.

But measuring with a log scale and video filtering
or video averaging results in unexpectedly good
results. As described in Part I, the noise will be
measured lower than a CW signal with equal power
within the RBW by 2.5 dB. But to first order, the
noise doesn’t even affect the S+N measurement!
See “Log Scale Ideal for CW Measurements” later
in this section.

Figure 11 demonstrates the improvement in CW
measurement accuracy when using log averaging
versus power averaging.

To compensate S+N measurements on a log scale
for higher-order effects and very high noise levels,
use this equation where all terms are in dB units:

powerS+N is the observed power of the signal with
noise. deltaSN is the decibel difference between
the S+N and N-only measurements. With this com-
pensation, noise-induced errors are under 0.25 dB
even for signals as small as 9 dB below the inter-
fering noise. Of course, in such a situation, the
repeatability becomes a more important concern
than the average error. But excellent results can be
obtained with adequate averaging. And the process
of averaging and compensating, when done on a
log scale, converges on the result much faster than
when done in a power-detecting environment.

powercw = powerS+N  – 10.42 x 10–0.333(deltaSN)

Part IV: Compensation for Instrumentation Noise

a.) b.) c.)

2.5 dB
0.6 dB

2.5 dB

Figure 11. Log averaging improves the measurement of CW signals when their amplitude is
near that of the noise. (a) shows a noise-free signal. (b) shows an averaged trace with
power-scale averaging and noise power 1 dB below signal power; the noise-induced error is
2.5 dB. (c) shows the effect with log-scale averaging—the noise falls 2.5 dB and the noise-
induced error falls to only 0.6 dB.
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Power-detection measurements and noise 
subtraction
If the signal to be measured has the same statisti-
cal distribution as the instrumentation noise—
in other words, if the signal is noise-like—then the
sum of the signal and instrumentation noise will
be a simple power sum:

Note that the units of all variables must be power
units such as milliwatts, and not log units like
dBm, nor voltage units like mV. Note also that this
equation applies even if powerS and powerN are
measured with log averaging.

The power equation also applies when the signal
and the noise have different statistics (CW and
Gaussian respectively) but power detection is used.
The power equation would never apply if the signal
and the noise were correlated, either in-phase
adding or subtracting. But that will never be the
case with noise.

Therefore, simply enough, we can subtract the
measured noise power from any power-detected
result to get improved accuracy. Results of interest
are the channel-power, ACP, and carrier-power
measurements described in Part II. The equation
would be:

Care should be exercised that the measurement
setups for powerS+N and powerN are as similar 
as possible.

powerS = powerS+N  – powerN              [mW]

powerS+N = powerS  + powerN              [mW]
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Log scale ideal for CW measurements
If one were to “design” a scale (such as power,
voltage, log power, or an arbitrary polynomial)
to have response to signal-plus-noise that is
independent of small amounts of noise, one
could end up designing the log scale.

Consider a signal having unity amplitude and
arbitrary phase, as in Figure F. Consider noise
with an amplitude much less than unity, r.m.s.,
with random phase. Let us break the noise into
components that are in-phase and in-quadrature
with the signal. Both of these components will
have Gaussian PDFs, but for this simplified
explanation, we can consider them to have val-
ues of ±x, where x << 1.

The average response to the signal plus the
quadrature noise component is the response to
a signal of magnitude 

The average response to the signal plus in-phase
noise will be lower than the response to a signal
without noise if the chosen scale is compressive.
For example, let x be ±0.1 and the scale be loga-
rithmic. The response for x = +0.1 is log (1.1); 
for x = –0.1, log (0.9). The mean of these two 
is 0.0022, also expressible as log(0.9950). The 
mean response to the quadrature components is
log(sqrt2(1+(0.1)2)), or log(1.0050). Thus, the log
scale has an average deviation for in-phase noise
that is equal and opposite to the deviation for
quadrature noise. To first order, the log scale is
noise-immune. Thus, an analyzer that averages
(for example, by video filtering) the response of
a log amp to the sum of a CW signal and a noise
signal has no first-order dependence on the
noise signal.

√1+x2

Q

–jx

+x

–x

+jx

I

Figure F. Noise components can be projected into in-phase
and quadrature parts with respect to a signal of unity ampli-
tude and arbitrary phase.
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Figure G shows the average error due to noise
addition for signals measured on the log scale
and, for comparison, for signals measured on 
a power scale.

Figure G. CW signals measured on a logarithmic scale show very little effect due to the addition
of noise signals.
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ACP: See Adjacent Channel Power.

ACPR: Adjacent Channel Power Ratio. See
Adjacent-Channel Power; ACPR is always a ratio,
whereas ACP may be an absolute power.

Adjacent Channel Power: The power from a modulated
communications channel that leaks into an adja-
cent channel. This leakage is usually specified as 
a ratio to the power in the main channel, but is
sometimes an absolute power.

Averaging: A mathematical process to reduce the
variation in a measurement by summing the data
points from multiple measurements and dividing
by the number of points summed.

Burst: A signal that has been turned on and off.
Typically, the on time is long enough for many
communications bits to be transmitted, and the on/
off cycle time is short enough that the associated
delay is not distracting to telephone users.

Carrier Power: The average power in a burst carrier
during the time it is on.

