
Notes for Discrete-Time Control Systems
(ECE-420)

Fall 2012

by
R. Throne

The major sources for these notes are

• Modern Control Systems, by Brogan, Prentice-Hall, 1991.

• Discrete-Time Control Systems, by Ogata. Prentice-Hall, 1995.

• Computer Controlled Systems, by Åström and Wittenmark. Prentice-Hall, 1997.

• Analog and Digital Control System Design, by C. T. Chen. Sanders College Publishing.
1993.

• Digital Control of Dynamic Systems, by Franklin, Powell, and Workman. Addison Wesley,
1998.

• Modern Control Systems, by Dorf and Bishop. Prentice-Hall, 2008.

1

Contents

1 z-Transforms 4
1.1 Special Functions . 4
1.2 Impulse Response and Convolution . 4
1.3 A Useful Summation . 6
1.4 z-Transforms . 9
1.5 z-Transform Properties . 11
1.6 Inverse z-Transforms . 14
1.7 Second Order Transfer Functions with Complex Conjugate Poles 19
1.8 Solving Difference Equations . 23
1.9 Asymptotic Stability . 26
1.10 Mapping Poles and Settling Time . 26
1.11 Sampling Plants with Zero Order Holds . 28
1.12 Final Notes . 32

2 Transfer Function Based Discrete-Time Control 33
2.1 Implementing Discrete-Time Transfer Functions 33
2.2 Not Quite Right . 33
2.3 PID and Constant Prefilters . 34
2.4 Placing Closed Loop Poles . 37

3 Least Squares Problems 40
3.1 Mathematical Preliminaries . 40
3.2 Vector Calculus . 40
3.3 Lagrange Multipliers . 43
3.4 Least Squares Problems . 46
3.5 Singular Value Decomposition (SVD) . 48
3.6 Recursive Least Squares with a Forgetting Factor 53
3.7 Adaptive Control . 59

4 Discrete-Time State Equations 64
4.1 The Continuous-Time State Transition Matrix 64
4.2 Solution of the Continuous-Time State Equations 66
4.3 Computing the State Transition Matrix, eAt . 67

4.3.1 Truncating the Infinite Sum . 67
4.3.2 Laplace Transform Method . 68
4.3.3 Matching on Eigenvalues . 70

4.4 Discretization with Delays in the Input . 73
4.5 State Variable to Transfer Function . 76
4.6 Poles and Eignevalues . 77

5 Controllability and Observability 78
5.1 Linear Algebra Review . 78

5.1.1 Linear Independence . 78
5.1.2 Rank of a Matrix . 80

2

5.1.3 Unique Representation of a Vector . 81
5.1.4 Dimension of a Space . 81
5.1.5 The Cayley-Hamilton Theorem . 81

5.2 Controllability . 83
5.3 Output Controllability . 86
5.4 Observability . 86

6 State Variable Feedback 88
6.1 Pole Placement by Transfer Functions . 89
6.2 Pole Placement by Ackermann’s Formula . 91
6.3 Null Space of a Matrix . 95
6.4 Pole Placement by Direct Eigenvector/Eigenvalue Assignment 96

6.4.1 Pole Placement Algorithm (Scalar Input) 97
6.4.2 Pole Placement Algorithm (Vector Input) 100

6.5 State Feedback Examples . 103
6.6 General Guidelines for State Feedback Pole Locations 105

7 Integral Control 111

8 Full Order State Observers 120
8.1 Derivation of Observer . 120
8.2 Choosing Ke . 121
8.3 State Feedback and Observers . 123
8.4 General Guidelines for Observer Pole Locations 124
8.5 Full Order Observers with Integral Control . 124
8.6 Simulations . 125

9 Minimum Order Observers 131
9.1 Basic Structure . 133
9.2 Determining Ke . 135
9.3 Examples . 137
9.4 Minimum Order Observers with Integral Control 140
9.5 Simulations . 140

10 Transfer Functions of Observer Based Controllers 147
10.1 Full Order Observers . 147
10.2 Simulations . 149
10.3 Reduced Order Observers . 149

11 Linear Quadratic Optimal Control 159
11.1 Euler Lagrange Equations . 160
11.2 Derivation of Recursive Relationships . 161
11.3 Examples . 164

3

1 z-Transforms

In this course we will assume we are sampling the continuous time signal x(t) at a uniform
sampling rate. The time interval between samples will be denoted by T . Thus we will denote
the discrete-time (sampled) values as x(0), x(T), x(2T),. . . , x(kT). This is shown graphically
in Figure 1. Sometimes we remove the explicit dependence on the sampling interval T and just
write x(0), x(1), x(2), . . . , x(k), since the sample interval is the same for all of the different
samples.

1.1 Special Functions

Just as in continuous-time, there are certain special functions that are used very often in discrete-
time. Specifically, we will be concerned with the unit impulse function, the unit step function,
and the unit ramp function.

The unit impulse or delta function is defined as

δ(k) =

{
1 k = 0
0 k ̸= 0

or

δ(n− k) =

{
1 k − n = 0
0 k − n ̸= 0

The unit step or Heaviside function is defined as

u(k) =

{
1 k ≥ 0
0 k < 0

or

u(n− k) =

{
1 n− k ≥ 0
0 n− k < 0

The unit ramp function is defined as
r(k) = ku(k)

or
r(n− k) = (n− k)u(n− k)

While there are other special function, these are the special functions we will be utilizing the
most.

1.2 Impulse Response and Convolution

The unit impulse response of a Linear Time-Invariant (LTI) system, h(k), is the response of the
system at rest (no initial energy, the initial conditions are all zero), to a unit impulse at time
zero. Symbolically, we can write

δ(k) → h(k)

Since the system is assumed to be time-invariant we also have

δ(n− k) → h(n− k)

4

x(t)

0

x(0)

T

x(T)

2T

x(2T)

3T

x(3T)

4T

x(4T)

5T

x(5T)

6T

Figure 1: Continuous-time signal x(t) and its samples x(kT). We assume the samples are taken
at the beginning of each time interval.

Since the system is also linear, we have

αδ(k) → αh(k)

and
αδ(n− k) → αh(n− k)

Now we can write x(n) as

x(n) = . . .+ x(−2)δ(n+ 2) + x(−1)δ(n+ 1) + x(0)δ(n) + x(1)δ(n− 1) + x(2)δ(n− 2) + . . .

If x(n) is the input to an LTI system, then we can compute the output as

y(n) = . . .+ x(−2)h(n+ 2) + x(−1)h(n+ 1) + x(0)h(n) + x(1)h(n− 1) + x(2)h(n− 2) + . . .

since we treat the x(k)’s as constants, and the system is only responding the the impulses. We
can write this expression as

y(n) =
∞∑

k=−∞
x(k)h(n− k)

or, by making a change of variable in the sum, as

y(n) =
∞∑

k=−∞
x(n− k)h(k)

5

Thus the output of an LTI system is the convolution of the input with the impulse response of
the system,

y(n) = h(n) ⋆ x(n) =
∞∑

k=−∞
h(k)x(n− k)

= x(n) ⋆ h(n) =
∞∑

k=−∞
x(k)h(n− k)

If both the system and input are causal (both are zero for n ≤ 0), then we can simplify the
convolution sums as

y(n) = h(n) ⋆ x(n) =
n∑

k=0

h(k)x(n− k)

= x(n) ⋆ h(n) =
n∑

k=0

x(k)h(n− k)

1.3 A Useful Summation

In what follows, we will make extensive use of a simple summation formula, which you probably
saw in high school. Let’s denote the sum Sn as

Sn = 1 + a+ a2 + . . .+ an−1 + an =
k=n∑
k=0

ak

If we multiply by a we have

aSn = a
(
1 + a+ a2 + . . .+ an−1 + an

)
= a+ a2 + a3 + . . .+ an + an+1

= Sn − 1 + an+1

Solving for Sn we have

aSn − Sn = an+1 − 1

Sn =
an+1 − 1

a− 1

or

k=n∑
k=0

ak =
1− an+1

1− a

Note that if n = ∞ and |a| < 1, then we have

∞∑
k=0

ak =
1

1− a

Now let’s do some convolution examples.

6

Example. Assume the input to a system is x(n) = u(n) and the impulse response of the system
is h(n) = u(n). Determine the output of the system. We have

y(n) = x(k) ⋆ h(k)

=
∞∑

k=−∞
x(k)h(n− k)

=
∑

k=−∞
u(k)u(n− k)

=
n∑

k=0

(1)(1)

= (n+ 1)u(n)

Note that we need the final u(n) since our method is only valid if n ≥ 0.

Example. Assume the input to a system is x(n) = αnu(n) and the impulse response is h(n) =
u(n). Determine the output of the system. We have

y(n) = x(k) ⋆ h(k)

=
∞∑

k=−∞
x(k)h(n− k)

=
∑

k=−∞
αku(k)u(n− k)

=
n∑

k=0

αk

=
1− αn+1

1− α
u(n)

Note that we need the final u(n) since our method is only valid if n ≥ 0.

Example. Assume the input to a system is x(n) = αn+2u(n + 2) and the impulse response is
h(n) = βn−1u(n− 1). Determine the output of the system. We have

y(n) = x(k) ⋆ h(k)

=
∞∑

k=−∞
x(k)h(n− k)

=
∑

k=−∞
αk+2u(k + 2)βn−k−1u(n− k − 1)

Now let’s look at our sums. We know u(k + 2) = 1 for k ≥ −2 and u(n − k − 1) = 1 for
n− k − 1 ≥ 0 or n− 1 ≥ k. Hence our sum is

y(n) =
n−1∑
k=−2

αk+2βn−k−1

In order to use our summation formula, let’s change variables in this sum. We want the lower
limit to be zero, so let’s define l = k + 2, or k = l − 2. In terms of l, our new sum is

y(n) =
l=n+1∑
l=0

αlβn−l+1

7

= βn+1
n+1∑
l=0

(
α

β

)l

= βn+1

1− (α
β
)n+2

1− α
β

u(n+ 1)

Example. Assume the input to a system is x(n) = α−nu(−n) and the impulse response is
h(n) = βn−1u(n− 1). Determine the output of the system. We have

y(n) = x(k) ⋆ h(k)

=
∞∑

k=−∞
x(k)h(n− k)

=
∑

k=−∞
α−ku(−k)βn−k−1u(n− k − 1)

We know that u(−k) = 1 for k ≤ 0 and u(n−k−1) = 1 for n−k−1 ≥ 0 or k ≤ n−1. Now we
have to be very careful since our answers will depend on what we assume about n. For n ≥ 1,
the most restrictive condition is k ≤ 0 Our new sum becomes

y(n) =
0∑

k=−∞
α−kβn−k−1

= βn−1
0∑

k=−∞
(αβ)−k

Letting l = −k and assuming the sum is absolutely convergent so that we can rearrange the
order of the summation, we have

y(n) = βn−1
l=∞∑
l=0

(αβ)l = βn−1 1

1− αβ

Next, let’s look at what happens for n ≤ 0. Here the more restrictive condition is k ≤ n − 1,
and we have the sum

y(n) =
n−1∑

k=−∞
α−kβn−k−1

= βn−1
n−1∑

k=−∞
(αβ)−k

Letting l = k − (n− 1) = k − n+ 1 we have

y(n) = βn−1(αβ)−(n−1)
0∑

l=−∞
(αβ)−l

Finally, let p = −l and assume absolute convergence, and we have

y(n) = α−n+1 1

1− αβ

Combining our two regions we have

y(n) = βn−1 1

1− αβ
u(n− 1) + α−n+1 1

1− αβ
u(−n)

Note that there is no overlap in the definition regions (values of n).

8

1.4 z-Transforms

In continuous-time we can either compute the output of a system using the convolution directly,
or we can resort to transform methods. In continuous-time control systems we generally utilize
Laplace transforms and block diagrams, since this is a much easier way to determine the output
than by using convolution in the time domain. Similarly, in discrete-time we can utilize the
z-transform to avoid using the convolution sum. Just as with Laplace transforms, we can define
one and two-sided z-transforms.

The one-sided z-transform is defined as

X(z) = Z {x(nT)} =
∞∑
k=0

x(kT)z−k

and the two-sided z-transform is defined as

X(z) = Z {x(nT)} =
∞∑

k=−∞
x(kT)z−k

Just as with Laplace transforms, the only difference between the one and two-sided z-transform
is the lower limit. Often we do not directly utilize the dependence on T and leave it out of the
summation. In this course we are generally concerned with causal systems and causal inputs,
so we generally will use the one-sided z-transform. Finally, the sum often only converges for
values of |z| within a specific region. This is called the region of convergence or ROC. Now let’s
do some examples.

Example. Determine the one-sided z-transform of x(n) = δ(n− l). We have

X(z) =
k=∞∑
k=0

δ(k − l)z−k = z−l

This sum converges for all values of |z|, so the region of convergence is the entire z-plane.

Example. Determine the one-sided z-transform of x(n) = u(n), the unit step function. We
have

X(z) =
∞∑
k=0

u(k)z−k =
∞∑
k=0

(
1

z

)k

=
1

1− z−1
=

z

z − 1

This is only true if the sum is absolutely convergent, which means |1
z
| < 1 or if |z| > 1. Hence

the ROC is defined by |z| > 1.

Example. Determine the one-sided z-transform of x(n) = nu(n), the unit ramp function. We
have

X(z) =
∞∑
k=0

ku(k)z−k =
∞∑
k=0

kz−k

9

At this point, we need to use something we all ready know, and some calculus. For the unit
step we have

z

z − 1
=

∞∑
k=0

z−k

Taking derivatives of both sides with respect to z yields

d

dz

[
z

z − 1

]
=

(z − 1)− z

(z − 1)2
=

−1

(z − 1)2

d

dz

[∞∑
k=0

z−k

]
=

∞∑
k=0

−kz−k−1 = −z−1
∞∑
k=0

kz−k

Hence we have

−1

(z − 1)2
= −z−1

∞∑
k=0

kz−k

or
∞∑
k=0

kz−k =
z

(1− z)2

which is the result we wanted. Just as with the z-transform of the unit step, the ROC for this
function is |z| > 1.

Example. Determine the one-sided z-transform for the function x(n) = anu(n). We have

X(z) =
∞∑

k=−∞
aku(k)z−k

=
∞∑
k=0

(
a

z

)k

=
1

1− a
z

=
z

z − a

The region of convergence is given by |a
z
| < 1 or |z| > |a|.

Example. Determine the z-transform of the x(t) = e−atu(t) when x(t) is sampled with sampling

interval T . The sampled version of the signal is given by x(nT) = e−anTu(nT) =
(
e−aT

)n
u(n).

Computing the z-transform we have

X(z) =
∞∑

k=−∞

(
e−aT

)k
u(k)z−k

=
∞∑
k=0

(
1

eaT z

)k

=
1

1− 1
eaT z

=
z

z − e−aT

10

The region of convergence is given by | 1
eaT z

| < 1 or e−aT < |z|.

Example. Find the one-sided z-transform of x(n) = an cos(bnT)u(n). We have

X(z) =
∞∑

k=−∞
ak cos(bkT)u(k)z−k =

∞∑
k=0

(
a

z

)k

cos(bkT)

At this point we need to use Euler’s identity,

cos(bkT) =
ejbkT + e−jbkT

2
=

1

2

(
ejbT

)k
+

1

2

(
e−jbT

)k
Inserting this identity into our sum we have

X(z) =
1

2

∞∑
k=0

(
a

z
ejbT

)k

+
1

2

∞∑
k=0

(
a

z
e−jbT

)k

=
1

2

1

1− aejbT

z

+
1

2

1

1− ae−jbT

z

After some algebra we arrive at

X(z) =
z(z − a cos(bT))

z2 − 2a cos(bT)z + a2

the region of convergence is given by

|ae
jbT

z
| < 1, |ae

−jbT

z
| < 1

or |z| > |a| since |ejbT | = |e−jbT | = 1.

1.5 z-Transform Properties

Just as with Laplace and Fourier transforms, there are a number of useful properties of z-
transforms. We will cover a few of them in this section. Most of the properties we will cover
are straightforward to prove, and you should be able to prove most of them. Unless otherwise
stated, we will assume only one-sided z transforms.

Linearity. If we have the z-transform pairs g(n) ↔ G(z) and h(n) ↔ H(z), then for all
constants a and b we have

Z {ag(n) + bh(n)} = aG(z) + bH(z)

Multiplication by an. If g(n) ↔ G(z), then ang(n) ↔ G(z
a
).

