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Distributed Fields

_____________________________________________________________________________________

6.1 - Helmholtz’s Wave Equation

We are now poised to glimpse the excitement experienced by electromagneticians during the late 18th century—propagation of electromagnetic waves. Since this is our first view of electromagnetic waves, we will make several simplifying, though realistic, assumptions. We limit our considerations to lossless, homogeneous media for which (=0 and ((=((=0. Also, consider only isotropic media with identical characteristics in all directions. Let’s consider the material to be linear so that we can use superposition of solutions. Moreover, there will be no sources, i.e., (V=0 and J=0. This last limitation may seem foolish since there can be no fields if there are no sources. However, we can still make an analysis of the characteristic behavior of the system for a unit amplitude signal in much the same way as we examine the transfer function of a network for a unit input signal. Finally, we will consider a sinusoidal time dependence and use the phasor form of Maxwell’s equations.

The first step is to take the curl of Faraday’s law, Equation 5.6, which gives



[image: image158.wmf]R

AC

/R

DC

in dB

a/

d


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (6.1)

in phasor form. The LHS can be rewritten via a vector identity from Appendix A as
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where the ((E=(((D)/(=0 since (V=0. The RHS of Equation (6.1)

 can be simplified by substituting the phasor form of Equation 5.12 to give
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where we have used J=0. Substituting Equations (6.1)

, we obtain
(6.3)

 into Equation (6.2)

 and 
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a single equation involving the electric field intensity only. This form is called the Helmholtz equation or the Helmholtz wave equation, in honor of Heinrich Helmholtz and his pioneering work in establishing the existence of electromagnetic waves. We could have begun with the curl of Ampere’s law, Equation 5.12, to obtain an identical equation in H. The solution of Equation (6.4)

 will describe the behavior of both the electric and magnetic fields.

As is our practice, let’s solve a simplified version first to get an idea of what to expect. First assume that there is only an x-component of E so that we have only a scalar equation,
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This form of a field is very common and is known as a linearly polarized field since there is only one component of the electric field. As a further simplification, let’s assume that EX varies only in the z-direction (there’s no reason for this choice of direction, it just simplifies the work), i.e., (EX/(x=(EX/(y=0, so that 
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Using the operator solution method for DEQs, we assume the solution will be of the form e(pz to obtain
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with solutions of p=(j((((. This leads to the phasor domain solution of
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As in circuits, the time domain solution is obtained from the phasor domain solution by multiplying the phasor solution by ej(t and retaining only the real part of the result. This approach leads to the time domain solution of
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where 

 and 

 are complex constants that may depend upon (. The magnetic field satisfies the same PDE and has the same form. This result is not the solution to a particular electric field source and a particular configuration of material. Rather, it is the characteristic behavior of a time-harmonic, electromagnetic field in a homogeneous, isotropic region of space. This is very similar to the phasor response of a circuit that describes the characteristic steady-state response of a circuit. Now, let’s look at this solution carefully to see why it is called a wave equation.

As expected, the field exhibits sinusoidal time behavior. At a fixed position, say z=0, the field is composed of two sinusoids as
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To understand the spatial behavior, consider only the first term of Equation 
(6.10)

. The phase of the cosine term,  GOTOBUTTON ZEqnNum716791  \* MERGEFORMAT , which determines a unique point on the time-varying signal, depends upon both time and space. When 

 this is a peak of the cosine; when 

 it is a zero. For an observer to stay on a constant phase point of the cosine, the phase must remain constant with time, i.e., its time derivative is zero,
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This describes the variation of the z coordinate of the constant phase point with time. This expression is in terms of the rate of change of position of constant phase point with time, dz/dt, more commonly known as phase velocity and expressed as
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The constant phase point moves with a positive velocity, i.e., in the positive z-direction. This indicates that a constant phase point, more commonly called a phase front, moves or propagates through space with a velocity which is governed by the materials within which it moves. In a vacuum, we find that vP=1/[(4(x10-7)(8.854x10-12)]1/2(3x108 m/s. We know this as the speed of light in a vacuum and denote it as c. This is as expected since light is a high-frequency form of electromagnetic field. We can generalize this expression for materials that have a relative permeability or permittivity greater than one as
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The velocity of electromagnetic waves is less than the speed of light in a vacuum for materials where (R,(R>1.

The first term represents a wave propagating in the +z-direction and it is clear that the complex constant 

 represents is associated with a positively propagating wave. In a similar way, the second term has an equal velocity, directed in the -z-direction and representing a negatively propagating wave. The electric field can be composed of a positively- and a negatively- propagating wave. This decomposition of time varying fields into two oppositely directed waves is quite convenient and common.

Substituting Equation (6.9)

 we obtain
(6.12)

 into the first term of Equation 
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where ( is defined as 



[image: image16.wmf]P

,

v

w

b=wme=


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (6.15)

the propagation constant of the wave with units of radians/meter. For the positively-propagating wave of Equation (6.14)

, the phase can be expressed as
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where the time, td=z/vP, is a delay in the wave due to the finite phase velocity of the wave. The larger z, the longer the delay since the wave must travel farther.

With these definition, the phasor form of the field, Equation (6.8)

, becomes 
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The positively-propagating wave is described by e-j(z; the negative-going wave is described by e+j(z. The exponential term represents phase delays in the wave as they propagate. In general, a wave propagating in the positive coordinate direction will have a negative phase term while the wave propagating in the negative coordinate direction will have a positive sign on the phase term. The phase of both terms is becoming more negative with increasing distance from z=0. These forms are associated with the ej(t form of time dependence. Many physics texts use a time dependence of the form e-j(t so that they have the opposite signs on the phase terms.

As shown in Equations (6.17)

, the phase of the waves depends only upon the z-coordinate, i.e., the phase is the same at all points on the plane z=zo. Consequently, this wave is known as a plane wave. Furthermore, since the amplitude of the field is also constant on this planar surface it is known as a uniform plane wave. As we shall see shortly, this plane can be oriented in other Cartesian directions. In addition, there are cylindrical and spherical waves. Though it is impossible for plane waves to exist in nature, they closely approximate many actual situations. In addition, they exhibit the essential features of wave propagation and they are mathematically simpler to analyze. So, we will confine our analysis to plane waves.
(6.16)

 and 
Figure 6.1 represents Equation (6.14)

 at t=0 for the special case of (+=0; each arrow represents the magnitude of the electric field at the location at the base of the arrow. Sinusoids repeat
(6.14)

 at z=0 for the special case of (+=0. Figure 6.2 represents Equation 
[image: image19.png]
Figure 6.1 - Variations of the Positive-going Wave of Equation (6.14)

 with time for (+ = 0.

themselves for phase differences of ((=(2n( with n an integer. The change of phase due to time variations is expressed as 

. The time interval between equal phase points is called a period, T, of the signal and is shown in Figure 6.1. This leads to the well know expression of
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Figure 6.2 - Variations of the Positive-going Wave of Equation (6.14)

 with space for (+ = 0.

The change of phase due to spatial variations is expressed as 

. The spatial interval between equal phase points is called a wavelength, (, of the propagating wave and is shown in Figure 6.2. This leads to a comparable expression as
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The results for the negative-going portion of the electric field are identical to the temporal variations of Figure 6.1. As expected, the spatial variations similar to Figure 6.2 show propagation in the opposite direction.

