| ECE540 - Antenna Engineering - HW1W04
[ > restart:with(student):

. Problem 1: The normalized field pattern is given by
[ > En:=piecewise(theta>0,sin(theta)/theta*sin(phi),sin(phi));

- sin(0) sin(¢) 0<6
En:= 0
sin(¢) otherwise

i Part A: The beam is peaked at theta=0 and phi=0, pi. HPBW is calculated by evaluating the angles in
the planes of theta=0 and phi=0 for which the electric field has a value of 0.707 (or the power density
| has a power of 1/2). The angle calculated is doubled
[ > HPBW_theta:=evalf(2*fsolve(subs(phi=Pi1/2,En)=0.707,theta)/Pi1*180);
| HPBW _theta := 159.4929260
[ > Phil:=evalf(fsolve(subs(theta=0.000001,En)=0.707,ph1,2..3)/Pi1*180)
;Phi2:=evalf(fsolve(subs(theta=0.000001,En)=0.707,ph1,0.1..1)/Pi1*1
80) ;HPBW_phi:=Phil-Phi2;
®1 :=135.0086516
®2 :=44.99134832
HPBW_phi :=90.01730328
> plot({sin(theta),subs(phi=Pi1/2,En),0.707},theta=0..Pi1);
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| Part B: Beam area is calculated as the integral of the normalized power pattern over all space
| (O<=theta<=Pi, 0<=phi<=2*Pi), see equation 2-4-5a
[ > BeamArea:=evalf(int(int(En"2*sin(theta),theta=0..Pi),phi=0..2*Pi1))
L BeamArea := 2.737096888
| Part C: The beam efficiency is the ratio of the beam area in the desired direction for a specified BW
to the total beam area over all space as calculated in part B. Note that this omits 1/2 of the region
because the radiation is in the direction opposite to the main beam and is a back lobe. Unfortunately, it
has the same magnitude and shape as the main beam so it radiates just as much power. One definition
| is to use the FNBW; FNBW _theta=Pi, FNBW_phi=Pi. So the BE is calculaated as
> BE_FNBW:=evalf(int(int(En"2*sin(theta),theta=0..P1),phi=0..P1))/Be
amArea;
BE_FNBW :=0.4999999996
An alternate definition is to use HPBW; HPBW _theta is between the limits of Pi/4 and 3Pi/4;
| HPBW _phi has identical limits. In this case the BE is given as
[ > BE_HPBW:=evalf(int(int(En*2*sin(theta),theta=Pi/4._.3*P1/4),phi=Pi1/
4._.3*Pi1/4))/BeamArea;
BE_HPBW :=0.2790134259
Part D: Directivity is a more common measure (than BE) of how focused the radiation is in one
| direction. It is expressed as the beam area compared to the beam area of an isotropic radiator as
[ > Directivity:=evalf(4*Pi/BeamArea);
Directivity := 4.591131088
Problem 2: The Friis relationship, equation 2-11-5, can be used along with 2-11-4 to calculate the
| maximum power received over the link as
[ > Gain_trans:=10"(25/10);Gain_rec:=10"(20/10) ; frequency:=1e9;wavelen
gth:=3e8/frequency;R:=500;Power_trans:=150;Area_trans:=Gain_trans*
wavelength”™2/4/Pi ;Area_rec:=Gain_rec*wavelength”™2/4/Pi ;Power_rec:=
evalf(Area_trans*Area_rec/R"2/wavelength”™2);

Gain_trans := 100 «/E
Gain_rec ;=100
frequency := 0.1 10"
wavelength := 0.3
R :=500
Power_trans := 150
2.250000000 4/10
T
2.250000000
s
Power_rec := 0.00007209128596

Area_trans ;=

Area_rec .=

i Problem 3:



Part A: The wave is propagating out of the plane of the paper; when omea*t=0 the electric field
points in the x-direction; when omega*t=Pi/2, in the -y-direction; when omega*t=Pi, in the
-x-direction; when omega*t=3*Pi/2, in the y-direction. The electric field vector is rotating in the CW
fashion. Since the two components are equal in magnitude the tip of the rotating E vector traces out a
circle. So it is called CW circularly polarized.

Part B: with Ey=3 the tip of the rotating E vector traces out an ellipse with an axial ratio of 2/3; it
still rotates in the CW fashion. The phase angle delta=time-phase angle by which Ey leads Ex=-Pi/2 in
this case. From equation 2-17-3, we see that tan(2*tau)=tan(2*gamma)*cos(delta), but cos(-Pi/2)=0.
So the inclination angle tau=0.