Proof:

Z {ang(n)} =
∞∑
k=0

akg(k)z−k

=
∞∑
k=0

g(k)
(
z

a

)−k

= G(
z

a
)

11

Shifting. If g(n) ↔ G(z) and g(n) is causal, then

Z {g(n− l)} = z−lG(z)

Z {g(n+ l)} = zl
[
G(z)−

l−1∑
k=0

g(k)z−k

]

Proof of first part: Taking the z-transforms we have

Z {g(n− l)} =
∞∑
k=0

g(k − l)z−k

=
∞∑
k=l

g(k − l)z−k

since g(n) is causal. Now let m = k − l, or k = m+ l. The sum then becomes

Z {g(n− l)} =
∞∑

m=0

g(m)z−(m+l)

= z−l
∞∑

m−0

g(m)z−m

= z−lG(z)

Proof of the second part: Let’s start by trying to find the z-transform of g(n+1). We have then

Z {g(n+ 1)} =
∞∑
k=0

g(k + 1)z−k

= g(1) + g(2)z−1 + g(3)z−2 + g(4)z−3 + g(5)z−4 + . . .

Now we know

G(z) =
∞∑
k=0

g(k)z−k

= g(0) + g(1)z−1 + g(2)z−2 + g(3)z−3 + g(4)z−4 + g(5)z−5 + . . .

Rearranging this expression we get

zG(z) = g(0)z + g(1) + g(2)z−1 + g(3)z−2 + g(4)z−3 + g(5)z−4 + . . .

zG(z)− g(0) = g(1) + g(2)z−1 + g(3)z−2 + g(4)z−3 + g(5)z−4 + . . .

= Z {g(n+ 1)}

Now consider taking the z-transform of g(n+ 2). We have

Z {g(n+ 2)} =
∞∑
k=0

g(k + 2)z−k

= g(2) + g(3)z−1 + g(4)z−2 + g(5)z−3 + . . .

12

Starting from the definition of G(z) from above

G(z) = g(0) + g(1)z−1 + g(2)z−2 + g(3)z−3 + g(4)z−4 + g(5)z−5 + . . .

we can find

z2G(z) = g(0)z2 + g(1)z + g(2) + g(3)z−1 + g(4)z−2 + g(5)z−3 + . . .

z2G(z)− z2g(0)− zg(1) = g(2) + g(3)z−1 + g(4)z−2 + g(5)z−3 + . . .

= Z {g(n+ 2)}

In general we have

Z {g(n+ l)} =
∞∑
k=0

g(k + l)z−k

= g(l) + g(l + 1)z−1 + g(l + 2)z−2 + g(l + 3)z−3 + . . .

and

G(z) = g(0) + g(1)z−1 + g(2)z−2 + . . .+ g(l − 1)zl−1 + g(l)z−l + g(l + 1)z−l−1 + g(l + 2)z−l−2 + . . .

zlG(z) = zlg(0) + zl−1g(1) + zl−2g(2) + . . .+ z−1g(l − 1) + g(l) + g(l + 1)z−1 + g(l + 2)z−2 + . . .

Rearranging we get

zlG(z)− zlg(0)− zl−1g(1) + zl−2g(2) + . . .+ z−1g(l − 1) = g(l) + g(l + 1)z−1 + g(l + 2)z−2 + . . .

zl
[
G(z)−

l−1∑
k=0

g(k)z−k

]
= Z {g(n+ l)}

Final Value Theorem. Just as with Laplace transforms, the Final Value Theorem is very
useful for determining steady state errors in discrete-time control systems. If we assume g(k) is
causal, and all poles of G(z) are inside the unit circle (with exception of a possible simple pole
at z = 1), then

lim
t→∞

x(t) = lim
z→1

[
1− z−1

]
G(z) = lim

z→1

z − 1

z
G(z)

Example. If g(t) = (1 − e−3t)u(t), then G(z) = z(1−e−3T)
(z−1)(z−e−3T)

. By the Final Value Theorem we
have

lim
t→∞

g(t) = 1 = lim
z→1

z − 1

z
G(z) =

1− e−3T

1− e−3T
= 1

since all of the poles of the system are within the unit circle with the exception of a simple pole
at z = 0.

Example. If g(t) = e−tu(t), then G(z) = z
z−e−T . By the Final Value Theorem

lim
t→∞

g(t) = 0 = lim
z→1

z − 1

z
G(z) = 0

13

since all of the poles of the system are within the unit circle.

Example. If g(t) = u(t), then G(z) = z
z−1

. By the Final Value Theorem

lim
t→∞

g(t) = 1 = lim
z→1

z − 1

z
G(z) = 1

Note that in this example there is a simple pole at z = 1.

Initial Value Theorem. Just as with laplace transforms, the Initial Value Theorem for z-
transforms is very useful for determining the initial required control effort for different types of
controllers. The Initial Value Theorem states that if the limits exist, then

lim
t→0

g(t) = lim
z→∞

G(z)

Example. If g(t) = (1− e−3t)u(t), then G(z) = z(1−e−3T)
(z−1)(z−e−3T)

. By the Initial Value Theorem we
have

lim
t→0

g(t) = 0 = lim
z→∞

G(z) = 0

Example. If g(t) = e−tu(t), then G(z) = z
z−e−T . By the Initial Value Theorem

lim
t→0

g(t) = 1 = lim
z→∞

G(z) = 1

Table 1 summarizes some common z-transform pairs, while Table 2 summarizes some common
z-transform properties.

1.6 Inverse z-Transforms

There are four common methods for going from the z-domain back to the (discrete) time domain.
These are

• Computational methods (Matlab/Maple, etc)

• Contour integration in the complex plane

• Partial fractions

• Long division

In this course we will emphasize the use of partial fractions, which you should be pretty familiar
with. It is generally easiest to find the partial fraction expansion for G(z)

z
when you want to find

the inverse z-transform of G(z), since simple poles have the form aku(k) ↔ z
z−a

.

Example. Determine g(n) for G(z) = z(z−4)
(z−3)(z−2)

. We have

G(z)

z
=

z − 4

(z − 3)(z − 2)
=

A

z − 3
+

B

z − 2

14

X(s) x(t) x(nT) or x(n) X(z)

— — δ(n) 1
— — δ(n− l) z−l

1
s

u(t) u(nT) z
z−1

1
s+a

e−atu(t) e−anTu(nT) z
z−e−aT

1
s2

tu(t) (nT)u(nT) Tz
(z−1)2

1
s3

1
2
t2u(t) 1

2
(nT)2u(nT) T 2z(z+1)

(z−1)3

a
s(s+a)

(1− e−at)u(t) (1− e−anT)u(nT) z(1−e−aT)
(z−1)(z−e−aT)

b−a
(s+a)(s+b)

(e−at − e−bt)u(t) (e−anT − e−bnT)u(nT) z(e−aT−e−bT)
(z−e−aT)(z−e−bT)

1
(s+a)2

te−atu(t) (nT)e−anTu(nT) zTe−aT

(z−e−aT)2

s
(s+a)2

(1− at)e−atu(t) (1− anT)e−anTu(nT) z[z−(1+aT)e−aT]
(z−e−aT)2

ω
s2+ω2 sin(ωt)u(t) sin(ωnT)u(nT) z sin(ωT)

z2−2z cos(ωT)+1
s

s2+ω2 cos(ωt)u(t) cos(ωnT)u(nT) z[z−cos(ωT)]
z2−2 cos(ωT)+1

bnu(n) z
z−b

nbnu(n) bz
(z−b)2

(1− bn)u(n) z(1−b)
(z−1)(z−b)

Table 1: Common (one sided) z-transforms. Often we set T = 1 and e−aT = b to find results
when the sampling time is not important.

x(t) x(nT) Z[x(t)] or Z[x(nT)]

αx(t) αx(nT) αX(z)
αx1(t) + βx2(t) αx1(nT) + βx2(nT) αX1(z) + βX2(z)

x(t+ T) x(nT + T) zX(z)− zx(0)
x(t+ 2T) x(nT + 2T) z2X(z)− z2x(0)− zx(T)
x(t+ kT) x(nT + kT) zkX(z)− zkx(0)− zk−1x(T)− zk−2X(2T)− . . .− zx(kT − T)
x(t− kT) x(nT − kT) z−kX(z)
tx(t) (nT)x(nT) −Tz d

dz
X(z)

e−atx(t) e−anTx(nT) X(zeaT)
— anx(nT) X(z

a
)

x(0) x(0) limz→∞X(z) if the limit exists
x(∞) x(∞) limz→1[(1− z−1]X(z) if all poles of X(z) are inside unit

the unit circle (a simple pole at z = 1 is allowed)
—

∑n
k=0 x(k)

z
z−1

X(z)

x(t) ⋆ h(t) x(nT) ⋆ h(nT) X(z)H(z)

Table 2: Common properties of (one sided) z-transforms. Often we set T = 1 and e−aT = b to
find results when the sampling time is not important

15

Using the ”cover up” method we quickly arrive at

A =
3− 4

3− 2
= −1 B =

2− 4

2− 3
= 2

This leads to
G(z)

z
=

−1

z − 3
+

2

z − 2
or

G(z) = − z

z − 3
+ 2

z

z − 2

From this form we can quickly conclude that

g(n) = −(3)nu(n) + 2(2)nu(n)

The first few terms of this impulse response are g(0) = 1, g(1) = 1, g(2) = −1, and g(3) = −11.

Example. Determine g(n) if G(z) = z−4
(z−3)(z−2)

. For this G(z), there is no z in the numerator to

divide by to create the G(z)
z

. One solution is to multiple by z
z
and then do the partial fractions,

as follows:

G(z) =
z − 4

(z − 3)(z − 2)
=

z − 4

(z − 3)(z − 2)

z

z

so we have
G(z)

z
=

z − 4

z(z − 3)(z − 2)
=
A

z
+

B

z − 3
+

C

z − 2

Using the ”cover up” method we get

A =
−4

(−3)(−2)
=

−2

3
, B =

3− 4

(3− 2)(3)
=

−1

3
, C =

2− 4

(2− 3)(2)
= 1

so

G(z) = −2

3
− 1

3

z

z − 3
+

z

z − 2

which yields

g(n) = −2

3
δ(n)− 1

3
(3)nu(n) + (2)nu(n)

If we compute the first few terms of g(n) we get g(0) = 0, g(1) = 1, g(2) = 1, g(3) = −1,
g(4) = −11.

Example. Determine g(n) if G(z) = z−4
(z−3)(z−2)

. For this G(z), there is no z in the numerator

to divide by to create the G(z)
z

. One solution is to construct and F (z) so that G(z) = z−1F (z) ,
as follows:

F (z) =
z(z − 4)

(z − 3)(z − 2)

so we have
F (z)

z
=

z − 4

(z − 3)(z − 2)
=

A

z − 3
+

B

z − 2

16

Using the ”cover up” method we get

F (z) = − z

z − 3
+ 2

z

z − 2

and
f(n) = −(3)nu(n) + 2(2)nu(n)

Since we know G(z) = z−1F (z), we have g(n) = f(n− 1) using the delay property. Hence

g(n) = −(3)n−1u(n− 1) + 2(2)n−1u(n− 1)

Although this answer looks much different than in the previous example, the two solutions are
in fact the same.

Example. Determine g(n) for G(z) = z(−5z+22)
(z+1)(z−2)2

. We have

G(z)

z
=

−5z + 22

(z + 1)(z − 2)2
=

A

z + 1
+

B

z − 2
+

C

(z − 2)2

Using the ”cover-up” method we can quickly find A and C,

A =
−5(−1) + 22

(−1− 2)2
=

27

9
= 3, C =

−5(2) + 22

(2 + 1)
=

12

3
= 4

To get B, we multiply both sides of the original equation by z and then let z → ∞, to get

0 = A+B, B = −3

So we have
G(z) = 3

z

z + 1
− 3

z

z − 2
+ 4

z

(z − 2)2

and
g(n) = 3(−1)nu(n)− 3(2)nu(n) + 4n(2)n−1u(n)

The first few terms of the impulse response are g(0) = 0, g(1) = −5, g(2) = 7, g(3) = 21, and
g(4) = 83.

While we can normally use partial fractions to determine the time response for all sample times,
sometimes we only want to determine the time response for the first few terms. We can use
the method of long division to determine the first few terms of the time domain response by
utilizing the fact that if we compute the z-transform of g(n) we have

G(z) = g(0) + g(1)z−1 + g(2)z−2 + g(3)z−3 + g(4)z−4 + . . .

This method of long division is particularly important as a method to check your answer. How-
ever, it is not very useful for determining a closed form solution for all time.

Example. Use long division to determine the first few terms of the impulse response for the

transfer function G(z) = z(z−4)
(z−3)(z−2)

. We first need to multiply out the numerator and the

denominator, so we have G(z) = z2−4z
z2−5z+6

. Next we do the long division,

17

1 +z−1 −z−2 − 11z−3

z2 − 5z + 6 | z2 −4z
z2 −5z +6

z −6
z −5 +6z−1

−1 −6z−1

−1 +5z−1 −6z−2

−11z−1 +6z−2

Hence we have the approximations

G(z) =
z(z − 4)

z2 − 5z + 6
= 1 + z−1 − z−2 − 11z−3 + · · ·

g(n) = δ(n) + δ(n− 1)− δ(n− 2)− 11δ(n− 3) + · · ·

which agrees with our previous result.

Example. Use long division to determine the first few terms of the impulse response for the
transfer function G(z) = z−4

(z−3)(z−2)
. We first need to multiply out the denominator, so we have

G(z) = z−4
z2−5z+6

. Next we do the long division,

z−1 +z−2 −z−3 − 11z−4

z2 − 5z + 6 | z −4
z −5 +6z−1

1 −6z−1

1 −5z−1 +6z−2

−z−1 −6z−2

−z−1 +5z−2 −6z−3

−11z−2 +6z−3

Hence we have the approximations

G(z) =
z − 4

z2 − 5z + 6
= z−1 + z−2 − z−3 − 11z−4 + · · ·

g(n) = δ(n− 1) + δ(n− 2)− δ(n− 3)− 11δ(n− 4) + · · ·

which agrees with our previous result.

Example. Use long division to determine the first few terms of the impulse response for the

transfer function G(z) = z(−5z+22)
(z+1)(z−2)2

. We first need to multiply out the numerator and denomi-

nator, so we have G(z) = −5z2+22z
z3−3z−2+4

. Next we do the long division,

18

−5z−1 +7z−2 +21z−3 + 83z−4

z3 − 3z2 + 4 | −5z2 +22z
−5z2 +15z −20z−1

7z +20z−1

7z −21 +28z−2

21 +20z−1 −28z−2

21 −63z−1 +84z−3

83z−1 −28z−3 −84z−3

Hence we have the approximations

G(z) =
z(−5z + 22)

z3 − 3z2 + 4
= −5z−1 + 7z−2 + 21z−3 + 83z−4 + · · ·

g(n) = −5δ(n− 1) + 7δ(n− 2) + 21δ(n− 3) + 83δ(n− 4) + · · ·

which agrees with our previous result.

1.7 Second Order Transfer Functions with Complex Conjugate Poles

Consider the continuous-time impulse response response that corresponds to a transfer function
with complex conjugate poles at −a± jb,

G(s) =
r

(s+ a)2 + b2
↔ g(t) = re−at cos(bt+ θ)u(t)

If we look at samples of the impulse response, we get

g(nT) = re−anT cos(bnT + θ)u(nT)

= r
(
e−aT

)n
cos((bT)n+ θ)u(nT)

= rγn cos(βn+ θ)u(n)

Hence, the discrete-time impulse response that corresponds to a continuous-time system with
complex conjugate poles is of the form

g(n) = rγn cos(βn+ θ)u(n)

As you might expect, this form shows up a great deal when we are modeling many types of
systems. Hence we should know the corresponding z-transform of this impulse response. As you
will see, it is much more complex than you might expect.

Using Euler’s identity we can write g(n) as

g(n) =
r

2
γnejβnejθ +

r

2
γne−jβne−jθ

19

and taking the z-transform of this we have

G(z) =
r

2

∞∑
k=0

γkejβkejθz−k +
r

2

∞∑
k=0

γke−jβke−jθz−k

=
r

2
ejθ

∞∑
k=0

(
γejβ

z

)k

+
r

2
e−jθ

∞∑
k=0

(
γe−jβ

z

)k

=
rejθ

2

[
1

1− γejβz−1

]
+
re−jθ

2

[
1

1− γe−jβz−1

]

=
rejθ

2

[
z

z − γejβ

]
+
re−jθ

2

[
z

z − γe−jβ

]

=
rejθ

2

[
z(z − γe−jβ)

(z − γejβ)(z − γe−jβ)

]
+
re−jθ

2

[
z(z − γejβ)

(z − γejβ)(z − γe−jβ)

]

=
r

2

[
z2ejθ − zγe−jβejθ + z2e−jθ − zγejβe−jθ

z2 − γzejβ − γze−jβ + γ2

]

=
r

2

z2
(
ejθ + e−jθ

)
− zγ

(
ej(β−θ) + e−(β−θ)

)
z2 − γz (ejβ + e−jβ) + γ2


= r

[
z2 cos(θ)− zγ cos(β − θ)

z2 − 2γz cos(β) + γ2

]
Unfortunately, what we really need is a form that we can (easily?) use in doing partial fractions.
This is going to take a bit more work. Let’s write

G(z) = r

[
z2 cos(θ)− zγ cos(β − θ)

z2 − 2γz cos(β) + γ2

]
=

Az2 +Bz

z2 + 2Cz + γ2

This second form is much easier to use when doing partial fractions, but we need to be able
to relate the parameters A, B, and C, to the parameters r, θ, and β. Clearly we have already
identified the parameter γ.