[image: image154.png]An alternative view which shows the spatial and temporal behavior on the same graph is shown in Figure 6.3 where the two axis are time and space. Each instant of time corresponds to a unique spatial location for a particular phase front. The trajectory of all points for the data in Figures 6.1 and 6.2 is a straight line through the origin with a slope equal to (1/vP; the positively-propagating wave has a positive velocity, the negatively-propagating wave has a negative velocity. The trajectories for various other phases are shown, also. The intersections of a vertical line with 
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Figure 6.3 - Space-time Trajectories for various Phase fronts.

the positive trajectories provides the locus for a temporal waveshape at a particular spatial location comparable to Figure 6.1. The intersection of a horizontal line with the positively-sloped trajectories provides the locus for a spatial waveshape for a particular time comparable to Figure 6.2.

Example 6.1-1: The electric field of a commercial FM signal is approximated as an x-polarized plane wave propagating in the +z-direction. The field has an amplitude of 10 (V/m. The frequency of operation is 100 MHz. Obtain a mathematical description for the phasor and time domain forms of this signal. The propagation constant is calculated as (=((((=2(108/3x108 =2.09 rad/m. The vector direction is aX; the amplitude is 10-5 V/m. The phasor form of the field can be expressed as E=aX10-5e-j2.09z V/m. The time domain form is E(t)=Re{aX10-5e-j2.09zej(t}=10aXcos[6.28x108t(2.09z] (V/m.

Example 6.1-2: Calculate the wavelength of the wave of Example 6-4.1. (=2(/(=2(/2.09=3 m.

6.2 - TEM Waves and Impedance

The positively-propagating electric field is accompanied by a corresponding magnetic field which can be readily calculated from the phasor form of Faraday’s law, Table 5.2, as
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where (+=E+/H+=((/(=[(/(]1/2(+ has units of ohms and is defined as the wave impedance. There are no terminals present so there is not a measured impedance as in a circuit. However, since (+=EX+/HY+ has units of ohms (Volts per meter/Amperes per meter) it is called an impedance. More generally, wave impedance is defined as the ratio of an electric field intensity component to a magnetic field intensity component. In free space (=120(=377 (. In addition, the cross product, ExH, points in the direction the wave is propagating. For the negatively-propagating portion of the wave, we have
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with (-=(E-/H-=(((/(=([(/(]1/2. The minus sign is due to the magnetic field directed in the (y direction; there is no negative impedance in the material. Since we only consider isotropic materials in this textbook, the wave propagates the same in all directions. The only differences in sign are due to the mathematical representations.

The magnetic field is perpendicular to the electric field as shown by Equations (6.21)

. Moreover, they are both perpendicular to the direction of propagation. In this situation we have Transverse Electric and Magnetic (TEM) fields to the direction of propagation. This is typical of all electromagnetic waves—planar, cylindrical, and spherical—in space where there are no charges present.
(6.20)

 and 
As shown by Equations (6.21)

, the electric and magnetic fields have the same propagation constant and are in phase with each other. This is typical of all electromagnetic waves in lossless, charge-free regions as well.
(6.20)

 and 
The magnetic fields associated with TEM plane waves are linked to the corresponding electric fields as discussed earlier. For the positively-going wave, the electric field lines are oriented in the +x-direction while the magnetic field lines are in the +y-direction, see Figure 6.4. Of course the magnetic fields must close on themselves; in addition, in the absence of charge, the electric fields close upon themselves, too. Both sets of field lines must extend to infinity because the phase is constant over the entire plane. One-half wavelength away, the field lines are oppositely directed as we observed in Figure 6.2. At infinity these oppositely directed field lines join together to form a closed, albeit infinite, loop. The x-directed electric field lines enclose y-directed magnetic field lines that in turn enclose additional electric field lines that in turn enclose additional magnetic field lines and so on ad infinitum. This structure of interlinked, closed field lines repeats itself every wavelength. In addition, the field lines are moving with velocity vP in the +z-direction. Of course, there is a similar structure of field lines associated with the negatively-propagating wave as well.

[image: image156.png]Figure 6.4 - Interlinked Fields of Plane Wave Propagating in +z direction.

Let’s review what we know about linearly-polarized plane waves in lossless, homogeneous, isotropic, linear, source-free regions. The electric and magnetic fields are perpendicular to each other and they are perpendicular or transverse to the direction of propagation. Their cross product, ExH, points in the direction of propagation. Constant phase fronts of these fields occupy planes and propagate together with a constant velocity which is determined by the material in which they propagate as (1/[((]1/2; the sign is determined by the direction of propagation. The ratio of the field phasors is constant and determined by the material properties according to EX+/HY+=(+=[(/(]1/2 and EX(/HY(=((=([(/(]1/2. The wave repeats itself every (=vP/f in the direction of propagation.

Example 6.2-1: Calculate the accompanying phasor form of the magnetic field intensity for the signal of Example 6.1-1. The tried and true method is to use Faraday’s law which gives H=((E/((j(() =(j2.09(10(5)aYe(j2.09z/((j2(108(4(x10(7) =aY(.0265)e(j2.09z (A/m. An alternative method is to use the properties of plane waves. The direction of H must be such that ExH points in the aZ direction; this direction must be aY. The magnetic field in phasor form is calculated as the phasor electric field divided by (+; HY=10(5/377=0.0265 (A/m. The phase variation will be the same as the electric field. This leads to H=aY(0.0265)e(j2.09z (A/m as we found before.

Example 6.2-2: Calculate the phasor magnetic field associated with a signal like that of Example 6.1-1 but propagating in the (z direction. The magnetic field will have the same magnitude, but will have an opposite sign since ExH must point in the (z-direction. The phase term will be opposite as well due to the opposite direction of propagation. Consequently, the magnetic field intensity is given by H=(aY(.0265)ej2.09z A/m.

6.3 - Sources of TEM Waves

[image: image157.bmp]So far we have assumed that the plane waves exist and are propagating in a source-free region. But, how can waves be initiated? Consider an infinite current sheet located in the z=0 plane on which a sinusoidal surface current has a phasor form K=(KoaX , see Figure 6.5.

Figure 6.5 - A Current Sheet as the Source of Electromagnetic Waves.

Due to symmetry, we expect the magnetic fields on opposite sides of the current sheet to be equal, but oppositely directed. Ampere’s law (or boundary conditions) allows us to calculate these values as we did in Section 3.15 to obtain
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We have seen that two waves are possible—positively-propagating and negatively-propagating. But the physical realities of the problem suggest that the waves will only travel away from the source which means
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Ampere’s law is always valid for calculating the electric field from a known magnetic field. But, for the case of plane waves, we can use their properties that we identified in the last section to calculate the electric field. E will have the same exponential form as H and it will be polarized so that ExH is in the +z direction for z>0 and the (z direction for z<0. The phasor value of E is calculated by multiplying the phasor value of H by (. From these steps we obtain
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Notice that it takes an infinite plane of current to generate the plane wave. Nothing of lesser dimensions can do so, though good approximations in limited regions can be achieved with finite current distributions. Moreover, a true plane wave carries an infinite amount of power; to establish it would take all of the power in the universe! Obviously, this is impractical. Since plane waves are mathematically simple and display the fundamental principles of wave propagation, they serve a useful purpose as model from which we can learn and against which we can compare other forms of waves.

