
Resistors

_____________________________________________________________________________________________________

1.1 - Resistors - A First Glance

Resistors are the simplest of lumped elements, but you already know that from your circuits courses. They enable us to control voltage drops and current flow throughout lumped element circuits. The application of a voltage drop across a resistor causes a current to flow into the more positive terminal, through the resistor, and out of the negative terminal. The relationship of the voltage drop across a resistor, VR, to the current through it, IR, is known as Ohm's law and is expressed as
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where R is the value of the resistance expressed in ohms and denoted by the symbol (. The resistance value is a function of the geometry and material composition of the resistor. This chapter focuses upon the internal workings of the resistor and how to calculate its resistance.

The structure of a typical resistor is of the form sketched in Figure 1.1. The wire leads and the electrodes of a resistor are made of a good conductor, usually copper, which has a very small resistance. Current flow between the two electrodes is through the conductive material between them.
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Figure 1.1 - Structure of a Resistor; a: Physical view, b: Electrical model.

The conductive material greatly impedes the current and governs the resistor's value. The conductive material of resistors can take on a wide variety of composition and shape depending upon the application for which the resistor is intended. This structure is usually hermetically encapsulated to protect it against external substances that could alter its value.

1.2 - Modeling and Approximations

Before proceeding further in the analysis of resistors, let's be clear about our strategy in solving electromagnetic problems. In order to understand the electrical behavior of a resistor, first we must devise a model which retains its essential electrical characteristics. There is no unique model; different solution methods or features to be studied will lead to different models. The simpler the model, the easier the analysis. But the model must retain the essential features which produce the behavior to be studied. Our engineering judgment is needed to make the tradeoff between simplicity and accuracy in our model.

To gain an understanding of electromagnetic phenomena, we do not need solution accuracy to 0.01%. This means that a little approximation here and there will be acceptable so long as it makes a problem solvable. Approximations may simplify our model, allowing a simple solution. After we obtain a solution, we must check the results with our approximations to make sure that they are still valid. If so, then we have been successful; if not, we must rethink the problem and try another model. Engineering experience, logical thinking, and common sense are an integral part of our efforts in modeling and approximation. Good engineers use this strategy over and over throughout their careers--master it!

Now, back to the structure of a resistor. Current flow in the resistor progresses through the metallic leads and electrodes and the conductive material. Each of these components can be modeled as an ideal resistor. Since the same current flows through each of these resistors we connect them in series. This model of a resistor is shown in Figure 1.1b. The metallic leads and the electrodes have a very small resistance (typically RWIRE+RELECTRODE<<1 () which is negligible compared to the resistance of most resistors. Therefore, they may be approximated as zero resistance. Consequently, the entire voltage drop across the resistor is within the conductive material. The value of the resistor is determined only by the composition and configuration of the conductive material between the electrodes.

1.3 - Voltage Drop, Voltage, and Fields

You recall from elementary physics that the resistance of a wire is given by 
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where L is the length of the resistor, A is the cross-sectional area, and ( is the conductivity of the wire. This equation refers to a solid cylinder of conductive material with its length measured perpendicular to the constant cross-sectional area. Such a resistor is shown in the circuit of Figure 1.2. A DC or slowly varying voltage source is applied to the resistor. With an ideal voltmeter we can measure the voltage drop between any two points along the axis of the resistor.

[image: image274.bmp]
Figure 1.2 - Resistor Circuit and Model.

Each incremental segment (z acts as an incremental resistor with a resistance calculated from Equation (1.2)

 as
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Since the current in each of the incremental resistors is the same, the total resistance is modeled as a series connection of incremental resistors and is equal to the sum of the incremental resistances as
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Note that the cross-sectional area A and the conductivity of the material ( have been assumed to be the same for all values of z and, thus, factored out of the summation. When the incremental length is replaced by a differential length, the summation becomes an integral and Equation (1.4)

 becomes
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Note that a coordinate system must be defined to use the integral representation. In Figure 1.2 the axis of the resistor is aligned conveniently with the z-axis which points upward; the bottom of the resistor is at z=0 and the top at z=L. The resistance R(z) measured from position z to ground is given by



[image: image6.wmf]z

z'0

1z

R(z)dz'

AA

=

æö

==

ç÷

ss

èø

ò

.
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.6)

If we were to measure the voltage drop across the resistor from a position z to the bottom end we would find that it obeys the voltage divider equation as
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where the top end is the more positive terminal. As you recall from circuits, when the voltmeter is connected to two different points in a circuit, the difference in voltage or voltage drop between those two points is measured. Often one of the leads is connected to a ground or reference node. All other nodal voltages are defined as the voltage difference between the node voltage and the reference voltage. For convenience, this latter approach is used in electromagnetics as well. Rather than use voltage differences we define the voltage at some reference location as zero volts. All other voltages are defined relative to it.

For the resistor shown in Figure 1.2, we can define the lower end of the resistor as ground or zero volts. With this understanding we can rewrite Equation (1.7)

 for the voltage at some point z in the resistor as
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When written in this form there is a functional relationship between every point along the axis of the resistor and the voltage at that point. Mathematicians define such a functional dependence as a field; the voltage is a field over the spatial variable z. This is a scalar field since at each point z there is a single number which represents the voltage V(z).

Example 1.3-1: Calculate the resistance of the copper wire leads of a resistor. Estimate each lead as 1” long and 1 mm diameter. From Appendix D we find that (COPPER=5.8x107 (-1m-1. Using Equation 
(1.2)

 we obtain  GOTOBUTTON ZEqnNum889803  \* MERGEFORMAT . This is certainly much less than 1 ( and verifies our earlier assumption.

Example 1.3-2: Estimate the resistance of the lead in a pencil measured from one end of a pencil to the other. The lead is in the form of a circular cylinder of 2 mm diameter and about 17.5 cm length. Assume the lead is made of graphite. From Appendix D we find that (GRAPHITE=7x104 (-1m-1. So with Equation 
(1.2)

 we obtain  GOTOBUTTON ZEqnNum270857  \* MERGEFORMAT .

Example 1.3-3: A toaster is designed for household use of 110 VAC. The heating element is made of nichrome wire of 1 mm diameter. What length of wire should be chosen to limit the current to 5 A? From Appendix D, we find that (NICHROME=106 S/m. The required resistance is R(110/5=22 (. From Equation 
(1.2)

 we obtain  GOTOBUTTON ZEqnNum951161  \* MERGEFORMAT 
1.4 - Electric Field Intensity

Equation (1.8)

 reveals a very interesting feature of the voltage--the voltage drop V(z) is proportional to the length of resistor from the ground. A plot of the V(z) versus z is linear, see Figure 1.3. In fact, the voltage drop divided by the resistor length results in a constant, V(z)/z = VS/L, the slope of the line. Extending this concept to cases of arbitrary voltage distributions with varying slope, we can approximate the slope at point z as 
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with units of volts/meter. This incremental form is more revealing than the voltage difference between two points, it describes the incremental behavior of the voltage at each point.

The property of the voltage expressed by Equation (1.9)

 is so fundamental that it has been defined as the magnitude of a vector field parameter E, the electric

[image: image275.bmp]
Figure 1.3 - Voltage Distribution V(z) and slope (V/(z.

field intensity. The vector E points in the direction from more positive voltage to less positive voltage. When (V/(z>0, V(z) is increasing with increasing z so that E points in the direction of (aZ; when (V/(z<0, V(z) is decreasing with increasing z so that E points in the direction of aZ. Combining these concepts, we are lead to a mathematical definition of the electric field intensity as
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E(z) points in the direction of decreasing voltage and has a magnitude which is equal to the incremental changes in V(z) with respect to incremental changes in z. The greater the spatial rate of change of V(z) the greater E(z). Obviously, E(z) has units of volts/meter. Finally, note that E(z) is a vector field over the variable z, i.e., for every value of z there is a corresponding vector of value E(z). This is a vector field because it has a direction as well as a magnitude at each point z.

For the case of the resistor of Figure 1.2, the electric field has a component only in the z-direction since that is the direction in which the voltage changes and has a slope. This can be expressed as
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An interpretation of the electric field intensity comes via the analogy of the voltage, V(z), measured with respect to a reference voltage to the height of a path measured from the base of a hill. To move up the hill, we must move upward against the force of gravity; the steeper the hill, the harder we must work. The magnitude of the force we must exert for each step can be compared with the electric field intensity, E. The force points down the hill from higher to lower levels; E points from higher to lower voltages. We will return to this analogy later.

Example 1.4-1: A 1 M( resistor which measures 1/8” diameter and 1/2” long has a voltage drop of 100 V across it. Calculate the magnitude of the electric field within the resistor. From Equations (1.10)

 we find |E|=(V/(z=100/(0.5)(0.0254)=7.87 kV/m.
(1.9)

 and 
1.5 - Generalized Coordinates

But not all resistors lie along the z-axis. More generally, they need not have a straight-line axis. If the concept of electric field intensity is to be useful, it must work in more general situations. Let's consider a linear resistor which lies along some arbitrary straight line with one end at (x1,y1,z1), the other at (x2,y2,z2) and with a voltage drop from one end to the other as shown in Figure 1.4. The projection of the resistor length onto the x-axis is LX=(x2(x1); LY and LZ are defined similarly. The length of the resistor is given by L=[LX2+LY2+LZ2]1/2. Of course, we know that the linear variation of the voltage from one end of the resistor to the other will not be altered by its spatial orientation.

Consequently, E is directed along the axis of the resistor from the more positive end to the less positive end. As before, |E| is equal to |(V/(l| where l is distance measured along the axis of the resistor. This is

[image: image276.bmp]
Figure 1.4 - Arbitrarily-oriented Resistor.

expressed as
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where aL is directed from P1 to P2. E can be decomposed into rectangular components as
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Each of the components is determined as the projection of E on its axis. As you recall from vector algebra (see Appendix B) the ith component, Ei, can be found from the dot product as
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where (i is the angle between the axis of the resistor, aL, and ai, e.g., cos(X=LX/L. For a general voltage distribution where V is a function of three spatial variables, i.e., V=V(x,y,z), each component Ei represents the incremental change of voltage due to an incremental change of position in the ith direction. Recall that a change in the voltage due to a change in position (z defines the component of the electric field intensity in the z direction, EZ=((V/(z. Extending this concept, we define the other two components as EX=((V/(x and EY=((V/(y. Substituting these forms into Equation (1.13)

 leads to
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Each component of the electric field intensity is associated with the change in voltage with respect to the change in position in the particular direction. Since most material is linear with respect to electromagnetic fields, the individual vector components of E are added to obtain the total electric field intensity. E points in the direction of the greatest rate of change of voltage with respect to distance. When the voltage changes in a particular direction are large, that component of the electric field is large and E points mainly in that direction. Of course, each of the components is less than the magnitude of the field, i.e., Ei(|E|. If we compare the height of a hill to the voltage, then the force one feels while on the hill compares with E. Just as the force points down the hill in the direction of the steepest slope, E points in the direction of greatest decrease in voltage.

In summary, the electric field intensity is governed by the spatial variations of the voltage. The electric field points in the direction of greatest negative spatial rate of change of the voltage with a magnitude equal to the rate of change of voltage in that direction.

Example 1.5-1: The axis of the resistor of Example 1.4-1 is lies on the line from the origin to (1,1,2.45). The end at the origin is the negative end. Calculate E, EX, EY, and EZ. From Example 1.4-1 we already know |E|=7.87 kV/m. To find the orientation of the line we use the relations for the spherical angles from Appendix B as (=arccos(z/[x2+y2+z2]1\2)=30o and (=arccos(x/[x2+y2]1/2)=45o. Therefore, cos(X=sin(cos(=0.354, cos(Y=sin(sin(=0.354, and cos(Z=cos(=0.866. These appear to be correct since the sum of their squares is 1 as it should be. Components are calculated from Equation (1.14)

 as EX=EY=(0.354)(7.87 kV/m)=2.79 kV/m and EZ=(0.866)(7.87 kV/m)=6.82 kV/m. Since the point (1,1,2.45) is the more positive terminal, E points back toward the origin so that all the components will have a negative sign. Therefore EX=EY=(2.79 kV/m and EZ=(6.82 kV/m and E=(2.79aX(2.79aY(6.82aZ kV/m.

1.6 - Voltage Gradient

Many resistors do not conform to the simple cylindrical nature we have just considered. Rather they come in a variety of shapes with many different electrode configurations. They posses a general voltage distribution V(x,y,z) for which the electric field is given by Equation (1.15)

 in the limit as the incremental displacements of position approach zero, then we arrive at the definition of this mathematical operation, known as the gradient. It is expressed as
(1.15)

. The right hand side of this equation is of a form that occurs in all areas of engineering and physics. Accordingly, mathematicians have devoted great effort to the rigorous development of this operation. A century or more ago vector calculus--derivatives and integrals of vector fields--was introduced. If we consider Equation 
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The nabla or del operator, (, defines a series of derivative operations on a scalar function which produces a vector result. In some literature the gradient of V is called grad(V). The behavior of V at a point is defined by this operation. In heat transfer, the flow of heat energy is in the direction of and proportional to the magnitude of -(T where T is the temperature as a function of position. In fluids the flow of material is in the direction of and proportional to the magnitude of -(p where p is the pressure within the fluid as a function of position. In all cases the vector direction is from more positive values of the scalar to less positive values as it is with -(V and V.

Throughout this textbook, we will emphasize rectangular coordinates as we have done in the development of the gradient. However, all of our work could have been developed in many other coordinate systems. The gradient operators in cylindrical and spherical coordinates are given in Appendix C.

The use of differentials in the mathematical description of the gradient in Equation (1.15)

 is more useful. Of course, in the limit as the increments approach zero, the two forms are the same.
(1.16)

 is useful for analytic solutions. However, for numeric work the incremental or difference form of the gradient in Equation 
The expression for E of Equation (1.15)

 can be expressed in terms of the gradient as
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as long as the derivatives required in the gradient exist. This is a useful mathematical concept, but it is really not observable since it is defined at a single point and all of our measuring equipment occupies a finite volume. Nevertheless, it is a useful concept that we can always approximate by Equation (1.15)

.

Example 1.6-1: Calculate E for the voltage distribution of 
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 V and evaluate it at (1,(/4,-2). Implementing Equation 
(1.17)

 we find  GOTOBUTTON ZEqnNum907514  \* MERGEFORMAT  so that 
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1.7 - (V and Equipotentials

As we saw in the last section, (V represents the magnitude and direction of the greatest spatial rate of change of voltage. The spatial rate of change of voltage in any other direction is less than this maximum value. The component of E in a particular direction is described by Equation (1.14)

 as
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where ai is the unit vector and li is distance in the specified direction. The component of the electric field in the ith direction is the spatial rate of change of the voltage in that direction. Mathematicians have given this the name of directional derivative since it represents the rate of change of the voltage in a particular direction. For finite differences it represents the incremental change of voltage, (Vi, with respect to distance measured in the ith direction, (li.

When ai is perpendicular to E, the dot product of Equation (1.18)

 becomes zero indicating that there is no change in voltage for displacements in that direction. Since there is no change in voltage, i.e., (Vi=0, for an incremental displacement perpendicular to E, the potential remains constant along this displacement. There are an infinite number of directions perpendicular to E; they form a surface to which E is perpendicular. Since the potential on this surface is unchanging it is called an equipotential surface and is illustrated in Figure 1.5.

Electric field intensity E is always perpendicular to equipotential surfaces!  This follows from the fact that E is in the direction of greatest change of voltage.

[image: image277.bmp][image: image278.bmp]
Figure 1.5 - E and several Equipotential Surfaces.

Returning to the analogy of the height of a hill to voltage we see that horizontal contours on the hill's surface are analogous to equipotential surfaces in space. The force down the hill is perpendicular to the contour since E is perpendicular to equipotential surfaces.

But wait, there is an additional concept of importance here. Since E=((V, then (V is also perpendicular to equipotential surfaces. Since the perpendicular or normal to a surface is not uniquely defined, the opposite direction, ((V, is also perpendicular. This property can be used to find the surface normal in the following manner. For an equipotential surface defined by V(x,y,z)=Vo the unit vector normal to the surface (pointing in the direction of increasing V) is given by
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Note that since the potential V(x,y,z) is a spatial function, the surface normal aN varies from point to point as well.