Let’s start with the denominator. Equating powers of z in the denominator we get

−2C = 2γ cos(β)

which means

β = cos−1

(
−C
γ

)
Next we identify

A = r cos(θ)

B = −rγ cos(β − θ)

Expanding the cosine expression out we get

B = −rγ cos(β − θ)

= −rγ cos(β) cos(θ)− rγ sin(β) sin(θ)

= −γ cos(β) (r cos(θ))− rγ sin(β) sin(θ)

= CA− rγ sin(β) sin(θ)

20

But

−C
γ

= cos(β)

sin(β) =
√
1− cos2(β) =

√
1− C2

γ2
=

1

γ

√
γ2 − C2

So

B = CA− γ

(
1

γ

√
γ2 − C2

)
r sin(θ)

or

r sin(θ) =
CA−B√
γ2 − C2

Recall that we also have r cos(θ) = A, so dividing these we get

tan(θ) =
sin(θ)

cos(θ)
=

CA−B

A
√
γ2 − C2

or

θ = tan−1

(
CA−B

A
√
γ2 − C2

)

Finally we have

√
(r sin(θ))2 + (r cos(θ))2 = r =

√√√√(CA−B√
γ2 − C2

)2

+ A2

=

√
A2C2 − 2ACB +B2 + A2γ2 − C2A2

γ2 − C2

or

r =

√
A2γ2 +B2 − 2ABC

γ2 − C2

In summary we have

g(n) = rγn cos(βn+ θ)u(n) ↔ G(z) =
Az2 +Bz

z2 + 2Cz + γ2

r =

√
A2γ2 +B2 − 2ABC

γ2 − C2

θ = tan−1

(
CA−B

A
√
γ2 − C2

)

β = cos−1

(
−C
γ

)

21

Now we have all of the parameters we need to solve some examples.

Example. Determine the impulse and unit step responses of the system with transfer function

G(z) =
−0.535z

z2 − 1.597z + 0.671

To determine the impulse response, we first equate this transfer function with our standard
form,

G(z) =
−0.535z

z2 − 1.597z + 0.671
=

Az2 +Bz

z2 + 2Cz + γ2

From this we can immediately determine A = 0, B = −0.535, γ =
√
0.671 = 0.819, −2C = 1.597

so C = −0.7895. Now we compute the remaining parameters,

β = cos−1

(
−C
γ

)
= cos−1

(
0.7985

0.819

)
= 0.224

θ = tan−1

(
CA−B

A
√
γ2 − C

)
= tan−1

(
0.535

0

)
=
π

2
= 1.570

r =

√
A2γ2 +B2 − 2ABC

γ2 − C2
=

√
0.2862

0.03340
= 2.9274

Hence the impulse response of the system is

g(n) = 2.927(0.819n) cos(0.224n+ 1.570)u(n)

The initial value of this system is g(0) = 2.450 cos(1.570) = 0, so the system is initially at rest.

To determine the unit step response, we have

Y (z) = G(z)
z

z − 1
Y (z)

z
= G(z)

1

z − 1
=

−0.535z

(z2 − 1.597z + 0.671)(z − 1)
=

Az +B

z2 − 1.597z + 0.671
+

D

z − 1

Using the cover-up method we can easily determine that D = −7.230. Multiplying both sides
of the equation by z and letting z → ∞, we get A = −D = 7.230. Finally, setting z = 0 we get
B = −4.851. Now we need to recompute our parameters

β = cos−1

(
−C
γ

)
= 0.224

θ = tan−1

(
CA−B

A
√
γ2 − C

)
= −0.6110

r =

√
A2γ2 +B2 − 2ABC

γ2 − C2
= 8.827

The step response is then

y(n) = 8.827(0.819n) cos(0.224n− 0.6110)u(n)− 7.230u(n)

22

1.8 Solving Difference Equations

Just as we can use Laplace transforms to solve differential equations with initial conditions, in
discrete-time we can use z-transforms to solve difference equations with initial conditions. The
general idea is to take the z-transform of each term of the difference equation, then solve. For
the low order difference equations we will be solving it is useful to summarize the following
identities again:

Z{x(k + 2)} = z2X(z)− z2x(0)− zx(1)

Z{x(k + 1)} = zX(z)− zx(0)

Z{x(k)} = X(z)

Z{x(k − 1)} = z−1X(z)

Z{x(k − 2)} = z−2X(z)

It is important to remember that the lower case letters represent the time-domain and the capi-
tol letters represent the z-domain. After we have solved the difference equation, it is a good
idea to check our answer by using the difference equation to compute the answer and compare
this with the answer we get using the z-transform. Finally, sometimes we break the solution
into two different parts: the Zero Input Response (ZIR) is the response of the system due to
initial conditions alone (there is no, or zero input), and the Zero State Response (ZSR) is the
response of the system due to the input only, assuming all initial conditions (all initial states)
are zero. The system transfer function is determined from the ZSR.

Example. Find the ZIR, ZSR, and solve the difference equation

y(n+ 2)− 5y(n+ 1) + 6y(n) = x(n)

with initial conditions y(0) = 4 and y(1) = 3 and input x(n) = u(n), the unit step function.
Taking z-transforms of each term, we have[

z2Y (z)− z2y(0)− zy(1)
]
− 5 [zY (z)− zy(0)] + 6Y (z) = X(z)

Note that we have not simplified the difference equation yet. Rearranging this equation we get[
z2 − 5z + 6

]
Y (z) = X(z) +

[
z2y(0) + zy(1)− 5zy(0)

]
or

Y (z) =
X(z)

(z − 3)(z − 2)︸ ︷︷ ︸
ZSR

+
z2y(0) + zy(1)− 5zy(0)

(z − 3)(z − 2)︸ ︷︷ ︸
ZIR

At this point we can determine the transfer function from the ZSR and corresponding impulse
response,

H(z) =
1

(z − 3)(z − 2)
, h(n) = 3n−1u(n− 1)− 2n−1u(n− 1) =

1

6
δ(n) +

1

3
3nu(n)− 1

2
2nu(n)

The ZSR is then given by

YZSR =
X(z)

(z − 3)(z − 2)
=

z

(z − 1)(z − 2)(z − 3)
=

1

2

z

z − 1
− z

z − 2
+

1

2

z

z − 3

23

or

yZSR(n) =
1

2
u(n)− 2nu(n) +

1

2
3nu(n)

The ZIR is given by

Y (z) =
z2y(0) + zy(1)− 5zy(0)

(z − 3)(z − 2)
=

4z2 − 17z

(z − 3)(z − 2)
= −5

z

z − 3
+ 9

z

z − 2

or
yZIR(n) = −5(3n)u(n) + 9(2n)u(n)

Finally the total solution is given by the sum of the ZIR and ZSR,

y(n) = yZIR(n) + yZSR(n)

= [−5(3n)u(n) + 9(2n)u(n)] +
[
1

2
u(n)− 2nu(n) +

1

2
3nu(n)

]
=

[
(−5 +

1

2
)3n + (9− 1)2n +

1

2

]
u(n)

=
[
−4.5(3n) + 8(2n) +

1

2

]
u(n)

Now to check our answer, we know that y(0) = 4 and y(1) = 3. To generate the other values of
y(n), let’s rewrite the difference equation as

y(n+ 2) = 5y(n+ 1)− 6y(n) + x(n)

and remember that x(n) = u(n) = 1 for n ≥ 0. Now we can make a table,
DE Prediction Closed Form
y(0) = 4 y(0) = −4.5(30) + 8(20) + 0.5 = 4
y(1) = 3 y(1) = −4.5(3) + 8(2) + 0.5 = 3

y(2) = 5y(1)− 6y(0) + 1 = 5(3)− 6(4) + 1 = −8 y(2) = −4.5(32) + 8(22) + 0.5 = −8
y(3) = 5y(2)− 6y(1) + 1 = 5(−8)− 6(3) + 1 = −57 y(3) = −4.5(33) + 8(23) + 0.5 = −57

y(4) = 5y(3)− 6y(2) + 1 = 5(−57)− 6(−8) + 1 = −236 y(4) = −4.5(34) + 8(24) + 0.5 = −236

Example. Find the ZIR, ZSR, and solve the difference equation

x(n+ 2)− x(n+ 1) + 0.25x(n) = f(n− 1)− f(n)

with initial conditions x(0) = 0 and x(1) = 1 and input f(n) = u(n), the unit step function. Note
that we must write the difference equation so that the input does not include initial conditions!
We assume all initial conditions are associated with the states of the system, in this case the
x(n). Taking z-transforms of each term, we have[

z2X(z)− z2x(0)− zx(1)
]
− [zX(z)− zx(0)] + 0.25X(z) = z−1F (z)− F (z)

Note that we have not simplified the difference equation yet. Rearranging this equation we get[
z2 − z +

1

4

]
X(z) =

[
z−1 − 1

]
F (z) +

[
z2x(0) + zx(1)− zx(0)

]
24

or

X(z) = F (z)
z−1 − 1

(z − 1
2
)2︸ ︷︷ ︸

ZSR

+
z2x(0) + zx(1)− zx(0)

(z − 1
2
)2︸ ︷︷ ︸

ZIR

At this point we can determine the transfer function from the ZSR and corresponding impulse
response,

H(z) =
z−1 − 1

(z − 1
2
)2

=
1− z

z(z − 1
2
)2
, h(n) = 4δ(n− 1)− 4(

1

2
)n−1u(n− 1) + (n− 1)(

1

2
)n−2u(n− 2)

The ZSR is then given by

XZSR =
X(z)(z−1 − 1)

(z − 1
2
)2

=
z(z−1 − 1)

(z − 1
2
)2

= − 1

(z − 1
2
)2

= −(n− 1)(
1

2
)n−2u(n− 1)

The ZIR is given by

X(z) =
z2x(0) + zx(1)− zx(0)

(z − 1
2
)2

=
z

(z − 1
2
)2

= n(
1

2
)n−1u(n)

Finally the total solution is given by the sum of the ZIR and ZSR,

y(n) = yZIR(n) + yZSR(n)

=
[
n(

1

2
)n−1u(n)

]
−
[
(n− 1)(

1

2
)n−2u(n− 1)

]
= (

1

2
)n−2

[
1− n

2

]
u(n− 2) + δ(n− 1)

Now to check our answer, we know that x(0) = 0 and x(1) = 1. To generate the other values of
x(n), let’s rewrite the difference equation as

x(n+ 2) = x(n+ 1)− 0.25x(n) + f(n− 1)− f(n)

and remember that f(n) = u(n) = 1 for n ≥ 0. Now we can make a table,
DE Prediction Closed Form
x(0) = 0 x(0) = 0
x(1) = 1 x(1) = 1

x(2) = x(1)− 1
4
x(0) + 0− 1 = 1− 0 + 0− 1 = 0 x(2) = (1

2
)0
[
1− 2

2

]
= 0

x(3) = x(2)− 1
4
x(1) + 1− 1 = −1

4
x(3) = (1

2
)1
[
1− 3

2

]
= −1

4

x(4) = x(3)− 1
4
x(2) + 1− 1 = −1

4
x(4) = (1

2
)2
[
1− 4

2

]
= −1

4

x(5) = x(4)− 1
4
x(3) + 1− 1 = −1

4
+ (1

4
)2 = −3(1

4
)2 x(5) = (1

2
)3
[
1− 5

2

]
= −3(1

2
)4

25

1.9 Asymptotic Stability

In continuous-time, asymptotic stability is based on the behavior of the impulse response as
t→ ∞. There are three cases:

• If |h(t)| → ∞ as t→ ∞, then the system is unstable. This means at least one pole of the
system is in the (open) right half plane.

• If |h(t)| → 0 as t→ ∞, then the system is stable. This means all of the poles of the system
are in the (open) left half plane.

• If |h(t)| ≤ M for some constant M as t → ∞, then the system is marginally stable. This
means there are some isolated poles on the jω axis and, if there are poles not on the jω
axis these poles are in the left half plane.

We can easily modify these criteria to discrete-time, and look at the behavior of the impulse
response as k → ∞:

• If |h(k)| → ∞ as k → ∞, then the system is unstable. This means at least one pole of the
system is outside the unit circle (at least one pole has a magnitude larger than one.)

• If |h(k)| → 0 as k → ∞, then the system is stable.This means all of the poles of the system
are inside the unit circle (all poles have a magnitude less than one).

• If |h(k)| ≤M for some constant M as k → ∞, then the system is marginally stable. This
means there are some isolated poles on the unit circle and, if there are poles not on the
unit circle these poles are inside the unit circle.

1.10 Mapping Poles and Settling Time

Let’s assume we have the continuous-time time transfer function

H(s) =
1

(s+ a)(s+ b)

with corresponding impulse response

h(t) =
1

b− a
e−atu(t) +

1

a− b
e−btu(t)

Now we will assume we sample this transfer function with sampling interval T , so we have

h(kT) =
1

b− a
e−akTu(kT) +

1

a− b
e−bkTu(kT)

Taking z-transforms of this we get

H(z) =
1

b− a

z

z − e−aT
+

1

a− b

z

z − e−bT

=
1

b− a

[
z

z − e−aT
− z

z − e−bT

]
=

1

b− a

z(z − e−bT)− z(z − e−aT)

(z − e−aT)(z − e−bT)

=
1

b− a

z(e−aT − e−bT)

(z − e−aT)(z − e−bT)

26

From this we notice two things:

• The continuous-time poles at −a and −b have been mapped to discrete-time poles at e−aT

and e−bT , where T is the sampling interval. Although we have only shown this for a system
with two poles, it is true in general.

• Although the continuous-time system has no finite zeros, the discrete-time system has a
zero at the origin. Although we know how the poles will map from continuous-time to
discrete-time, it is not as obvious how the zeros will map and/or if new zeros will be
introduced.

• If the dominant (real) pole in the continuous-time domain is at−a (|a| < |b|), the dominant
pole in the discrete-time domain will be at e−aT since e−bT < e−aT , i.e. the pole at e−bT is
closer to the origin than the pole at e−aT .

Next, let’s look at the continuous-time transfer function

H(s) =
1

s+ a

and it’s discrete-time equivalent

H(z) =
z

z − e−aT

In the continuous-time domain, the 2% settling-time is usually estimated to be four time con-
stants, so we would estimate Ts ≈ 4

a
. Hence to achieve a desired settling time we would need

a = 4
Ts
. The pole at −a is mapped to a pole at e−aT = e−4T/Ts in discrete-time. Hence to

achieve a settling time of Ts, any discrete-time pole p must have a magnitude less than or equal
to e−4T/Ts , or

|p| ≤ e−4T/Ts

We can rewrite this expression into a slightly more useful form as

Ts ≈
−4T

ln(|p|)

This form can be used to find the settling time for discrete-time poles.

Example. Assume we have the discrete-time transfer function H(z) = z
z−0.2

and we know
the sampling interval is T = 0.3 sec. What is the estimated (2%) settling time? Here

|p| = 0.2, so Ts ≈ −4(0.3)
ln(0.2)

= 0.745 seconds. To check this, we know the impulse response will be

h(k) = (0.2)ku(k). We have then h(0T) = 1, h(1T) = 0.2, h(2T) = 0.04, and h(3T) = 0.008.
Clearly the settling time is somewhere between 2T = 0.6 seconds and 3T = 0.9 seconds.

Example. Assume we have the discrete-time transfer function H(z) = z
z−0.67

and we know
the sampling interval is T = 0.1 seconds. What is the estimated (2%) settling time? Here

|p| = 0.67, so Ts ≈ −4(0.1)
ln(0.67)

= 0.998 seconds. To check this we know the impulse response will

be h(k) = (0.67)ku(k). We have then h(0T) = 1, h(1T) = 0.67, h(2T) = 0.449, h(3T) = 0.301,
h(4T) = 0.202, h(5T) = 0.135, h(6T) = 0.090, h(7T) = 0.061, h(8T) = 0.041, h(9T) = 0.027,

27

h(10T) = 0.0182. The settling time is approximately 10T = 1.0.

Example.Assume we have the discrete-time transfer functionH(z) = z
(z−0.1)(z+0.2+0.1j)(z+0.2−0.1j)

and we know the sampling interval is T = 0.25 seconds. What is the estimated (2%) settling
time? There are three poles in the system, one pole with magnitude 0.1 and two (complex
conjugate) poles with magnitude 0.2236. Just as from continuous-time, the dominant pole (or
poles) is the pole (or poles) with the slowest response time. In discrete-time, the further away
from the origin, the slower the response. Hence in this case the dominant poles are the complex
conjugate poles with magnitude |p| = 0.2236. Then Ts ≈ −4(0.25)

ln(0.2236)
= 0.667 seconds.