6.4 - Waves in Arbitrary Directions

Our wave calculations have been relatively simple when the direction of propagation coincides with a coordinate axis. But how can we handle waves in other directions, such as the wave moving at an angle ( with respect to the z-axis as shown in Figure 6.6. The direction of the wave propagation is denoted as z’. Since plane waves are TEM, the electric and magnetic fields must lie in the plane perpendicular to z’ denoted by AA’. Any electric field in this plane can be composed of a linear combination of E( and E(( (perpendicular and parallel to the plane of incidence formed by the direction of propagation and the normal to the z=0 plane) with the corresponding magnetic


Figure 6.6 - A Plane Wave in an Arbitrary Direction.

fields oriented such that ExH is in the direction of propagation. For convenience, let’s define the electric field as E( totally in the aY direction. The corresponding magnetic field has an amplitude given by E(/(, lies in the x-z plane, and is directed toward the lower right-hand corner of the page, or the -aX’ direction. The wave nature is exhibited by the imaginary term in the exponential as e-j(z’. Though all these details are correct, it is often more useful to represent the fields in the x-y-z coordinates instead of the primed coordinates.

It is clear that z’ has both x and z components; their relative amplitudes depending upon the angle (. The components can be determined from the geometry of the situation as
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a simple coordinate transformation. This enables us to write the electric field as
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This form discloses that the wave is represented as propagating in two directions—partially in the z-direction, partially in the x-direction. The corresponding magnetic field is given by
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where the properties of TEM plane waves have been used to compute the components.

In a similar way the parallel components can be determined as
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and
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The propagation at an angle with respect to the z-axis can be generalized to an arbitrary direction. For the cases shown in Figure 6.6, we generalize the scalar propagation constant to a vector, (, pointing in the direction of propagation with a magnitude of ((((. Then, we can regroup the exponential terms as
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where (Z and (X are the z and x components of the ( vector. Using this case as an example, we can generalize further to propagation in three dimensions where ( is expressed as
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(I=ai(a( is the angle between the ith unit vector and the propagation vector (. When the dot product of the propagation vector, (, and the position vector, r=xaX+yaY+zaZ, is formed the result is
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This is the form of the exponent in the phase term. For the geometry of Figure 6.6 (X=(/2((, (Y=(/2, and (Z=(, so that (X=sin(, (Y=0, and (Z=cos(. This method enables representation of waves propagating in any direction. As with a wave propagating along the z-axis, the sign of each component determines the direction along that axis—a negative sign indicates the wave is moving in the positive axis direction, a positive sign indicates motion in the negative axis direction. The general representation of a wave moving in the direction ( is given as
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In addition, since this is a TEM plane wave, the electric and magnetic fields must be perpendicular to the direction of propagation and to each other so that
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Finally, the cross product of the electric and magnetic fields must point in the direction of propagation as



[image: image38.wmf]EH

.

b

´=

aaa


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (6.35)

With these relationships we can represent any TEM wave propagating in any direction. This representation is useful when the arbitrary plane waves are impingent on planar boundaries.

Example 6.4-1: A TEM plane wave is moving from the origin into the x,y,z > 0 quadrant with (X=(Y=(Z. The frequency is 300 MHz and the material is air. The electric field has EX=EY=1/(3 V/m. Obtain expressions for the electric and magnetic fields associated with this wave. The propagation constant has a magnitude given by (=((((=2( so that the propagation vector is given as (=2((aX+aY+aZ)/(3 and the exponential form becomes 
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. The vector portion of the electric field is expressed as Eo=(aX+aY+EZaZ)/(3. Since the electric field and the propagation vector must be perpendicular, we find that Eo((=[(aX+aY+EZaZ)/(3]([2((aX+aY+aZ)/(3] =(2(/3)(1+1+EZ)=0. Therefore EZ=(2 and the phasor form of the electric field is 

V/m. The magnetic field has a magnitude |H|=|E|/(=(2/377=3.75 mA/m; the direction is governed by aE(aH=a( which is equivalent to aH=a((aE =[(aX+aY+aZ)/(3]([(aX+aY(2aZ)/(6=((aX+aY)/(2. These results lead to 

mA/m. Alternatively, we can calculate H from the differential form of Ampere’s law as H=((E/(-j(() to obtain identical results.

6.5 - Waves in Lossy Material

We have excluded most materials and a number of significant effects by limiting our study to lossless materials only. For example, Instead of analyzing the effects of losses in copper wires, we consider them to be PECs with insignificant effects on most solutions. However, the effects of losses become more pronounced for high frequency signals. We must consider the effects of losses on wave propagation.

This is easily accomplished by allowing ((0. Following the methods of Section 6.1, first we take the curl of Faraday’s law to obtain
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where we have used J=(E and D=(E. For a linear, x-polarized E, this becomes
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where ( is known as the complex propagation constant. Solutions to this equation are of the form e((z. From our previous solutions for positively-going waves of the form e(j(t we will “guess” that the e((z form will represent waves in the +z-direction. Consequently, the positive-going solution becomes
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where
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in its most general form. Numeric results for this form are easily obtained, but we must make simplifications to make it some general observations. The condition of (/((<<1 is commonly called the low-loss case; such materials are known as good dielectrics. Lossless materials for which (=0 are often called perfect dielectrics. (/((>>1 is the high-loss (or just lossy) case; such a material is better known as a good-conductor. Of course when (=( we call the material a PEC.

For the low-loss case, (/((<<1, the right-most term of Equation (6.39)

 is approximated by the binomial theorem as [1+(/j((]1/2(1+(/j2((=1(j(/2((. This leads to the electric field solution of
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where (=Re(() and (=Im(() and
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As in the lossless case, the (j(z term in the exponential provides the phase shift with distance and gives the field its wave nature. This solution form verifies our intuition that small losses should not alter the wave nature of the field. The ((z term in the exponential is purely real and doesn’t contribute to the wave nature of the field at all. Instead, it causes the wave to decrease in amplitude as it propagates. ( is known as the attenuation constant and has units of nepers/meter (Np/m). Nepers is a dimensionless unit (just as radians is dimensionless) introduced by Bell Laboratory employees in the 1930s in honor of the Swiss mathematician, Napier, and his work with natural logarithms. The amplitude of the field is reduced as it propagates because part of its power is absorbed by the lossy material. In fact, this loss of power by the wave heats the material. Note that as the conductivity of the medium approaches zero and the material becomes lossless, the wave propagates unattenuated as expected.

In the high-loss case, (/((>>1, and the right-most term of Equation (6.39)

 can be approximated as [1+(/j((]1/2([(/j((]1/2. This leads to the complex propagation constant of the form
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For this case the attenuation and propagation constants are equal and they increase with increasing frequency. Since this occurs in good conductors, i.e. copper wires, it is of great importance; we will examine this phenomenon later.

The wave impedance is affected by losses as well. The magnetic field accompanying the electric field in Equation (6.38)

 can be calculated via Faraday’s law as
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The general form of the wave impedance for positively-propagating waves in materials with loss is expressed as
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For low loss materials the wave impedance becomes
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The last term is often negligible and the wave impedance is virtually unaltered from the lossless case. In the high loss case the wave impedance becomes
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The wave impedance for the high-loss case shows that the magnetic field has a (45o phase shift relative to the electric field. This is due to the stored magnetic energy associated with current flow. Moreover the wave impedance increases with increasing frequency. This is especially important when we consider fields in good conductors such as copper.

The details for wave propagation in three types of materials—perfect dielectrics, low-loss dielectrics, and good conductors—are shown in Table 6.3

General

Form







Perfect

Dielectric

( = 0







Low-Loss

Dielectric

(/(( << 1







Good

Conductor

(/(( >> 1







Table 6.3 - Plane Wave Parameters.