CDMA: Code Division Multiple Access or a commu-
nications standard (such as cdmaOne (R)) that
uses CDMA. In CDMA modulation, data bits are
xored with a code sequence, increasing their band-
width. But multiple users can share a channel
when they use different codes, and a receiver can
separate them using those codes.

Channel Bandwidth: The bandwidth over which
power is measured. This is usually the bandwidth
in which almost all of the power of a signal is 
contained.

Channel Power: The power contained within a 
channel bandwidth.

Clipping: Limiting a signal such that it never
exceeds some threshold.

CW: Carrier Wave or Continuous Wave. A sinusoidal
signal without modulation.

DAC: Digital to Analog Converter.

Digital: Signals that can take on only a prescribed
list of values, such as 0 and 1.

Display detector: That circuit in a spectrum analyzer
that converts a continuous-time signal into sam-
pled data points for displaying. The bandwidth of
the continuous-time signal often exceeds the sam-
ple rate of the display, so display detectors imple-
ment rules, such as peak detection, for sampling.

Glossary of Terms
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Envelope Detector: The circuit that derives an instan-
taneous estimate of the magnitude (in volts) of the
IF (intermediate frequency) signal. The magnitude
is often called the envelope. 

Equivalent Noise Bandwidth: The width of an ideal 
filter with the same average gain to a white noise
signal as the described filter. The ideal filter has
the same gain as the maximum gain of the described
filter across the equivalent noise bandwidth, and
zero gain outside that bandwidth.

Gaussian and Gaussian PDF: A bell-shaped PDF which
is typical of complex random processes. It is char-
acterized by its mean (center) and sigma (width).

I and Q: In-phase and Quadrature parts of a com-
plex signal. I and Q, like x and y, are rectangular
coordinates; alternatively, a complex signal can be
described by its magnitude and phase, also knows
as polar coordinates.

Linear scale: The vertical display of a spectrum 
analyzer in which the y axis is linearly proportional
to the voltage envelope of the signal. 

NADC: North American Dual mode (or Digital)
Cellular. A communications system standard,
designed for North American use, characterized 
by TDMA digital modulation.

Near-noise Correction: The action of subtracting the
measured amount of instrumentation noise power
from the total system noise power to calculate that
part from the device under test.

Noise Bandwidth: See Equivalent Noise Bandwidth.

Noise Density: The amount of noise within a defined
bandwidth, usually normalized to 1 Hz.

Noise Marker: A feature of spectrum analyzers that
allows the user to read out the results in one
region of a trace based on the assumption that the
signal is noise-like. The marker reads out the noise
density that would cause the indicated level.

OQPSK: Offset Quadrature-Phase Shift Keying. 
A digital modulation technique in which symbols
(two bits) are represented by one of four phases.
The set of four phases is offset by 45 degrees on
alternate symbols.

PDC: Personal Digital Cellular (originally called
Japanese Digital Cellular). A cellular radio stan-
dard much like NADC, originally designed for 
use in Japan.

PDF: See Probability Density Function.
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Peak Detect: Measure the highest response within
an observation period.

PHS: Personal Handy-Phone. A communications
standard for cordless phones.

Power Detection: A measurement technique in which
the response is proportional to the power in the
signal, or proportional to the square of the voltage.

Power Spectral Density: The power within each unit
of frequency, usually normalized to 1 Hz.

Probability Density Function: A mathematical function
that describes the probability that a variable can
take on any particular x-axis value. The PDF is a
continuous version of a histogram.

Q: See I and Q.

Rayleigh: A well-known PDF which is zero at x=0
and approaches zero as x approaches infinity.

RBW filter: The resolution bandwidth filter of a
spectrum analyzer. This is the filter whose selectiv-
ity determines the analyzer’s ability to resolve
(indicate separately) closely spaced signals.

Reference Bandwidth: See Specified Bandwidth.

RF: Radio Frequency. Frequencies that are used for
radio communications.

Sigma: The symbol and name for standard deviation.

Sinc: A mathematical function. Sinc(x) = (sin(x))/x.

Specified Bandwidth: The channel bandwidth speci-
fied in a standard measurement technique.

Standard Deviation: A measure of the width of the
distribution of a random variable.

Symbol: A combination of bits (often two) that are
transmitted simultaneously.

Symbol Rate: The rate at which symbols are trans-
mitted.

Synchronously Tuned Filter: The filter alignment most
commonly used in analog spectrum analyzers. A
sync-tuned filter has all its poles in the same place.
It has an excellent tradeoff between selectivity and
time-domain performance (delay and step-response
settling).

TDMA: Time Division Multiple Access. A method 
of sharing a communications channel by assigning
separate time slots to individual users.

TETRA: Trans-European Trunked Radio. A commu-
nications system standard.
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Variance: A measure of the width of a distribution,
equal to the square of the standard deviation.

VBW Filter: The Video Bandwidth filter, a low-pass
filter that smoothes the output of the detected IF
signal, or the log of that detected signal.

Zero Span: A mode of a spectrum analyzer in which
the local oscillator does not sweep. Thus, the dis-
play represents amplitude versus time, instead of
amplitude versus frequency. This is sometimes
called fixed-tuned mode.
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