1.11 Sampling Plants with Zero Order Holds

Most of the system (plants) we will be trying to control in the world are inherently continuous-
time, and we would like to use discrete-time control. The biggest issue is how we are going to be
able to model the continuous-time plant as a discrete-time plant. The most common method is
to assume we have discrete-time signals, ud(kT), which we model as impulse signals which that
only exist at the sample times kT . Specifically, we can write ud(kT) as

ud(kT) = . . .+ ud(−T)δ(t+ T) + ud(0)δ(t) + ud(T)δ(t− T) + ud(2T)δ(t− 2T) + . . .

where the delta functions are continuous-time delta functions. This is shown graphically in
Figure 2.

−T

ud(−T)

0

ud(0)

T

ud(T)

2T

ud(2T)

3T

ud(3T)

4T

ud(4T)

5T

Figure 2: Impulse model of a discrete-time signal.

From these impulse signals we need to generate a continuous-time signal as an input to the
plant, Gp(s). The most common way to do this is by the use of a zero order hold (zoh), which
constructs a continuous-time signal by holding the value of u(kT) constant for time intervals
kT ≤ t < (k + 1)T . The impulse response of the zero order hold is gzoh(t) = u(t) − u(t − T).
Let’s call the continuous-time output of the zero order hold uc(t), so we have

uc(t) = gzoh(t) ∗ ud(kT)
= gzoh(t) ∗ [. . .+ ud(−T)δ(t+ T) + ud(0)δ(t) + ud(T)δ(t− T) + ud(2T)δ(t− 2T) + . . .]

= . . . gzoh(t) ∗ [ud(−T)δ(t+ T)] + gzoh(t) ∗ [ud(0)δ(t)] + gzoh(t) ∗ [ud(T)δ(t− T)] + . . .

28

−T

ud(−T)

0

ud(0)

T

ud(T)

2T

ud(2T)

3T

ud(3T)

4T

ud(4T)

5T

Figure 3: Continuous-time signal uc(t) as input to the plant. The value of the signal is held
constant over the sample interval T .

How let’s look at some of these convolutions,

gzoh(t) ∗ [ud(−T)δ(t+ T)] = ud(−T)gzoh(t) ∗ δ(t+ T) = ud(−T)gzoh(t+ T) = ud(−T)[u(t+ T)− u(t)]

gzoh(t) ∗ [ud(0)δ(t)] = ud(0)gzoh(t) ∗ δ(t) = ud(0)gzoh(t) = ud(0)[u(t)− u(t− T)]

gzoh(t) ∗ [ud(T)δ(t− T)] = ud(T)gzoh(t) ∗ δ(t− T) = ud(0)gzoh(t− T) = ud(T)[u(t− T)− u(t− 2T)]

Hence we have the input to the continuous-time plant

uc(t) = . . .+ ud(−T)[u(t+T)− u(t)] + ud(0)[u(t)− u(t−T)] + ud(T)[u(t−T)− u(t− 2T)] + . . .

This is a staircase function, where we have ”filled in” the times between samples with the value
of the sample at the beginning of the interval. This is shown graphically in Figure 3. It should
be pointed out that a zero order hold is not the only method that can be used to convert a
discrete-time signal to a continuous-time signal, but it is the most commonly used method, and
is the method we will use when we convert continuous-time state equations to discrete-time
state equations.

Now that we know how to convert our discrete-time signal to a continuous-time signal for our
continuous-time plant, we need to figure out how to model the zero order hold and the plant as
an equivalent discrete-time plant. This will allow us to do all of our design in the discrete-time
domain. Figure 4 shows a simple single loop system.

29

What we want is the discrete-time transfer function that corresponds to the productGzoh(s)Gp(s),
or

Gp(z) = Z {Gzoh(s)Gp(s)}

Using properties of the Laplace transform we have

Gzoh(s) = L{gzoh(t)} = L{u(t)− u(t− T)} =
1

s
− e−sT

s

So we have

Gp(z) = Z
{[

1

s
− e−sT

s

]
Gp(s)

}
We can use this formula directly, but it there is a common trick we can use to make things a
bit easier. Let’s write

Gzoh(s)Gp(s) =

[
1

s
− e−sT

s

]
Gp(s) =

[
1− e−sT

]
Gi(s)

where we have defined

Gi(s) =
Gp(s)

s

Now we know from Laplace transforms that e−sT corresponds to a time delay of T , hence we
have

L−1
{
e−sTGi(s)

}
= gi(t− T)

and then taking z-transforms

Z {gi(t− T)} = Z {gi(kT − T)} = z−1Gi(z)

Where
Gi(z) = Z {gi(kT)}

Finally, we will use the Linearity property of the z-transform,

Gp(z) = Z
{
Gi(s)− e−sTGi(s)

}
= Gi(z)− z−1Gi(z) =

[
1− z−1

]
Gi(z)

R(z)
G
p
(z) G

c
(z) G

zoh
(s) G

p
(s)

Y(z)

H(z)

+

-

Σ

}G
p
(z)

Figure 4: Discrete-time closed loop control system with a zero order hold and a continuous-time
plant. We want the equivalent discrete-time plant Gp(z).

30

which is the answer we want. In summary, the discrete-time transfer function that models the
zero order hold and the continuous- time plant is given by

Gp(z) =
[
1− z−1

]
Z
{
Gp(s)

s

}

Example. Consider the continuous-time plant with transfer function Gp(s) =
1

s+1
. What is the

equivalent discrete-time transfer function for the plant in series with a zero order hold? We have

Gp(z) =
[
1− z−1

]
Z
{

1

s(s+ 1)

}
so

Gi(s) =
1

s(s+ 1)
=

1

s
− 1

s+ 1

and
gi(t) = u(t)− e−tu(t)

The sampled version is given as

gi(kT) = u(kT)− e−kTu(kT)

with z-transform

Gi(z) =
z

z − 1
− z

z − e−T
=

z(1− e−T)

(z − 1)(z − e−T)

Finally, we have

Gp(z) =
z − 1

z
Gi(z) =

1− e−T

z − e−T

Example. Consider the continuous-time plant with transfer function Gp(s) =
1
s
. What is the

equivalent discrete-time transfer function for the plant in series with a zero order hold?We have

Gp(z) =
[
1− z−1

]
Z
{
1

ss

}
so

Gi(s) =
1

s2

and
gi(t) = tu(t)

The sampled version is given as
gi(kT) = kTu(kT)

with z-transform

Gi(z) =
Tz

(z − 1)2

Finally, we have

Gp(z) =
z − 1

z
Gi(z) =

T

z − 1

31

1.12 Final Notes

We have focused on using transfer functions in terms of z, such as

H(z) =
K(z − a)(z − b)

(z − c)(z − d)
=
K(z2 − (a+ b)z + ab)

z2 − (c+ d)z + cd

This form is useful for determining poles and zeros and determining the time-response of the sys-
tem. However, when implementing controllers (filters) in discrete-time, it is far more convenient
to write things in terms of z−1, which represents a delay of one time sample. For implementation
purposes, we would write this transfer function as

H(z) =
K(1− (a+ b)z−1 + abz−2)

1− (c+ d)z−1 + cdz−2
=
K(1− az−1)(1− bz−1)

(1− cz−1)(1− dz−1)

You should be prepared to see and deal with the two equivalent forms of writing the transfer
function.

32

2 Transfer Function Based Discrete-Time Control

Just as with continuous-time control, we can choose to utilize a transfer function approach or
a state variable approach to control. In this chapter we will utilize the transfer function ap-
proach, while in the remainder of these notes we will utilize the state variable approach. In
this brief chapter we first discuss implementing discrete-time transfer functions, then talk about
some common conventions used in control systems, and then discuss common control algorithms.

2.1 Implementing Discrete-Time Transfer Functions

Just as in continuous-time we will represent signals in either the time domain or the transform
domain, which in this case is the z-transform domain. A simple input-output transfer function
block is shown in Figure 5. While in the continuous time-domain it might be somewhat difficult
to solve for the output in terms of the input in the time-domain, in the discrete-time domain
we can just use the recursive relationship from the transfer function. Specifically, if we have the
transfer function G(z), then we can write it as

G(z) =
Y (z)

U(z)
=
b0 + b1z

−1 + b2z
−2 + · · ·+ bmz

−m

1 + a1z−1 + a2z−2 + · · ·+ anz−n

where n ≥ m. Converting this to the time domain, the output y(k) can be written in terms of
previous output values and the current and previous input values as

y(k) = −a1y(k − 1)− a2y(k − 2) + · · · − any(k − n) + b0u(k) + b1u(k − 1) + ...+ bmu(k −m)

This is an Infinite Impulse Response (IIR) filter, since the output at any time depends on both
previous outputs and previous inputs. If the output depended only on previous inputs it would
be a Finite Impulse Response (FIR) filter.

G(z) Y(z)U(z)

Figure 5: Discrete-time transfer function, G(z) = Y (z)
U(z)

. Discrete-time transfer functions are
often implemented in terms of the difference equation they represent.

2.2 Not Quite Right

At this point we need to stop and think a little bit about what we are doing, and the common
conventions used in control systems. Let’s assume we have a simplified version of the above
expression, which we will write using the explicit dependence on the sample interval T ,

y(kT) = −a1y((k − 1)T) + b0u(kT) + b1u((k − 1)T)

33

Now we have to examine what do we mean by y(kT). Does this mean that this value of y is
known at the beginning of the sample interval? This would appear to be correct, but then there
is a problem. How can y(kT) be the value of y at the beginning of the sample interval and
yet it depends on u(kT), the input at the beginning of the sample interval? Logically, we need
to know the value of the input at the beginning of the sample interval u(kT) and then we can
compute y(kT). There are two ways around this problem. The first, and cleanest, approach is
to assume that b0 = 0. This means the output at time kT only depends on the previous outputs
and previous inputs. Alas, in case you have not noticed, people in controls really just want to
screw with your mind, so this is not the usual assumption. In controls we usually assume that
as long as y is known by the end of the interval (before the next sample time), then it is ok to
call it y(kT). Thus, for our example, we might assume u(kT), u((k− 1)T), and y((k− 1)T) are
known at time kT . We then do some calculations to compute y, and if these calculations are
finished before the next sample interval, we will call this output value y(kT). When we deal
with state variable feedback systems, we will see how we can account for this delay if we want
to. Next, we want to look at a basic control loop.

A common configuration for a discrete-time control system is shown in Figure 6. In this simple
figure there is a discrete-time prefilter, a discrete-time controller, and a discrete-time represen-
tation of a plant. In this figure, we are representing all of the signals in the z-domain, as is the
usual custom. In Figure 7 we have represented the signals in the discrete-time domain. If you
think about this figure for a while, it should begin to be a little bit disturbing. Why? Well,
e(kT) = Gpfr(kT)− y(kT), e(k) is the input to the controller which produces the control signal
u(kT), which goes into the plant to produce the output y(kT). So now we have y(kT) depends
on e(kT) which depends on y(kT). Simulink refers to this as an algebraic loop. Often in control
systems, if the sampling interval is small enough, then y(kT) is very close to y((k − 1)T) and
y((k+ 1)T), so this approximation is not too far off, and the notation is much easier. For some
parts of this course, however, we will explicitly insert a delay between the output and the error
signal, so the error will be e(k) = Gpfr(k)− y(k − 1), as is shown in Figure 8. Next we need to
discuss some common control configurations.

R(z) G
pf

G
c
(z) G

p
(z)

Y(z)+

-

Σ
E(z) U(z)

Figure 6: A common discrete-time feedback system written in the z-domain.

2.3 PID and Constant Prefilters

We will first determine how to compute the value of the constant prefilter, though it is generally
better to include an integrator in your system than to depend on a prefilter. For the configuration

34

R(kT)
G
pf

G
c
(z) G

p
(z)

y(kT)+

-

Σ
e(kT) u(kT)

Figure 7: A common discrete-time feedback system written in the time domain.

R(z) G
pf G

c
(z) G

p
(z)

Y(z)

z-1

+

-

Σ
E(z) U(z)

Figure 8: A common discrete-time feedback system written with a delay between the output
signal and the error signal.

in Figure 9 we have the closed loop transfer function

G0 =
GpfGc(z)Gp(z)

1 +H(z)Gc(z)Gp(z)

Assuming the system is stable, the final value for a unit step input is determined by

lim
t→∞

y(t) = lim
z→1

z − 1

z
G0(z)R(z)

= lim
z→1

z − 1

z
G0(z)

z

z − 1
= G0(1)

If the input is a unit step, then we want limt→∞ y(t) = 1, so we want G0(1) = 1. Solving for the
prefilter we have

Gpf =
1 +Gc(1)Gp(1)H(1)

Gc(1)Gp(1)

Now will determine the discrete-time form of a PID controller. For a proportional controller,
the control signal is directly proportional to the error signal, so we have

U(z) = kpE(z)

or

Gc(z) =
U(z)

E(z)
= kp

35

R(z) G
pf

G
c
(z) G

p
(z)

Y(z)

H(z)

+

-

Σ
E(z) U(z)

Figure 9: A general discrete-time feedback system written in the z-domain.

which is the same form as we have in continuous time. For an integral controller it is probably
easiest to start with the continuous-time form,

Gc(s) = ki
1

s

In the previous chapter we have the relationship

1

s
↔ u(t) = u(kT) ↔ z

z − 1
=

1

1− z−1

So a discrete-time integral controller has the form

Gc(z) = ki
1

1− z−1

Finally, to get a derivative controller, we start with a simple approximation of a derivative, and
then take the z-transform,

u(t) = kdė(t)

≈ kd
e(kT)− e((k − 1)T)

T

or

U(z) = ≈ kd
E(z)− z−1E(z)

T

=
kd
T
(1− z−1)E(z)

It is common to just remove the explicit dependence on the sample interval and just write the
derivative controller as

Gc(z) = kd(1− z−1)

It should be somewhat comforting that our approximation for the derivative is the inverse
(reciprocal) of our expression for the integral. Finally, we can write our discrete-time PID
controller as

Gc(z) = kp + ki
1

1− z−1
+ kd(1− z−1)

36

Often root locus methods are used for designing closed loop control systems. The construction
of the root locus plot is identical to that for continuous-time systems, but the interpretation
is different. For continuous-time systems, the system is stable if the poles of the closed loop
system are all in the open left-half plane, while for discrete-time systems the system is stable is
the poles of the closed loop system are inside the open unit circle. For a continuous-time system,
the further the poles are from the jω axis, the faster the response is, while for discrete-time
systems, the closer to the origin the poles are the faster the response is.

In addition to using the root locus plot, or a tool like Matlab’s sisotool to construct the root
locus plot, we can also design controllers algebraically to place the closed loop poles exactly
where we want them to be. This is discussed in the next section.

2.4 Placing Closed Loop Poles

In this section we will utilize an algebraic technique to design a controller to place the closed
loop poles where we want them to be. This technique is very similar to utilizing Diophantine
equations to place closed loop poles, which you may have studied in continuous-time controls
class. In both of our examples we will assume a plant of the form

Gp(z) =
bp0z + bp1
z + ap1

Here we have assumed that ap0 = 1. Let’s assume we are utilizing a closed loop control scheme
like that shown in Figure 8 where H(z) = z−1. For now we will assume a controller of the form,

Gc(z) =
bc0z + bc1
z + ac1

The closed loop transfer function is

G0(z) =
Gc(z)Gp(z)

1 +Gc(z)Gp(z)z−1

So the characteristic equation is

∆(z) = 1 +Gc(z)Gp(z)z
−1

= 1 +

(
bc0z + bc1
z + ac1

)(
bp0z + bp1
z + ap1

)
z−1

The closed-loop poles are the locations where ∆(z) = 0. In order to solve for ∆(z) = 0, we can
rewrite the last equation as

∆(z) = z [(z + ap1)(z + ac1)] + [(bc0z + bc1)(b
p
0z + bp1)] = 0

Expanding this out we have

∆(z) = z3 + [ap1 + ac1 + bc0b
p
0] z

2 + [ap1a
c
1 + bc1b

p
0 + bp1b

c
0] z + [bc1b

p
1] z

0

37

Now since this is a third order polynomial, we need to find three pole locations we would like
our closed loop system to have. Specifically, if we assume we want the closed loop poles to be a
µ1, µ2, and µ3, then the desired closed loop poles are determined by

∆(z) = (z − µ1)(z − µ2)(z − µ3) = z3 + d1z
2 + d2z + d3

Equating coefficients we have

ap1 + ac1 + bp0b
c
0 = d1

ap1a
c
1 + bp0b

c
1 + bp1b

c
0 = d2

bp1b
c
1 = d3

We can write this in matrix form then as 1 bp0 0
ap1 bp1 bp0
0 0 bp1


 ac1
bc0
bc1

 =

 d1 − ap1
d2
d3


Example. Assume our plant is given by Gp(z) = 2z+0.5

z−0.5
and our controller is of the form

Gc(z) =
bc0z+bc1
z+ac1

. We can then choose to assign the three closed loop poles wherever we want.