Example 1.7-1: Find the normal to the equipotential surface of Example 1.6-1 at the point (1,(/4,-2). We already have
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. Note the ambiguity in direction for the normal since there is no guide as to which direction is positive.

1.8 - Voltage Drop and Line Integrals

The work to this point provides a basis for expressing the microscopic behavior of the voltage and the related electric field intensity within a resistor. But, this does not give a measurable voltage drop between two points of a resistor. V(x,y,z) is the absolute voltage relative to the voltage at some reference location. On the other hand, the measurement of voltage drop gives the difference between the voltages at two different points--the voltage of one point relative to another. In this section we will devise a way to express this relative difference.

Recall that a component of the electric field intensity can be expressed as
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where Ei is the component of E in the direction in which (li is measured. The incremental voltage difference (Vi between the two endpoints of the incremental distance (li, is given as
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since Ei = E(ai. The last two terms can be combined as ai(li = (li and interpreted as a directed incremental line segment. The incremental voltage difference of all incremental line segments has this same form. All curved lines, more commonly called paths, can be approximated as a sequence of incremental line segments as shown in Figure 1.6.

[image: image279.bmp]
Figure 1.6 - Smooth Path and segmental Approximation.

Consequently, the voltage difference between the endpoints of the path can be obtained as the sum of the incremental voltage differences as
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The directed line segment (li approximates the tangent to the smooth path in the ith segment. Therefore, the dot product Ei((li depends upon the orientation of the path at each point as does the total voltage difference. The smaller the increment, (li, the more accurately the line segments approximate the smooth path and the more accurately is the voltage difference calculated. As the incremental distance approaches zero, the sum can be replaced by an integral form
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where L represents the path. This integral is known to mathematicians as a line integral. When the path L extends from one electrode of a resistor to the other, Equation (1.23)

 represents the voltage drop across the resistor. This is the voltage we would expect to measure with a voltmeter.

Often the path L=L(x,y,z) and the differential dl can be expressed as a function of position. This means that the integral depends upon the path so that two different paths through the resistor from one electrode to the other could produce different voltage drops. How can the voltage difference between two points depend upon the path? This is contrary to Kirchoff's voltage law of circuit theory and requires a closer look.

1.9 - KVL and Conservative Fields

One of the foundations of circuit theory is Kirchoff's voltage law (KVL) which states that the sum of the voltage drops around a closed loop is zero. Alternatively, this means that for any two paths of a circuit from point B to point A the voltage drop must be same, i.e., VAB1 = VAB2, see Figure 1.7. 

[image: image280.bmp]

Figure 1.7 - Application of Kirchoff's Voltage Law.

If the field description of a resistor is to be consistent with circuit theory, KVL must hold, i.e. the sum of the voltage drops around a closed path must be zero. In integral form this can be stated as
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correspondingly, the voltage around the closed path is
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The integral sign with the closed circle superimposed upon it, 
[image: image35.wmf]L
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, is the mathematicians shorthand for indicating the integral is evaluated on the closed path L; the path begins and ends at the same point. For incremental line segment approximations of the path L, this is expressed as
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But, what is the meaning of these forms? Consider KVL applied to the closed loop of Figure 1.7 that includes the ideal voltmeter. The leads attached to the voltmeter are assumed to have no resistance so they have no voltage drop regardless of the current flow. The voltage drops around the directed path L3 occur across the resistor, VAB1, and across the voltmeter, VMETER, with the polarities shown; they add to zero since
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The voltmeter will indicate the voltage drop across the resistor, i.e., VAB1=VMETER, as we know from circuits laboratory. The path of the integral has been chosen to be coincident with the branches of the circuit in Figure 1.7. More general applications for paths that are not aligned with the branches of a circuit will be considered later.

An alternate perspective of this concept is gained by considering the effects of E on a charged particle Q as we move it along a curved path. When a stationary charged particle Q is present in an electric field, it experiences a force which has been experimentally measured to be
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This is called the Coulomb force in honor of the experimental work of Colonel Charles Coulomb in establishing Equation (1.28)

. Note that the force on the charge and the electric field are in the same direction for a positive charge. To keep the charge from being accelerated by this force (remember F=ma), a mechanical force must be applied to the charge which is equal and opposite to the force caused by the electric field, i.e., FMECH=(FELECT. When this mechanical force is greater than the electric force, then the charge is accelerated in the direction opposite the electric field. Imagine applying to the charge a mechanical force that is ever so slightly greater than the electrical force, moving the charge very slowly so that effects of acceleration are negligible. The mechanical force does work on the charge according to the well-known principle of mechanics
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This is just Equation (1.22)

 multiplied by the charge, Q; the incremental work done, (WMECH, is equal to the charge multiplied by the incremental change in voltage, Q(V. This provides an alternative definition of voltage as the work done per unit charge in moving a charge within an electric field,
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Recall from physics that the charged particle Q has an increased potential energy as a result of the work done, (WMECH. The increase in potential energy per unit charge, (WMECH/Q, often is called the increase in potential. This is where the name potential came into use as an alternative for voltage when working with electromagnetic fields.

Note that the mechanical work done as expressed by Equation (1.30)

 depends upon the path chosen. The potential energy gained or the work done moving on a curved path L has the same mathematical form as voltage drop
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In the mechanical domain we know that if an object is moved in a closed path on a frictionless surface, the total work done is zero. Equation (1.31)

 shows this as well since the mechanical work done on the left hand side is zero when returning to the starting point; the change in voltage on the right hand side is zero for a closed path, an expression of KVL.

Equation (1.31)

 also strengthens the analogy between the height of a hill and the voltage within a resistor. The mechanical work done in moving up a hill results in positive work done just as moving a charged particle up a potential hill. The mechanical work done is greatest when moving up the hill in the direction of the steepest slope; this is analogous to moving a charged particle in the direction opposite to the electric field. No mechanical work is done moving on a contour of constant height since there is no force of gravity in the direction of motion, i.e., the dot product between force and motion is zero since they are oriented 90o apart. Similarly, when a charge is moved along an equipotential no work is done  The voltage drop measured perpendicular to an electric field is zero since this is along an equipotential.

Line integrals are also known as work integrals since they express the relationship of a vector field and the work done by moving along a prescribed path. Any field for which the work integral around a closed path is zero is known as a conservative field. Energy is conserved while traversing any closed path. Mathematicians have shown that any field which is conservative, i.e., has a closed path work integral which is zero, can be expressed as the gradient of a scalar. The electric field intensity in a resistor and the gravity force field are examples of conservative fields. They can be expressed as the gradient of a scalar quantity known as voltage or potential. But beware, not all fields are conservative. In fact, time-varying electric fields when not confined to a relatively small region of space such as in a resistor are non-conservative. This means that later in our studies, we will have to generalize our description of an electric field. But, the cost of this extra work will be worth it, since the nature of non-conservative electric fields is what enables wave propagation to take place. For the time being, however, we will be content to consider conservative versions of electric fields only.

1.10 - Evaluation of Line Integrals

Line or work integrals are the basis for many important calculations in electromagnetics. They will serve you well only if you master the techniques for their evaluation. This section provides such details.

Line integrals are defined by Equation (1.23)

 as
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The evaluation strategy is to first form the dot product between the vector integrand and the vector differential element. The functional description of the path L(x,y,z) is then incorporated into the integrand and the differential element, giving them a representation unique to the path of integration. Straightforward integration of the several resultant scalar integrals completes the process. Let's look at the steps in more detail. For convenience this discussion will focus upon Cartesian coordinates, but the procedure is similar for cylindrical and spherical coordinates.

Step 1: Form the Dot Product of the Integrand and the Differential - A vector field can be expressed in terms of its Cartesian components, 
[image: image43.wmf]XXYYZZ

EEE

=++

Eaaa

. The differential is a vector as well and in general is described as 
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. There is no direction or sign attached to the three scalar differentials. Instead, our choice of endpoints for the integration path govern the direction. The dot product within the integral becomes 
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Forming the dot product is really easy!  In general, each of the components is a function of position, i.e., Ei=Ei(x,y,z). Now we need to establish the relationship between the variables (x,y,z) which exist on the path of integration.

Step 2: Incorporate the Effects of the Path on the Integrand - From analytic geometry we know that a surface can be described by a single equation among the variables, a line by two equations and a point by three equations. Consequently, it takes at least two equations to represent the integration path. Often, these equations take the form of a relationship between two variables, e.g., y=f(x) and z=g(x), so that the functional dependence of a component Ei on the path of integration can be expressed in terms of a single variable, e.g., EY(x,y,z)= EY(x,f(x),g(x)).

The differentials of the two equations which define the path provide equations relating the scalar differentials, e.g., dy=[(f(x)/(x]dx and dz=[(g(x)/(x]dx. Combining the vector components with the differentials we obtain the three dot products as Exdx, EYdy=EY(x,f(x),g(x))[(f(x)/(x]dx, and Ezdz=EZ(x,f(x),g(x))[(g(x)/(x]dx. Sometimes it is more convenient to write x=f-1(y) and express dx in terms of dy as dx=[(f-1(y)/(y]dy. The choice depends upon the details of the problem and your preference. Regardless of which substitutions are made, the results of an integral evaluation are the same.

Step 3: Integrate - The three scalar integrals can be evaluated by setting the integral limits equal to the initial and final values of the appropriate variables, e.g., when dy is the differential in the integral, use yINITIAL and yFINAL. Note that the direction of the path dictates the order of the limits. If the path is reversed, the order of the limits is changed and the integral has an opposite sign. It may seem that a closed path has no initial or final points, but it can be decomposed into two or more separate integrals each of which has an initial and final point based upon the direction of the path.

The first two steps are applicable to both numeric and analytic evaluation of line integrals. However, the procedures for implementing step 3 differ; the next two sections consider the details.

1.11 - Numeric Approximation

We have already seen in Equation (1.22)

 that an integral along a curved path can be approximated by a sequence of incremental, straight-line segments on which the integral is evaluated. The results of the straight line evaluations are summed to approximate the integral over the curved path. Moreover, the integral on each segment is further approximated by assuming that the field is constant along the segment; the shorter the segments, the more accurate this approximation.

With this strategy, the integral along a line segment is given by product of the field component in the direction of the line segment and the length of the line segment. The evaluation of the field can be made at any convenient point on the segment. For consistency (and ease of constructing a calculation algorithm) the same relative location can be chosen on each segment, e.g., the initial, final or midpoint.

This process seems simple enough. Of course we are faced with a tradeoff—the more segments, the more accurately the summation approximates the integral, but the more calculations which must be performed. This common engineering dilemma requires your reasoned and knowledgeable decision in choosing the number of segments. There is no "right answer"; you must choose the "best" solution under the circumstances. What works for one situation may not be the proper choice in another.

Example 1.11-1: Calculate the line integral of a vector field 
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 along the path from (0,0,0) to (1,1,1) via the straight line segments (0,0,0)((1,0,0)((1,1,0)((1,1,1). First, the dot product is determined as 
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; note that FY=0 so the dy term vanishes. Since we are approximating the integration by the summation on incremental segments we replace dx by (x and dz by (z. Along the portion of the path from (0,0,0) to (1,0,0) there are no changes in y or z so (y=(z=0; we have only (x to consider giving 
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 on this portion of the path. Along the second portion (x=(z=0 and we have only (y; but since FY=0 there is no contribution. Along the third portion (x=(y=0 and we have only (z; moreover, along this segment y=1 so that 
[image: image49.wmf]z

·»D

Fd

l

. These are combined to approximate the integral along the path as 
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For computational convenience, let's make the size of all increments within a summation the same, i.e.,   (xn=(x and (zm=(z. How large should we choose the increments (x and (z? We could get very theoretical about the answer to this question, but on an intuitive basis we know that it depends upon the functional form of the summand. For fields that vary rapidly along the segment, the segments should be smaller; for slowly varying fields the segments can be larger. The simplest answer is to compare a solution with the path divided into N segments of (x=L/N to the solution with twice as many segments. If the two solutions compare closely, then we probably have a reasonable approximation of the integral.

Since the field of the first summation of Equation 
(1.32)

 is given as x, it varies rather slowly over the range of summation. Let's divide the range into N=10 segments so that (x=L/N=1/10=0.1. We must choose the location on each segment at which to evaluate xn. For convenience, let's choose the midpoint of each segment, i.e., xn=0.1n(0.05. The summation along this portion of the path is given by GOTOBUTTON ZEqnNum925704  \* MERGEFORMAT 
As a check on the reasonableness of this approximation, we repeat the calculation with 20 segments and obtain 
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 equal to the first result. The exact result (as we will find in the next section) is 0.5. The numeric approximation agrees exactly with the exact solution.

The second summation is seen to readily give 
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. Note that this result is exact and independent of the number of segments since the summand is constant. Combining the two summations we obtain the numeric approximation of the line integral as 
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 which agrees with the exact result of 1.5.

This technique can also be applied to approximate line integrals where numeric rather than functional values of the field are given. The field components can be represented by arrays of numeric values representing the field components at specific locations in space. The appropriate matrix entries are used instead of functional forms to execute the summation procedure.

1.12 - Analytic Evaluation

On many occasions the integrand and the path are expressed as functions of spatial coordinates. Since analytic evaluation of the work integral will give an exact answer, it is often worth the extra effort. The rest of this section includes several examples of analytic solution methods of line integrals.

Example 1.12-1 - Calculate the line integral of the vector field given in Example 1.11-1 where 
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 along the path from (0,0,0) to (1,1,1,) via the straight line segments (0,0,0,)((1,0,0)((1,1,0)((1,1,1). As we found earlier, the dot product is given as 
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. Along the first segment we have only dx and the integrand becomes xdx. There is no contribution along the second segment. Along the third segment we have only dz so the integrand becomes dz. The initial and final points are obvious from the specification of the line segments. These are combined to give the integral along the path as
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Example 1.12-2 - Calculate the line integral for the same field, but for a slightly different path, (0,0,0)((0,0,1)((0,1,1)((1,1,1). The dot product is given by 
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 as before. On the first segment dx=dy=0 leaving only ydz; but since y=0 on this path there is no contribution on this segment. On the second segment dx=dz=0 leaving dy as the differential; but, its coefficient is zero so this segment gives no contribution. On the third segment dy=dz=0 leaving dx as the differential. These results are combined to give 
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. This result differs from Example 1.12-1; the work integral of this field between the two endpoints is not the same when different paths are used. This means that the field is not conservative and could not represent an electric field intensity.

Example 1.12-3 - Calculate the line integral of the same field of the Examples 1.12-1 and 1.12-2 along a curved path from (0,0,0) to (1,1,1) on the path formed by the intersection of the plane x = z and the parabolic surface 
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. The dot product is given by 
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. The first term requires no further simplification as the functional dependence and the differential are both in terms of a single variable x. In the second term we substitute x=z and 
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 which describe the path. This leads to 
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. The square root allows two possible solutions, but only +zdz represents the positive values of y which lie on the path. The integral can then be evaluated as 
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 This result confirms that the field is non-conservative as we have a three different results for three different paths.

The electric field intensity within a resistor exhibits conservative behavior; it satisfies KVL and the work integral between any two points is the same regardless of the path chosen. Because the voltage drop is the same for any path, we should seek the path that minimizes the effort in evaluating the integral.

Example 1.12-4 - Find the voltage drop from (0,0,0) to (1,1,1) for an electric field intensity 
[image: image65.wmf]XY

yx

=+

Eaa

. The definition of voltage drop establishes the initial point as (1,1,1) and the final point as (0,0,0). Since an electric field is conservative we can choose any convenient path to evaluate the integral. Let's choose the segmented path (1,1,1)((1,1,0)((1,0,0)((0,0,0). The dot product is given by 
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. Since EZ=0, there is no contribution of the first segment. On the second segment, only dy(0 and x=1 so the integrand becomes dy. On the third segment only dx(0; however, since y=0 there is no contribution. The voltage drop is given by 
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Example 1.12-5 - To verify that E of Example 1.12-4 represents a legitimate electric field let's show that the voltage drop is the same via a different path, say a straight line from the initial point (1,1,1) to the final point (0,0,0). This path is represented by y=x and y=z (or x=z). The integrand is 
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 as before and the voltage drop is 
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, the same result as in Example 1.12-4.

