
Quasi-Static Fields

_____________________________________________________________________________________________________

We have covered quite a bit of territory in the first four chapters of this text, but it is only the beginning. The restriction of those chapters that objects be small compared to wavelength is quite limiting; As we deal with higher frequencies (shorter wavelengths) our earlier models are no longer valid. Just what happens when the region in which we must solve for the fields is no longer a small fraction of wavelength? In a related way, how do fields behave in a region where they are not confined by PECs or by flux guides? This chapter will provide some introductory insight into these questions.

Circuit concepts provide an intuitive framework on which we build the more abstract structure of fields. However, the distributed nature of electromagnetic fields becomes more important as the regions of solution become larger. The vector mathematics becomes more important; terminal voltages and currents are not as helpful when there are really no elements to measure. So, boldly we go where few have gone before.

5.1 - Faraday’s Law Revisited

The voltage drop across the open-circuited terminals of a PEC loop of wire is expressed in terms of the time-varying magnetic flux that is encircled by the loop as expressed by Faraday’s law
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We learned in Chapter 3 that the polarity of the induced voltage is predicted by Lenz’s law. The polarity of the induced voltage tends to establish a current that opposes the initial change in flux, a sort of electromagnetic inertia. These two principles provide an adequate basis for the study of inductors and magnetic devices. But, they can be extended to describe much more general electromagnetic behavior.

Since electric field intensity is the basis for a voltage difference in resistors and capacitors, it seems plausible that it is in inductors as well. Postulating the existence of an electric field intensity, we can express the voltage difference of the LHS of Equation (5.1)

 in terms of electric field intensity as
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The CCW direction is chosen to define a positive VLOOP with the polarity shown in Figure 5.1.
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Figure 5.1 - Induced Voltage in a PEC Wire Loop and the accompanying E field.

In contrast to the conservative electric fields within resistors and capacitors, the electric field within an inductor is not conservative! A non-zero voltage drop means that the line integral does not vanish; that is why there is an induced voltage. Moreover, since the integral depends upon the path, i.e., the configuration of the wire, so does the induced voltage. This is to be expected since the flux enclosed by the wire depends upon its configuration.

I must admit that I lied in the earlier chapters when I said that electric fields are always conservative. They are so nearly conservative within resistors and capacitors that this assumption introduces negligible error. For inductors and magnetic circuits we acknowledged that they were non-conservative, but we didn’t need to alter our approach much to produce accurate calculations. Now that the truth is out, we must get to the root of this phenomenon and determine the features of electric fields which give them such different characteristics in different situations.

The total voltage can be interpreted as the summation of all of the infinitesimal voltage drops (V=(E((l around the PEC loop. There can be no voltage drop along a PEC wire even though the total voltage induced in the loop by the changing flux depends upon the configuration of the wire. This leads to the fact that the induced voltage is all observed across the terminals of the PEC wire. What if the wire had not been there? Then the integral along the path would have still given the same result with incremental induced voltages all along the path. However, there would be no measurable voltage between two closely spaced points, just a theoretical, incremental (V.

This brings up the question of how do you measure a voltage drop without the position of the wires affecting the results. Only if there is insignificant magnetic flux enclosed by the wire leads that connect the voltmeter is the voltage independent of the wire position. This is the case of DC and slowly varying fields. There is insignificant magnetic flux enclosed by the meter and its leads and the electric field is essentially conservative. Consequently, any position of the wires gives the same result for the voltage drop between two points. On the other hand, that portion of the voltage that is due to a changing magnetic field depends upon the shape and position of the wire leads. The electric field that causes it is not conservative.

The time rate of change of the enclosed magnetic flux, the RHS of Equation (5.1)

, can be rewritten in terms of the magnetic flux density so that Faraday’s law becomes
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where the usual convention of the RH rule relates the line and surface integrals. The line integral of the electric field intensity is equal to the surface integral of magnetic flux density that it encloses. This relationship is valid throughout all space for every path and all associated surfaces.