We have considered waves propagating in the +z-direction only. The behavior will be the same for propagation in the opposite direction (or in other directions); attenuation and phase shift will occur as the wave propagates. The signs of these two terms will be opposite for opposite direction of propagation.

Even metals cease to act as good conductors at high enough frequencies for which (/((<<1. Consider copper which has (=5.8x107 S/m and (=(o=8.854x10(12 F/m. At a frequency of (1x1018 Hz the copper ceases to act as a good conductor. This is somewhat above the frequency of light. At these frequencies electromagnetic waves are no longer reflected as in a mirror.

Losses can also occur due to for materials with complex permittivity or permeability. As can be seen from Equation 5.58, the complex propagation constant, (, is purely imaginary for the lossless case when ( and ( are real and (=0. On the other hand, ( becomes complex and the material is lossy when ( or ( are complex. This is usually due to some molecular, atomic, or electronic resonance that causes the material to absorb power such as the heating of food in a microwave oven. But, we will have to defer discussion of this behavior till a later time.

Example 6.5-1: Calculate the propagation constant and wave impedance for a plane wave in material with (o, (R=8, and (=10-5 S/m for operation 1 MHz. From Table 6.3 the propagation constant is given by 
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 The wave impedance is calculated as 
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6.6 - Good Conductors & Skin Depth

The behavior of time-varying electromagnetic fields in the vicinity of good conductors is of importance to all

[image: image53.png]
Figure 6.7 - Plane Wave Propagation into a Good Conductor.

electrical engineers. Contrary to our common assumption that copper wires can be treated as PECs, in this section they are better classified as good conductors. Consider a wave propagating in the +z direction into an infinite half-plane of good conductor as shown in Figure 6.7. A linearly polarized electric field is expressed as
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where Eo is the amplitude of the field at the surface of the good conductor and the good conductor approximation for the propagation constant of Table 6.3 is used. The first exponential term represents attenuation with propagation; the second, phase shift which gives the field a wave nature. The rate of attenuation is frequently described in the same manner by which the duration of transient signals is described—at what depth has the field strength decreased to e(1 of its value at the surface? The depth at which this occurs is defined as
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and is called the skin depth. The field penetrates the conductor to infinity, but for values of z>>( it has a negligibly small value. The greater the frequency, the less the skin depth. At one wavelength of penetration z=2( and the amplitude of the field has been reduced to a value of e(2((0.002 its amplitude at the conductor surface. For copper Equation (6.48)

 becomes


[image: image56.wmf]CU

76)

110.067

.

f

f(4x10)(5.8x10

f

-

d===

pms

pp


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (6.49)

The skin depth of copper is given a function of frequency in Table 6.4.

Frequency

f (Hz)
100
10 k
100 M
10 G

Skin Depth

( (m)
.0067
6.7x10-4
6.7x10-6
6.7x10-7

Table 6.4 - Skin Depth for Copper at several Frequencies.

Equation (6.47)

 can be rewritten in terms of ( as
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where (=(=1/(.

The current density and the magnetic field exhibit the same attenuation as well since they are proportional to the electric field. All three fields have significant values only near the surface of the good conductor. The wave impedance is expressed in terms of ( as
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The wave impedance is complex with positive real and imaginary parts indicating that the current flow in the conductor has both a resistive and an inductive component. The resistive part, 1/((, is often called wave resistance or resistance/square and has units of ohms. The H field lags the E field by (/4 due to the inductive component of the wave impedance.

The mathematics clearly indicates a high attenuation of the wave as it propagates into the good conductor, but what is the physical explanation of this effect? The time-varying electric field establishes a current. aligned with the electric field, which in turn establishes a perpendicular magnetic field that has a phase delay of (/2. This time-varying magnetic field induces an electric field which is perpendicular and phase delayed by (/2 from the magnetic field. This induced electric field is aligned with but of opposite sign to the original electric field. Hence, the total electric field is reduced. The induced electric field sets up an additional current that in turn establishes a further magnetic field and so on ad infinitum. This process is intitiated by the original transient wave when it begins propagating into the conductive region. The steady state result is an attenuated wave propagating into the conducting half-plane. The electromagnetic field is “shielded” from the interior of the conducting material by the currents that the fields establish. This effect is present in all materials for which the conductivity is non-zero, however, the results are significant in good conductors only.

PECs are characterized by (=( for which ((0. Therefore, no time-varying electromagnetic fields penetrate the material. The current also flows in a vanishingly thin layer on the surface of the PEC. In this case, it is described as a surface current density rather than a volume current density. Moreover, since the magnetic field within the PEC is zero, it satisfies the boundary condition 
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The time-varying magnetic field at the surface of a PEC establishes a surface current on the surface equal in magnitude to the magnetic field intensity adjacent to the surface.

The phenomenon of skin depth has a significant effect on high-frequency circuits which is the subject of the next section.

Example 6.6-1: The electric field propagating into a semi-infinite block of copper is expressed by 

. Obtain an expression for the magnetic field. From Faraday’s law or from the properties of TEM plane waves the magnetic field is given by 

.

6.7 - Skin Effect in Circuits
The tendency for current to flow only near the surface of conductors greatly affects high-frequency circuit performance. The effects for a planar surface as discussed in the previous section must be modified somewhat for cylindrical geometry. Rather than solve the wave equation in cylindrical coordinates, let’s use an iterative method to obtain the fields of a long cylindrical wire. We will assume a uniform current distribution in the wire as we had for DC currents; this is valid when the fields are not changing. But for time-varying fields, Maxwell’s equations require that additional “correction” terms be added to describe time-varying currents.

Consider a cylindrical conductor oriented along the z-axis as shown in Figure 6.8. The wire has a radius of (=a meters and a conductivity of ( S/m. The first approximation of the current is uniform and directed along the z-axis (shown as the darkened vectors in Figure 6.8) as

Figure 6.8 - Time-varying Fields in a

Cylindrical Conductor.
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The resulting angularly-symmetric magnetic field intensity can be calculated by
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which gives
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The induced electric field due to this changing magnetic field is calculated from Faraday’s law as
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By noting that there is no magnetic field at the origin and, hence, no induced electric field there either, we can integrate the second and fourth terms to obtain this correction of the electric field as
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This leads to the first correction term for the current density as
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The unusual form of Equation (6.57)

 is applied to JDC1, a second correction term to the current density is obtained as
(6.54)

 through (6.58)

 will prove useful later. When the process of Equations 
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The process is continued on to give the nth correction term as
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where z=((j2)1/2((/(). The total current is the sum of the original approximation and all the correction terms as
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This form may not be familiar, but it is well-known to mathematicians as the series form of the zeroth order Bessel function of the first kind, Jo(z), as
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Note that the mathematicians’ symbol for the Bessel function, J0(z), should not be confused with current densities JZ and JDC. This is the exact form for the current density in a cylindrical conducting wire; the electric and magnetic fields have the same form. Though Bessel function calculations are readily available in MAPLE, MATLAB, and MATHCAD, they cannot be performed as easily in analytic form as the exponential calculations of the field for planar surfaces of Equation (6.50)

. Since skin depths are so small for frequencies above the audio range, as shown in Table 6.4, even wires as small as a millimeter are large compared to skin depth. When the wire diameter is much larger than skin depth, i.e., a/(>>1, constant radii at the surface of the wire are so large compared to a skin depth that the geometry can be approximated as planar. This suggests that the effects of skin depth in cylindrical wires can be accurately approximated by the simpler, plane-wave form. A comparison of these two methods of calculation is shown in Figure 6.9 for a unit amplitude current density at the surface of a copper wire. Exact calculations with Bessel function are shown for a/(=0,1,2,5, and 10; approximate plane wave calculations are shown for a/(=2,5, and 10. This shows that nearly identical results are obtained for a/((10. The plane wave approximation gives accurate results for 2 MHz and higher with wires of 1 mm diameter. For larger wires


[image: image70.wmf]
Figure 6.9 - Current Distribution in a Cylindrical Copper Wire.

accurate results are obtained for even lower frequencies. We will use this approximation throughout this text. Since the current only “penetrates” a small depth into the wire, our previous calculations of resistance that assumed uniform current density are not valid for AC operations. An alternate approach is to calculate the resistance/square surface area and combine series and parallel squares to obtain the total resistance. To simplify the calculations, we will use the planar model, see Figure 6.10.