The voltage drop is the same and KVL is verified for these two paths. This gives us some confidence that E does represent a proper electric field intensity. However, these are just two of an infinite number of possible paths for which the voltage drop is to be the same. Obviously, we cannot try every possible path; some other verification is necessary to prove that E is conservative. You will be pleased to know that there is a single vector operation that unambiguously shows whether a field is conservative. Unfortunately, it requires a new vector operation so we will defer this until later. Nevertheless, in this section we have learned how to evaluate the work integral over any prescribed path.

Example 1.12-6 - Even when electric fields are expressed in non-Cartesian coordinates the same techniques can be used to evaluate line integrals. Consider the field between two, PEC, coaxial cylinders as shown in Figure 1.8. 

Figure 1.8 - A Coaxial Cable.

This geometry closely models the common coaxial transmission lines used for cable TV distribution or to interconnect laboratory instruments. Experiments have shown that with the outer conductor grounded and a voltage Vo applied to the inner conductor that the electric field in the region between the two conductors is given by 
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. Note that the electric field points radially outward from the more positive inner conductor to the less positive outer conductor as expected. The differential displacement vector in cylindrical coordinates is expressed by 
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; the dot product becomes 
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. Only displacements in the (-direction cause any change in potential since that is the only direction in which E points. Displacements in the (- and z-directions are along equipotentials. Since electric fields are conservative, any convenient path can be used to determine the voltage at points between the two conductors. A radial path is easiest and the voltage is expressed as
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For (=a the voltage becomes Vo as it must be since this was specified as the applied voltage; for (=b the voltage is zero as it must be.

1.13 - Current and Current Density

To this point we have investigated the electromagnetic concepts associated with the voltage drop across a lumped element resistor. Now it is time to consider another important aspect of resistors--current flow. As with our consideration of voltage, we will relate the measurable current in the wire leads of a resistor to the microscopic details of current flow within the resistor.

Circuit theory describes current as the time rate of flow of charged particles across a specified surface in accordance with the expression



[image: image74.wmf][

]

IQA

·

=


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.33)

with units of Amperes. 
[image: image75.wmf]Q
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 is the notation to indicated the rate of charge crossing a specified surface. This is in contrast to dQ/dt that represents the rate of change of charge. We will use the latter form later. A positive direction of current flow across the surface must be defined, also. We can measure the current with an ammeter; the current enters one terminal and leaves by the other. Any surface within the ammeter could be considered as the surface through which the current is measured. For convenience, define the surface coincident with an equipotential surface.

According to the passive sign convention of circuits, current flows from the more positive terminal of a resistor to the less positive terminal. The circuit model for current flow describes the flow of positive charges, though, in fact within wires and resistors the vast preponderance of charges in motion are electrons which posses a negative charge. According to Equation (1.33)

, electrons (for which Q(0) must flow in the opposite direction of "conventional current" used in circuit theory. The details of the polarity of charge carriers will not trouble us in this course. Most often, we will be content to use positive charge flow associated with conventional current of circuit theory with a few rare exceptions such as several different charged particles must be considered.

Current enters the conductive portion of a resistor via the wire leads and, in turn, the electrodes. The wire leads and electrodes are modeled as PECs and, consequently, have no resistance nor support a voltage drop. Moreover, we learned in physics that the current is uniformly distributed across any equipotential surface of an axially symmetric resistor as shown in Figure 1.9. Using Equations (1.2)

 we can express the voltage drop across a resistor as
(1.1)

 and 
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The term in parenthesis is known as current density and has units of amperes/square meter. The smaller the cross-sectional area, the greater the current density and vice-versa. Extension of this concept to the


Figure 1.9 - Current Flow in a Resistor.

incremental current, (Ii, crossing the ith surface element of area (ai (see Figure 1.9) leads to current density, Ji, of the ith surface element as a microscopic description of current flow in amperes/square meter
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For uniform current density, J, is simply the total current, I, divided by the resistor cross-sectional area, A. But in general, the current density can vary throughout the resistor and must be expressed as the quotient of incremental current and incremental area as in Equation (1.35)

. As the cross-sectional area is made vanishingly small, the current density at a single point can be expressed as
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Current density has a direction as well since positive charge flows from higher voltage to lower voltage. For the resistor of Figure 1.9 this is in the (aZ direction. Note that (aZ is normal to the incremental surface used to define current density, (a. It is standard practice to consider the current density as a vector and to attach to it the unit vector in the direction of positive charge flow as
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The current density parameter, J, contains more information—microscopic information—regarding current flow than provided by total current. Earlier we obtained E, an intensity vector of volts/meter. Now we have defined a different form of vector called a flux density vector with units of Amperes/square meter or Columbs/second/square meter, J, in the same direction as E for our resistor. Flux density represents the directed strength or magnitude of a vector that penetrates or crosses a unit surface perpendicular to the vector and has units of flux/square meter. The flow of water within a region could be represented by a flux density vector W given in liters/second/square meter and pointing in the direction of the flow. For a nuclear reactor, the flux of neutrons/second/square meter could be represented by N. All vector fields of electromagnetics are either an intensity vector or a flux density vector. While J, W, and N represent the actual motion of physical objects or mass, some flux densities represent invisible, vector fields, fixed in space, which are not associated with motion of anything physical.

Example 1.13-1: A #16 copper wire has a current of 10 A flowing in the axial direction. Calculate the current density within the wire. Let's assume that the current is uniformly distributed. Since the current flow is axial, it is perpendicular to a diameter. Therefore, current density is simply the current divided by the area. The diameter of #16 wire is .0508" with an area of A=([(.0254)(.0254)]2=1.31x10-6 m2 so that |J|=10/1.31x10-6=7.65 MA/m2. Wow! What a large value, but it is typical of the current density in house wiring.

1.14 - Currents & Surface Integrals

For most common materials, J is in the direction of E which in turn is perpendicular to equipotential surfaces. The total current crossing an equipotential surface in a resistor is found by summing all the incremental currents which perpendicularly cross this surface as
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In more general cases we may wish to calculate the current crossing surfaces other than equipotentials to which the flow is not perpendicular. How can Equation (1.38)

 be adapted to handle this?

Consider the surfaces of Figure 1.10; the same total current passes through each of them even though


Figure 1.10 - Current flow through surfaces.

they have quite different areas. A little thought suggests that in calculating the total current through a surface the really important surface parameter is projected area--the area projected onto a plane perpendicular to the current flow. Fortunately, this is relatively easy to find in terms of the unit normal vector to the surface. Every surface has two vectors which are perpendicular, or normal, it. We must choose the normal vector in the direction that we wish to define for positive current flow. A directed surface element is then defined as
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the incremental area multiplies the unit normal vector. Remember, that when we specify the equation of a surface, its normal can be expressed as its gradient, see Equation (1.39)

 the area of the incremental surface element projected perpendicular to the current flow is given as
(1.19)

. From Equation 
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As in Equation (1.38)

, the current crossing the incremental surface is found by multiplying the projected area by the magnitude of the current density
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How elegant! Only the component of current density that is perpendicular to the surface passes through the surface. The incremental current through an incremental surface element is merely the dot product of the current density, J, and the directed surface element, (s. More generally, we can replace the current flux density J by an arbitrary flux density F. This results in an incremental flux (( that corresponds to the incremental current (I crossing the surface (s. This is expressed as
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These concepts enable a modification to the form of Equation (1.38)

 so that it is valid for any surface 
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Recall that when summing the incremental work done along a particular path, we took the limit as the increments became differentially small which enabled us to represent the work done as a line integral. Similarly, if we let the incremental surface of Equation (1.43)

 become differentially small we can obtain an integral representation for the current crossing a surface
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where S is the extent of the finite surface. The double integral is the usual notation for the double integral over a surface. This form of integral is known as a flux integral since it describes the flux, I, crossing the surface, S. In generalized form this flux integral becomes
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This is the second type of vector integral that we will use in electromagnetics. The physical meaning contained within Equation (1.44)

 is the subject of the next section.

1.15 - Charge Conservation & KCL

Intuitively, we recognize that charge is conserved within any volume. If current flows in, the positive charge must increase; if current flows out, it must decrease. To express this relationship mathematically, we can use a form of Equation (1.44)

. The current entering or leaving a volume must cross the surface that encloses the volume. This is called a closed surface since it has "no holes in it", otherwise the volume would not be enclosed. This is represented mathematically by
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where S is the surface which encloses the volume and ds points out of the volume, see Figure 1.11. In addition, for the fingers of the right hand aligned with the closed path as shown in Figure 1.11, the normal ds is in the direction of the thumb. The choice of the outward normal to the surface means that components of J which point outward will contribute positively to the current, those which point inward will contribute negatively. To calculate the current into a volume, the inward directed ds must be chosen. The closed loop on the integral is the mathematician’s way of showing a closed surface much as it indicated a closed line integral. Recall that current represents the rate of charge crossing a particular surface. In this case it is the surface enclosing a particular volume and is equal to the rate of charge crossing the surface. If charge within the volume is conserved, the rate of charge moving outward across the closed surface S must be equal to the rate at which the charge within the volume is decreasing. With the definition of the net charge within the volume as Q, charge conservation can be expressed as
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Figure 1.11 - Geometry of a Closed Surface.

The greater the outward components of the current density, J, the greater the rate of decrease of charge within the volume. Note that Q is the net charge within the volume enclosed by the closed surface S, i.e., the algebraic sum of all charges, both positive and negative.

We are already familiar with this concept in circuit theory for the special case where there is no charge within the volume. It is known as Kirchoff's Current Law (KCL). If there is no net charge within the volume, then Q is zero and unchanging with a zero derivative, i.e., dQ/dt=0. Under these conditions, Equation (1.47)

 is expressed as
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which we interpret to say that the net current out of any surface sums to zero. In circuits we usually focused upon a node, but we could combine any number of nodes to define the surface S. However, we will later see that the surface S must completely contain an element and not pass through it in order that Equation (1.48)

 is valid. So you already know more about surface integrals than you realize! But, on to something new—we must learn how to evaluate surface integrals.

1.16 - Evaluation of Surface Integrals

Our earlier experience with evaluation of line integrals provides several useful parallels for evaluation of surface integrals. Both integrands are formed as a dot product and both integrations are confined to a specified region. Of course, they have quite different physical meanings. Line integrals involve a field intensity vector integrated in a specified direction along the given path; they are proportional to work done or to change in energy. Surface integrals involve a flux density vector integrated over a specified region of a given directed surface; they are equal to the total flux that passes through the surface in a specified direction.

As with line integrals, just three steps are involved in the evaluation of a surface integral. First, perform the dot product of the integrand and the differential to form the scalar differential flux; second, evaluate this scalar for the surface upon which the integration is to take place; third, perform the scalar integration over the limits of the defined surface S.

The directed surface element ds=aNda is the product of two factors—the surface normal vector and the associated differential area. The proper surface normal is defined to be in the direction in which the desired flux is to be calculated. If the direction of the normal is reversed, the sign of the integral is changed. The convention for closed surfaces is that the outward surface normal is chosen so that the integral represents the flux out of the closed surface. The associated differential area is the product of two differential lengths which lie on the surface S. A careful look at Figure 1.12 reveals a compact representation of the directed surface normal as
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As you recall, the cross product of two vectors is perpendicular to the plane containing the two vectors and is proportional to the area of the parallelogram formed by the two vectors, see Appendix A. dl1 and dl2 must be chosen carefully so that ds is oriented in the desired direction. Usually, we need not be so formal as Equation (1.49)

 since the surface normal and the differential area are obvious from the surface geometry of S.

The choice of coordinate system in which to express the directed surface element is guided most often by convenience. When the surface (or a portion of it) conforms to a common coordinate system, e.g., Cartesian, cylindrical, or spherical, the choice of coordinate system is trivial. However, rarely does the desired surface conveniently fit a common coordinate system. Several techniques for handling these cases are included in the examples that follow.


Figure 1.12 - Directed differential surface Element.

With both J and ds expressed in terms of the same coordinate system, the dot product of J(ds is readily formed. Integration can proceed only after J(ds is evaluated on the surface S. As noted earlier, a single equation is required to represent a surface. For those cases where a common coordinate system is appropriate, the equation often takes the form of a single variable, e.g., x=5 represents a planar surface whereas a spherical surface is given as r=4. The general representation of a surface is as a single function expressed in terms of appropriate coordinates. For the common coordinate systems, expressions for the surface can be written in the form of S(x,y,z)=0, S((,(,z)=0, or S(r,(,()=0. In each representation, any one variable can be expressed in terms of the other two when on the surface—an expression unique for that surface. Substitution of this expression into the dot product, J(ds, provides the required evaluation on the surface.

In contrast to line integrals where the initial and final points of integration are quite clear, surface integrals require care in setting the limits of integration. This is easily handled by considering a flux density of unit magnitude that is perpendicular to the surface. The dot product becomes J(ds=1aN(aNda=da; the resulting surface integral is the area of the surface S. Since surface areas are always positive, the limits of integration are set properly when the integral gives a positive number. This usually means the upper limit of integration of each variable is more positive than the lower limit.

1.17 - Numeric Evaluation

Surface integrals can be evaluated numerically in a manner similar to that used with line integrals. The simplest approach is to discretize the surface S into a set of incremental areas each of which is then approximated by the tangent plane at the center of the region. Furthermore, if the incremental areas are small enough, variations of the integrand within each area are ignored and the integrand is assumed to be constant and equal to the value at the center of the region. As the size of the areas is decreased, the greater the accuracy of these approximations; but the number of regions and calculations increases. We are faced with a typical engineering decision--accuracy versus computational effort. Since we are primarily interested in the behavior of electromagnetic fields, we will be satisfied with this simple approximation. More sophisticated numeric techniques are needed for increased accuracy and computational efficiency. They are the subject of courses in numeric analysis and advanced electromagnetics courses.

This approach allows us to approximate the surface integral of Equation (1.43)

 as
(1.44)

 by Equation 
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Ji represents the numeric value of the vector flux density at the center of the ith incremental tangent plane, (si. A form of Equation (1.50)

 more useful for calculations is 
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where i and j represent the summation indices of the two incremental lengths, (l1i and (l2j, Jij is the value of the current flux density at the center of surface element denoted by the ith value of (l1 and the jth value of (l2 and aNij is the surface normal at the center of the ij surface element. For flux densities expressed in analytic form, Jij is merely the equation for J evaluated at the center of the region. Alternatively, Jij may be a table of numeric values representing sampled or measured values of flux density. To evaluate (si, first find the surface normal at the center of the region. Since S represents a surface and is expressed as a function of coordinates, the surface normal can be expressed in terms of the gradient, described in Equation (1.19)

, as
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which is evaluated at the center of ij surface element. Unless the surface S naturally fits some other coordinate system, aNij is most frequently expressed in terms of the Cartesian coordinate system due to the invariance of its unit vectors throughout space. The incremental area (aij=(l1i(l2j is expressed in a convenient coordinate system, most often Cartesian. Regardless of the coordinate system, (aij is evaluated at the center of the region, also. Following these steps, the dot product and subsequent summation is taken. As with line integrals, it is convenient to choose equal increments of the surface variables, i.e., (l1i=(l1 and (l2j=(l2. As with line integrals, the number of intervals affects the accuracy in a way which depends upon the functional variations of the incremental flux over the surface S. The more rapid the variations, the more intervals needed. If the number of intervals is doubled and the results do not change markedly, then the number of intervals is probably sufficient.

The several examples which follow will illustrate the concepts discussed in this section.

Example 1.17-1: Calculate the total current flux in the positive y-direction which passes through the region of the y=0 plane defined by 0(x(1 and 0(z(1 for a flux density of J=5yaX(3yaY. The desired direction of flux is the positive y-direction, so aNij=aY; the differential area lies in the y=0 plane so that (a=(x(z and (s=aY(x(z. The dot product is J((s=(5yaX(3yaY)(aY(x(z=(3y(x(z which vanishes on the surface S where y=0. Since the incremental flux vanishes, no flux passes through the surface.