From Equation (5.3)

, if the time rate of change of enclosed magnetic flux is small enough, the induced voltage around a closed loop can be considered zero. An interpretation of the RHS is simplest when the magnetic field has no spatial variation, is sinusoidal in time, and oriented perpendicular to the loop as in a magnetic core so that the total flux is expressed as (m=ABosin(t. The time derivative of flux is expressed as d(m/dt=d(AB)/dt=AdB/dt=(ABocos(t when the loop is stationary. The magnitude of the magnetic flux density is important in determining the induced voltage. But the size of the loop and the frequency of the magnetic field are equally important. Making use of the well-known frequency-wavelength relationship of f=c/(, we can rewrite the induced voltage as d(m/dt=(2(c/()ABocos(t=(A/()2(cBocos(t. The size of the loop relative to the wavelength of the magnetic field is an important parameter. For low frequencies where the loop is relatively small compared to wavelength, the induced voltage can be neglected. This is typical of most circuits that operate below several MHz. But for higher frequencies, where the dimensions of the loop are on the same order of magnitude or smaller than the wavelength of the magnetic field, the induced voltage for the same sized circuit can be significant. When asked the question are electric fields conservative, the answer is yes and no. Yes, if the dimensions of the circuits and frequency of the fields are small enough; no, if they are larger.
(5.3)

 we can see if the magnetic flux enclosed by the path L is unchanging, then the line integral will vanish, the electric field is conservative and there is no induced voltage. This is the case for the electric fields of resistors and capacitors as described in Chapters 1 and 2 which are due predominantly to current and electric fluxes rather than magnetic flux. As shown in the RHS of Equation 
Assuming that E is sufficiently well-behaved that ((E exists, we can apply Stokes theorem to the LHS of Equation (5.3)

 to give
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For this portion of the course, assume that observations are made with a fixed loop, no change in size, orientation or position. This means that the surface S is not changing with time so that the time derivative can be moved inside the integral, operating on B only. The time derivative is also modified to a partial derivative since B may have time-independent spatial variation as well. In addition, though an infinite number of surfaces can be chosen for both surface integrals of Equation (5.4)

 as
(5.4)

, the work is simplified by choosing the same surface for both. These two considerations enable us to rewrite Equation 
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By shrinking the surface to infinitesimal dimensions the integral can be approximated as
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In the limit as the surface becomes small, (s=aN|(a| and |(s|>0 so that the bracketed quantity must vanish, i.e.,
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the differential form of Faraday’s law. As expected, when the magnetic flux density at a point is unchanging, the electric field intensity is conservative and ((E=0. But, if the magnetic field intensity is time-varying, then the electric field is not conservative. Since the curl of a vector is perpendicular to the vector itself, the electric field is perpendicular to the magnetic field at each point as implied by the integral form also.

The physically observable form of Faraday’s law, Equation (5.7)

. Though the latter form is not observable, it is very useful in predicting the behavior of electromagnetic fields. We will return to this form later.
(5.1)

, has been written in terms of electric and magnetic fields. Treating these fields as mathematical functions, they have been recast in differential form, Equation 
Example 5.1-1: A time-varying current flows in a long, filamentary wire that is near a closed, PEC loop. Calculate the induced voltage in the loop. For calculation purposes, the rectangular loop has dimensions of 10 cm parallel to the current and 5 cm perpendicular to the current and its nearest side is located 5 cm meters from the current. The current is 10 A operating at 60 Hz. The magnetic field established by the current is perpendicular to the plane of the loop and from Ampere’s law is expressed as H=10/2((. The total magnetic flux that links the PEC loop is given by (m=[4(x10-7(10)(0.1)/2(]ln(0.1/0.05)(sin377t) =0.139sin377t (wb. The induced voltage is VLOOP=(52.3 (V; the smaller dimension of the loop is 10-8(.

Example 5.1-2: Calculate the induced voltage for Example 5.1-1 if the source has a frequency of 1 MHz? The magnetic flux linking the PEC loop is given by (m=[4(x10-7(10)(0.1)/2(]ln(0.1/0.05)(sin6.28x106t) =0.139sin6.28x106t. The induced voltage is (0.87 V, considerable larger than for 60 Hz; the smaller dimension of the loop is 0.00016(.