Let’s assume we want the closed loop poles at 0.1, 0.2, and 0.3, so that we want

∆(z) = (z − 0.1)(z − 0.2)(z − 0.3)

= z2 − 0.6z2 + 0.11z − 0.006

We then have, d1 = −0.6, d2 = 0.11, d3 = −0.006, ap1 = 0.25, bp0 = 2, and bp1 = 0.5. Solving the
above matrix equation we find the controller to be

Gc(z) =
0.0465z − 0.012

z − 0.443

and the closed loop transfer function to be

G0(z) =
z(2z + 0.5)(0.0465z − 0.012)

z3 − 0.6z2 + 0.11z − 0.006

Note that we have introduced a zero into our system. Often you need to simulate the system to
see if any of the zero’s you introduced into the system significantly alter the desired closed-loop
system behavior. Also, it is important to note that this method does not guarantee that the
controller will be stable. It is always important to be sure the controller you implement is stable.
If you go though this method and find the controller is not stable, then you will need to change
the location of the closed loop poles.

Next, let’s assume we want to introduce a controller to make our system a type one system.
In this case we need to increase both the order of the numerator and the denominator in the
controller, as well as being sure the controller has a pole a 1 (to make a type one system). Hence
we assume the following form for the controller,

Gc(z) =
bc0z

2 + bc1z + bc2
(z − 1)(z − α)

38

The unknowns in our controller are then bc0, b
c
1, b

c
2, and α. The characteristic equation for this

system is then

∆(z) = z [(z + ap1)(z − 1)(z − α)] +
[
(bp0z + bp1)(b

c
0z

2 + bc1z + bc2)
]

= z4 + [ap1 − (1 + α) + bp0b
c
0] z

3 + [−(1 + α)ap1 + α+ bp1b
c
0 + bc1b

p
0] z

2

+ [ap1α + bp1b
c
1 + bp0b

c
2] z + [bp1b

c
2] z

0

Our closed loop system will then need four poles, µ1, µ2, µ3, and µ4, so the desired characteristic
equation is

∆(z) = (z − µ1)(z − µ2)(z − µ3)(z − µ4)

= z4 + d1z
3 + d2z

2 + d3z + d4

Equating powers of z as before, we end up with the following matrix equations to be solved
−1 bp0 0 0

(1− ap1) bp1 bp0 0
ap1 0 bp1 bp0
0 0 0 bp1



α
bc0
bc1
bc2

 =


d1 − ap1 + 1
d2 + ap1
d3
d4


Example. Consider the system with the plant Gp(z) = 3z+0.5

z−0.25
. Assume we want a type one

system so we assume a controller of the form

Gc(z) =
bc0z

2 + bc1z + bc2
(z − 1)(z − α)

The closed loop characteristic equation will be a fourth order equation, so we will need to assign
four pole locations. Let’s assume we choose the pole locations to be 0.1, 0.2, 0.3+0.1j, 0.3-0.1j.
Then the desired closed loop characteristic equation will be

∆(z) = z4 − 0.9z3 + 0.3z2 − 0.042z + 0.002

Solving the above matrix equation we then have

Gc(z) =
0.1527z2 − 0.05389z + 0.004

(z − 1)(z − 0.1082)

This controller is asymptotically stable (we wanted the marginally stable pole at z = 1 to make
a type one system). Note that we have also introduced two zeros into the system, which may
affect the step response in a manner we do not like. The only way to know for sure is to simulate
the system and modify the chosen closed loop pole locations if necessary.

We have presented two examples for placing the poles of a closed loop system. While the use of
the root locus method for designing controllers is very useful, as you will see at the end of the
next chapter, if we are having to estimate the transfer function for a time varying plant, then
we need to be able to design an adaptive controller that allows us to design a controller on the
fly, which is something we cannot do with a root locus based design.

39

3 Least Squares Problems

In this chapter, we will focus on solving least squares problems. These problems often show up
when we are trying to estimate parameters for a system. We will initially review some basic
vector calculus and then the use of Lagrange multipliers. Then we will go over setting up and
solving some static least squares problems. Next, we will discuss the use of singular value de-
composition (SVD) for solving least squares problems. Finally, we will end the chapter deriving
a recursive least squares algorithm that can be used in adaptive control problems where the
transfer function of the plant may be varying over time.

There are a few things you need to keep in mind when using least-squares methods. First of all,
least squares methods have some very nice stochastic properties, which are beyond the scope of
this course. Secondly, when doing a least squares fit we are generally squaring the error, so that
we count negative errors the same as positive errors. This may not always be desirable. Finally,
least squares methods are often used because they are mathematically tractable. That is, they
lead to equations that can be solved in closed form. This last point cannot be over stressed.
Just because someone uses a least squares method to solve a problem it does not mean it was
the best way to solve the problem. Often, it was just more convenient and produced reasonable
answers.

3.1 Mathematical Preliminaries

The following mathematical relationships will be useful in the remainder of this chapter and
this course, and are provided for your reference. In what follows we will assume A, B, and C
are matrices.

AB ̸= BA unless A and B commute

(ABC)T = CTBTAT

(ABC)−1 = C−1B−1A−1 provided each of these matrices exist

A = AT if A is symmetric

A−1A = AA−1 = I where A−1 is the inverse of A

It is also important to remember that A
B
is meaningless if B is a matrix.

3.2 Vector Calculus

The subject of vector calculus can be very involved. We will limit ourselves to some simple
results we need for solving least squares problems. Let’s assume we have a vector

y =


y1
y2
...
yp


40

and some function of the vector y, which we can write as L(y) = L(y1, y2, . . . , yp). We will define
the first and second derivatives of this vector as follows:

∂L

∂y
=

[
∂L
∂y1

∂L
∂y2

. . . ∂L
∂yp

]

∂2L

∂y2
=


∂2L
∂y21

∂2L
∂y1∂y2

. . . ∂2L
∂y1∂yp

...
...

...
∂2L

∂yp∂y1
∂2L

∂yp∂y2
. . . ∂2L

∂y2p


Example. Consider the function

L(y) = L(y1, y2) = y21 + y1y2 + y2

We compute the first and second derivatives as follows:

∂L

∂y
=

[
2y1 + y2 y1 + 1

]
∂2L

∂y2
=

[
2 1
1 0

]

We next need to make some general rules, so we can apply our derivatives in a more general
setting. We will derive three simple rules in what follows:

Let’s first assume

a =

[
a1
a2

]
, y =

[
y1
y2

]
and that

L = aTy = yTa = a1y1 + a2y2

Then
∂L

∂y
=
[
a1 a2

]
= aT

Let’s next assume

A =

[
a b
c d

]
, y =

[
y1
y2

]
and that

L = Ay =

[
ay1 + by2
cy1 + dy2

]
Then

∂L

∂y
=

[
a b
c d

]
= A

Finally, using the previous definitions,

L = yTAy = ay21 + by1y2 + cy1y2 + dy22

41

Then

∂L

∂y
=

[
2ay1 + (b+ c)y2 (b+ c)Y1 + 2dy2

]
=

[
y1 y2

] [2a b+ c
b+ c 2d

]
= yT

(
A+ AT

)
We can then summarize our “rules” as follows:

∂

∂y

(
aTy

)
= aT (a is a vector)

∂

∂y
(Ay) = A (A is a matrix)

∂

∂y

(
yTAy

)
= yT

(
A+ AT

)
= yT (2A) (if A is symmetric)

For single variable optimization problems, we can use second derivative information to determine
if we have a maximum or a minimum,

∂2L

∂y2
> 0 minimum

∂2L

∂y2
< 0 maximum

∂2L

∂y2
= 0 inflection point

In order to extend this to vector calculus, we need the following definitions

• A matrix Z is positive definite if yTZy > 0 for all nonzero vectors y, or, equivalently, if all
of the eigenvalues of Z are positive.

• A matrix Z is positive semidefinite if yTZy ≥ 0 for all nonzero vectors y, or, equivalently,
if all of the eigenvalues of Z are positive or zero.

• A matrix Z is negative definite if yTZy < 0 for all nonzero vectors y, or, equivalently, if
all of the eigenvalues of Z are negative

• A matrix Z is negative semidefinite if yTZY ≤ 0 for all nonzero vectors y, or, equivalently,
if all of the eigenvalues of Z are negative or zero.

We can now extend our second derivative information to vectors,

∂2L

∂y2
> 0 (positive definite for a minimum)

∂2L

∂y2
< 0 (negative definite for a maximum)

42

The quantity ∂2L
∂y2

is often called the Hessian matrix, and the Hessian is often a function of y.
When we take the required derivatives we may get many possible optimal points. We need to
evaluate the Hessian at these points to determine if they are local minima or maxima.

3.3 Lagrange Multipliers

Lagrange multipliers are a way of enforcing conditions on a continuous optimization problem.
The Lagrange multiplier is often written as λ and is either a vector or a scalar as necessary. The
general idea is to take the expression you want to optimize, add the constraint multiplied by the
Lagrange multiplier, and then perform the optimization treating the Lagrange multiplier as a
variable to be determined. The constraint must be written in the form of an equation equalling
zero. This is best illustrated by a few examples.

Example. Suppose we want to find the point in the plane x+y = 5 nearest the origin. We first
need to determine and expression for the distance to the origin, which we can write as

√
x2 + y2.

Since minimizing this function is the same as minimizing x2 + y2, this is the function will will
use. The function we then want to minimize can be written using Lagrange multipliers as

H =
(
x2 + y2

)
︸ ︷︷ ︸

objective function

+λ (x+ y − 5)︸ ︷︷ ︸
costraint

We next set

∂H

∂x
= 0

∂H

∂y
= 0

∂H

∂λ
= 0

and then solve. For this example

∂H

∂x
= 2x+ λ = 0

∂H

∂y
= 2y + λ = 0

∂H

∂λ
= x+ y − 5 = 0 (you should always get the constraint!)

From the first two equations we get

x = y = −λ
2

Inserting this into the third equation we get

−λ
2
− λ

2
− 5 = 0, or λ = −5

43

Hence we have x = y = 5
2
. To determine if this is indeed a minimum, we need to compute the

Hessian matrix and evaluate it at these points: ∂2H
∂x2

∂2H
∂x∂y

∂2H
∂y∂x

∂2H
∂2y

 =

[
2 0
0 2

]

The Hessian is positive definite, so we have found the minimum.

Example. Suppose we want to maximize the volume of a rectangular parallelepiped contained
in an ellipsoid. The volume of the parallelepiped is 8xyz and the equation for an ellipsoid can
be written as

x2

a2
+
y2

b2
+
z2

d2
= 1

Let’s write the function we are trying to optimize as

H = −8xyz + λ

(
x2

a2
+
y2

b2
+
z2

c2
− 1

)
where we have included the negative sign since we are trying to maximize the function. We will
check at the end of the problem to see if this is the correct choice. Next we compute derivatives,

∂H

∂x
= −8yz + λ

2x

a2
= 0 or λ =

4a2yz

x
∂H

∂y
= −8xz + λ

2y

b2
= 0 or λ =

4b2xz

y

∂H

∂z
= −8xy + λ

2z

c2
= 0 or λ =

4c2xy

z
∂H

∂λ
=
x2

a2
+
y2

b2
+
z2

c2
− 1 = 0 (the original constraint)

We then have

λ =
4a2yz

x
=

4b2xz

y
=

4c2xy

z

Form which we can conclude
x2

a2
=
y2

b2
=
z2

c2

For convenience, we will denote these as d, so d = x2

a2
= y2

b2
= z2

c2
. We next put these values into

the constraint equation to get
d+ d+ d− 1 = 0

or d = 1
3
. This means the optimal value is

x =
a√
3
, y =

b√
3
, z =

c√
3

Finally, we know we have found either a minimum or maximum (or infection/saddle) point, but
we don’t know which. We know that the point (x, y, z) = (a, 0, 0) meets the constraint and

44

produces a volume of zero. Hence we can conclude that we have found a local maximum.

Example. Assume M is a symmetric matrix, and find the vector x to maximize xTMx subject
to the constraint that x is a unit vector. We can write the constraint that x is a unit vector as
xTx = 1. Hence the function we want to maximize is

H = −xTMx+ λ
(
xTx− 1

)
We then compute

∂H

∂x
= −xT

(
M +MT

)
+ λxT

(
I + IT

)
= −2xTM + 2λxT = 0

and
∂H

∂λ
= xTx− 1 = 0

From the first equation we have
xTM = xTλ

If we take the transpose of this expression we get

MTx =Mx = λx

which indicates that λ is an eigenvalue of M . We can then post multiply both sides by x, and
then use the constraint to get

xTMx = xTxλ = λ

This result indicates the maximum (and minimum) value of xTMx subject to xTx = 1 is the
the largest (smallest) eigenvalue of the symmetric matrix M .

Example. Assume we have the system Au = b where there are more rows than columns. This is
an over determined system of equations, and it comes up alot in control systems. Let’s find the
solution to this system u that has the smallest norm. We can write this as

H = uTu︸︷︷︸
minimum norm

+λT (Au− b)

Note that in this case our Lagrange multiplier is a vector. Since xTx is a scalar, we need
the second term to be a scalar, and since the constraint is a vector, that means the Lagrange
multiplier must be a vector. We then compute

∂H

∂u
= uT

(
I + IT

)
+ λTA = 2uT + λTA = 0

or

u = −1

2
ATλ

We also have
∂H

∂λ
= Au− b = 0

45

Substituting in for u we have

−1

2
AATλ = b, or λ = −2

(
AAT

)−1
b

Finally,

u = −1

2
ATλ = −1

2
AT

[
−2

(
AAT

)−1
b
]
= AT

(
AAT

)−1
b

which is our solution.

It is also possible to include integral and differential constraints on optimization problems, but
we will not consider them here.

3.4 Least Squares Problems

Let’s assume we have a model of a process

ŷ = Hx̂

where

ŷ = the estimated output

x̂ = the estimated input or system parameters

H = transfer matrix relating the input to the output

Let’s also assume d is a vector of measured outputs of the system.

We want to choose x̂ based on the measured data. We will define the error vector as

e = d− ŷ

= d−Hx̂

=


e1
e2
...
en


We now want to choose x̂ to minimize the squared error

eT e = e21 + e22 + · · ·+ e2n
= (d−Hx̂)T (d−Hx̂)

= (dT − x̂THT)(d−Hx̂)

= dTd− dTHx̂− x̂THTd+ x̂THTHx̂

Before we go on, we need to make a few observations. First of all, all of the terms in the above
sum are scalars and the transpose of a scalar is the same as the original scalar. Thus we have
dTHx̂ = x̂THTd. Thus we can rewrite the squared error as

eT e = dTd− 2dTHx̂+ x̂THTHx̂

46

We need to find the value of x̂ to minimize this function. Taking the derivatives of each term
with respect to x̂ we get

∂eT e

∂x̂
= 0− 2dTH + 2x̂THTH = 0

Taking the transpose of this expression and rearranging this we get

HTd = HTHx̂

x̂ =
[
HTH

]−1
HTd

This is then our solution for the least squares problem. In order to be able to use this solution
we need to be able to write our problem in the form

ŷ︸︷︷︸
model outputs

= H︸︷︷︸
known matrix

x̂︸︷︷︸
unknowns

Example. Consider a process with output at time ti, q(ti). We have measured the following
outputs the the specified times:

ti q(ti)
1.0 0.50
1.5 0.15
1.6 0.15
2.3 -0.30
4.0 -2.40

We believe the process can be modeled as q(t) = α0 + α1t + α2t
2, and we want to use a least

squares process to determine the unknown parameters α0, α1, and α2. The first thing we need
to do is to determine what are unknowns are, and they make up the x̂ vector. So we have

x̂ =

 α0

α1

α3


If we look at the output at first time instant, t0, we have

q(t0) = α0 + α1t0 + α2t
2
0 =

[
1 t0 t20

]  α0

α1

α2


At the next time instant, t1, we have

q(t1) = α0 + α1t1 + α2t
2
1 =

[
1 t1 t21

]  α0

α1

α2


Continuing in this way we have, for all of out time instances,

q(t0)
q(t1)
q(t2)
q(t3)
q(t4)

 =


1 t0 t20
1 t1 t21
1 t2 t22
1 t3 t23
1 t4 t24


 α0

α1

α2



47

With numbers we have

d =


0.50
0.15
0.15
−0.30
−2.40

 H =


1 1 1
1 1.5 2.25
1 1.6 2.56
1 2.3 5.29
1 4.0 16.00

 x̂ =

 α0

α1

α2



Solving this we get

x̂ =
[
HTH

]−1
HTd =

 0.632
0.018
−0.193


It is usually a good idea to check some values to see if they are reasonable. At times t = 1.6
and t = 3 we have

q(1.6) = 0.63 + 0.018(1.6)− 0.193(1.62) = 0.165

q(3.0) = 0.63 + 0.018(3.0)− 0.193(3.02) = −1.053

Both of these values seem reasonable given our measured data values, so we have probably not
screwed anything up too badly. Note that we should not expect q(1.6) = 0.15. Although this
was the measured data, we are not required to exactly match this.