Figure 6.10 - Resistance/square of Planar Surface.

At the surface, voltage drop across the square is calculated by the usual line integral to give (V(|ES|(l= |JS|(l/( in the direction of the electric field. ES and JS are the electric field and current density at the surface. Though the greatest contribution to the total current is from the current density near the surface, all of the current that flows through the block of conductive material is included. The total current is obtained by the usual surface integral calculation 
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The impedance of the square, the ratio of voltage drop to current flow, is given by
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The square has loss associated with the conductivity represented by the real part or the impedance. In addition, it has an inductive component called internal inductance (see Example 3.15-3) associated with the stored magnetic energy within the conductor due to current flow in it. The impedance/square represents a circuit interpretation of the fields in the conductor. It is identical to the wave impedance of Equation (6.51)

, a wave interpretation of the fields. Though both the field and the circuit approaches give the same results, the circuit interpretation is more easily used for current flow in wires. Furthermore, the internal inductance is usually negligibly small compared to magnetic energy stored outside the conductor, the external inductance, and is neglected.

The calculation of the resistance of a wire to AC current flow is simplified by another consideration. Consider the resistance of a square of material of conductivity ( and thickness ( with uniform current density, see Figure 6.11. The length and width of the

Figure 6.11 - Resistance of a Square Conductor with uniformly distributed Current.

square are (l. The resistance of the square is given by
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This is identical to the real part of the wave impedance and to the exact value of the resistance/square. This suggests an alternative interpretation as a resistor in which all of the current density is uniformly distributed throughout the skin depth with no current flow within the rest of the conductor. The real part of the total resistance (due to the real part of the current) flow is the same in both cases. Figure 6.12 shows the relationship between the amplitudes of the actual and the uniform model for the current density.

[image: image74.png]
Figure 6.12 - Amplitude of Actual Current Density and its Uniformly Distributed Equivalent.

This provides another view of the reason for the name of skin depth attached to the thickness of the conductor in which the current flows. The AC resistance of a conductor of any cross-section can be calculated using this concept as long as the skin depth is much less than the smallest cross-sectional dimension of the conductor.

Consider the conductor shown in Figure 6.13a; the length is L, the perimeter is P, and the conductivity is (. The cross-sectional area can be calculated exactly, but since ( is so small, an accurate approximation is obtained by “unwrapping” the skin depth of material from the surface into a flat, sheet of thickness ( as shown in Figure 6.13b. From this model the resistance can be readily calculated as
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The resistance can be calculated analytically using the length and perimeter or graphically by dividing the surface of the conductor into series and parallel squares.

Figure 6.13 - Two views of Skin Depth.

It is obvious that the greater the perimeter, the smaller the resistance due to an increased cross-sectional area for current flow. This strategy is most simply implemented by making the conductor as a thin sheet, but it is not as easily manufactured or as conveniently used as cylindrical wires. Unfortunately, a cylindrical wire minimizes the perimeter for a given cross sectional area. An alternative strategy is to use stranded wire as shown in Figure 6.14a where N smaller strands of cylindrical wires are twisted together to form a conductor. When the (/a<<1 for each of the strands, the effective perimeter of the stranded wire is N times the circumference of each individual wire. An alternative view of a stranded wire is shown in Figure 6.14b.



Figure 6.14 - Stranded Wires.

Another strategy to reduce the resistance of a copper wire is to plate it with a thin layer of silver; the greater conductivity of silver will reduce the resistance. The layer of silver need be only about one skin depth thick so the added cost of the silver is kept to a minimum.

It is obvious that the smaller the diameter the wire, the greater the resistance. In coaxial transmission lines, the inner conductor contributes most to the resistance. Stranding and silver plating of the center conductor (but not the outer) is often effective enough in reducing the resistance.

Not only is the AC resistance of cylindrical copper wires greater than the DC resistance, it also increases with increasing frequency as shown by Equation (6.65)

 as
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Perhaps more informative is a plot of RAC/RDC with respect to frequency. Frequencies for which a/(<<1, the ratio is nearly unity as the skin effect has little effect. For frequencies for which a/(>>1, the ratio increases with (f as
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The numeric results for the exact resistances shown in Figure 6.15 indicate these two asymptotic responses. Note that since the ratio varies as the (f the slope of the high-frequency asymptote is 10 dB/decade.

Figure 6.15 - RAC/RDC vs. Frequency.

Example 6.7-1: Calculate the skin depth for silicon steel which has ((0.005 H/m and ((107 S/m for operation at 60 Hz. From Equation 
(6.48)

 skin depth is calculated as  GOTOBUTTON ZEqnNum600863  \* MERGEFORMAT . The conductivity is not nearly as large as that of copper, but the very large permeability causes the skin depth to be very small.

Example 6.7-2: A copper wire of 1 mm diameter is to be silver plated to reduce its resistance/meter for operation at 1 MHz. What thickness of silver should be used? What is the resistance/meter with this layer? The conductivity of silver is 6.17x107 S/m. Since we approximate the current flow as confined to a skin depth. This seems an appropriate thickness and is calculated from Equation 
(6.48)

 as  GOTOBUTTON ZEqnNum478830  \* MERGEFORMAT . This leads to a resistance/meter (calculated from Equation 
(6.67)

) of  GOTOBUTTON ZEqnNum926170  \* MERGEFORMAT  A copper wire without the silver plating would have a resistance/meter of 
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 This slight improvement in resistance/meter significantly reduces the attenuation properties of the wire as part of a transmission line.

Example 6.7-3: Calculate the resistance/meter of the copper wire of Example 6.7-2 which uses a seven stranded wire of the same diameter as the single wire. Each strand will have a diameter of approximately 1/3 the diameter of the solid wire. Therefore the resistance/meter of each strand will be 81.9(3)=0.246 (. But there are seven strands in parallel so the overall resistance of the stranded wire is 35.1 m(/m compared to 80.5 m(/m for the single wire.

6.8 - Power Flow and Poynting’s Vector

Propagating electromagnetic waves emanate from time-varying sources and move through materials. These moving waves carry energy from sources to distant points, such as the electromagnetic energy from the sun reaching the earth or the power of a radio transmitter reaching an listener. The mechanism for this power flow is described in this section.