Example 5.1-3: Calculate the induced voltage for Example 5.1-1 if the source has a frequency of 500 MHz. Since the frequency is 500 times larger than in Example 5.1-2, the induced voltage will be 500 times higher as 435 V; the smaller dimension of the loop is 0.083(. What a difference the frequency has made!

Example 5.1-4: A uniform magnetic flux density of 1 wb/m2 operates at a frequency of 60 Hz. Calculate the electric field intensity. For convenience, assume that the magnetic flux is in the aZ direction. We know that a voltage will be induced in a wire loop located in the z=0 plane, so there must be an E(. From the differential form of Faraday’s law 

.Equating the second and fourth terms and integrating, we find 

. Since E is uniform, the voltage induced in a circular loop of radius ( is readily calculated as VLOOP=E(2(( =(377((2cos377t V. An alternate calculation uses the integral form of Faraday’s law VLOOP=(((2d(sin377t)/dt =(377((2cos377t V as before.

5.2 - Ampere’s Law Revisited

Since you now know that in Chapters 1 and 2 you were led to falsely believe that all electric fields are conservative, I must tell you that there is more to Ampere’s law as well. The situation is best viewed in Figure 5.2 where the work integral of the magnetic field intensity is evaluated on the path L.
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Figure 5.2 - Ampere’s Law

According to earlier work in Chapter 3, this integral is equal to the current enclosed as
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The enclosed current can be evaluated by calculating the current crossing any surface the edges of which are the path L. When the surface S1 is chosen, the current which flows in the PEC wire lead of the capacitor is the capacitor current IC. A more accurate description includes a current density, J, distributed throughout the wire. With the path L snugly fitted around the outside of the wire, Equation (5.8)

 becomes
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as we learned in chapter 3. Now consider the current through surface S2 that encloses just one of the capacitor electrodes. The LHS of Equation (5.8)

 still has the same value as before since the path L has not changed. But, there is no current flowing through S2 and the RHS is apparently zero. How can this contradiction be resolved? Fortunately for us, James Clerk Maxwell proposed a solution to this problem nearly 150 years ago. His reasoning was based on a mechanical model with rotating gears in contrast to the model of fields in space. His reasoning in the electromagnetic domain went somewhat in the following manner.

There must be a more general description of current that penetrates surface S2. Recall that in a parallel-plate capacitor, current flows into the capacitor and deposits a uniform surface charge density on the electrodes given by
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The electric flux density between the electrodes is expressed by
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A corresponding electric flux crosses the surface S2
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where the integration is simplified to a multiplication due to the uniform charge density. The RHS of Equation (5.11)

 would give the same result for non-uniform charge density; the calculation would be more involved. The time derivative of the electric flux is written becomes
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where the surface S2 is unchanging with time. This is exactly the value obtained by integration over surface S1 where there was only electric current density. On surface S2 where there is no electric current present the same result is obtained by using this new term ((e/(t. Recall that electric flux density has units of Coulombs/square meter so that the expression is dimensionally correct, Coulombs/second/meter2. With this information, Maxwell proposed that Ampere’s law could be made correct for all applications if it were modified to include this new term. Specifically, he defined (D/(t as displacement current in contrast to J known as conduction current. The electric charges on one electrode where the electric flux lines begin displace charges on another surface where the electric flux lines ended. He stated that Ampere’s law is correct when the sum of both conduction and displacement current are included as
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For the capacitor, surface S1 contains only conduction current, surface S2 contains only displacement current. For DC and low frequencies where the displacement current outside the capacitor electrodes is negligible, the results are identical to our earlier form as they must be.

Using similar mathematical steps with Ampere’s law as we did with Faraday’s law in Equations (5.7)

, we obtain the differential form of Ampere’s law as
(5.4)

 to 


[image: image15.wmf].

t

¶

Ñ=+

¶

D

xHJ


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (5.15)

The magnetic field at a point is proportional to the sum of the conduction and displacement currents. Moreover, it is perpendicular to their sum.