Example 1.17-2: Consider Example 1.17-1, but choose the surface S as the y=2 plane. As before, we find J((s=(3y(x(z which is nonzero on the y=2 plane. Consequently, the incremental flux is a constant (I=J((s|y=2=(6(x(z over the entire surface. With no variation of (I over the surface, a single increment sufficient, i.e., (x=(z=1, with the result 
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Example 1.17-3: Consider the current flux density of Example 1.17-1; calculate the total current in the positive x-direction crossing the x=2 surface within the range of 0(y(1 and 0(z(1. The surface normal is aN=aX; the incremental area is (a=(y(z so that (I=J((s=(5yaX(3yaY)(aX(y(z=5y(y(z. Since (I varies with respect to y but not with z; we chose the number of increments as NY=10 and NZ=1 which gives yj=0.1(j(0.5), (y=0.1 and (z=1. This leads to 
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Doubling NY leads to y=0.05(j(0.5) and (y=0.05 but since there are no z variations, NZ is unchanged and (z=1 with the result 
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 which agrees exactly with the result for half the number of increments. This gives us confidence that we have sufficiently small increments. As we will see later, both agree with the analytic calculations due to the linear variation of the incremental current. We should not expect such good agreement with other functional forms.

Example 1.17-4: A point source of light located at the origin emanates power equally in all directions, i.e., it is isotropic. At a radius of 1 meter this light flux density is 1 W/m2. Calculate the light power that emanates radially outward through the upper hemispherical surface. For convenience, we will use the spherical coordinate system with the sphere centered on the coordinate origin. From the description of light power density we can determine that F=1ar on the surface where ar is the radial unit vector of spherical coordinates. The direction in which light power flow is desired is the radially outward direction through the spherical surface so that aN=ar. The surface area can be expressed in terms of incremental lengths in the ( and ( directions. As you recall (or have found in Appendix B) the lengths can be expressed as (l1=r(( and (l2=rsin((( where r=1 on the unit sphere surface. This functional dependence of the incremental length will complicate the calculations. Combining these results, we obtain the incremental power flux density ((=F((s=ar(ar(r(()(rsin((()|r=1=sin(((((. To cover the upper hemisphere the range is 0((((/2 and 0(((2( (refer to Appendix B). (( does not vary with ( so that N(=1 is sufficient; but since (( varies as sin(, choose N(=10 so that ((=(/20 and (j=(j(0.5)((=(j(0.5)(/20. The total flux is expressed as 
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As a check on the accuracy of our result set N(=20 which gives 
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 close enough to the previous value to consider the solution accurate. In fact, the analytic solution is 2( so these simple approximations are quire accurate. This calculation means that 2( watts of light power are emanating through the upper hemisphere. Since the source is isotropic, an equal amount of power is emanating from the bottom hemisphere; the total power from the sphere is 4( watts.

Example 1.17-5: An isotropic electric flux density of  1 A/m2 is radially directed across the spherical surface of unit radius. Describe the conditions of the charge Q contained within this surface. The total current is found to be 4( amperes using the identical calculations as the power of Example 1.17-4. Conservation of charge requires that If there is a net current flow out of a closed surface the charge within the surface must be decreasing. Equation 1.47 expresses this quantitatively as 
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. The charge within the spherical surface is decreasing at a constant rate of 4( coulombs per second due to the current out of the sphere of 4( amperes. The charge within the volume is found by direct integration to be 
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. The charge present in the volume at t = 0, Q(0) must be specified to get a complete solution.

Example 1.17-6: The same isotropic current density of Example 1.17-5 passes through the surface of cube with sides of length 2 m centered on the origin oriented with its faces parallel to the x, y, and z planes. An additional detail regarding the flux is that it varies inversely proportional to the square of the distance from the point source. Note, that since the sphere is everywhere equidistant from the origin, the flux density is uniform so this feature was unnecessary for the sphere. J is expressed naturally in spherical coordinates as J=r-2ar A/m2. The sides of the box have outward surface normals of (aX, (aY, and (aZ for the front, back, right, left, top and bottom sides, respectively. To simplify the dot product of incremental flux, convert ar to its rectangular components 
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 as shown in Appendix B. 

Fist let’s find the flux through the top surface of the cube where z=1, aN=aZ, (a=(x(y and the range of integration is (1(x(1 and (1(y(1. The incremental flux is given by ((=J((s=r-2ar(aZ(x(y =r-2cos((x(y. We convert the spherical coordinate variables to Cartesian coordinates from their definitions in Appendix B as r(2=1/(x2+y2+z2) and cos(=z/(x2+y2+z2)1/2. The symmetry of this problem allows a significant reduction in the number of calculations. The flux which penetrates the z=1 surface is the same for all quadrants. Consequently, the flux through the top surface is obtained by integrating over the range of 0(x(1 and 0(y(1 and multiplying the result by four, resulting in a four-fold reduction in the number of calculations. Since the incremental flux varies over the surface, choose NX=NY=10 so that (x=(y=0.1. Combining these results we find the current flux out of the z=1 surface as 
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A similar calculation for the bottom surface at z=(1 gives the same result due to the isotropic nature of J. In fact, a little thought suggests that due the symmetry of J, the flux through all surfaces of the cube are equal. To verify this reasoning, let's calculate the flux through the right surface at x=1 where aN=aX, (a=(y(z, and (I=J((s=r-2sin(cos( over the range of integration of 0(y(1 and 0(z(1. From the relationships sin(=[(x2+y2)/(x2+y2+z2)]1/2 and cos(=x/(x2+y2)1/2, then sin(cos(=x/(x2+y2+z2)1/2, the same form as for the z=1 surface. Of course, the numeric integration gives the same value we got above. Now, we can express confidently the total current out of the cube is just six times the current through the top surface, or I=6ITOP=6(2.0957)=12.574(4( A. Not so amazingly, this is the same result that we obtained for the flux emanating from a unit sphere for the same flux density. This verifies that the same total current emanates from any closed surface that includes the same source regardless of its shape.

1.18 - Analytic Evaluation

When the flux density and the surface are expressed in functional form, standard analytic integration techniques can be used to calculate the flux surface integral. This method is most useful when the surface conforms to one of the common coordinate systems. Less frequently, a common surface over which an integral can be readily evaluated, e.g., a sphere, a cylinder, or a cone, is used to approximate a surface which cannot be integrated easily. The same "three-step" procedure used with line integrals is followed here as well. Several examples that follow will illustrate the method.

Example 1.18-1: Reconsider Example 1.17-4 with isotropic current flowing through a spherical surface. The current density is given as J=(1/r)2ar A/m2; the surface normal is aN=ar; the differential area is da=r2sin(d(d(. Combining these, we can express the current flowing out of the sphere as 
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 As we anticipated, the numeric integration agrees with the analytic integration. More significantly, note that the integral shows no radial dependence. This means that regardless of what radius we choose, the current is the same, i.e., the current is conserved over any surface which encloses the source. The current density's inverse square dependence upon radius ensures this behavior. The radial dependence of many physical fields has this form as well. More on this later.

Example 1.18-2: A non-uniform current density, J=(sin(/r2)ar, passes through a unit sphere. This current is zero at the poles of the sphere where sin(=0 and peaked in the equatorial plane where sin(=(/2. Calculate the total current outflow. The integral is formulated as in Example 1.18-1, but the integrand is complicated by the additional sin( term; the integral is expressed as
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 Other functional forms for current density are handled in the same manner, though the integrals may not always be as easy to evaluate.

Example 1.18-3: All of space is filled with a flux density of F=(2cos(a(+5(zsin(a(+3(aZ w/m2 where w is the symbol for widgets. Calculate the flux of widgets emanating from the volume shown in the Figure 1.13 below.


Figure 1.13 – Surfaces of Pie-shaped Cylinder.

We can write an expression for the total flux as 
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. We know how to calculate the integral, but we must carefully define the several parts of the surface S. The curved surface is defined as SC{(=2, 0((((/4, and (1(z(3}, the left end as SL{z=(1, 0((((/4, and 0(((2}, the right end as SR{z=3, 0((((/4, and 0(((2}, the horizontal surface as SH{(=0, 0(((2, and (1(z(3}, and the inclined surface as SI{(=(/4, 0(((2, and (1(z(3}. This seems quite a bit more complicated than in earlier examples since five surface integrals must be evaluated. But, each of them follows the same three rules that we used before. For each surface we must identify the directed surface element, form the differential flux dot product, set the limits on the integral, and, finally, integrate. So let's begin. 
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SH:
ds=(a(d(dz,
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The total flux emanating from S is the sum of these fluxes through the individual surfaces 
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The negative sign for the flux exiting the left end indicates that flux actually enters the left end. Moreover, the flux entering the left end is equal to the flux exiting the right end. This is due to the fact that the z-component of the flux has no dependence upon z so that the same flux density exists at both ends which are of equal area; hence, equal flux entering one end as leaving the other.

1.19 - Divergence

Surface integrals provide "global" information about the total flux emanating from a finite-sized surface. For many situations this is adequate as in KCL of circuit nodal analysis. However, it would often be useful to know the behavior of the flux at a point. Theoretically, this would be on a differential scale, but more practically, we can only observe or perform numeric calculations on an incremental scale. To accomplish this, we apply the flux integral to the surface S shown in Figure 1.14, evaluating it as the dimensions of the surface are allowed to shrink to incrementally small lengths. Using the convention that a closed surface integral represents the flux out of the region, we find the current flux out of the closed surface S is given by Equation (1.46)

 as
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Figure 1.14 - Flux emanating from an incremental surface S.

For convenience, the volume is assumed to be a rectangular box centered at the point (x,y,z) with the surfaces perpendicular to the coordinate axes. The current density is written in terms of its Cartesian components as
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where the components Ji may be functions of space. The total current out is composed of six currents crossing the front, back. right, left, top and bottom surfaces of the box. Since the box becomes vanishingly small, the total current is indicated as an incremental current and is expressed as
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The current out of the front and back surfaces can be combined as
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Since ds=aXdydz and ds=(aXdydz for front and back surfaces, respectively. These currents are due only to the x-component of the current density, JX. Moreover, the differential surface elements are the same for both surfaces, dydz. In addition, the well-known Taylor's series can represent JX on both surfaces in terms of JX at the center of the box as
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where the + sign applies for the front surface and the ( sign for the back. Substituting Equation (1.56)

 we have
(1.57)

 into Equation 
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where integration over the y and z ranges of the surfaces is indicated by the subscripts of (y and (z, respectively. All the even-powers of (x terms of the integrals cancel leaving only the odd-powers in the form ((x)n where n=1,3, ( . Making this simplification, we obtain
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where the primes indicate the variables of integration about the center point. As the dimensions of the box become vanishingly small, the higher order terms, i.e., n(3, become negligible since (x>>(xn. Furthermore, as (y, (z 0 and the range of integration shrinks, the integrand is essentially constant over the area of integration. Consequently, the integral can be approximated as the product of the integrand and the area of the integration



[image: image120.wmf]XX

FB

JJ

IIxyzv

xx

¶¶

+»DDD=D

¶¶


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.60)

where (v is the volume of the rectangular box.

What a simple expression! But what does it say, and, more importantly, what does it mean? The sum of the currents out of the surfaces perpendicular to the x-axis depends upon the derivative of JX with respect to x and upon the volume of the vanishingly small rectangular box. When JX is constant, i.e., (JX/(x=0, the x-component of the current out of the volume is zero, sort of a one-dimensional KCL. Under this condition, the current that exits one of the surfaces is equal to the current which enters the other. When JX is a function of x, i.e., (JX/(x(0, the sum of the two currents is non-zero. When (JX/(x>0 the sum of the x-component of the currents is out of the box; when (JX/(x<0 the sum is into the box. Since the two surfaces are of equal area, the x-directed current can be non-zero only if JX varies with respect to x.

There is nothing unique about the x-axis so the y- and z-directed currents show similar behavior as
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and
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The total current leaving the box is the sum of Equations (1.62)

 and is expressed as
(1.61)

, and (1.60)

, 


[image: image123.wmf]XYZ

JJJ

I()v

xyz

¶¶¶

D=++D

¶¶¶

.
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.63)

The quantity in the parenthesis occurs so frequently in all areas of physics that it has been given the name of “divergence of J” or divJ. With this definition Equation (1.63)

 becomes
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Equation (1.64)

 is the basis of a physical definition of the divergence as
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As the rectangular box becomes vanishingly small, the ratio of the current that emanates from the box to the volume of the box is defined as the divergence of the flux density. Since the box becomes vanishingly small, divJ describes this property of the flux density at a point, the center of the box. At points with zero divergence, flux lines are continuous--none beginning nor ending—so that the amount of flux entering the small box is the same as that leaving, see Figure 1.15a. The divergence is non-zero only when there is a net current out of (or into) the box. This requires that an excess of flux lines leave (or enter) the box which is possible only when lines of flux begin (or end) within the box. In other words, the flux “diverges” from such a point. Consequently, there must be a source of flux at points where the divergence is positive, see Figure 1.15b, and a sink at points where it is negative, see Figure 1.15c. For electric currents, moving charge is the source (or sink) of the flux. Charge conservation requires that the net motion of charge out of (or into) a point is accompanied by a depletion (or accumulation) of total charge at that point. Such a point is called a source (or sink) of current. divJ(0 indicates the depletion or accumulation of charge at a point.


Figure 1.15 - Flux lines for a: divF=0, b: divF>0, and c: divF<0.

Up to this point we have assumed that the divergence exists and is finite. We have ignored the fact that the derivatives that define the divergence are infinite whenever the flux density is discontinuous. Though the ECE faculty can make up problems with discontinuous flux density, this rarely occurs in nature. The flux density may change very rapidly in some regions, but on a fine enough scale the change is finite.

Measurements to confirm the divergence of a flux density cannot be made since instrumentation is not differentially small, but always occupies some finite region. However, if incremental rather than differential dimensions are considered, the divergence can be approximated as
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In addition, this approximate form is useful for numeric computations as long as the spatial increments are not too large. If in doubt about the increment size, halve it and compare the results with the original.

A useful approximation of an integral over a surface comes from Equation (1.64)

 as well. The net flux out can be estimated in terms of the divergence as
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as long as the divergence exists and is finite.

A mathematically compact notation for the divergence comes from the recognition that the derivatives of the nabla or del operator are present in the divergence. A careful look at Equations (1.65)

 reveals that the scalar derivative associated with a unit vector of the del operator acts upon the corresponding component of the flux density. For example the x-component of del, (/(x, operates upon JX. Recall that the dot product of two vectors is the scalar multiplication of their respective components. Formal application of this principle treats ( as a vector with an x-component of (/(x so that when it is dotted with J the scalar product of the two x-components becomes (JX/(x. Obviously, the dot product J(( does not have the same meaning; the dot product is not commutative with operators. This approach enables us to express the divergence as the dot product of del and flux density as
(1.16)

 and 
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This is by far the most common notation for the divergence.

The divergence can be expressed in cylindrical and spherical coordinates though its form is different than for cartesian coordinates, see Appendix C. Alternatively, the divergence in these coordinate systems can be obtained by applying the derivation procedures used for a rectangular box to a curvilinear box in cylindrical or spherical coordinates.

Example 1.19-1: A flux density is given by F=((x2+4x)aX(3y2z2aY((2y3z2(z)aZ. Calculate divF. A rather standard application of Equation (1.68)

 leads to ((F=4(2x(6yz2(4y3z+1=5(2x(6yz2(4y3z.

Example 1.19-2: A current density in a resistor is purported to be given by J=xaX(aY A/m2. Is this possible? Within a resistor we know that divJ = 0. Application of Equation (1.68)

 shows that ((J(1(0; the current flux diverges. The positve value indicates that positive charge is emanating from every point so that ((V/(t < 0. This is not a resistor!