Now, what if you have reason to believe that some of your data is more reliable than other data,
and you want to ‘count’ the data you think is more reliable more than the other data. The
you might want to use a weighted least squares. One way to formulate this is to minimizes the
weighted squared error,

eTRe = r11e
2
1 + r22e

2
2 + · · ·+ rnne

2
n

where R is a diagonal matrix with values rii on the diagonal. In this case, the weighted least
squares estimate would be

x̂ =
[
HTRH

]−1
HTRd

Example. From our previous example, if r11 = r22 = r33 = 2 and r44 = r55 = 1, then this
indicates that we believe the first three data points more than the last two data points, and our
corresponding estimate is

x̂ =

 0.702
−0.057
−0.179



3.5 Singular Value Decomposition (SVD)

Let’s consider the following matrix equation,

y = Hx

48

where x is the input, y is the output, and x and y are related through the system transfer matrix
H, where

H =


−0.0505 0.0683 0.1175 0.0538 0.1709
0.2215 0.1729 0.0005 0.2794 0.2963
0.4663 0.4675 −0.0623 0.4237 0.3403
−0.1871 0.0701 0.2650 0.0460 0.3136
0.2109 0.0203 0.0513 −0.0603 0.0717


Let’s assume we measure the output y and want to determine the input x. If we measure

y =


1.508300
3.167900
4.610700
2.500100
0.522700


then the corresponding input is

x =


1.000000
2.000000
3.000000
4.000000
5.000000


Now let’s assume there is noise on our measured output signal, and instead measure

y =


1.312709
3.237598
4.196984
3.111464
0.333594


This noisy signal corresponds to a signal to noise ratio of approximately 20 dB. If this is the
measured output, then the corresponding input is

x =


5273.048
−5268.62
21083.12
15811.04
−15801.36


Clearly this noisy output has dramatically changed our estimate of the input. Just to check our
answer, let’s assume we make another measurement of the output, again with a signal to noise
ratio of approximately 20 dB. For our second measurement we get

y =


1.299894
3.397150
4.287858
2.217089
1.051207


49

and find the corresponding value of the input is

x =


629.59
−627.80
2506.33
1881.00
−1870.79


Now what we have are two noisy outputs with a 20 dB signal to noise ratio that yield estimates
of the input signal that are quite different, and also quite different from the correct input if
we could produce a noise free estimate of the output. While it might be nice to pretend all of
our measurements were noise free, this is not likely to be true, so we need a different approach
to this problem which will also allow us to gain some insight into what is going on in our system.

It turns out that for any matrix H ∈ Rm×n we can always compute its singular value decompo-
sition

H = USV T

where, U ∈ Rm×m and U is a unitary matrix (UT = U−1), V ∈ Rn×n and V is a unitary matrix
(V T = V −1), and S ∈ Rm×n. S is all zeros except for a submatrix, which will will denote Σ, of
size m ×m or n × n (depending on whether m or n is smaller) in the upper left corner. The
entries in the submatrix Σ are called the singular values of the matrix and will be denoted σi
for the ith singular value. In general, σi ≥ σi+1, that is, the singular values decrease as the mode
number increases (this is important!) As you will see, these singular values contain a great deal
of information about the matrix (and what may be going wrong).

Let’s assume that

x = V α

y = Uβ

That is, x can be written as a linear combination of the columns of V

x = V α

= [v1 v2 ... vn] α

= v1α1 + v2α2 + ... + vnαn

Since x ∈ Rn and the columns of V span Rn, we know such an expansion must exist. Similarly,
we must be able to represent y as a linear combination of the columns of U .

Now assume we have our problem y = Hx. If we write y = Uβ, x = V α, and H = USV T , then
we get

(Uβ) = (USV T)(V α)

= USV TV α

= USα

50

Then since U has full rank we have β = Sα, or more precisely α = Σ−1β. (Note, if there are
more αi than βi, the extra αi are set to zero. This just means that V spans a larger space than
U. Similarly if there are more βi than αi, the extra βi are set to zero. This just means U spans
a larger space than V.) This can be written in terms of components as

αi = βi/σi

At this point we are almost done. To get β we just use the relationship

y = Uβ

UTy = UTUβ = β

we we just have β = UTy.

Although it may seem like we just played with a bunch of math, we are now in a position to
analyze what is going wrong with our matrix equation. If there was no noise in our measurement
for y, then we would have

y = β1u1 + β2u2 + β3u3 + β4u4

x =
β1
σ1
v1 +

β2
σ2
v2 +

β3
σ3
v3 +

β4
σ4
v4

However, since there is measurement error in our output, we will model the output as the ‘true’
output y plus an error term, δy, thus we have the measured output y + δy. Going through our
analysis above we have instead of the above,

y + δy = (β1 + δβ1)u1 + (β2 + δβ2)u2 + (β3 + δβ3)u3 + (β4 + δβ4)u4

x+ δx =
β1 + δβ1

σ1
v1 +

β2 + δβ2
σ2

v2 +
β3 + δβ3

σ3
v3 +

β4 + δβ4
σ4

v4

or, the deviation from the true answer x is

δx =
δβ1
σ1

v1 +
δβ2
σ2

v2 +
δβ3
σ3

v3 +
δβ4
σ4

v4

Now, since by construction, the magnitude of the vi are one, and the errors in the observation
are assumed to be reasonably small, we need to look at the sizes of the singular values σi. As
they get smaller, they will amplify the errors δβi more strongly.

If we go back to our original example, the singular values for the H matrix were 1.000017,
0.500001, 0.200018, 0.100003, and 0.000013. If we then compute the absolute value of δβi/σi for
the first noisy vector we get

|δβ1
σ1

| = 0.29

|δβ2
σ2

| = 1.16

|δβ3
σ3

| = 1.79

|δβ4
σ4

| = 31617.24

51

Clearly, the last (smallest) singular value is causing most of the problem. If we were to only use
the first three vectors in the expansion for x, x ≈ β1

σ1
v1 +

β2

σ2
v2 +

β3

σ3
v3, then our estimates for x

for the two examples above would be

x =


−0.121
0.703
2.162
4.115
6.723

 x =


3.130
−1.793
1.868
3.107
7.239


While these are not the ‘correct’ answers, they are still orders of magnitude closer than if we had
done nothing. Knowing how many terms to keep when using the singular value decomposition
to solve a problem is a bit tricky. Usually you remove terms with singular values below a certain
threshold. This is what the Matlab command pinv does.

Finally, let’s assume we have an overdetermined least squares solution

x̂ =
[
HTH

]−1
HTy

With the assumptions above, and writing H in terms of its singular value decomposition, we
have

x̂ = V α =
[
(USV T)T (USV T)

]−1
(USV T)T (Uβ)

=
[
V STUTUSV T

]−1
(V STUT)(Uβ)

=
[
V STSV T

]−1
(V STβ)

=
[
(V T)−1(STS)−1V −1

]
(V STβ)

= V (STS)−1STβ

Where for simplicity we have assumed the S is invertible. Since V has full rank we have

α = V (STS)−1STβ

Since S is a diagonal matrix with elements σi, we finally have

αi =
βi
σi

just as we did without the least squares.

One method that is often used to get a general idea of how errors in our measurements (the
y values) may affect our estimates of the input (the x values) is the condition number of the
transfer matrix (H). The condition number is generally defined as the ratio of the largest to
smallest singular values,

condition number =
σ1
σn

52

We then have the general approximation

error in x ≈ error in d× condtion number

Keep in mind this is a very rough approximation. For our first example in this section, our
condition number is 1.000017

0.000013
≈ 77, 000. The largest error in our measured data is approximately

0.5. Hence our estimate of the expect error in the answer x is (0.5)× (77, 000) ≈ 39, 000. In this
case our actual error was approximately 16,000, so the condition number estimate was fairly
conservative.

3.6 Recursive Least Squares with a Forgetting Factor

Consider a single input-single output system. In general, you can modify the system behavior
somewhat by employing an appropriate controller (lag, lead, lead-lag, PID, etc) once the correct
transfer function is known. However, sometimes the transfer function may change over time
and you will need to be able to adapt your controller (or the input to the plant) based on
your current estimate of the system transfer function. As a specific example, consider a drilling
process. When the drill is not touching the workpiece it might have one transfer function, when
it first starts drilling it may have a different transfer function, and as the drill bit heats up, it
may have a third transfer function. In order to try to “optimize” the drilling process, we need
to determine estimates of the transfer function. We will assume the plant is represented by the
transfer function

Gp(z) =
Y (z)

U(z)
=
b0 + b1z

−1 + b2z
−2 + · · ·+ bmz

−m

1 + a1z−1 + a2z−2 + · · ·+ anz−n

where n ≥ m. Converting this to the time domain, we assume the plant output y(k) (which
might be the speed of the drill bit) is

y(k) = −a1y(k − 1)− a2y(k − 2) + · · · − any(k − n) + b0u(k) + b1u(k − 1) + ...+ bmu(k −m)

where y(k−i) are the outputs at previous time steps, u(k−i) are the inputs, and the coefficients
a1, ...am, b0,bn are to be determined. However, these coefficients are changing over time, so
we need to be able to estimate them based on current observations.

At this point, we could collect data over a time period and set up a least squares problem as we
did before, but there are two general problems with that type of approach. The first is that in
order to collect the data we may introduce some significant delays in the system. Secondly, we
may end up with a fairly large matrix equation to solve which could also consume significant
time. We would like to be able to implement this into a microcontroller with limited memory
and computational ability. Hence we want to look at a method to perform the least squares
calculation were we update our least squares estimate as each new data point is available. This
will lead to a recursive least squares algorithm. However, we would also like to weigh our data
so the most recent data is more important than past data. This is particularly important for
a process that is changing over time. This leads to a recursive least squares with a forgetting
factor, or a scaling that discounts past data. Our scaling factor λ will be a number between
0 and 1. If the scaling factor is a 1, then we do not forget any of the past data and our algo-
rithm is a recursive implementation of a regular least squares algorithm. If the scaling factor is

53

near zero, than we only use the most recent data. The recursive least squares is a precursor to
the Kalman filter, which estimates the state of a system based on a model of the system and
stochastic information, but that is beyond the scope of this course.

Assume, in general, the output at time k, y(k), is given as

y(k) = ϕ1(k)θ1 + ϕ2(k)θ2 + ...+ ϕn(k)θn

= ϕT (k)θ

where

ϕT (k) = [ϕ1(k) ϕ2(k) ... ϕn(k)]

θT = [θ1 θ2 ... θn]

For our difference equation describing the plant one way to assign variables is

ϕT (k) = [−y(k − 1) − y(k − 2) · · · − y(k − n) u(k) u(k − 1) · · ·u(k −m)]

θT = [a1 a2 · · · an b0 b1 · · · bm]

It really doesn’t matter whether we assume the coefficients of the y’s are negative or the a’s are
negative.

Let’s define the error at time step k as

e(k) = y(k)− ŷ(k) = y(k)− ϕT (k)θ̂

where θ̂ is the current estimate of the parameters in θ and ŷ(k) = ϕT (k)θ̂ is the estimate of the
true output y(k) at time k. We now want to determine θ̂ to minimize a simple function of the
error that incorporates both current and past information. Lets look at the error measure

V (θ̂, k) =
1

2

i=k∑
i=1

λk−ie2(i)

Here λ is a forgetting or deweighting factor between 0 and 1. With this parameter, we can
emphasize new data and “discount” or “deweight” old data. For λ = 1 we have the straight
least squares algorithm.

To find the parameters (θ̂) that minimizes V , we need to find the derivative of

V =
1

2

i=k∑
i=1

λk−ie2(i) =
1

2

i=k∑
i=1

λk−i
[
y(i)− ϕT (i)θ̂

] [
y(i)− ϕT (i)θ̂

]

=
1

2

i=k∑
i=1

λk−i
[
y2(i)− 2ϕT (i)θ̂y(i) + ϕT (i)θ̂ϕT (i)θ̂

]
Note that since all our terms are scalars, ϕT (i)θ̂ = θ̂Tϕ(i). We want to make all of our terms
look like something we know how to compute the derivative of, such as

∂

∂θ

(
aT θ

)
= aT

∂

∂θ

(
θTAθ

)
= θT (2A), if A is symmetric

54

Rewriting V we have

V =
1

2

i=k∑
i=1

λk−i
[
y2(i)− 2y(i)ϕT (i)θ̂ + θ̂Tϕ(i)ϕT (i)θ̂

]
Taking the derivative and setting it equal to zero we have

∂V

∂θ̂
=

1

2

i=k∑
i=1

λk−i
[
0− 2y(i)ϕT (i) + 2θ̂Tϕ(i)ϕT (i)

]
= 0

taking transposes

i=k∑
i=1

λk−iϕ(i)y(i) =
i=k∑
i=1

λk−iϕ(i)ϕT (i)θ̂

since θ̂ is not a function of the index variable (i) we can take it outside of the sum to get our
optimal estimate of the parameters

θ̂ =

[
i=k∑
i=1

λk−iϕ(i)ϕT (i)

]−1 i=k∑
i=1

λk−iy(i)ϕ(i)

Since this is our estimate of the transfer function parameters for sample k, we will denote this
θ̂(k).

At this point it probably does not seem like we have made any progress, since our estimate for
the parameters depends on keeping all of the data up to the current time. In order to get a
recursive algorithm, we need to apply a few tricks. It won’t look like we are making progress,
but we really are, just be patient! Let’s define

P (k) =

{
i=k∑
i=1

λk−iϕ(i)ϕT (i)

}−1

Then we have

P−1(k) =
i=k∑
i=1

λk−iϕ(i)ϕT (i)

Changing the index and then multiplying by λ we get

P−1(k − 1) =
i=k−1∑
i=1

λk−1−iϕ(i)ϕT (i)

λP−1(k − 1) =
i=k−1∑
i=1

λk−iϕ(i)ϕT (i)

Finally, we have

λP−1(k − 1) + ϕ(k)ϕT (k) =
i=k∑
i=1

λk−iϕ(i)ϕT (i) = P−1(k)

55

or

P−1(k) = λP−1(k − 1) + ϕ(k)ϕT (k)

At this point we have

θ̂(k) = P (k)

[
i=k∑
i=1

λk−iϕ(i)y(i)

]

= P (k)

[
i=k−1∑
i=1

λk−iϕ(i)y(i) + ϕ(k)y(k)

]

= P (k)

[
λ

i=k−1∑
i=1

λk−1−iϕ(i)y(i) + ϕ(k)y(k)

]

By changing the index in the first of the previous three expressions we also have

θ̂(k − 1) = P (k − 1)

[
i=k−1∑
i=1

λk−1−iϕ(i)y(i)

]

Rearranging this expression we get

P−1(k − 1)θ̂(k − 1) =
i=k−1∑
i=1

λk−1−iϕ(i)y(i)

Combining these expression we get

θ̂(k) = P (k)
[
λP−1(k − 1)θ̂(k − 1) + ϕ(k)y(k)

]
= P (k)

[(
P−1(k)− ϕ(k)ϕT (k)

)
θ̂(k − 1) + ϕ(k)y(k)

]
= θ̂(k − 1)− P (k)ϕ(k)ϕT (k)θ̂(k − 1) + P (k)ϕ(k)y(k)

Rearranging this we get

θ̂(k) = θ̂(k − 1) + P (k)ϕ(k)
[
y(k)− ϕT (k)θ̂(k − 1)

]
Let’s define K(k) = P (k)ϕ(k). Then we will have

θ̂(k) = θ̂(k − 1) +K(k)
[
y(k)− ϕ(k)θ̂(k − 1)

]
At this point, we are getting closer to a recursive relationship. Our new estimate of the param-
eters (θ̂(k)) is the sum of our previous estimate (θ̂(k − 1)) and a gain (K(k)) multiplying the
difference between the measured output (y(k)) and our estimate of the current output based on
the previous parameter estimate (ϕT (k)θ̂(k − 1)). This is very similar to the expression we will
use for constructing an observer, which is really what we are doing now. All that remains is to
figure out a recursive relationship for K(k), or more precisely, P (k).