A final aspect of the differential form of Ampere’s law comes from vector identities that show the divergence of the curl of a vector is identically zero. Application of this to Equation (5.15)

 we have
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where the point form of Gauss’ law, ((D=(V, has been used. Since the last equality is just the point form of the conservation of charge, this form of Ampere’s law is consistent with the physical reality of charge conservation.

Example 5.2-1: A current of 100 mA flows in a copper wire of 1 mm radius. Calculate the conduction and displacement current densities within the wire for an operating frequency of 60 Hz. Assuming a uniform current density within the wire, |J|=0.1/((.001)2=31.8 kA/m2. Within the copper wire |E|=31.8(103/5.8(107 =0.549 mV/m. |D|=(o(0.549(10(3)=4.9x10-15 C/m2. To calculate the displacement current magnitude within the wire, we multiply by (. For 60 Hz this gives |(D/(t| =1.83 pA/m2<<31.8 kA/m2. We certainly can neglect displacement current in copper wires for low frequency operation.

5.3 - Maxwell’s Equations

The set of equations that govern the behavior of time-varying electromagnetic fields have been collectively named Maxwell’s equations. They are named in his honor primarily because the generalizations that he made to Ampere’s law made the set of equations consistent and valid for all circumstances. Table 5.1 contains the time domain form of Maxwell’s equations
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Table 5.1 - Maxwell’s Time-domain Equations

in both integral and differential forms. In addition to the presence of time derivatives, the time domain form of the fields is emphasized by the script form just as we do in circuits. In addition, the field quantities have a spatial dependence, i.e., E=E(r,t). For convenience, we write the field quantities without the functional dependence as E except in cases where it is important to emphasize it.

As in circuits, a great deal of information can be obtained from studying the solution to these equations when the sources are of sinusoidal or time-harmonic form. Many engineering applications involve a single frequency or a narrow band of frequencies that can be treated as a single frequency. As in circuits, the phasor solutions can be combined with Fourier techniques to calculate the response to sources with arbitrary waveshapes. As you recall, phasor domain forms of voltage and current are obtained as the real part of a rotating phasor v(t)=Re{VPej(t} where VP is a time-independent, complex phasor. This. same procedure is applied to each of the vector components of an electromagnetic field where Ei(r,t)=Re{Ei(r)ej(t}. Ei(r) represents ith component of a complex phasor in one of our three favorite coordinate systems, (x,y,z), ((,(,z), or (r,(,(). Therefore, the phasor form of the electric field vector in Cartesian coordinates is
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The phasor-domain form of a vector field is represented by six real values. In addition, each of these values can have a spatial dependence as well, e.g., EXr=EXr(x,y,z). Maxwell’s equations in phasor form are similar to the time domain form, but due to the sinusoidal time behavior, all time derivatives are replaced by j(. The phasor domain form of Maxwell’s equations is shown in Table 5.2. In the time domain, each field symbol represents three real vector components 
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Table 5.2 - Maxwell’s Phasor-domain Equations.

with spatial and time dependence. In the phasor domain, they represent three complex vector components with an implied time dependence of ej(t.

With the addition of time dependence, the electric and magnetic fields are inseparable. They occur together and are connected through the first two of Maxwell’s equations. In both equations the work integral of one field intensity is due to the time variation of the flux of the other field enclosed by the path of the work integral. The fields can be viewed as interlinked one with another as shown in Figure 5.3. Time variations in the electric field produce a magnetic field; time variations in the magnetic field produce an electric field. One time-varying field cannot exist without the other. This inextricable linking of the electric and magnetic fields has caused some to refer to them as a single electromagnetic field.
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Figure 5.3 – Linking of Time-varying Electric and Magnetic Fields.