Example 1.19-3: Repeat Example 1.19-2 with a current density of J=xaX(yaY A/m2. Equation (1.68)

 reveals ((J=1(1=0. Since the current density is divergenceless this could be the current within a resistor.

1.20 - Flux Tubes

Throughout a region where ((F=0 there are no sources or sinks. Flux lines do not begin or end within the region, but are continuous. This is the case for current flow in resistors where ((J=0 everywhere. Since, there is no charge accumulation anywhere within the resistor, J flux lines begin and end outside the resistive material. Moreover, since J lines coincide with E lines in isotropic materials, they are always perpendicular to equipotential surfaces. Consequently, J lines never cross themselves. This suggests a model in which current flows within tubes that extend from one electrode to the other, never crossing from one tube to another. This concept is used often to sketch flux lines where each line represents a tube of flux with the flux in all tubes equal. In regions of high flux density, the lines are packed together closely; where the flux density is low, the lines are relatively far apart.

For tubular resistors considered earlier, we found the current flow is in a straight line. But, how does J behave when the resistor has a cross-sectional area that varies along the axis of the resistor or when the resistor bends around a corner? We are not quite prepared to make an exact calculation, but we can gain an approximate idea of what occurs. Consider the “two-dimensional” resistor with a non-uniform cross-section as shown in Figure 1.16. Such a resistor is a model for a three-dimensional resistor with constant depth into the plane of the paper. With no variations in depth, the fields in every y-plane are the same, e.g., (JY/(y=0. Hence, the fields in any of these two-dimensional planes represent the fields at any depth. Though the resistor cross-section varies along the axis of the resistor, we can describe the fields intuitively. Because charge cannot accumulate within a resistor, the current is the same at every cross-section. Therefore, the current density varies inversely with cross-sectional area. For larger cross-sections, the current density is smaller; for smaller cross-sections, the current density is larger. In sections where the resistor’s height is reduced, the current is “squeezed” in the x-direction resulting in an increased current density. When the height increases, the current “expands” to decrease the current density. The divergence offers us another way to look at this phenomenon.

For the resistor in shown in Figure 1.16, (JY/(y=0 so that ((J=0 becomes
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Figure 1.16 - Current in a non-uniform Resistor.

A change in the transverse current density, JX, is accompanied by a change in the axial current density, JZ. Though the lines of current shown in Figure 1.16 are only approximate, they indicate the non-crossing nature of current flux tubes. On the left side of the resistor, (JX/(x<0 so that Equation (1.69)

 shows (JZ/(z>0 just as expected; as the cross-section decreases, the axial current density must increase. The opposite occurs on the right side where (JX/(x>0 and (JZ/(z<0 due to the increasing cross-section.

Increases in current density in one direction can only occur is there are compensating decreases in current density in other directions. This forms a sort of conservation of changes in flux density that occurs in regions where the divergence vanishes. This concept gives us insight as to what to expect for current flow in various shaped resistors even without the mathematical details of exact solutions.

1.21 - Divergence Theorem

Karl Frederich Gauss, a superb mathematical physicist of the 19th century, used the ideas of the last section to prove what is known as the divergence theorem. It is expressed as
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The flux emanating from a closed surface S is equal to the integral of the divergence of the flux density throughout the volume V enclosed by the surface S. Of course this assumes that ((F exists and is finite everywhere within the volume V. Any good mathematician can prove this true with rigorous arguments, but a simpler, plausible argument establishes the validity of this law. Subdivide the volume V into incrementally small sub-volumes. Since flux emanates from an incremental volume only if ((F(0, all regions for which ((F=0 are discarded in calculations of the flux emanating from S. The flux from the remaining regions is summed up or integrated to obtain the flux from S.

The divergence theorem provides another, often simpler, method for calculating the flux from a closed surface. But, it has a couple of limitations. Firstly, it cannot be used when the divergence is undefined or infinite. For example, the flux density of a point source is of the form 1/r2 that is undefined at the origin. The flux emanating from a closed surface can be readily calculated from the surface integral, but it cannot be determined using the volume integral. Secondly, the divergence theorem does not apply to open surfaces since there is no enclosed volume throughout which to integrate the divergence.

Example 1.21-1: Calculate the current emanating from the unit sphere for the isotropic current density given by J=(1/r2)ar A/m2. Calculation of the divergence leads to ((J=(1/r2)((r2/r2)/(r=(1/r2)((1)/(r which vanishes except at the origin where it is undefined due to the r-2 term. Because the ((J is undefined within the volume, we can’t apply the divergence theorem to this case. We must calculate the current by the surface integral as in Example 1.18-1.

Example 1.21-2: Reconsider the flux density of Example 1.18-3 with F=((2cos()a(+5(zsin(a(+3(aZ w/m2. The divergence of F is ((F=3(cos(+5zcos(. Integrating this throughout the volume leads to 
[image: image131.wmf] as we obtained from the surface integral.

Example 1.21-3: Calculate the current emanating from the unit sphere due to flux density J=xaX+yaY+zaZ A/m2. This leads to a very complicated surface integral as we convert the Cartesian coordinates and unit vectors to the required spherical coordinates of the surface. But, if we use the divergence theorem the work is nearly trivial since ((J=3. Consequently, the integrand is a constant so that the integral becomes the volume of the unit sphere, 4(/3 times ((J. The current out of the sphere is I=4( A.

1.22 - Charge Conservation Revisited

The concept of point charges is very familiar to us. For circuit analysis a quite accurate model for current within a wire is the motion of lumped units of charge called electrons. In spite of their conceptual or mathematical convenience, point charges do not exist. Instead all charge is distributed throughout a volume. For some distributions, the volume is exceedingly small so that it is quite accurate and convenient to model it as a point charge. This suggests that we take a different view of electric charge. Rather than focusing on the total charge within a finite volume, we can consider the spatial distribution of the charge and to express its volume charge density at each point. Volume charge density is defined as the ratio of total charge contained within a region to the volume of the region as the region shrinks uniformly to zero, i.e., 
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Volume charge density expressed as Coulombs/cubic meter is analogous to the description of mass by kilograms/cubic meter. An incremental volume contains a incremental amount of charge expressed as
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The charge contained within a finite region can be obtained by summing the contributions of each incremental volume as
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where (vi is the charge density within the ith incremental volume (vi. Of course this concept can be extended to differential calculus as
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The triple integral is the usual notation for three-dimensional integration.

When charge is spread so thinly over a surface that it can be approximated as having zero thickness, it is defined as a surface charge density, (S, in Coulombs/square meter,
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The total charge on a surface is calculated by summing the contribution of each incremental area as
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where (Si is the surface charge density of the ith surface element, (ai. In integral form the charge is calculated by
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The double integral is a scalar integral over the surface, not to be confused with a flux integral. Evaluation can be accomplished by the usual techniques of multiple scalar integrals.

Often charge is arranged along a linear axis, as on a wire, with a diameter that is small compared to its length. This distribution of charge is known as line charge density and defined as
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The total charge on a line is calculated by summing the contribution of each incremental length as
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where (Li is the line charge density on the ith incremental line element, (li. In integral form this becomes
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Of course, point charges, denoted as q, are often a good approximation for highly localized charge distributions such as electrons. They have units of Coulombs.

In reality, all charges are distributed throughout a volume modeled by (V. The other distributions are approximations which model several important special cases. If one dimension of this volume is vanishingly small relative to the other two, then a good model is surface charge density, (S. If two dimensions are relatively small, the line charge density is an appropriate model, (L. Finally, if all three dimensions are vanishingly small as well, then the point charge model is appropriate, q. Figure 1.17 shows the several models for charge distributions. As an engineer you must choose the model most appropriate for the problem at hand.

For simplicity, these charge distributions are often assumed to be uniformly distributed. No matter how convenient this approximation may be, it is rarely true. (V, (S, and (L usually are functions of space.


Figure 1.17 - Charge distribution models;

a) (V, b) (S, c) (L, d) q.

Finally, let’s apply the divergence theorem to Equation (1.47)

 as
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If we restrict this development to regions with only volume charge distributions, then we can represent Q by Equation (1.74)

 and the right-most equality can be expressed as
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For a fixed volume V the time derivative can be taken inside the integral and replaced by a partial derivative operating on (V as
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Since both integrals are over the same volume these two integrals can be combined into one integral as
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and since it holds for all points within the volume, the integrand must vanish as
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This is the differential form of charge conservation. J lines begin or end at a point, i.e., ((J(0, only if there is a change in the charge density at the point. Of course, if (V is constant, the J lines are continuous. In the case of resistors, (V =0 and Equation (1.85)

 takes the form of
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Unfortunately, the partial derivatives of ((J become infinite when surface, line, or point charge distributions are present and the differential form of charge conservation fails. Nevertheless, this form is applicable widely enough to make it useful.

Example 1.22-1: A line charge density is (L=|x(L/2| C/m in the range (L/2(x(L/2. Calculate the total charge in this distribution. Applying Equation 
(1.80)

 and using the symmetry of the distribution, we find 
 GOTOBUTTON ZEqnNum616526  \* MERGEFORMAT 
Example 1.22-2: A sphere of radius r=a encloses part of a volume charge density of (V=10exp[-r3] C/m3. What is the radius of the sphere if the total charge enclosed is 10 C? The total charge within the sphere is expressed  as
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Using a numerical solution with MAPLE or similar software, we obtain a=1.27 m.

Examples 1.22-3: What is the rate of change of the charge density in Example 1.21-1? The current density is J=xaX+yaY+zaZ A/m2, so that ((J=3. Therefore, ((V/(t=(3 C/m3/s; the volume charge density is decreasing at a constant rate throughout the region where the current density exists.

1.23 - Ohm’s Law

A concise summary of our knowledge so far predicts the presence of an electric field intensity within a resistor which is proportional to the voltage drop across it and an accompanying current flux density which is proportional to the current within the resistor. From circuits we know that the voltage drop is proportional to the current, VR=IRR, so the current flux density must be related to the electric field intensity. That is the focus of this section.

We have established that E points from more positive to less positive voltage described by Equation (1.2)

, R=(L/A(), we obtain 
(1.37)

, J=(((I/(a)aZ, we found that J flows in the same direction as E. Combining these with Equation (1.10)

 as E=(((V/(z)aZ. From Equation 
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or in the more common form
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which is known as the point form of Ohm’s law. The current density is proportional to the electric field intensity in a manner similar to the proportional relationship between current and voltage. Resistance establishes the proportionality between the voltage and current of circuits. From physics we know that resistance depends upon two parameters of the resistor—its conductivity and its geometry. However, the field parameters show a striking difference. The electric field and the current density are related by a single parameter—the conductivity of the material. Experimental data shows that Equation (1.88)

 is valid for all materials, independent of shape or size. This simpler relationship suggests that the field representation of Ohm’s law is a more fundamental form than in circuits. As a matter of fact, expressions for resistance of more complex resistor shapes are much more complicated. In the following sections we will use these simpler field concepts to determine the resistance for any geometry.

1.24 - Conductivity

Current flow in solid materials is characterized by the parameter conductivity denoted by the symbol ( with units of ((m)-1 known as Siemens/meter, in the SI system. Alternatively, resistivity, denoted by the symbol (=1/( and with units of (m, is used. We will use ( throughout this text.

Charge carriers, most often electrons, within conductive materials experience the Coulomb force, F=qE, due to an applied electric field. Those carriers that are free to move are accelerated by this field, but experience frequent collisions with the atoms of the lattice structure. The carriers transfer some of their kinetic energy to the atoms, rebound, and are accelerated by the Coulomb force again. The energy transferred to the atoms causes them to vibrate within the lattice and is observed as heating of the material. This is called ohmic heating and is related to the electric power supplied by the applied field; we will look at this later. The more electrons which are moved and the easier they are moved the greater the value of conductivity. Materials are classified by their conductivity.

There are three broad categories of conductive materials—conductors, semiconductors, and insulators--depending upon the value of conductivity. Conductors are most often metals such as gold, silver, copper, aluminum, or iron. A virtual “sea” of electrons that occupy the conduction band are rather loosely bound to the atoms so that one or more electrons is available for each atom. These electrons are readily moved by applied electric fields. Moreover, there are typically 1028 atoms/m3 so that a huge number of electrons are available. These conditions result in conductivities of metals of on the order of 5x107 S/m.

Semiconductors, used in many solid-state devices, are “half” conductors as the name implies. The number of charge carriers in the conduction band is controlled by doping levels and is very temperature dependent. However, the number of carriers is significantly less than metals. Conductivities are typically on the order of 103 to 105 S/m.

The electrons in insulators are bound extremely tightly to the atoms; there are no conduction electrons. The dielectric materials used in capacitors are a form of insulator. A very large field is required to release electrons from their central atoms; This process, usually accompanied by an arc, is known as dielectric breakdown. Usually the very few charge carriers that exist are due to internal or surface imperfections. Insulators have conductivities on the order of 10-9 to 10-17 S/m.

Resistors are commonly made of graphite or a similar material with conductivity on the order of 7x104 S/m. Power resistors usually consist of several turns of high resistance wire such as nichrome wire with conductivity of 106 S/m. The conductivity of fresh water is on the order of 10-3 S/m while the dissolved salt ions in sea water increase its conductivity to about 1 S/m. Soil conductivity varies greatly depending upon the water content with an average value of 10-4 S/m. Air is often treated as a vacuum—an ideal insulator—with zero conductivity. Though a quite satisfactory insulator when the relative humidity is low, it has significant conductivity in humid weather.

We will consider two ideal cases—perfect electric insulators with (=0 and perfect electric conductors with  (=(. Perfect electric conductors are commonly known as PECs. A perfect insulator can have no current flow since (=0. A PEC can have neither a finite electric field nor a finite voltage drop. This is because a finite electric field when multiplied by (=( would result in an infinite current density, a physically unrealizable condition. In circuits we assume that the interconnecting wires of a circuit have zero resistance. This is the same as assuming that they are made of PEC material. Since there is no voltage drop in PEC material, it is lossless as well. More on this later.

For more detailed descriptions of charges and current flow in materials, consult a textbook in solid-state physics. The descriptions above are purposely kept as simple as possible so as not to detract from our study of electromagnetics. Tables of material properties including conductivity may be found in Appendix D.

1.25 - Boundary Conditions

The concepts developed to this point have dealt with fields in a continuous medium with no boundaries present. However, boundaries between two different materials are usually involved in resistors and other electromagnetic elements. So we need to understand the behavior of fields at boundaries. A typical and useful strategy is to decompose the field vectors into those components that are perpendicular and those that are parallel to the interface between two different materials. Figure 1.18 illustrates the components of typical E and J fields near a boundary.

Figure 1.18 - Electric Field Boundary Conditions.

The conservative nature of electric fields, i.e., they satisfy KVL around any closed loop, governs the behavior of E at a boundary. This accomplished by applying Equation (1.25)

 to the closed path in Figure 1.18
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which can be rewritten as
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where L1 is the directed segment of the path in region 1 and L2 in region 2.

Since we are interested in obtaining the conditions that E must satisfy at every point on the boundary, these are known as boundary conditions. Behavior at a point is obtained if the length and width of the paths L1 and L2 are shrunk to zero in which case the integrals can be approximated by
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where ETi is the tangential field at the boundary in the ith region and ENiR and ENiL are the normal components in the ith region at the right and left ends of the path, respectively. Substituting these results into Equation (1.90)

, we obtain
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If (h<<(L(0, then the first term contributes insignificantly compared to the second as long as all of the normal components are finite. Only the last term remains so that
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or in vector form,
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as the boundary condition for electric fields. The unit normal to the interface, aN, points from region 2 into region 1. Only the tangential components of E are affected by the boundary. The normal components are governed by other conditions. Note that the KVL interpretation of Equation 1.90 is that the voltage drops along the two sides of the boundary are equal, i.e., ET1(L1=ET2(L2.

Now, we must determine the behavior of current density at boundaries, see Figure 1.19.


Figure 1.19 – Current Density Boundary Conditions.