From before, we have the relationship

P−1(k) = λP−1(k − 1) + ϕ(k)ϕT (k)

56

which we can rewrite as

P (k) =
[
λP−1(k − 1) + ϕ(k)ϕT (k)

]−1

Next we use the matrix inversion lemma, which states the equality

(A+BCD)−1 = A−1 − A−1B
(
C−1 +DA−1B

)−1
DA−1

provided A, C, and C−1 +DA−1B are nonsingular square matrices. Let’s let A = λP−1(k − 1)
so A−1 = 1

λ
P (k − 1), B = ϕ(k), C = I (the identity matrix), and D = ϕT (k). Then we have

P (k) =
[
λP−1(k − 1) + ϕ(k)ϕT (k)

]−1

=
[
1

λ
P (k − 1)

]
−
[
1

λ
P (k − 1)

]
[ϕ(k)]

(
[I] +

[
ϕT (k)

] [1
λ
P (k − 1)

]
[ϕ(k)]

)−1 [
ϕT (k)

] [1
λ
P (k − 1)

]
=

1

λ

[
P (k − 1)− P (k − 1)ϕ(k)

(
λ+ ϕT (k)P (k − 1)ϕ(k)

)−1
ϕT (k)P (k − 1)

]
Using the previous definition that K(k) = P (k)ϕ(k), and the fact that ϕT (k)P (k − 1)ϕ(k) is a
scalar, we have

K(k) =
1

λ

{
P (k − 1)− P (k − 1)ϕ(k)ϕT (k)P (k − 1)

λ+ ϕT (k)P (k − 1)ϕ(k)

}
ϕ(k)

=
1

λ
P (k − 1)ϕ(k)

{
I − ϕT (k)P (k − 1)ϕ(k)

λ+ ϕT (k)P (k − 1)ϕ(k)

}

=
1

λ

{
λ+ ϕT (k)P (k − 1)ϕ(k)− ϕT (k)P (k − 1)ϕ(k)

λ+ ϕT (k)P (k − 1)ϕ(k)

}

= P (k − 1)ϕ(k)
(
λ+ ϕT (k)P (k − 1)ϕ(k)

)−1

Finally, using this relationship and the previous relationship

P (k) =
1

λ

[
P (k − 1)− P (k − 1)ϕ(k)

(
λ+ ϕT (k)P (k − 1)ϕ(k)

)−1
ϕT (k)P (k − 1)

]
we get

P (k) =
1

λ

[
P (k − 1)−K(k)ϕT (k)P (k − 1)

]
=

1

λ

[
I −K(k)ϕT (k)

]
P (k − 1)

and this is the relationship we need.

In summary (and in computational order), we then have the following recursive relationships:

K(k) = P (k − 1)ϕ(k)
(
λ+ ϕT (k)P (k − 1)ϕ(k)

)−1

P (k) =
1

λ

[
I −K(k)ϕT (k)

]
P (k − 1)

θ̂(k) = θ̂(k − 1) +K(k)
[
y(k)− ϕT (k)θ̂(k − 1)

]
57

Although the variables are indexed by the variable k, this is only for notational purposes. The
computations for these equations will only depend on the current output of the system (y) and
the current input-output parameters (ϕ), and will look something like the following:

K = Pold ϕ
(
λ+ ϕTPold ϕ

)−1

Pnew =
1

λ

[
I −KϕT

]
Pold

θ̂new = θ̂old +K
[
y − ϕT θ̂old

]
Pold = Pnew

θ̂old = θ̂new

However, in order to start the recursion we need an initial value for ϕ and P . We usually assume
ϕ = 0 and P = I (the identity matrix), though other starting conditions are obviously possible.

Before going though some examples, there are a few points that we need to make:

• To really do a recursive least squares like we are doing, we need a persistently exciting input
of a sufficient order. That is, our input must have sufficient spectral content to allow us
to determine the system. The easiest way to think about this is to try and imagine trying
to experimentally determine the Bode plot for an unknown system. In order to determine
the Bode plot we need to make measurements at a sufficient number of frequencies that
we can accurately determine the parameters.

• The covariance matrix P is likely to become singular if our system does not change very
much. There are a number of ways to take care of this, the simplest is to test to see if
the matrix is becoming singular and resetting the P matrix to something like the identity
matrix.

• The algorithm as presented is not very computationally efficient or robust. There are
many other (and better) adaptive methods for estimating the parameters.

Now let’s looks at an example. This example is fairly extreme, with a sudden change in the
plant. For this example we assume the input is white noise. This is an unrealistic assumption,
but will help us understand how the algorithms work a little better without having to worry
about having a persistently exciting input signal.

Example. Consider the following two discrete-time transfer function,

G1(z) =
2z + 1

z2 − z + 0.5

G2(z) =
3z − 1

z2 − 0.5z − 0.25

These are both of the general form

G(z) =
Y (z)

U(z)
=

b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2

58

or

y(k) = a1y(k − 1) + a2y(k − 2) + b1u(k − 1) + b2u(k − 2)

We will the assume our plant has the form G(z) = G1(z) for samples k < 20 and G(z) = G2(z)
for k ≥ 20. This means that we should find the following:

coefficient k < 20 k ≥ 20
a1 -1.0 -0.5
a2 0.5 -0.25
b1 2 3
b2 1 -1

Figures 10 - 12 show the results of using the recursive least squares algorithm to estimate the
system parameters for λ = 0.4, λ = 0.75, and λ = 0.95. Note that for λ = 0.4 the coefficients
are correctly determined once the transients have settled out, but there is not a very smooth
transition from one set of parameters to the second set. For λ = 0.75 the transition between
parameter values is smoother, but it takes longer for the system to settle to the new parameter
values. For λ = 0.95 we are essentially using a recursive least squares with very little forgetting.
When the system parameters change, it is very difficult for the system to converge to the correct
parameter values since it is still remembering the data for the initial parameter values.

3.7 Adaptive Control

Now that we know how to estimate the plant transfer function using recursive least squares,
and we know how to determine a controller to place the closed loop poles from the last chapter,
we can combine these two ideas into an elementary example of an adaptive control scheme.
Figure 13 shows a simple schematic for an adaptive control system, which is made up of three
parts. First of all there is the plant, the system we are trying to control. However, the plant
may be either unknown or varying over time. Secondly there is the system identification part,
the takes the input to the plant and the output of the plant and constructs and estimate of the
plant. Finally, there is the adaptive controller, which takes the estimate of the plant and error
signal and produces a control signal.

59

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Sample (k)

λ = 0.4

a
1

a
2

b
1

b
2

Figure 10: Results of using the recursive least squares algorithm to estimate the system param-
eters. λ = 0.4 in this case. Note that the parameter estimates settle at the correct values in the
two regions, but there is some transient time when the parameter estimates are significantly in
error. However, this is an extreme case of a transition.

60

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Sample (k)

λ = 0.75

a
1

a
2

b
1

b
2

Figure 11: Results of using the recursive least squares algorithm to estimate the system param-
eters. λ = 0.75 in this case. Here the parameter estimates again settle at the correct values
in the two regions, but the transient behavior is not as extreme as for the case when λ = 0.4.
This smoother transition between regions is as the expense of a slower time to converge to the
correct estimates.

61

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Sample (k)

λ = 0.95

a
1

a
2

b
1

b
2

Figure 12: Results of using the recursive least squares algorithm to estimate the system param-
eters. λ = 0.95 in this case. Here the parameter estimates are fairly poor, especially after the
system changes. This is because we are essentially not “forgetting” past data.

62

y
+

-

Σ Adaptive

Controller
r

Varying or

Unkown

Plant

System

Identification

e

u

Figure 13: Schematic of an adaptive control system. The plant is the system we are trying to
control, which may be unknown or varying over time. The system identification block takes the
input to the plant and output of the plant and estimates the plant transfer function. Finally,
the adaptive controller takes the transfer function estimate of the plant and the error signal,
and produces a control signal.

63

4 Discrete-Time State Equations

In this chapter we develop discrete-time state equations assuming we have a time-invariant
continuous-time state variable description of the system. The standard form for a time-invariant
continuous time state variable model is

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

Here x(t) is the state vector, u(t) is the input vector to the plant1, y(t) is the output vector from
the plant, and the A,B,C, and D matrices are constant. If these matrices were not constant
this would not be a time-invariant system. A signal flow graph for this continuous-time system
is shown in Figure 14. If we assume we sample this system, we will have a discrete-time state
variable model of the system which we can write

x([k + 1]T) = Gx(kT) +Hu(kT)

y(kT) = Cx(kT) +Du(kT)

where we have explicitly shown the dependence on the sampling interval T . A signal flow graph
of this discrete-time state variable model is shown in Figure 15. Note that the output equation
contains the same C and D matrices as the continuous-time model. In this chapter we will show
how to go from the continuous-time to the discrete-time state variable models assuming the
sampling is done with a zero order hold (ZOH). We will also show how to derive the discrete-
time equations when there may be delays between the input and output. We need to be able
to solve the continuous-time state equations, and to do this we first need a bit of background
mathematics.

Bu(t)

A

1
s

+

Σ

+

x(t)
.

x(t)
C

+

y(t)Σ

+

D

Figure 14: Continuous-time state variable model for a plant.

4.1 The Continuous-Time State Transition Matrix

The function eAt, where A is a square matrix, is a very important function in continuous-time
state variable systems. If A is an n × n matrix, then as we will see, eAt will also be an n × n
matrix. This matrix is called the state transition matrix. We will need to be able to compute
this function and will need some of it’s properties in order to derive discrete-time state variable

1This is not to be confused with a unit step function. The input may be a unit step function, but it is not
necessarily a unit step function. This is common notation and you will need to look at the context to determine
if u(t) represents a unit step function or the input to the plant.

64

+

Σ

+

C
+

Σ

+

D

u(k)

G

y(k)z-1
x(k+1) x(k)

H

Figure 15: Discrete-time state variable model for a plant.

equations from continuous-time state variable equations.

Consider the function eat for a scalar a. We know that this function has the Taylor series

eat =
1

0!
+

(at)

1!
+

(at)2

2!
+ . . . =

k=∞∑
k=0

(at)k

k!

Using this motivation, we will define the state transition matrix as

eAt =
I

0!
+
At

1!
+

(At)2

2!
+ . . . =

k=∞∑
k=0

(At)k

k!

where A2 = A× A, A3 = A2 × A, etc. Using this definition we can then compute

d

dt

{
eAT

}
=

d

dt

[
I +

At

1!
+
A2t2

2!
+
A3t3

3!
+ · · ·

]

=

[
0 + A+

A22t

2!
+
A33t2

3!
+ · · ·

]

= A

[
I + At+

A2t2

2!
+ · · ·

]
= AeAt = eAtA

It can also be shown that eAteAs = eA(t+s), for t and s scalars. A special case of this is when
s = −t. The we have

eAte−At = eA0 = I

Hence [
eAt
]−1

= e−At

so we know what the inverse matrix of eAt is. We can use these results to perform integration.
For example ∫ t

0
eAλdλ = A−1eAλ

∣∣∣λ=t

λ=0
= A−1

[
eAt − I

]
provided A−1 exists.

65

4.2 Solution of the Continuous-Time State Equations

Assume we have the continuous-time state variable model of a plant

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

We can rewrite this system as

ẋ(t)− Ax(t) = Bu(t)

Next we premultiply both sides of the equation by e−At, so we have

e−At (ẋ(t)− Ax(t)) = e−AtBu(t)

Now consider

d

dt

(
e−Atx(t)

)
=

(
d

dt
e−At

)
x(t) + e−At

(
d

dt
x(t)

)
= −Ae−Atx(t) + e−Atẋ(t)

= e−At (ẋ(t)− Ax(t))

since e−At and A commute. Hence we have

d

dt

(
e−Atx(t)

)
= e−AtBu(t)

Finally, we integrate both sides of this equation from an initial time t0 to the current time t,

∫ t

t0

d

dλ

(
e−Aλx(λ)

)
dλ =

∫ t

t0
e−AλBu(λ)dλ

e−Atx(t)− e−At0x(t0) =
∫ t

t0
e−AλBu(λ)dλ

x(t) = eA(t−t0)x(t0) +
∫ t

t0
eA(t−λ)Bu(λ)dλ

Now that we have solved the state equations, we can convert them to a discrete-time model.
However, the model we end up with depends on how we are going to sample the system to get
a discrete-time system. We will assume we are using a zero-order-hold (ZOH), which holds the
input at a constant value over one sampling interval of length T . Specifically, we assume

u(t) = u(kT) kT ≤ t < (k + 1)T

Next we look at an interval from t0 = kT to t = (k + 1)T . The solution to the state equations
becomes

x([k + 1]T) = eA([k+1]T−kT)x(kT) +

{∫ [k+1]T

kT
eA([k+1]T−λ)dλ

}
Bu(kT)

66

or

x([k + 1]T) = eATx(kT) +

{∫ [k+1]T

kT
eA([k+1]T−λ)dλ

}
Bu(kT)

Notice that the integral is no longer a function of u(t) so we can take both the B and u(t)
outside of the integral. Let’s change variables, so

σ = [k + 1]T − λ

With this variable change, the resulting equation is

x([k + 1]T) = eATx(kT) +

{∫ T

0
eAσdσ B

}
u(kT)

For convenience, the dependence on the sampling interval T is suppressed, and we have the
resulting discrete-time state equations

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k) +Du(k)

where

G = eAT

H =
∫ T

0
eAλdλ B

Note that the output (second) equation does not really change when we go from a discrete-time
to a continuous time state variable description of a system. The only thing we need to know
now is how to compute eAt, which is discussed in the next section.

4.3 Computing the State Transition Matrix, eAt

In computing the discretized state equations, we need to be able to determine eAt (or eAT for
sampling interval T). There are three common approaches to this computation: (1) truncating
the infinite sum, (2) using the Laplace transform, and (3) matching functions on the eigenvalues.
The first two methods are fairly easy to understand, while the third method will just be used
without justification.

4.3.1 Truncating the Infinite Sum

Since we know that by definition,

eAt =
k=∞∑
k=0

(At)k

k!

if the sample interval T is small enough (t = T) we will get a good approximation using only
a few terms in the infinite series. Hence if were were to use only a few terms we would get the

67

approximations

eAt ≈ I + At (two terms)

≈ I + At+
1

2
A2t2 (three terms)

≈ I + At+
1

2
A2t2 +

1

6
A3t3 (four terms)

This technique generally becomes difficult if more than a few terms are needed.

4.3.2 Laplace Transform Method

In our solution to the continuous-time state variable equations, if we assume t0 = 0 (the initial
time is zero), x(0) = 0 (the initial conditions are zero), and D = 0, then we have

y(t) = C
∫ t

0
eA(t−λ)Bu(λ)dλ

For LTI systems, if we know the input to a system, u(t), and the impulse response of the system,
f(t), then the output of the system can be determined by using convolution,

y(t) = f(t) ⋆ u(t) =
∫ ∞

−∞
f(t− λ)u(λ)dλ

If we know that both the input and the system are causal (i.e., both u(t) and f(t) are zero for
t < 0), then this simplifies to

y(t) = f(t) ⋆ u(t) =
∫ t

0
f(t− λ)u(λ)dλ

If we compare this to our solution to the state equations above, we have

f(t) = CeAtB

Now let’s look at solving the state equations using Laplace transforms. Again we assume the
initial time is zero, the initial state is zero, and the D matrix is zero. We then have initially

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

Taking the Laplace transform we have

sX(s) = AX(s) + BU(s)

Y (s) = CX(s)

Solving for X(s) and putting this into the Y (s) equation we have

X(s) = (sI − A)−1BU(s)

Y (s) = C(sI − A)−1BU(s)

68

Comparing time-domain and s-domain solutions, we have

y(t) = f(t) ⋆ u(t)

Y (s) = F (s)U(s)

which means

F (s) = C(sI − A)−1B

f(t) = CeAtB

or, finally

eAt = L−1
{
(sI − A)−1

}
In what follows, we will be computing the inverse of a 2× 2 matrix, which you are expected to
be able to do. If

A =

[
a b
c d

]

then if A−1 exists, it can be computed as

A−1 =
1

ad− bc

[
d −b
−c a

]

A simple way to remember this is (1) divide by the determinant, (2) switch the elements on the
major diagonal, and (3) negate the off diagonal terms.

Finally, it should be noted that, as a very simple check, eA0 = e0 = I, so if we set t = 0 we
should get and identity matrix in our computation of eAt.