Working in the time domain, we take the dot product of E with the differential form of Ampere’s law as
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and the dot product of H with the differential form of Faraday’s law as
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The difference between these two equations gives
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The LHS can be simplified with the vector identity
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The two terms on the RHS with derivatives can be simplified by
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and
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where we and wm are the electric and magnetic energy density, respectively. In addition, the current density term can be divided into two parts, an active component due to a source current density, JSOURCE, and a passive component due to conduction current, (E. With these modifications, Equation (6.71)

 becomes
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Integration of this equation throughout an arbitrary volume gives
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where the divergence theorem was used on the LHS to convert the volume integral to a closed surface integral. A closer look at the surface integral form of the LHS of Equation (6.76)

 reveals that the vector quantity E(H has units of (V/m)(A/m)=w/m2 which represents a power flux density. Moreover, it points perpendicularly to both E and H, the direction of wave propagation as we have discovered earlier. Therefore, the closed integral over the surface S can be interpreted as the power out of the region V. Since it is represented in terms of the fields E and H this power must be power contained within the fields. The power flux density has been named Poynting’s vector in honor of English physicist John H. Poynting who brought this remarkable property to light as
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Nothing has been added to Maxwell’s equations; this is an inherent property of electromagnetic fields. In keeping with properties of the divergence of a vector field, the divergence of Poynting’s vector, ((P, is zero everywhere except where there are volume distributed sources. (The integral of this form is always valid, but sources of a point, line, or surface form are mathematically undefined for the divergence operator without some special mathematical definitions.) The power emanating from the region V is expressed as
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The first term in the volume integral of the RHS of Equation (6.76)

, (E(JSOURCE, is similar to the expression for power dissipation in a resistor,
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where E(J is the volume power density within the conductive material. This represents the power dissipated within a resistor. The negative of this quantity represents the volume power density supplied at a point. For a resistor, the power supplied is negative as it only dissipates power. On the other hand, in a source the current flow is opposite to the direction of the electric field and it supplies power. Consequently, (E(JSOURCE represents the power density supplied by any sources within the region; the integral represents the total power supplied by sources within the region as
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The second term within the volume integral, (|E|2, can be interpreted from Equation 1.170 as well. It is the power density dissipated at a point due to conduction losses in the material. When integrated throughout the volume it represents the total ohmic loss, i.e., power dissipation, within the volume V,
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The third term within the volume integral on the RHS of Equation (6.76)

, ((we+wm)/(t, is due to the time rate of change of energy density at each point with units of power. This represents the rate at which energy is being added to the energy density stored within the fields. (we/(t represents the rate at which the electric energy density storage is changing; (wm/(t represents the magnetic energy density counterpart. The minus sign describes the negative of energy density changes. The integral represents the summation of these energy changes throughout the entire region V.
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Putting together the interpretations provided by Equations (6.81)

, we obtain
(6.80)

, and (6.79)

, (6.78)

, 
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The electromagnetic power emanating from within a region is equal to the power generated within the region minus the power dissipated within the region and the rate of stored energy increase within the region. This is nothing but a conservation of energy statement that we could obtain by good understanding of the physical processes and sound reasoning. But the good news is that this property is inherent in Maxwell’s equations, another strong argument that these are a correct representation of electromagnetic fields in nature!

The LHS of Equation (6.83)

 describes the power flow across a closed surface in terms of those power generation and absorption mechanisms within the enclosed region. Poynting’s vector describes a power flux density that correctly describes the power crossing a closed surface. This is such a plausible representation for the flow of power that it is tempting to apply Poynting’s vector to calculate the power flow through any surface, closed or not. For example, Poynting’s vector could be integrated over the surface of an imaginary “window pane” in space to find the power flow through it. Though without a rigorous mathematical basis for non-closed surfaces, such calculations are routinely made and usually yield correct results.

The results of Equation (6.83)

 are valid for all time-varying fields. It is appropriate for DC fields that are related to each other, e.g., the electric and magnetic fields associated with the voltage drop and current flow in a resistor. However, DC electric and magnetic fields that exist independently of each other do not emanate power from a closed region, e.g., the combined fields of a permanent magnet and a charged capacitor.

Often we are more interested in time-averaged instead of instantaneous power flow. The usual rules from circuits still apply so that the time-averaged Poynting’s vector is expressed as
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For sinusoidal signals that are in-phase the average power is usually the peak instantaneous power divided by 2. In general, we could compute the time-average. But, it is common practice to put Equation (6.83)

 in phasor form so that we can use standard phasor calculation of average power. Recall that in circuits the phasor form of average power is PAVE=Re(VI*)/2 which suggests that the average Poynting’s vector is defined as
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Since the other terms in Equation (6.70)

 where H* is used in the phasor form. This requires that the conjugate of Ampere’s law is used as well. From these steps we obtain
(6.69)

 and (6.83)

 are all vector dot products, they can be expressed in a similar fashion. The phasor form can be developed as we did with the time-domain form starting with Equations 
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as the phasor form of Equation (6.75)

. Integrating throughout volume V and using the divergence theorem, we obtain
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as the phasor domain counterpart of Equation (6.83)

. Phasor power has both a real and imaginary part; the real part is related to the time averaged power; the imaginary part is related to the reactive power. The LHS is the complex power emanating from the surface S. Similarly, the RHS is the complex power generated, dissipated, and stored within the region V. The additionall factor of 1/2 is necessary since peak values have been used for the phasors; if RMS values are used it is unnecessary. While the first two terms on the RHS are easily understood, consider the last term. It represents the rate of change of stored energy (recall that j( in the phasor domain is equivalent to the time derivative in the time domain). For real values of ( and (, it is imaginary and represents time-averaged reactive power. For cases where the stored energies are equal, there is no reactive power. This is the distributed circuit equivalent of a resonant circuit. In some situations this happens only at discrete frequencies; in other cases such as a plane wave, it is valid for all frequencies.

The average power generated or dissipated is often measurable. By using Poynting’s vector we can readily compare the theoretical values with measured values, a very useful connection.

Example 6.8-1: Calculate the complex Poynting’s vector for the plane wave of Example 6.1-1. Poynting’s vector is readily calculated as P=E(H*/2 =(aX10(5e(j2.09z)((aY2.65x10-8e-j2.09z)*/2=aZ1.33x10(13 w/m2. Since the plane wave doesn’t change in amplitude, Poynting’s vector is constant. Moreover, there is only real, average power in the wave, no reactive power.

Example 6.8-2: The electric field far from an omni-directional antenna system in lossless, free space is expressed as E=a(200e(jkr/r V/m. Calculate the power of the transmitter. The power can be expressed in terms of the complex Poynting’s vector for which the magnetic field is required. H =a(200e(jkr/377r A/m which gives P=ExH*/2 =[a(200e=jkr/r]([a(200e=jkr/377r]*/2=ar(200)2/)754r)2 w/m2. The total power emanating from a sphere of radius r is given by 
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Example 6.8-3: Calculate both sides of Equation 
(6.87)

 for a plane wave propagating in the lossy material of Example 6.5-1 through a cube with surfaces located at x,y,z=0 and 1. Assume that the wave is linearly polarized in the x-direction with a phasor amplitude of 1 in the z=0 plane and that it is propagating in the z-direction. From Example 6.5-1, the propagation constant is (=0.00067+j0.059 m-1 and the wave impedance is (=133.2+j1.5 (. From this data the electric field is given as  GOTOBUTTON ZEqnNum938873  \* MERGEFORMAT  V/m. The associated magnetic field is 
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 A/m. These combine to give the complex Poynting’s vector as 
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Since Poynting’s vector is only in the z-direction, there is no contribution to the power surface integral on the constant x and y surfaces. The power out of the cube is given by 
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 The average power out of the cube is (5 (w; power flows in z=0 surface, but less flows out of z=1 surface due to the losses within the cube. There is a negative reactive power flow out of the volume. There are no sources within the volume so the first term on the RHS is zero. The conduction losses give the power dissipated in the cube as 
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 The power dissipated within the volume is equal to the power lost by the wave. The reactive power within the volume is given by 
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Example 6.8-4: Calculate the DC power flow into a long cylindrical resistor of radius (=a via Poynting’s vector and with circuit concepts and compare the two results. (Of course, you suspect that the two results should be equal, and we will find that they are.) A uniform current density and electric field exist within the resistor; for a total current I within the resistor. The current density and electric fields are given by 