According to Equation (1.48)

, current density satisfies KCL since charge does not accumulate within the resistive material
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Applying this to the short, square box we obtain
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As with line integrals, the boundary conditions are to apply at a point so we require that (h<<(w(0 and Equation (1.96)

 becomes
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The second term is negligible compared to the first term as long as JSIDES remains finite. The only contributions come from the current that flows through the top and bottom of the box and since no charge accumulates within the resistor they must be equal. Rewriting the current densities in terms of normal and tangential we find
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or in vector form
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The current density normal to the boundary must be continuous.

From Equation (1.98)

 we see that the normal components of the current density must be equal, an analogy with KCL. Using the relations J1=(1E1 and J2=(2E2, we can express the relationships for both components of the two fields as
(1.93)

 we see that the tangential components of the electric field intensity must be equal, an analogy with KVL. From Equation 
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The tangential components of both fields are governed by the electric field behavior at the boundary; the normal components by the current density.

These results hold important implications for the interfaces between the resistive material and the metal electrodes and the material surrounding the body of the resistor. The electrodes can be modeled as PECs due to their relatively high value of their conductivity compared to the resistive material and insulator. The electric fields and voltage drops in PECs are zero due to their infinite conductivity; PECs form equipotential surfaces. For this reason, the current leaving or entering the resistive material must be perpendicular to the electrodes. The insulator or air surrounding the resistive material is modeled as a perfect insulator with zero conductivity and will not support any current flow. This means that no current can flow out of the resistor into the insulator. Consequently, there can be no normal component of current at the air-resistive material interface. All of the current must be tangential to the conductor-air interface.

These observations suggest that the resistive material "guides" the current flux through the resistor. All the current enters the flux guide through the electrode at one end and leaves through the electrode at the other end. None of it leaks out along the path between. In practice, the material surrounding the body of a resistor has non-zero, albeit small, conductivity so that there is a very small leakage current. Nevertheless, the resistive material still functions well as a flux guide. Intuitively, a good flux guide will have a high ratio of flux that flows through the guide to the flux that leaks into the insulator. In spite of a complex geometric dependence, the effectiveness of a material as a flux guide is essentially governed by the ratio of the conductivities of the guide and the surrounding material. This is seen as JT2=((2/(1)JT1 from Equation (1.100)

. When the resistive material is surrounded by a perfect insulator with (2=0, it acts as a perfect flux guide since (2/(1=0. The effectiveness of actual flux guides will be somewhat less since the leakage current will not be zero. A good rule of thumb is that an effective flux guide will have (2/(1(0.1. These principles will apply later as we consider other circuit elements with different flux densities.

Example 1.25-1: An electric field in region 1 where (1=1 has ET1=1 and ET2=2 V/m. Calculate the tangential and normal components of E2 and J2 in region 2 where (2=2. Equating tangential components, we obtain ET2=ET1=1 V/m. The normal components of current density are equal so that EN2=((1/(2)EN1 V/m. Therefore, JT2=(2ET2=2 A/m2 and JN2=(2EN2=4 A/m2.

Example 1.25-2: What is the ratio of tangential flux at the boundary between two conductive materials with (1=1 and (2=8. The ratio (1/(2=1/8 suggests that region 2 has 8 times more tangential flux than region 1. While not the suggested ratio of 10, region 2 is a reasonably good flux guide and we might well neglect the leakage of current from region 2 into region 1.

1.26 - Incremental Resistors

A brief review of our findings so far have shown that:


1) Electric field intensity is defined in differential form as E=((V.


2) Voltage drop between an final and initial point is defined as VFINAL(VINITIAL=
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3) Current density is related to the electric field by J=(E where ( is the conductivity of the material.


4) J is perpendicular to surfaces of constant voltage V.


5) Resistor current is defined as
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6) Charge does not accumulate at any location within a resistor since ((J = 0.

These are the tools at our disposal to calculate resistance. Along the way we may find it convenient to calculate fields, voltage, or current.

The basic building block for nearly all resistance calculations is the incremental resistor, see Figure 1.20. It is formed by a flux tube that carries an incremental current (I. The four sides of the flux tube are curved so that they remain parallel J. The flux tube has an incremental area of (a. The two ends where current enters or exits the incremental resistor coincide with equipotential surfaces just as if they were composed of PECs. They are separated by an incremental distance (l and have an incremental potential difference of (V between them with the current entering the more positive end. Though there are no actual PEC electrodes on either end of the resistor, the current density is perpendicular to the equipotential surface as it is to the electrodes of an actual resistor. Moreover, the current all stays within the flux tube that forms the incremental resistor as it does in an actual resistor. So, let's proceed to calculating the resistance.

Figure 1.20 - Incremental Resistor.

The "terminal" current is calculated by integrating J over the either end of the incremental resistor. Since it is only an incremental resistance, J is essentially constant over the area and the current is given as
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where J=(E has been used. The voltage drop across the resistor can be expressed in terms of E. Since the resistor is so short, E, is essentially constant over the length and the incremental voltage drop is approximated as
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Circuit theory provides the definition of resistance as the voltage drop divided by the terminal current which gives the differential resistance of



[image: image168.wmf]VE

R

IEaa

DDD

D===

DsDsD

ll

.
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.103)

The incremental resistance is proportional to its length and inversely proportional to its cross-sectional area, the same relationship with which we began our discussion of resistors. More importantly, it enables us to use circuit concepts to perform resistance calculations.

Two resistors are considered to be in parallel when they are connected so that they have the same voltage drop. When two incremental resistors terminate on the same equipotentials, see Figure 1.21, they have the same voltage drop and are considered to be connected in parallel. Instead of the wires used in circuits to establish the equipotentials, the incremental resistors are positioned to terminate on the naturally occurring equipotentials within the resistive material. This allows us to calculate the combined effects of the two incremental resistors in parallel, see Figure 1.21, by adding their conductances
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The resistors have essentially the same length, (l, since they are adjacent to each other. A generalization of Equation (1.104)

 leads to
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This form is equivalent to the summation of the currents in each of the incremental resistors to obtain the total current in the parallel combination.


Figure 1.21 - Parallel incremental resistors;

Two resistors are considered to be in series when they are connected so that all of the current that leaves one resistor enters the other. The two incremental resistors shown in Figure 1.22 occupy the same flux tube so that the same current flows through both of them. The combined resistance of the series connection is given by
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and in general form for N resistors in series as
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This form is equivalent to the summation of the voltage drops of the incremental resistors.

Figure 1.22 - Series incremental resistors;

Resistors of any geometry are composed of a unique circuit of interconnected incremental resistors to which we can apply the concepts of series and parallel circuits. The equivalent resistance for this circuit represents the value of our resistance. Moreover, this method can be applied when the resistor is composed of different conductivities by aligning flux tubes or equipotentials with the material boundaries.

An alternate perspective emphasizes the relationship between incremental current flux and incremental voltage drop. From Equation (1.103)

, the incremental conductance is expressed as
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The incremental conductance is directly proportional to the conductance of the material. The larger the area of a flux tube, the greater the flux within the incremental element and the greater the conductance. The greater the length of the flux tube, the greater the voltage drop and the less the conductance. We will find that the element values of incremental capacitors and inductors are based on similar relationships between flux and voltage drop. Consequently, their dependence upon material (known as consituitive) properties and geometry will be of the same form as Equation (1.108)

. The concept embodied by this equation is well worth learning and learning well!

In order to determine the location and orientation of the incremental resistors, we must determine the equipotential surfaces and the directions of current density. We find these by several different methods in the following sections.

1.27 - Curvilinear Squares

For two-dimensional structures where there is no variation in the geometry in one dimension, voltage and field calculations reduce to a planar problem. This method is essentially a graphical technique based upon the principle that E and J are perpendicular to equipotentials. You may see this described as flux mapping by some authors. By sketching equipotential and flux lines so that they form curvilinear squares, we can find the potential, electric field, and current density at any point within the resistive material. In addition, we can use the methods of the previous section to calculate the total resistance. This seems too easy, but it works because it is based upon the fundamental concept that current flux and equipotential surfaces are perpendicular to each other.

Consider the "closed" planar structure of Figure 1.23 where specified voltages are maintained by an external voltage source on the two PEC electrodes that surround the conductive material. We begin by sketching several flux lines perpendicular to the equipotential boundaries, e.g. flux lines J1, J2, and J3. The exact location of the flux lines is not nearly as important as their perpendicularity to the equipotentials. As a general guideline, at least three or four flux lines emanating from each electrode should give reasonably accurate results.

We only sketch the flux lines a short distance from the electrode since we do not yet know the equipotentials within the conductive region. Building upon the estimated flux lines, we now sketch an equipotential line V1 perpendicular to the flux lines to form curvilinear squares. This provides the basis for further extending the flux lines which in turn enables another equipotential V2 to be sketched. This process is continued until the entire region between the electrodes is divided into a set of curvilinear squares. It is unlikely that all of our flux and equipotential lines will be mutually perpendicular, so keep an eraser handy and redraw the lines as needed. Repeat the entire process several times until the perpendicularity requirement is satisfied everywhere. Sometimes there will be unusually shaped regions which must be subdivided further as with voltages V3 and V4. Similarly, additional flux lines such as J4 and J5 can be added to divide regions into squares. The size of the squares is irrelevant; most importantly, the flux lines and equipotentials must be perpendicular. Some regions, such as the shaded region of Figure 1.22, are not really square. Such regions can be further subdivided, but when they are adjacent to an angle which is less than 180o they have a small effect. Moreover, since it is the only non-square region, its effect is negligible.

The problem of Figure 1.23 is a bit unrealistic since all of the potential lines of the conductive region pass through the infinitesimal gaps at the corners between electrodes, creating infinite electric fields there (remember that the electric field intensity is the voltage drop/unit length and the infinitesimal gap has a finite votage drop). But, we will ignore this since the gaps occupy a very small portion of the region. In an actual problem, the gaps between electrodes are finite and the electric fields are large, but finite.

The final result of my sketches is shown in Figure 1.23. Your results may differ somewhat, but overall, any two sketches will be essentially the same. Remember, this is only a graphical method and relies upon the eye of the solver to make curvilinear squares. The most important aspect of this process is to make sure the flux lines and equipotentials are perpendicular!


Figure 1.23 - Voltages and Electric Field via           Curvilinear Squares.

This method gives us a good picture of the nature of the current flux and equipotentials throughout the conductive region. However, the voltage of a particular equipotential cannot be determined readily by this method. Of course, all the equipotentials which pass through the upper left gap of Figure 1.23 are between 0 and 100 volts, those through the lower right gap are between 0 and 50 volts, those through the upper right gap are between 50 and 100 volts. But which equipotential represents 37 or 81 volts is not known.

In spite of this limitation, we gain a sense of where the electric field is greatest or least from these lines. The magnitude of the electric field at any point is approximated as the voltage difference between the two equipotentials which bound the point; the electric field is perpendicular to the equipotentials and directed from higher to lower voltage. The electric field is greatest in those regions where the equipotentials are most closely spaced, i.e., in the regions of the three electrode gaps. It is least where the lines are far apart as they are in the lower left corner. Of course, the current density is proportional to the electric field.

Application of the method of curvilinear squares to find equipotentials and current flux as shown in Figure 1.23 is revealing, but soon we will learn more effective, more powerful techniques. The real utility of this method is in calculating the resistance of arbitrarily-shaped, two-dimensional resistors. We shall demonstrate for the resistor with the cross-section shown in Figure 1.24. The resistor has a conductivity ( and a thickness t into the page. Let’s assume an arbitrary voltage drop of 1 V, also. As before, the flux lines leave the electrodes perpendicularly. But, we need to look carefully at what happens at the edges of the resistors. Since the conductivity of the dielectric adjacent to the 

resistor is usually zero, there is no current flow in the air. Consequently, no flux lines leave the edges of the resistor; the flux at the edge is tangential. In addition, this means that equipotentials are


Figure 1.24 - Calculation of Resistance by Curvilinear Squares.

perpendicular to the edges. This additional information helps us to sketch the flux lines and equipotentials near the edges. The flux behavior at the edges of resistors surrounded by materials with finite conductivity is much more complicated. But, as long as the conductivity of the surrounding material is much less that of the resistor, i.e., (SURROUND/(RES<<1, tangential flux and perpendicular equipotentials is still a reasonable approximation at the edges.

Now we sketch the flux lines and equipotentials to form curvilinear squares as shown in Figure 1.24. Each curvilinear square represents an incremental resistor. The resistance between the two electrodes is the equivalent resistance of this series-parallel interconnection.

The conductance of a curvilinear resistor is given as



[image: image174.wmf]C

IJaEaa

G

VVEE

wt

DY

DDsDsD

D=====

DDDDD

sD

=

D

lll

l


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.109)

where the cross-sectional area is given by (a=(wt. By making the resistor a curvilinear square, we impose the condition of (l/(w=1 which simplifies the expression for incremental conductance to
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Only the thickness and conductivity of the resistor enter into the incremental resistance of the curvilinear square. The reciprocal of this conductance of a curvilinear square is often denoted by R( and is known as the resistance/square because it is the resistance of a square regardless of its size.

Example 1.27-1: Calculate the resistance of the resistor shown in Figure 1.24 in terms of 1/(t using curvilinear squares. Perpendicular equipotential and flux lines are sketched to form curvilinear squares. Then, the total resistance is obtained readily by application of circuit rules for series- and parallel-connected resistors. For the resistor of Figure 1.24 we obtain R=(8||8||(7+1/2+1/3))/(t=2.65/(t (.

The method of curvilinear squares is intuitive and powerful, though its accuracy is limited to about 10% due to graphical inaccuracy. Let’s consider a several other methods that lead to analytic and numeric methods to solve for the voltages and fields within a resistor.

1.28 - Laplace’s Equation

A more mathematical approach combines several previous equations to form a single partial differential equation for the voltage within a resistor. Traditional PDE techniques lead to analytic solutions for the voltage. From these analytic solutions we gain additional insights into the behavior and properties of electric fields.

We will use three equations from our previous work in developing this PDE. Firstly, we found that the electric field is the negative gradient of the voltage, i.e.,
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Secondly, there is no accumulation of charge throughout the conductive region, i.e.,
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Finally, Ohm’s law in point form is given by
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Substituting Equation (1.112)

 gives us
(1.113)

 into Equation 


[image: image179.wmf]222

XYZ

222

(E)(E)(E)

()

xyz

0.

¶s¶s¶s

Ñ·s=++

¶¶¶

=

E


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.114)

The derivatives in the RHS depend upon the properties of the conductivity of the resistive material. Within most resistors, the conductivity does not vary from point to point; such material is called uniform or homogeneous. Materials in which the conductivity varies from point to point are called non-uniform or inhomogeneous. Another property of most conductors is that conductivity is the same regardless of the direction of the electric field. Such materials are called isotropic. If the conductivity is different in different directions, the material is called anisotropic, a very rare condition.

We will consider only uniform, isotropic materials for which (=constant. As in single variable calculus, ( can be factored out of the derivative to give
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Note the vector identity in Appendix A for the case where ( is not constant.

Substituting Equation (1.114)

 and dividing both sides by ( leads to
(1.111)

 into Equation 
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We now have a single equation in only one variable that expresses the behavior of the voltage throughout the resistor. The form of this equation depends upon the coordinate system used. In Cartesian coordinates Equation (1.116)

 becomes
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a partial differential equation (PDE) for the voltage within the resistor. This form has been widely studied since it appears in many areas of physics. Mathematicians have given a special name and symbol to this form. It is called the Laplacian in honor of Pierre Simon de Laplace, an 18th century pioneer in mathematics and physics. It is denoted by the symbol (2. Since the gradient of V, (V, is a vector, we can interpret the Laplacian as the divergence of the gradient; the result is a scalar. In Cartesian coordinates, the Laplacian is defined as
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The forms of the Laplacian in cylindrical and spherical coordinate systems are given in Appendix C. Most of our work will be confined to Cartesian coordinates.

Equation (1.117)

 is written in terms of the Laplacian as
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This is known as Laplace’s equation. Since the RHS is zero, it is a homogeneous PDE—a mathematical indication that there are no sources of flux within the resistive material. This is not too surprising since we already know that ((J=0 that implies there can be no sources.