5.4 - Quasi-Static Model for Lumped Element Capacitor

The lumped element models for resistors, capacitors, and inductors were based upon static fields. We extended the range of their application to include slowly varying signals, but never answered the question as to how high a frequency are these lumped element models still valid. To answer this question, consider the parallel-electrode capacitor shown in Figure 5.4. The capacitor is filled with a dielectric material (. The length of the capacitor is much greater than the width, i.e., h>>w. A time-harmonic voltage source VS is attached at z=(h. To keep the work reasonable, assume that the electrodes are closely spaced, i.e., w>>d, so that fringing is not a consideration.
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Figure 5.4 – Planar Capacitor

Assume that all electrodes are PECs and that there are no losses present. Furthermore, assume that there is no inductance due to current in the wire connections between the capacitor and the external circuit. These factors will introduce additional modifications (frequently called “parasitics”) to the lumped element model. The power series technique used here is inspired by the works of Magid and Schelkunoff.

A current IC flows onto the upper electrode from the source VS. The charge carried by this current is uniformly distributed on the electrode as a positive surface charge density, (S. An equal current flows out of the lower electrode leaving a negative, uniform, surface charge density, ((S. These charges establish a uniform electric field intensity, E, within the capacitor which is the static or DC field as
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and produce a voltage drop, VC=VS, between the electrodes. The static or DC terminal behavior of the device as the frequency goes to zero is described by
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where



[image: image40.wmf]DC

Awh

C.

dd

ee

==


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (5.20)

This is known as the zero-order approximation for the behavior of a capacitor and is based on static or DC considerations.

When VS is time-harmonic, the electric field within the capacitor will be time-harmonic, also. This is brought about by time-harmonic variations of the uniform surface charge density on the PEC electrodes (remember that electric flux lines begin and end on 

[image: image92.bmp]Figure 5.5 - First-order Fields and Integration Path of Planar Capacitor

charge). But, charge conservation requires surface current on the electrodes as the mechanism by which the surface charge density varies. The surface current density is greatest at the source since it supplies charge to the entire electrode; as the distance from

the source is increased, smaller current is required since there is less area to which charge is supplied. 

For uniform surface charge density, the current varies linearly from a maximum at the source to zero at the other end of the electrodes. Boundary conditions show that a y-directed magnetic field proportional to the surface current exists between the electrodes. This field decreases linearly from a maximum at the source, z=(h, to zero at the other end of the electrodes, z=0.

A quantitative description of the magnetic field is obtained with Ampere’s law that requires a magnetic field accompany a time-varying electric field according to
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see Figure 5.5. The electric flux through the surface S, the RH side of Equation (5.21)

, is calculated easily since the zero-order electric field is uniform. The result is given by
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Evaluation of the LH side of Equation (5.21)

 is given by
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Setting Equation (5.23)

 leads to
(5.22)

 equal to Equation 
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So, to first-order approximation the fields within the planar capacitor are both electric and magnetic expressed as
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What is the input impedance “seen” by the voltage source VS for the first-order fields? The voltage remains VS as before. The current into the upper electrode of the capacitor is calculated by Ampere’s law using the first-order magnetic field that exists only within the electrodes with no fringing, see Figure 5.6.

[image: image93.bmp]Figure 5.6 - Geometry for Calculation of Current into upper Electrode of Planar Capacitor

The current is calculated as



[image: image46.wmf](

)

w

CENCN

zh

y0L

0

S

S

yw

IIdl

Vh

Vhw

jdyj.

dd

=-

=

=

==·=·

e-

e

æö

=w=w

ç÷

èø

òò

ò

KaHdl

Ñ


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (5.26)

The input impedance is calculated as
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where CDC is the static capacitance defined by Equation (5.20)

. As expected, the capacitance for low frequency signals is the same as that calculated for DC. This is called the quasi-static case.