 and produce a magnetic field within the resistor given by 

. The power flowing into the resistor can be calculated by the integration of Poynting’s vector over the surface of the resistor. Poynting’s vector at the cylindrical surface of the resistor is calculated as 
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 directed in the -( direction into the resistor. Note that since these are DC fields, they are real and, hence, H*=H. The total power is calculated as 
[image: image107.wmf] where the negative sign indicates that the power is into rather than out of the surface of the resistor. The Poynting’s vector does not cross the end surfaces so there is no power flow there. An alternative field calculation is the calculation of the power dissipated within the resistor as given by the second term on the RHS of Equation 5-104 as 

 Of course the resistance calculations lead to PAVE=I2R as did each of the other two calculations. This is a rather impressive demonstration that the field representations are valid for calculating power dissipated.

6.9 - Waves Incident on Boundaries

In the discussion so far, the waves have been propagating in unbounded space; there have been no boundaries between different materials. Since the majority of actual waves are incident upon boundaries we must understand wave behavior there. Throughout this section, the media will be assumed to be lossless to simplify the calculations, but the results in lossy media are similar. To begin, consider a linearly-polarized, plane wave propagating in the z-direction to be normally incident upon a material boundary located in the z = 0 plane as shown in Figure 6.16.


Figure 6.16 - Plane wave normally incident upon a planar material Boundary.

The electric field of the incident wave is expressed as
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and the corresponding magnetic field as
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The subscripted (1 and (1 denote the values in region 1, i.e., z<0. Our life experiences with light waves suggest that a wave may be reflected from the material interface and propagates toward the left in region 1. For linear materials, the reflected wave will be proportional to the incident wave. More specifically, this relationship is expressed as 
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the ratio of the complex amplitude of the reflected wave to the incident wave at the material boundary. ( is defined as the reflection coefficient; it can be a complex number. Furthermore, since there is only an x-component of the incident wave, there is only an x-component of the reflected wave as well. The reflected electric field is expressed as
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where the exponential term has a + sign since propagation is in the (z direction. The reflected magnetic field is determined from plane wave properties as
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The minus sign can be interpreted as due to ((=((+ or due to the fact that E(H points in the direction of propagation of the wave, (aZ.

Our experience with light further suggests that a transmitted wave may propagate to the right of the boundary. As with the reflected wave, it is polarized as the incident wave and is proportional to it according to
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T is defined as the transmission coefficient similarly to the definition of reflection coefficient. The transmitted wave is expressed as
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and
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where (2 and (2 represent the propagation constant and wave impedance in region 2, i.e., z>0.

Waves emanate from a source to the left of the boundary and are reflected from and transmitted through material boundaries as indicated by Equations 5-105 through 5-112. This model predicts two waves, the incident and reflected, in region 1, but only one wave, the transmitted, in region 2 since there is no source of a left-propagating wave in this region.

But, we still have two undetermined constants, ( and T. These can be found by applying the boundary conditions satisfied by all EM fields at the material interface as given by
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and
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In most cases K=0 so that the tangential components of both the electric and magnetic fields are equal at the material boundary. In region 1 the electric field is composed of the incident and reflected fields; in region 2 there is only the transmitted field. This leads to
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which simplifies to
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Similarly, the magnetic field boundary condition gives
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which simplifies to
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Combining Equations (6.101)

, we obtain solutions for the reflection coefficient as
(6.100)

 and 
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and the transmission coefficient as
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The reflection and transmission of the normally-incident plane wave depends only upon the material properties of the two regions. When the material in region 1 and region 2 are the same, (=0 and T=1, indicating that there is no reflection at the boundary and all of the incident wave propagates from region 1 into region 2. Of course this is expected since such a boundary is a mathematical definition, not an actual material boundary.

Most materials are non-magnetic, i.e., (=(o, for which the reflection coefficient becomes
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When the dielectric constant of the region on the right is less than the region on the left, the reflection coefficient is positive. The reflected wave will be polarized in the same direction as the incident signal. The transmitted wave will be less than the incident wave (recall that T=1((<1 for (>0). In fact, for (1>>(2 the reflected wave is nearly as large as the incident wave and the transmitted wave is very small. On the other hand, when the dielectric constant of the region on the right is greater than the region on the left, the reflection coefficient is negative. The reflected wave will be oppositely polarized to the incident wave and the transmitted wave will be larger in magnitude than the incident wave.

Do these conditions make sort of an amplifier, a wave amplifier? Intuition suggests that power must be conserved. Let’s briefly consider this question. In a lossless medium, we should expect that the power of the incident wave is equal to the sum of the power contained within the reflected and transmitted waves. Alternatively, we should observe the same behavior for the Poynting’s vectors for these waves. The Poynting’s vector for the incident wave is given by
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the Poynting’s vector for the reflected wave is
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and the Poynting’s vector for the transmitted wave is
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Power conservation predicts that the power into a region that includes the boundary, must equal the power out of the region. Choosing a 1 m cube aligned with and centered on the boundary, we can express this in terms of Poynting’s vector for the several waves as
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or
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Indeed, power is conserved at the boundary. The individual electric or magnetic fields associated with the transmitted wave may be greater than their incident wave counterpart. But, their ratio will also be different according to the wave impedance such that the power is conserved.

These arguments of power conservation of waves cannot be applied to waves in lossy media. Though total power is indeed conserved, part of the power of the waves is left within the material in the form of increased material temperature. However, Equation (6.87)

 is always valid.

The effects of a single material boundary are completely described by the reflection and transmission coefficients. The propagation constant and the wave impedance depend upon the material properties as well. With these four parameters and frequency, a complete description of the fields of plane waves near a boundary are known.

An interesting feature of the reflection coefficient at a boundary is that it differs in sign depending upon the direction of the incident wave. We have just calculated the reflection for an incident wave from the left, call it (LEFT. The calculation for the reflection coefficient for an incident wave from the right requires a reversal of the role of (1 and (2 so that (RIGHT=((LEFT.

Physicists often write the reflection coefficient for an air-dielectric interface in terms of the index of refraction for non-magnetic dielectric. The index of refraction is defined in terms of the relative permittivity of the dielectric as n=((R.

This analysis has assumed that there is only one boundary present and that the reflected and transmitted waves propagate to (( and +(, respectively. The reflection and transmission coefficients do not completely describe the reflections when another boundary is present. A glimpse of this more complicated behavior can be obtained by considering the configuration shown in Figure 6.17 where a second boundary exists at z=+zo. A qualitative description is that when a wave front is incident upon left boundary at z=0 reflection and transmission takes place as described above. But, when the transmitted wave front impinges upon the right boundary, it acts as an incident wave on this boundary, establishing another reflected and transmitted wave. The reflected wave propagates back toward the left boundary where it acts as an incident wave establishing a third set of reflected and transmitted waves. The reflected wave from this boundary propagates back toward the right boundary and the process continues ad infinitum. An infinite number of waves are moving to the right and to the left in the region 0<z<zo; an infinite number of waves are moving to the left in the region z<0; an infinite number of waves are moving to the right in the region z>zo. The sum of these waves establishes steady-state reflected waves from the two boundaries to the left and steady-state transmitted waves from the two boundaries to the right. But, the calculation of the “reflection” and “transmission” coefficients for this situation is much more complicated. We will delay a quantitative analysis of this case till our discussion of transmission lines.