Finally, an interesting situation occurs when charge can accumulate within the conductive region—a condition which cannot occur within resistors. For this case, Equations (1.85)

 must be used due to the accumulation of charge as
(1.113)

 apply as before, but Equation (1.111)

 and 
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Combining these equations as before, we obtain
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This equation, known as Poisson’s equation, is inhomogeneous since the RHS is not zero indicating the presence of sources of flux. The charge density frequently depends upon the voltage, further complicating the solution. Fortunately, Poisson’s equation doesn’t occur very frequently in passive circuit elements so we rarely have to solve it.

1.29 - Analytic Solution Methods

The solution of Laplace’s equation by analytic methods is practical only in Cartesian, cylindrical, and spherical coordinate systems. Though very few problems actually fit these coordinate systems, their solutions provide a model or guide as to the form of the voltage solution in related configurations. To gain some insight into these methods, we will obtain solutions for a couple of geometries.

Let’s apply Equation (1.119)

 reduces to
(1.119)

 to the axial resistor we have considered earlier, shown again in Figure 1.24. With the electrodes separated by a distance L in the z-direction, a voltage difference VS is established in this direction. However, there is no voltage drop in the x- and y-directions since the PEC electrodes with zero tangential electric field lie in these directions. Consequently, (V/(x=(V/(y=0 and Equation 
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Figure 1.25 - Axial Resistor.

Since the voltage varies only with respect to z the partial derivatives can be replaced by ordinary derivatives. Direct integration enables us to obtain the analytic form of V as



[image: image188.wmf]V(z)AzB.

=+


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.123)

The two arbitrary constants are determined by the boundary conditions, i.e., the voltage at the two boundaries of the resistor to which the electrodes are attached. From Figure 1.25 we see that V(L)=VS and V(0)=0 V. Applying these values to Equation (1.123)

, we solve for A=VS/L and B=0 which leads to
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Not surprisingly, the voltage varies linearly with z resulting in an accompanying electric field intensity of
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and a current density of
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Integrating the current density over any cross-sectional surface of the resistor, say the electrode at z=0, we obtain the current flowing through the resistor as
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Finally, the resistance is given as
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This is exciting! We have confirmed the formula used in physics, but in obtaining these results we have developed a consistent model for the internal behavior of resistors. We have defined microscopic electromagnetic parameters that lead to observed behavior of resistors.

The mathematical features of the voltage reveal additional information. The first and second derivatives of the voltage are given by
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and
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respectively. The constant value of the first derivative of voltage with respect to z implies that the voltage varies linearly within the resistor from a minimum value at z=0 to a maximum value at z=L. As you recall from calculus, there is no maximum or minimum at points where the second derivative vanishes. Equation (1.130)

 implies that there is no maximum or minimum of the voltage within the resistor; these occur at the electrodes on each end of the resistor. Though the solutions are more complicated for other configurations, they all show the same behavior--there are no maxima or minima within the conductive material of the resistor. These occur only at the electrodes.

Variations of the voltage with respect to a single variable can occur in cylindrical and spherical coordinate systems too. Direct integration is an appropriate solution method for these problems as well. Whenever the voltage depends upon more than one spatial coordinate, a Laplace’s equation becomes a PDE. The most common analytic solution method is known as the separation of variables. These techniques are covered in typical PDE course, but they are beyond the scope of this textbook. These methods are reserved for advanced electromagnetics courses.

Example 1.29-1: Calculate the resistance of a coaxial resistor of length L which is filled with conductive material ( between PEC cylindrical electrodes of inner radius of a and outer radius of b. In order to calculate resistance, we assume a voltage drop of VO and calculate the resultant current flow. To accomplish this we need to calculate J which we can calculate from E=((V. So we must solve for V((,(,z). There are no axial variations within the resistor. Consequently, we will assume that within this region the fields are identical to those of an infinitely long resistor, i.e., (V/(z=0. Moreover, the structure has angular symmetry so the fields are expected to be the same for all values of ( so that (V/((=0. Therefore, Laplace’s equation becomes
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 Integrating with respect to (, we obtain 
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. From this expression we find E=((V as 
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 As expected, E points away from the more positive inner electrode in the outward radial direction. The current flux points in the same direction since J=(E. The resistor current is calculated by integrating over all the J within the resistor. Any cylindrical surface extending from one end to the other will suffice as 
[image: image202.wmf]L2

O

R

Sz00

2

OO

0

V

Iddz

b

ln

a

VL2VL

d.

bb

lnln

aa

p

rr

=f=

p

f=

s

==·rf

æö

r

ç÷

èø

sps

=f=

æöæö

ç÷ç÷

èøèø

òòòò

ò

J•dsaa

 At last, we can calculate the resistance of a cylindrical resistor with electrodes on inner and outer cylindrical surfaces as 
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. This procedure can be applied to other geometries as well.

1.30 - Numeric Methods

In general, analytic solution methods are practical in Cartesian, cylindrical, and spherical coordinate systems only. Once an analytic solution is obtained, the voltage can be evaluated exactly at any point within the solution region. More sophisticated analytic techniques required for other configurations are beyond the scope of this text. Alternatively, numeric methods can be applied to virtually any geometry, though they provide approximate solutions that are valid at only a finite number of points. Typically, the voltages are calculated only at the nodes (or intersection points) of a rectangular grid which subdivides the solution region. Linear interpolation of node voltages can be used to calculate the voltage at other points. Greater solution accuracy is achieved with finer grids and more nodes, but at the expense of increased computational effort.


Figure 1.26 - Basic Cell for Numeric Methods.

The simplest numeric methods are based upon incremental approximations of Laplace's equation. A typical grid structure is shown in Figure 1.26 with grid spacings of (x, (y, and (z in the x-, y-, and z-directions, respectively. The central node is denoted as O; the surrounding nodes—up, down, front, back, left, and right—are denoted as U, D, F, B, L and R, respectively. The first derivative of voltage with respect to x is approximated at point A as



[image: image204.wmf]OB

A

VV

V

xx

-

¶

»

¶D


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.131)

and at point C as
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where Vi is the voltage at the ith node. This is known as the central difference form since the increment (x is centered on the point of interest. No doubt you are more familiar with the traditional forward difference form of differential calculus in which the increment precedes or is forward from the point of interest. The central difference form is preferred for numerical computations. As the increment decreases, the results of the two forms become indistinguishable.

With the same technique, the second derivative of voltage at point O is approximated by
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The second derivative of the voltage at point O is expressed in terms of the voltages to the left, to the right, and at the point O and of the increment between nodes. Applying this procedure to y- and z-variations, we obtain
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and
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Equations (1.135)

 combine to give the incremental form of the Laplacian. For convenience let (x=(y=(z=( so that the Laplacian at point O is particularly simple as
(1.134)

, and (1.133)

, 
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For non-zero (, the voltage at node O can be obtained as
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This is a most useful equation. It describes a fundamental property of the voltage within a resistor: the voltage at any point is the average of the voltage of surrounding points. This reaffirms our earlier finding that there can be no maximum within the solution region. This is valid within any conducting material in which no charge accumulates. In addition, it is the basis for several methods of numeric calculations of the voltage.

As a general rule, the smaller the increment (, the more accurately the incremental Laplacian approximates the differential form. But to keep the number of computations reasonable, ( should not be too small. A general guideline similar to that for curvilinear squares is applicable--at least three or four nodes in the direction of the smallest dimension of the solution region should give 5-10% accuracy in the node voltages.

The incremental form of Laplace’s equation can be expressed in general form for an N-dimensional problem as
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where Vi is the voltage at the surrounding nodes. For N=1, there are only two nearby nodes, for N=2 there are four, and for N=3 there are six.


Figure 1.27 - Numeric Calculation of Node Voltages.

Some problems are more naturally suited to other coordinate systems; incremental forms can be obtained in cylindrical and spherical coordinate systems as well with somewhat more complicated incremental forms. However, the simplicity of calculations in Cartesian coordinates make them most attractive for our use in this text.

Several methods of calculating voltages based upon the incremental Laplacian are described in the following sections. The two-dimensional problem of Figure 1.27 will be repeated to illustrate these methods. The solution region is subdivided by an equispaced grid. Division of the shortest dimension of the structure into four cells produces a 3x3 grid with nine nodes which is superimposed on the structure.

1.31 - Linear Equations

The incremental Laplacian of Equation (1.138)

 is valid at all points within the solution region of the resistor. Therefore, if we impose it simultaneously at all nine unknown nodes of the resistor, we will obtain nine equations in nine unknowns. This linear set of equations can be solved readily by numeric means to obtain the node voltages. Imposing Laplace’s equation at node 1, we obtain
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which can be rewritten as
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At node 2 we obtain
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which can be rewritten as
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For node 9 we obtain
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Careful observations show that a pattern for the equation at the Nth node includes the following terms on the RHS: 4VN minus the sum of the surrounding unknown nodal voltages. The LHS contains the sum of the boundary voltages adjacent to the Nth node. With this pattern, we can quickly write each of the nodal equations. A further simplification is to combine the nine nodal equations into matrix form as
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where 
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NV

 is a 9x1 column matrix with each entry representing one of the nine nodal voltages, 
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C

 is the configuration matrix, a 9x9 square matrix with elements determined by the problem geometry, and 
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BV

 is a 9x1 column matrix determined by the boundary voltages. For the configuration shown in Figure 1.27 these matrices are given by



[image: image221.wmf][

]

[

]

1

2

3

4

5

6

7

8

9

V

100

V

100

V

150

V

0

NV,BV,and

V

0

V

50

V

0

V

0

V

50

éù

éù

êú

êú

êú

êú

êú

êú

êú

êú

êú

êú

êú

êú

==

êú

êú

êú

êú

êú

êú

êú

êú

êú

êú

êú

êú

êú

êú

ëû

ëû


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.145)



[image: image222.wmf][

]

410100000

141010000

014001000

100410000

C

010141010

001014001

000100410

000010141

000001014

--

éù

êú

---

êú

êú

--

êú

--

êú

êú

=

----

êú

---

êú

êú

--

êú

---

êú

êú

--

êú

ëû

,

respectively. Fundamental matrix operations lead to the solution for the node voltages as
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The configuration matrix 
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 has several interesting properties governed by the nature of the incremental Laplacian. The matrix is symmetric about the upper-left to lower-right diagonal, i.e., Cij=Cji. In the language of matrix theory, 
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, the matrix equals its own transpose. This is because the effects of the potentials at the ith and jth nodes on each other is the same. The matrix shows diagonal dominance, i.e., the diagonal term is greater or equal to the sum of all the other terms in that row or column. The matrix is sparse, i.e., there are relatively few non-zero elements. Since there are at most five non-zero elements in each row and column due the node and its four surrounding nodes, the sparsity of 
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 increases as the number of nodes increases.
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 is rarely calculated directly since this requires excessive memory and computation time. Gaussian elimination or similar techniques are popular for matrices up to several dozen nodes. However, sparse matrix methods are required for problems with hundreds or more nodes. Details of numeric analysis are beyond the scope of the text; but they can be found in the references or in Appendix E.

For the problem of Figure 1.27, the calculation of node voltages gives
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An exact solution obtained by more advanced analytic methods gives the result of
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A comparison of Equations (1.148)

 shows that the nodal voltages are within 5% of the exact solution, not a bad approximation.
(1.147)

 and 

Figure 1.28 - Interpolation of Voltages between Nodes.

The voltage at a non-nodal location within the solution region can be approximated most simply by using linear interpolation between nearby nodes. Consider the four nodes shown in Figure 1.28 and assume that the voltage varies linearly in both the x- and y-directions, i.e.,
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Evaluation of VP at each of the known nodal voltages provides four equations in four unknowns which is solved and the results substituted into Equation (1.149)

 to give
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This result is sufficiently general to approximate the voltage at any point in the solution region. Note that it assumes a linear interpolation between the approximate nodal values. Nevertheless, this method gives adequate results for our studies. For increased accuracy, the size of the increment ( can be reduced. We will reserve more sophisticated approximations for advanced courses.

Example 1.31-1: Estimate the voltage at a point centrally located between nodes 1, 2, 4 and 5. For this point (x/(=(y/(=0.5 and the voltages are VA=20.4, VB=45.5, VC=36.3, and VD=61.4. Application of Equation 
(1.150)

 to this data gives  GOTOBUTTON ZEqnNum132044  \* MERGEFORMAT 

Figure 1.29 - Voltage and Electric Field by Linear Equations and Interpolation.

The solution can be used to sketch equipotentials throughout the region. Moreover, we can find E by using its basic definition as a magnitude of |(V/(l| pointing in the direction from more positive to less positive values of V. These results are sketched in Figure 1.29.

1.32 - Iterative Techniques

Another numeric method iteratively applies the incremental Laplacian to each node; the result converges to the same solution obtained by the linear equation method of the previous section. The process begins with a set of “guessed” node voltages. The sequential application of Equation 
(1.138)

 to each node brings the node voltages closer to the correct solution. The sequence is repeated again using the improved values with even better results. This process is iterated until there are no further changes of the node voltages within the desired accuracy. This very simple solution method is possible due to the diagonally dominant nature of the configuration matrix  GOTOBUTTON ZEqnNum389209  \* MERGEFORMAT  that ensures convergence of the process to the correct solution. This method is also known as the relaxation method; the node voltages “relax” to the correct value.

The number of iterations can be reduced by making good guesses for the original node voltages. However, even the assumption that all the nodes are at zero volts still results in the correct solution. The poorer the guess, the more iterations required. When computations are by hand, it is especially important that the guessed node voltages be as accurate as possible to reduce the number of iterations. When the method is implemented via a computer, it may be easier to increase the number of iterations rather than spend effort making good guesses.

The iterative method is especially effective for closed regions where the voltages on the entire boundary surrounding the solution region are known. In general, open problems that extend to infinity present a significant problem as an infinite number of nodes are required. But for the cases where the conductive material can be treated as an ideal flux guide, iterative solutions work quite well. By imposing the special boundary condition that no current leaves the edges of the resistor, we do not need to include any nodes outside the conductive material. Details on special techniques for more general open problems and other enhancements of the method are in the references and Appendix E.

The details of this method will be clearer by two examples, one with hand computations, the other via computer.

Example 1.32-1: Calculate the node voltages of the closed region of Figure 1.27 by hand calculations. Since we want to minimize calculations by hand, we must make good initial guesses of the node voltages. The four corner points are equally distant from Node 5 and provide the basis for estimating its value as V5=(50+75+25+0)/4(38 V. Note that at each corner the voltage is taken as the average of the two adjacent electrode voltages. Since we don’t expect accuracy greater than 1%, we will round off all node voltages to integer values. The electrodes and the estimated V5 enable us to estimate V1, V3, V7, and V9 as V1=(50+100+38+0)/4=47, V3=66, V7=10, and V9=28. These voltages are used in turn to estimate the remaining node voltages as V2=63, V4=24, V6=46, and V8=19. The size and orientation of the grid used in making the estimates varies from node to node. Other grids could be chosen with somewhat different results. But, since this process is just obtaining reasonable estimates, these is no “correct” result, though generally, the smaller the grid spacing, the more accurate the estimate. Regardless of the estimated values, the final results converge to the correct solution obtained 


Figure 1.30 - Estimated Node Voltages for the Iteration Method.

by the linear equations method. A comparison of these estimates with the exact solution of Equation 1.140 reveals that they are remarkably accurate (( 2%) without any further calculations. This accuracy is a reflection of the power of the concept that nodal voltages are the average of adjacent nodal voltages. The sequential application of Equation (1.138)

 at each node should follow a pattern. For convenience, let’s just follow the node numbers in sequence. Each calculation will use the most recent voltages for each of the nodes. A good system for tracking the process is to cross-out the previous value at a node and enter the new one below it as illustrated in Figure 1.31.

Since we made some very good estimates, the sequence of iterations produced only minor changes to the estimated values. This method is rather immune to errors since no matter what values of node voltages are used in a step, the results will approach the correct solution. Errors merely slow the process and necessitate more iterations.


Figure 1.31 - Hand Calculation Procedures of the Iteration Method.