So, what are the upper limits for the quasi-static case? The high-frequency behavior of the capacitor is found by continuing the process used to find the first-order magnetic field. This magnetic field induces a second-order electric field that can be calculated with Faraday’s law as
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The surface S and path L used in this evaluation are shown in Figure 5.7. The RH side of Equation (5.28)

 is evaluated as
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[image: image94.bmp]
Figure 5.7 - Geometry for Second-order Field Calculations

The LH side of Equation 30 is evaluated as
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The combination of Equations (5.30)

 leads to
(5.29)

 and 
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as the second-order electric field where the voltage at z=0 was chosen to be held at VS. This second-order

[image: image95.bmp]Figure 5.8 - Second-order, Lumped Element Model for Planar Capacitor

field is directed opposite to the original static electric field and so tends to reduce the voltage drop across the source. When both the zero- and second-order electric fields are considered the voltage drop of the source is
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The current remains unchanged from the first-order calculations so the second-order input impedance “seen” by the source is given as
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The planar capacitor looks like a capacitor only when the second term is negligible, i.e.,
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For higher frequencies, the terminal behavior of the capacitor is more complicated. The second term is due to magnetic energy associated with the current that flows into the capacitor. As in the earlier work, the presence of stored magnetic energy is manifest as inductance. Equation (5.33)

 can be put in the form
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where
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The second-order, lumped element circuit model for the capacitor is shown in Figure 5.8. Incidentally, this value of inductance is half of the value of the structure with uniform current flow. The factor of half can be interpreted as the effective value of the current on the electrodes that varies linearly from a maximum at the source (z=(h) to zero at the open circuit (z=0).

This process can be continued to obtain higher order corrections that are valid for higher frequencies. However, the circuit model gets more complicated as the number of terms is increased. The complete, exact solution is obtained with an infinite number of terms that can be expressed in closed form as
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The term-by-term process is instructive, but the closed form is much more convenient for calculations. We will use the closed form a great deal in future work.

An interesting feature of the second-order circuit model is that a resonance occurs when the second term in Equation (5.34)

 equals unity
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At this frequency the electric field at the input to the capacitor vanishes so impedance seen by the source is zero, a series type of resonance. The line length for this resonance is
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This is remarkably close to the exact solution for resonance obtained from Equation (5.37)

 as



[image: image60.wmf]o

o

z.

4

l

=


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (5.40)

The physical interpretation of this high frequency behavior includes both electric and magnetic energy storage. The electric energy is due to the charge on the electrodes; the magnetic energy is due to the current flow that brings the charge to the electrodes. An alternative approach is to calculate the lumped-element circuit models based upon energy storage rather than the input impedance approach used here. This gives a slightly different value for the inductor and is left to students as a weekend to pass the time when they have nothing else to do!

5.5 - Quasi-Static Model for Lumped Element Inductor

The quasi-static model for a planar inductor is developed in a manner similar to that used for the quasi-static model for a planar capacitor. The geometry of the “one-turn” inductor is similar to that of the planar capacitor with the addition of a short circuit located in the z=0 plane, see Figure 6.10.
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Figure 5.9 – Geometry of a “One-turn” Inductor

The length of the inductor is chosen to be much greater than the width, i.e., h>>w. A time-harmonic current source IS is attached at z=(h. The inductor is filled with a manetic material (. Assume that all electrodes are PECs and that there are no losses present. Furthermore, assume that there is no inductance due to current in the wire connections between the capacitor and the external circuit. Since IS is time-harmonic, the magnetic field within the inductor is time-harmonic, also. If the upper and lower conductors are closely spaced, i.e., w>>d, then fringing can be neglected and the structure treated as an infinitely long solenoid with uniform surface current density, |K0|=IS/w. The associated zero-order or static magnetic field intensity is readily calculated by Ampere’s law to be
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with a DC inductance of
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Calculation of the first-order electric field follows from Faraday’s law as
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see Figure 6.11. The RH side of Equation (5.43)

 is readily calculated as
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The evaluation of the LH side of Equation (5.44)

 is simplified by the fact that the lower, right, and upper portions of L lie within the PEC electrode and so are