Figure 6.17 - Multiple Reflections from Two nearby Boundaries.

Finally, let’s take a brief look at obliquely incident waves on a boundary, see Figure 6.18. A wave incident from the left travels in a direction defined by a(=aXsin(i+aZcos(i. Since the electric fields for TEM waves propagating in this direction must be perpendicular to this vector, they can be decomposed into components either parallel or perpendicular to the plane of incidence. The plane of incidence is defined as the plane formed by a( and the normal to the material boundary, in this case the y=0 plane. Let’s consider the perpendicular polarization which results in the electric field of the incident field expressed as
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The associated magnetic field must be perpendicular to the electric field and the direction of propagation so it lies in the x-z plane as shown in Figure 6.18. The components of the magnetic field are determined from the geometry; the magnitude from the electric field and the wave impedance so that
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Similarly to the normal incidence, the electric field of the reflected wave is expressed as

Figure 6.18 - Obliquely Incident Wave on a Material Boundary.
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and the corresponding magnetic field as
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Note the reversed direction of z-directed propagation in the exponent and the oppositely directed x-component of the field to satisfy the TEM property of the wave. Finally, the transmitted wave is formed as
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and
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where the incident, reflected and transmitted angles have been assumed to be independent.

Invoking the electric field boundary condition at z=0, we obtain
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Since this must be true for all values of x along the boundary, the phase terms which depend upon x must all be equal, i.e.,
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The first equality is satisfied when
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This is Snell’s law equating incident and reflected angles. The equality of the first and third terms is satisfied when
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Snell’s law relating incident and transmitted angles. Most materials are non-magnetic so that (1=(2=(o and Snell’s law becomes
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When (1>(2, (t=(/2 for values of (I<(/2. This describes what is known as the critical angle and describes the largest angle of incidence for which a transmitted wave propagates into region 2, i.e.,
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This angle of incidence produces a transmitted wave parallel to the boundary; greater angles of incidence produce complex values of transmitted angle and much more complicated results (reserved for an advanced course). This effect occurs when looking out of a swimming pool. The water is region 1 and air is region 2 with (2=(o<(1=81(o.

With the exponential terms of Equation (6.116)

 equal, the electric field boundary condition becomes
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The magnetic field boundary condition becomes
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or rewritten as
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Combining Equations (6.124)

, we obtain the solutions for (( and T( as
(6.122)

 and 
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and 
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where (i and (t are related by Equation (6.119)

. These forms are more complicated due to the oblique incidence. However, they are similar to their counterparts for normal incidence. If the angle of incidence becomes 0, then they reduce to the results obtained for normal incidence as we expect. Though time prevents us from looking at this form in more detail, the essential characteristics of the wave behavior are similar to the normal case. The results for the electric field parallel to the plane of incidence can be derived in the same manner, but that must wait until a homework problem.

Example 6.9-1: Calculate the percentage of the incident power that is reflected and that is transmitted when a plane wave is normally incident upon calm lake. The relative permittivity of water is 81 so the reflection coefficient is given by Equation 
(6.102)

 as  GOTOBUTTON ZEqnNum735700  \* MERGEFORMAT .and the transmission coefficient is given by Equation 
(6.103)

 as  GOTOBUTTON ZEqnNum272552  \* MERGEFORMAT  The incident power density is Pi=|Eo|2/2(1; the reflected power density is Pr=|(|2|Eo|2/2(1; the transmitted power density is Pt=|T|2|Eo|2/2(2. The fraction of incident power that is reflected is Pr/Pi=|(|2=0.64; the fraction of the incident power that is transmitted is Pt/Pi=|T|2(1/(2=(0.04)(1/9)=0.36. The two fractions combine to equal the total incident power!

Example 6.9-2: Compare the reflection coefficients of a normally-incident plane wave in air of frequency 100 MHz upon a PEC and upon copper. The wave impedance of a good conductor is given by (=[j((/(]1/2 so (CU=0.00117ej(/4 and (PEC=0. This leads to (CU=(0.00117ej(/4 (377)/(0.00117ej(/4 + 377) =(0.999996+j0.0000044 and (PEC=(1. The difference between copper and PEC is insignificant for most reflection coefficient calculations.

Example 6.9-3: Your pet piranha looks hungrily out of the tank at you. What range of angles must he scan to see the entire room? Let’s assume the glass has negligible effect. The permittivity in the water (region 1) is 81(o>(o. Therefore the critical angle inside the tank at which he can see things at a 90o angle outside of his tank wall is given by Equation 
(6.121)

 as  GOTOBUTTON ZEqnNum479482  \* MERGEFORMAT  So over a range of 12.8o he can scan the entire 1800 outside of one wall of his tank.

6.10 - Standing Waves

When a wave is incident upon a boundary as in Figure 6.19, there are two fields in region 1, the incident and the reflected. The total field in region 1 is expressed as
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a traveling wave to the right and one to the left. Some purely mathematical manipulations put this into a form that provides an alternate interpretation,
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The first term represents a portion of the incident wave moving in the +z direction. That portion of the incident wave that is reflected is regrouped with the reflected wave to form a standing wave represented by the last term. It is actually composed of two, equal, 


Figure 6.19 - Standing Wave.

but oppositely directed waves that combine to form a single standing wave. Since the combined result has only amplitude, but no phase, variation with z, it is not a propagating wave. When transformed to the time domain it is just a cosine spatial distribution that varies in magnitude. This term is similar to the standing waves seen on vibrating strings, with non-moving positions at which the wave is peaked and others at which it is nulled. However, for the vibrating string, the reflection coefficient is effectively unity so there is no propagating wave.

The actual observation of a standing electromagnetic wave is not as easy as with the vibrating string, but it is possible to measure properties of the total field as represented by Equation (6.127)

. The maxima and minima of the field can be readily measured and from these values information about the reflection coefficient can be determined. Consider the two terms of the total field as phasors; the maximum value of their sum occurs when they have the same phase angle so that their magnitudes can be added to give
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Similarly the minimum value of the field is given by
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where the fact that |(|(1 has been used. The value |Eo| can be eliminated by taking the quotient to obtain the standing wave ratio, SWR, as
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The ratio of the maximum to minimum field values gives the magnitude of the reflection coefficient. This relatively simple measurement enables an indication of the magnitude of the reflected signal as
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For reflection coefficients that approach unity in magnitude, the SWR becomes very large, approaching infinity. The actual signal doesn’t approach infinity, rather, the minimum approaches zero so that the quotient becomes large. A small SWR is usually desired as it means less signal is reflected. This is a very common measurement for transmission lines and we will use this a great deal in the next chapter.

Though there is much more to learn about electromagnetic waves, we have covered the fundamentals and must move to a more specialized version of electromagnetic waves—those that are guided by metallic wires. These are known as transmission lines; they come in many forms. Voltages, currents, and impedances can be measured. Accordingly, we will be able to use a mixture of circuit and wave concepts to describe transmission line behavior in the next chapter.
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