Example 1.32-2: Calculate the node voltages of the closed region of Figure 1.27 with the aid of a computer. The repetitive application of the Equation (1.138)

 at each node required by this method is easily implemented with a spreadsheet. Each of the nodes at the center of a cell in Figure 1.27 corresponds to a cell in the Excel spreadsheet in Figure 1.32.
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 Figure 1.32 - Spreadsheet Calculations using the    Iteration Method.

The shaded cells are the electrode with fixed voltages. The voltages in the interior cells are calculated by Equation (1.148)

.
(1.138)

. The voltage of the highlighted cell in Figure 1.32, cell C5, is calculated from the voltages of the surrounding cells by the cell formula of “=(B5+C4+D5+C6)/4”. This formula is replicated easily in the other interior cells using the COPY command. The calculations are iterated until no integer changes of the voltages occur. The results, displayed within the each cell, agree very well with the exact results of Equation 
1.33 - Resistance Calculations

The calculation of node voltages poses special problems at the open edges of a resistor. However, when the conductive material acts as an ideal flux guide, modification of the process is quite simple. In this case no current can leave the resistor from the edges. All of the current must be tangential to the boundary and the normal component must be zero, i.e., JN=0. Putting this in terms of voltage, 
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we find that the derivative of the voltage in the direction of the normal to the edge must vanish at each edge. To implement this condition we define a fictitious, auxiliary node, VOUT, adjacent to the boundary as shown in Figure 1.33.


Figure 1.33 - Basic Cells at the Edges of Conductive Region.

Of course, Equation (1.138)

 must hold at point O. In addition, the normal derivative is approximated by
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which leads to 
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By forcing the node voltage of the fictitious node outside of the resistor to equal the voltage at the interior node we cause the normal derivative to vanish at the edge of the resistor, node E. Substitution of VOUT=VIN into Equation (1.138)

 gives
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which is imposed at all edges of the resistor where there are only tangential currents.

Since the voltage of the fictitious node is equal to the voltage of the symmetrically located internal node, VOUT=VIN, the voltages surrounding the edge node VO are symmetric. If the voltage on either side of a point is symmetric, then the voltage at that point is either a maximum or minimum. This implies a zero derivative of VO as required. This is illustrated in Figure 1.34.


Figure 1.34 - Node Voltages at the Edge of a         Resistor.

The behavior of the fields at interior and exterior corners requires more detailed analyses of this sort. Instead, let us use an alternate method of calculating the nodal relationships which is valid for all edges between different materials. Using the continuity of current as the guiding principle, we can obtain results that can be used for materials with conductivity that varies from point to point, i.e., inhomogeneous materials.


Figure 1.35 - Interface Parallel with Current Flux Lines.

When a material interface is parallel to flux lines, no flux will cross from one material into another; the current will be completely tangential to the interface. Furthermore, the equality of the tangential electric fields ensures that the voltage drops across the two materials are the same. The two conductive materials act as two separate resistors with equal voltage drops that share common electrodes. But, this is just two resistors in parallel! Indeed, we can calculate each of the resistances independently and then find the total resistance of the two parallel resistors, see Figure 1.35.

When an interface is parallel to an equipotential, the flux lines are perpendicular to the boundary and continuous from one material into the other. Hence, both regions conduct the same current. A PEC electrode could be inserted upon the equipotential interface between the two materials without altering the flux lines. This means that the two conductive materials act as two resistors in series. The separate voltage drops and resistances can be calculated. The total resistance is calculated by the series resistance rule, see Figure 1.36.


Figure 1.36 - Interface Parallel with Equipotentials.

A more challenging case is when the interface is arbitrarily positioned; it is parallel to neither flux lines nor equipotentials. Analytically, this is beyond the scope of this text. But it is quite possible for us to handle this situation numerically. A first step is to discretize the boundary into a series of straight line segments which are coincident with the center lines of basic computation cells. In the most general case, a cell has different material in each quadrant, see Figure 1.37.


Figure 1.37 - Basic Cell for Inhomogeneous Materials.

Laplace’s equation, Equation (1.48)

, which is valid everywhere. The integral is expressed in terms of the unit cell as
(1.138)

, is based upon spatial derivatives. Unfortunately, they are not finite at material interfaces and this is not a valid solution method. An alternate relationship between the node voltages is provided by the continuity of current, Equation 
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where Si is the ith surface of the computation cell. Each of the surface integrals represents the current flux that crosses the ith surface. Expressed in incremental form, the ith surface integral is approximated as
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The cell has equal height and width of ( and a thickness into the page of t. The electric field intensity is approximated as (Vi(VO)/(. Current density through the ith surface is just the electric field intensity times the conductivity, (ia(Vi(VO)/( and (ib(Vi(VO)/( for materials a and b, respectively. Due to the small size of the cell, the current density is constant over the ith surface and the integral is approximated as the current density times the area of the ith surface (Ii=[((ia+(ib)(Vi(VO)/(](t/2=((ia+(ib)(Vi(VO)t/2. Since current flows into the cell when Vi>VO, the minus sign is required and the continuity equation becomes
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This equation can be solved for VO in terms of the adjacent voltages Vi as
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Wow, that was a lot of work! But we are now prepared to obtain numeric solutions for regions with inhomogeneous conductivity. Situations with continuous variations in conductivity can be solved with Equation (1.158)

 we can also obtain the cell formulas for the boundaries of resistors.
(1.158)

. Using Equation (1.138)

 as it should. Our favorite numeric methods—linear equations, iteration, and, yet to come, circuit simulation—can use Equation (1.158)

 reduces to Equation (1.158)

, also. In these cases, the value of ( at the center of each surface replaces ((ia+(ib)/2. Note that when (1=(2=(3=(4=(, Equation 

Figure 1.38 - Boundary Points for Conductive Regions of Resistors;

a: Edges, b: Exterior Corners, c: Interior Corners.

With the edge oriented as in Figure 1.38a and with the resistor acting as an ideal flux guide, i.e., (1=(2=0 and (3=(4=(, Equation (1.158)

 becomes
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in agreement with Equation (1.154)

 obtained earlier by an other method. For an exterior corner as shown in Figure 1.38b, (1=(2=(4=0 and (3=( so the cell formula becomes
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For an interior corner as shown in Figure 1.38c, (1=(2=(4=( and (3=0 so the cell formula becomes
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The resistor current, IR, must be determined in order to calculate the resistance value. Again, we can use the principles we have learned so far to perform this calculation. The current flowing through any cross-section of the resistor must be calculated from the node voltages. For convenience, consider the shaded cells adjacent to the zero-volt electrode in Figure 1.39. The current flowing into the electrode from the ith interior cell can be calculated as
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where the VELECT 0 is the voltage of the electrode, ( is the width of each cell, t is the thickness of the resistor, and (t is the area of the ith surface of each cell. In the two edge cells, i=1 and i=N, current only flows through the half of the cell which is within the conductive material. Therefore, the area is only half of the cell width, A1=AN=(t/2.


Figure 1.39 - Calculation of Resistor Current.

The resistor’s current is the sum of the currents flowing from each cell into the adjacent zero-volt electrode. The resistor current is expressed as
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where N is the number of cells which are adjacent to the zero-volt electrode. With these tools we are prepared to calculate resistance by the linear equation method.

Example 1.33-1: Calculate the resistance of the resistor of Example 1.27-1 shown in Figure 1.24 by using the linear equation method. An equi-spaced grid is superimposed upon the resistor with nodal voltages on the edges of the resistor as shown in Figure 1.40.


Figure 1.40 - Grid for Linear Equation Calculation of Resistance.

Equation 
(1.138)

 is imposed at all other (interior) nodes. From these conditions the configuration matrix (1.161)

 is imposed at the single interior corner node, node 12. Equation (1.160)

 is imposed at the single exterior corner node, node 19. Equation RMAT (1.159)

 is imposed at all edge nodes, nodes 1, 4, 5, 8, 9, 13, 14, 20, 21, 22, and 23. Equation  GOTOBUTTON ZEqnNum286447  \* MERGEFORMAT  and the boundary voltage matrix 
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 are formed and the solution for 
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NV

 is obtained from Equation (1.156)

 as IR=0.4014. Thus, the resistance is given by R=2.49/(t ( which compares well with R=2.65/(t ( obtained by curvilinear squares in Example 1.27-1.
(1.146)

. The resistor current is calculated with V13=0.2180, V18=0.1980, and V23=0.1890 via Equation 
Example 1.33-2: Calculate the resistance of the resistor shown in Example 1.33-1 by the iteration method. The equations applied at each node are the same as in Example 1.33-1. The node voltages from an Excel worksheet are shown in Figure 1.41. The current calculation via Equation (1.163)

 gives IR=(0.198+(0.218+0.189)/2)(t=0.4014(t. Therefore, R=VR/IR=1/0.4014(t=2.49/(t ( exactly the result we obtained in Example 1.33-1.
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Figure 1.41 - Resistor Node Voltages by the Iteration Method.

Example 1.33-3: Calculate the node voltages within the closed region of Figure 1.42a that is inhomogeneously filled with conductive material. The upper half of the region has a conductivity of (=2; the lower half has a conductivity of (=1. With only nine nodes, the problem is not excessively large. But we can make it even simpler by noting that node voltages in the right hand column equal those in the left.

We don’t need to solve for the latter three node voltages and we have only six nodes for which we must solve. This means that it is reasonable to use iterative hand calculations. Due to the inhomogeneity the voltages on the horizontal center line are calculated via Equation (1.138)

 is used at all other nodes. The inhomogeneity greatly reduces the accuracy of our previous procedure for estimating the initial node voltages. However, since the calculations can begin with any value, we will be close enough if we make our initial estimates as if the media is homogeneous. The initial estimates are the top value at each node; successive iterations are shown in Figure 1.42a with the final values as the last value at each node. The results of spreadsheet iteration are shown in Figure 1.42b. The two results show remarkable agreement.
(1.159)

; Equation 

a: Hand Calculation.


100
100
100


0
40.5
49.4
40.5
0

0
12.5
16.7
12.5
0

0
4.8
6.5
4.8
0


0
0
0


b: Spreadsheet Calculation.

Figure 1.42 - Inhomogeneous Material Calculations;

a: Hand Calculation, b: Spreadsheet Calculation.

Example 1.33-4: The cylindrical PEC electrodes of a coaxial resistor are located at radii 1 cm and 5 cm; the resistor is 2 cm long. A conductive material between 1 cm and 2 cm has a (INNER=103 S/m; another conductive material between 2 cm and 5 cm has (OUTER=2(103. Calculate the resistance of this composite structure. Since the equipotentials for a coaxial structure are cylinders of constant radius, the interface is along an equipotential surface so that the two regions act as resistors connected in series. From Example 1.29-1 we know that the resistance of a coaxial resistor is given by 
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Example 1.33-5: A coaxial resistor with dimensions of the resistor of Example 1.33-4 has one conductive material between 0(((( with (1=103 S/m and another between ((((2( with (2=2(103 S/m. Calculate the resistance of this coaxial resistor. Since the current flux density points in the radial direction, the material boundaries lie along flux lines and the resistors are in parallel. Each of the resistors has only half the current of a similar coaxial resistor so the resistance of each is doubled. The results of Example 1.29-1 lead to
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1.34 - Circuit Analogs

An alternative method of calculation of the voltages in a resistor is through analogous behavior of an electric circuit. Consider the four-resistor network of Figure 1.43. Application of KCL at node O leads to
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which, as long as R(0, can be rewritten as 
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Figure 1.43 - Analog Computation Cell

The relationship between nodes of the electromagnetic problem is the same as that between the nodes of a resistive circuit problem. The current which flows from one node to another is given by Equation (1.165)

.
(1.162)

 which specifies that the analog resistors should have a value of R=1/(t. If only the voltages must be calculated, any convenient value of resistance is acceptable. However, if the actual currents are needed, R=1/(t must be used. This means that we can simulate the electromagnetic problem by constructing a network of equal-valued resistors. A much quicker method is to use a circuit simulator such as SPICE. The fixed electrode voltages are simulated by voltage sources. Current flow from each electrode is represented by the current from the voltage sources. A brief consideration of the cells of Figure 1.39 reveals that the resistors between the nodes on the edge of the conducting material only carry half the current of resistors within the material. This is easily achieved by doubling the size of the edge resistors. This solution technique can easily be adapted to three-dimensional structures by substituting a “6” for the “4” in the denominator of Equation 
Example 1.34-1: Calculate the node voltages of the closed region of Figure 1.27 via circuit simulation. For convenience, let’s pick R=1 k( which is connected between each of the internal nodes; R=2 k( is connected between edge nodes. Two sources, 100 and 50 V, represent the electrode voltages. The circuit diagram for this configuration is shown in Figure 1.44. The PSPICE results are shown in Figure 1.45. Note that these results compare closely with the exact results of Equation (1.147)

.
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Figure 1.44 - Circuit Diagram for Simulation of Node Voltages.
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Figure 1.45 - Circuit Simulation Results.

Example 1.34-2: Determine the resistance of the resistor shown in Example 1.33-1using circuit simulation. Four equal resistors are connected to each of the interior nodes. As with earlier methods, we must impose the condition that no current leaves the edges of the conductive material. This is easily accomplished by the absence of a resistor to carry current away from the edge. In addition, the tangential current in the edge cells is only half of the current of interior cells as expressed by Equation (1.163)

, see Figure 1.39. The current is halved by making the resistors along the edges twice the value of all other resistors, i.e., RE=2R. With a 1 V source, the total resistance is the reciprocal of the current flowing from the source scaled by the factor 1/(t. The PSPICE circuit diagram is shown in Figure 1.46. The current in the source is 0.4014 mA giving a value of R=2.49/(t which compares very well with our earlier calculations.
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Figure 1.46 - SPICE Circuit Diagram for Resistance Calculation.

1.35 - Power Dissipation

The application of a voltage drop across a resistor causes an average power dissipation expressed as
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where VR and IR are the RMS values of the voltage and current, respectively. But, how is this expressed in terms of the electromagnetic fields within the resistor? Consider the incremental resistor shown in Figure 1.46. The incremental voltage drop is expressed in terms of the electric field as
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The incremental current flow can be expressed in terms of the electric field, also, as
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Assuming that the voltage and current are in phase, we obtain the average incremental power dissipated as


Figure 1.47 - Incremental Resistor.
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where (v is the volume of the incremental resistor. The power dissipated is related to the fields as we suspected. Division of the equation by the volume leads to
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the power dissipated per unit volume also known as the power density with units of w/m3. The power dissipated at each point throughout the resistor is proportional to |E|2. The locations where |E| is the greatest dissipate the most power per unit volume. The total power is expressed as the sum of all the incremental powers dissipated throughout the resistor, or
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where the volume of the resistor has been divided into N subvolumes. In the limit as the subvolumes all shrink to zero, the sum is replaced by an integral expression as



[image: image266.wmf]2

V

P||dv

=s

òòò

E

.
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.172)

Note that both ( and E can vary from point to point; power density--the localized power dissipation--varies as well. Once E has been determined the total power dissipated throughout a region can be calculated by summing (integrating) the incremental (differential) power dissipated throughout the resistor.

Example 1.35-1: Calculate the total power dissipated in the coaxial resistor of Example 1.29-1. E is given by 
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 so that Equation 
(1.172)

 becomes  GOTOBUTTON ZEqnNum580817  \* MERGEFORMAT 
From circuit theory the power is calculated as 
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 in agreement with the field-based calculation.

The common circuit definition of resistance, R=VR/IR, can be expressed in terms of E as 
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It has been suggested that power dissipation is a more fundamental concept upon which to base the definition of resistance. This leads to an expression for resistance of
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Alternatively, the power dissipation definition can be expressed as
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As seen in all three of these forms, once E is known the resistance can be calculated. The latter two forms are particularly useful for optimization techniques. But these methods are beyond the scope of this course. Suffice it to say that these optimization procedures are based upon the fact that the fields and current within a resistor naturally distribute themselves so as to minimize the power dissipated. Any other distribution causes greater power dissipation.

At this point we have a covered the basic electromagnetics which govern the behavior of resistors. More advanced topics have been deferred to more advanced courses. We will now move on to the behavior of capacitors.
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