[image: image97.bmp]Figure 5.10 – Geometry for First-order Electric Field Calculations

zero. The remaining left portion of the integral is evaluated to give
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Equations (5.45)

 are combined to give the first-order electric field as
(5.44)

 and 
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The first-order electric field grows linearly with distance from the PEC “short circuit” at z=0. Not unexpectedly, the zero-order magnetic field and the first-order electric field are analogous in form to their counterparts in the planar capacitor. The first order input impedance “seen” by the current source is calculated as
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The quasi-static model for the inductor is just the DC model of inductance in a manner similar to the capacitor model. Extending the process to include the second-order magnetic field leads to
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so that the total magnetic field to second-order is expressed as
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The current supplied to the inductor by the current source is altered by the second-order magnetic field to be
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and the impedance of the inductor “seen” by the current source is
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This represents a parallel connection of LDC and a capacitor with
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half the value of the planar capacitor formed by the upper and lower electrodes. The first-order electric field represents stored electric energy and is manifest as a capacitor. Since the first-order electric field has an associated surface charge density on the PEC conductors. The field and the surface charge density vary linearly with z, the total charge is half of that associated with a uniform electric field. Therefore, the capacitance is half as well. The second-order circuit model for the inductor is shown in Figure 5.11.
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Figure 5.11 - Second-order, Lumped Element Model for “One turn” Inductor

The same frequency limitations for modeling the inductor as LDC as applied to the capacitor. However, the circuit model is that of a parallel resonant circuit.

At resonance, ho((o/4, the current source “sees” an open circuit. This seems sort of strange since the inductor is just a PEC between the terminals of the current source. This effect is due to the presence of both magnetic and electric fields within the structure of the inductor.

5.6 - Quasi-Static Model for Lumped Element Resistor

Let’s obtain the quasi-static model for the resistor using the same approach as with the capacitor and inductor. Consider the structure shown in Figure 5.12 where the surface at z=0 is very thin and has a surface resistance of RS=1/(t (/square. t is the thickness 

Figure 5.12 – Geometry of a Thin-film Resistor

of the resistive material in the z-direction. As before assume h>>w and w>>d. The surface current due to the current source established the static fields within the resistor. First, the DC currents are the identical to those in the inductor. Consequently, the zero-order magnetic field will be the same as in the inductor



[image: image73.wmf]S

0Y

I

.

w

=-

Ha


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (5.53)

The current flows through the thin film resistor located at z=0 and establishes a voltage drop expressed as
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The uniform electric field within the thin film resistor exists in the rest of the region between the planar electrodes as well as
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The process used to find the first-order fields in the inductor is used with H0 to find E1 as
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Similarly, the process used with the capacitor is used to find the first-order magnetic field H1 as
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The total fields through first-order are
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and
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Therefore, the input impedance seen by the source is expressed as
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Note that the input impedance is equal to RTF under the special condition that 
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. This unique value divides the input impedance into two types of behavior. For values where 
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 we would expect the ZIN to look much like a capacitor terminated by a resistor. Indeed, for very large RTF, Equation (5.60)

 gives



[image: image83.wmf]IN1TF

TFDC

DC

TF

11

ZR,

1

1jRC

jC

R

»=

+w

+w


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (5.61)

the parallel combination of RTF and CDC. For values of 
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, ZIN should look like an inductor terminated by a resistor. For very small RTF, Equation (5.60)

 gives
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the series connection of RTF and LDC.

For large values of resistance, a relatively large voltage drop exists and electric energy stored is greater than magnetic energy stored. This is modeled as a capacitor with a resistor attached to the end. For small values of resistance, a relatively large current flows and magnetic energy stored is greater than the electric energy stored. This is modeled as an inductor with the resistor attached to the end. For the special case of 
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 the stored electric and magnetic energies are equal and their effects cancel. The resistor is said to be “matched” to the electrodes. In later sections we will deal with loads that are matched to closely-spaced, long PEC electrodes (known as transmission lines).

The matched condition occurs when
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which leads to
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The lumped-element models for these three cases are shown in Figure 5.13.


Figure 5.13 – Second-order, Lumped-element Models for Thin-film Resistors

These brief glimpses into the electromagnetic behavior of objects that are on the order of a wavelength in size has shown some rather surprising results. But the fun is just beginning. As objects become several wavelengths or more in size, their electromagnetic properties become even more surprising. Waves propagate from point to point, even in space. Why are you waiting? Turn to the next chapter and let’s see what other exciting phenomena lurk in electromagnetic fields!
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