Example. Compute eAt for

A =

[
1 2
0 1

]

First we compute sI − A,

sI − A =

[
s 0
0 s

]
−
[
1 2
0 1

]

=

[
s− 1 −2
0 s− 1

]

and then (sI − A)−1,

(sI − A)−1 =
1

(s− 1)2

[
s− 1 2
0 s− 1

]
=

[
1

s−1
2

(s−1)2

0 1
s−1

]

69

and then find the inverse Laplace transform,

eAt =

[
et 2tet

0 et

]
= L−1

{
(sI − A)−1

}
Example. Compute eAt for

A =

[
2 −2
2 6

]

First we compute sI − A,

sI − A =

[
s 0
0 s

]
−
[
2 −2
2 6

]

=

[
s− 2 2
−2 s− 6

]

and then (sI − A)−1,

(sI − A)−1 =
1

(s− 4)2

[
s− 6 −2
2 s− 2

]
=

[s−6
(s−4)2

−2
(s−4)2

2
(s−4)2

s−2
(s−4)2

]

and then find the inverse Laplace transform,

eAt =

[
e4t − 2te4t −2te4t

2te4t e4t + 2te4t

]
= L−1

{
(sI − A)−1

}

4.3.3 Matching on Eigenvalues

This method of determining eAt can be proved using the Cayley-Hamilton Theorem from linear
algebra. Let the characteristic polynomial of the matrix A be

∆(λ) = det (λI − A) =
i=m∏
i=1

(λ− λi)
ni

where there are m distinct eigenvalues and ni is the number of times eigenvalue λi is repeated.
We assume A is an n × n square matrix. Let f(x) be arbitrary functions of x and g(x) be a
polynomial of degree n. Then if

dlf(x)

dxl

∣∣∣∣∣
x=λi

=
dlg(x)

dxl

∣∣∣∣∣
x=λi

for l = 0, ..., ni − 1, i = 1, ...,m

then

f(A) = g(A)

Example. Compute A4 for the matrix

A =

[
1 2
0 3

]

70

We first need to determine the characteristic equation and find the eigenvalues,

λI − A =

[
λ 0
0 λ

]
−
[
1 2
0 3

]
=

[
λ− 1 −2
0 λ− 3

]
∆(λ) = (λ− 1)(λ− 3)

so the eigenvalues are λ1 = 1 and λ2 = 3. We next need to identify our functions,

f(x) = x4

g(x) = α0 + α1x

Note that g(x) is a polynomial with n unknowns, where A is an n× n matrix. Next we match
on the eigenvalues of A to determine the equations we need to solve for α0 and α1,

f(λ1) = 14 = g(λ1) = α0 + α1

f(λ2) = 34 = g(λ2) = α0 + 3α1

We can solve these simple equations to get α0 = −39 and α1 = 40, so g(x) = −39+40x. Finally,
we evaluate with the matrix A,

f(A) = A4 = g(A) = −39I + 40A =

[
−39 0
0 −39

]
+

[
40 80
0 120

]
=

[
1 80
0 81

]

Example. Compute Ak for the matrix

A =

[
1 0
1 1

]

We first need to determine the characteristic equation and find the eigenvalues,

λI − A =

[
λ 0
0 λ

]
−
[
1 0
1 1

]
=

[
λ− 1 0
−1 λ− 1

]
∆(λ) = (λ− 1)2

so the eigenvalue is repeated, λ = 1. We next need to identify our functions,

f(x) = xk

g(x) = α0 + α1x

Note that g(x) is a polynomial with n unknowns, where A is an n× n matrix. Next we match
on the eigenvalues of A to determine the equations we need to solve for α0 and α1,

f(λ) = 1k = g(λ) = α0 + α1

df(x)

dx

∣∣∣∣∣
x=λ

= kxk−1
∣∣∣
x=λ

= k =
dg(x)

dx

∣∣∣∣∣
x=λ

= α1

We can solve these simple equations to get α0 = 1− k and α1 = k, so g(x) = (1− k)+ kx. Note
that in this case the coefficients are functions of k, they are not constants. Finally, we evaluate
with the matrix A,

f(A) = Ak = g(A) = (1− k)I + kA =

[
1− k 0
0 1− k

]
+

[
k 0
k k

]
=

[
1 0
k 1

]

71

Example. Compute eAt for the matrix

A =

[
1 2
0 1

]

We first need to determine the characteristic equation and find the eigenvalues,

λI − A =

[
λ 0
0 λ

]
−
[
1 0
1 1

]
=

[
λ− 1 0
−1 λ− 1

]
∆(λ) = (λ− 1)2

so the eigenvalue is repeated, λ = 1. We next need to identify our functions,

f(x) = ext

g(x) = α0 + α1x

Next we match on the eigenvalues of A to determine the equations we need to solve for α0 and
α1,

f(λ) = et = g(λ) = α0 + α1

df(x)

dx

∣∣∣∣∣
x=λ

= text
∣∣∣
x=λ

= tet =
dg(x)

dx

∣∣∣∣∣
x=λ

= α1

We can solve these simple equations to get α0 = et− tet and α1 = tet, so g(x) = (et− tet)+ tetx.
Note that in this case the coefficients are functions of t, they are not constants. Finally, we
evaluate with the matrix A,

f(A) = eAt = g(A) = (et − tet)I + tetA =

[
et 2tet

0 et

]

Example Compute eAt for the matrix

A =

[
0 1
−4 −5

]

We first need to determine the characteristic equation and find the eigenvalues,

λI − A =

[
λ 0
0 λ

]
−
[

0 1
−4 −5

]
=

[
λ −1
4 λ+ 5

]
∆(λ) = (λ+ 1)(λ+ 4)

so the eigenvalues are λ1 = −4 and λ2 = −1. We next need to identify our functions,

f(x) = ext

g(x) = α0 + α1x

Next we match on the eigenvalues of A to determine the equations we need to solve for α0 and
α1,

f(λ1) = e−4t = g(λ1) = α0 − 4α1

f(λ2) = e−t = g(λ2) = α0 − α1

72

We can solve these equations to get α0 = 4
3
e−t − 1

3
e−4t and α1 = 1

3
e−t − 1

3
e−4t, so g(x) =

(4
3
e−t − 1

3
e−4t) + (1

3
e−t − 1

3
e−4t)x. Note that in this case the coefficients are functions of t, they

are not constants. Finally, we evaluate with the matrix A,

f(A) = eAt = g(A) = (
4

3
e−t − 1

3
e−4t) + (

1

3
e−t − 1

3
e−4t)A =

[
4
3
e−t − 1

3
e−4t 1

3
e−t − 1

3
e−4t

−4
3
e−t + 4

3
e−4t −1

3
e−t + 4

3
e−4t

]

Example. Compute eAt for the matrix

A =

 0 0 −2
0 1 0
1 0 3


The characteristic equation for this system is

∆(λ) = (λ− 1)2(λ+ 2)

so the eigenvalues are λ1 = 1 (repeated) and λ2 = 2. We next need to identify our functions,

f(x) = ext

g(x) = α0 + α1x+ α2x
2

Next we match on the eigenvalues of A to determine the equations we need to solve for α0, α1,
and α2

f(λ1) = et = g(λ1) = α0 + α1 + α2

df(x)

dx

∣∣∣∣∣
x=λ1

= tet =
dg(x)

dx

∣∣∣∣∣
x=λ1

= α1 + 2α2

f(λ2) = e2t = g(λ2) = α0 + 2α1 + 4α2

We then need so solve the system of equations, 1 1 1
1 2 0
1 2 4


 α0

α1

α2

 =

 et

tet

e2t



It should be pointed out that the most important part of this method is the knowledge that we
can always write

eAt = α0(t)I + α1(t)A+ α2(t)A
2 + . . .+ αn−1(t)A

n−1

This fact will be very important later when we talk about controllability.

4.4 Discretization with Delays in the Input

We would now like to extend our development to the case where there are delays in the input.
We can model such a system as

ẋ(t) = Ax(t) + Bu(t− τ)

y(t) = Cx(t) +Du(t)

73

where τ is the delay. Following the same procedure as before, we will have

x(t) = eA(t−t0)x(t0) +
∫ t

t0
eA(t−λBu(λ− τ)dτ

Again assume t0 = kT and t = [k + 1]T , so we have

x([k + 1]T) = eATx(kT) +
∫ [k+1]T

kT
eA([k+1]T−λ)Bu(λ− τ)dλ

Let’s assume 0 ≤ τ ≤ T and look at u(t) and the delayed signal u(t − τ), shown in Figure 16.
In order to evaluate the integral in our expression above we will need to break the integral up
into two pieces as follows:∫ [k+1]T

kT
eA([k+1]T−λ)Bu(λ− τ)dλ =

∫ kT+τ

kT
eA([k+1]T−λ)Bu([k − 1]T)dλ+

∫ [k+1]T

kT+τ
eA([k+1]T−λ)Bu(kT)dλ

= H1u([k − 1]T) +H0u(kT)

where

H0 =
∫ [k+1]T

kT+τ
eA([k+1]T−λ)dλ B =

∫ T−τ

0
eAσdσ B

H1 =
∫ kT+τ

kT
eA([k+1]T−λ)dλ B = eA(T−τ)

∫ τ

0
eAσdσ B

so we have

x([k + 1]T) = Gx(kT) +H0u(kT) +H1u([k − 1]T)

Suppressing the dependence on the sampling interval T and writing as a state variable model
we have [

x(k + 1)
u(k)

]
=

[
G H1

0 0

] [
x(k)

u(k − 1)

]
+

[
H0

I

]
u(k)

where

G = eAT

H0 =
∫ T−τ

0
eAσdσ B

H1 = eA(T−τ)
∫ τ

0
eAσdσ B

For the special case where τ = T (a 1 sample delay) we have

G = eAT

H0 =
∫ 0

0
eAσdσ = 0

H1 =
∫ T

0
eaσdσ B = H

74

t

t

u(t)

u(t-τ)

(k-1)T kT (k+1)T

τ

Figure 16: Original and delayed (by an amount τ) input.

The state equations are then[
x(k + 1)
u(k)

]
=

[
G H
0 0

] [
x(k)

u(k − 1)

]
+

[
0
I

]
u(k)

Example. Consider the continuous-time double integrator system

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
1 0

]
x(t)

A double integrator system with a delay of τ in the input can be described as

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t− τ)

y(t) =
[
1 0

]
x(t)

75

We need to compute eAt, so we’ll use the Laplace transform method,

sI − A =

[
s 0
0 s

]
−
[
0 1
0 0

]
=

[
s −1
0 s

]

(sI − A)−1 =
1

s2

[
s 1
0 s

]
=

[
1
s

1
s2

0 1
s

]
so

eAt =

[
1 t
0 1

]

Then

G = eAT =

[
1 T
0 1

]

H0 =
∫ T−τ

0
eAσdσB =

∫ T−τ

0

[
1 σ
0 1

]
dσ

[
0
1

]

=

[
(T − τ) (T−τ)2

2

0 (T − τ)

] [
0
1

]

=

[
(T−τ)2

2

T − τ

]

H1 = eA(T−τ)
∫ τ

0
eAσdσB =

[
1 T − τ
0 1

] ∫ τ

0

[
1 σ
0 1

]
dσ

[
0
1

]

=

[
1 T − τ
0 1

] [
τ τ 2

0 τ

] [
0
1

]
=

[
1 T − τ
0 1

] [
τ2

2

τ

]

=

[
τ2

2
+ Tτ − τ 2

τ

]
=

[
τ(T − τ

2
)

τ

]

so our new state model of the discretized system is x1(k + 1)
x2(k + 1)
u(k)

 =

 1 T τ(T − τ
2
)

0 1 τ
0 0 0


 x1(k)

x2(k)
u(k − 1)

+


(T−τ)2

2

T − τ
1

u(k)

y(k) =
[
1 0 0

]  x1(k)
x2(k)

u(k − 1)


4.5 State Variable to Transfer Function

Just as in continuous-time it is possible to go from a state variable description to a transfer
function description of a system. Doing this sometimes helps with different concepts, such as
pole placement, steady state error, and the speed of response. Consider the usual state-variable
description of a discrete-time system

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k) +Du(k)

76

Taking the z-transform of the equation and assuming the system is initially at rest (X(0) = 0),
we get

zX(z) = GX(z) +HU(z)

Y (z) = CX(z) +DU(z)

Solving for X(z) and putting this into the equation for Y (z) we get

X(z) = (zI −G)−1HU(z)

Y (z) = C (zI −G)−1HU(z)

Hence the transfer function between the input and output (the plant) is

Gp(z) = C (zI −G)−1H

Example. Find the equivalent transfer function for the following state variable model

x(k + 1) =

[
0.1 0
0.2 0.3

]
x(k) +

[
1
0

]
u(k)

y(k) =
[
0 1

]
First we compute zI −G,[

z 0
0 z

]
−
[
0.1 0
0.2 0.3

]
=

[
z − 0.1 0
−0.2 z − 0.3

]

then (zI −G)−1,

(zI −G)−1 =
1

(z − 0.1)(z − 0.3)

[
z − 0.3 0
0.2 z − 0.1

]

Finally, Gp(z) = C (zI −G)−1H, so

Gp(z) =
1

(z − 0.1)(z − 0.3)

[
0 1

] [z − 0.3 0
0.2 z − 0.1

] [
1
0

]

=
0.2

(z − 0.1)(z − 0.3)

4.6 Poles and Eignevalues

For continuous-time systems we know the poles of the system are given by the determinant
of sI − A, or the roots of the characteristic equation ∆(s) = |sI − A| = 0. These poles
are the eigenvalues of the A matrix. Similarly, for a discrete-time system, the poles of the
system are given by the determinant of zI − G, or the roots of the characteristic equation
∆(z) = |zI − G| = 0. The poles of the discrete-time system are also the eigenvalues of the
G matrix. If all of the poles of a discrete-time system is at the origin, this is referred to as
deadbeat response. The deadbeat response is the fastest possible response of a discrete-time
system. However, the control effort required for deadbeat response may be too large for actual
implementation.

77

5 Controllability and Observability

In this chapter we introduce the ideas of controllability and observability. These are very
important concepts in this course, and in control systems in general. If a system is controllable,
then we can find an input to take the system from any initial state to any final state in at
most n time steps, where G ∈ R n×n. More importantly, controllability allows us to use state
variable feedback to place the closed loop poles where ever we want to, as we will see in the next
chapter. Observability means that if we know the input and measure the output of a system
for n time steps, we can determine the initial state of the system, x(0). It also means that we
can construct observers to estimate the state of the system. Since for state variable feedback we
need knowledge of all of the state this is a very useful property. Sometimes it is much cheaper
and easier to estimate the states than to try and measure the states directly. Of course, the
accuracy with which we can measure the states depends to some extend on how accurate our
model of the system is. However, in order to understand where the tests for controllability and
observability come from, we need to first review some concepts from linear algebra.

5.1 Linear Algebra Review

In this section we will review a number of concepts from linear algebra that are of particular
importance in justifying our tests for controllability and observability. These concepts will also
be used in subsequent chapters, so ignore learning them now at your own peril!

5.1.1 Linear Independence

We will denote the set of complex numbers as C. A set of vectors x1, x2, x3, . . . , xn is said to be
linearly dependent over C if there are constants α1, α2, α3, . . . , αn ∈ C not all zero so that

α1x1 + α2x2 + . . .+ αnxn = 0

If the only set of αi ∈ C for which this expression holds is α1 = α2 = . . . = αn = 0, then the
vectors x1, x2, . . . , xn are said to be linearly independent over the field C. Note that, technically,
linear independence is a function of the field the constants αi are members of. However, in this
course we will not emphasize this.

Example. Are the vectors

x1 =

 1
0
2

 , x2 =
 1
1
0

 , x3 =
 3
1
4


linearly independent over C? Clearly 2x1 + x2 − x3 = 0 (α1 = 2, α2 = 1, α3 = −1), so these
vectors are linearly dependent.

Example. Are the vectors

x1 =

 1
1
0

 , x2 =
 2
0
1

 , x3 =
 0
1
2


78

linearly independent over C? In this case, the solution is not as obvious, so let’s write out what
we need. We want to find constants αi ∈ C so that

α1x1 + α2x2 + α3x3 = 0

We can write this in matrix form as

[
x1 x2 x3

]  α1

α2

α3

 =

 1 2 0
1 0 1
0 1 2


 α1

α2

α3

 = 0

Then by elementary row operations we have 1 2 0
1 0 1
0 1 2

 →

 1 2 0
0 −2 1
0 1 2

→

 1 2 0
0 1 −0.5
0 0 2.5


We then solve from the bottom row to the top row. From the bottom row we have 2.5α3 = 0,
which means α3 = 0. From the middle row we then have α2 − 0.5α3 = 0, which means α2 = 0.
Finally, from the top row we have α1 + 2α2 = 0 from which we get α1 = 0. Since the only
solution is for all of the αi = 0 the vectors are linearly independent.

Example. Assume the vectors u, v, and w are linearly independent vectors. Are the vectors
u+ v, u+ v + w and v − w linearly independent? We need to find α1, α2, and α3 so that

α1(u+ v) + α2(u+ v + w) + α3(v − w) = 0

We can rewrite these equations as

(α1 + α2)u+ (α1 + α2 + α3)v + (α2 − α3)w = 0

Since we know u, v, and w are linearly independent, we know the coefficients in the above
equation must all be zero,

α1 + α2 = 0

α1 + α2 + α3 = = 0

α2 − α3 = 0

We could write this as a matrix equation, but in this case it may be easiest to just solve the
first and third equations in terms of α2 and then put it into the second equation,

α1 = −α2

α3 = α2

inserting these results into the middle equation we get

(−α2) + α2 + (α2) = 0

which indicates α2 = 0, so both α1 and α3 must also be zero. Hence the new vectors are linearly
independent.

79

5.1.2 Rank of a Matrix

We can consider both the rows of a matrix and the columns of a matrix as vectors. Then the
rank of a matrix is the number of linearly independent rows or columns. It doesn’t matter if
we look at the rows or columns of a matrix, we will get the same answer answer. It should be
obvious that if A is an m × n matrix, the rank of A, which we will denote as r(A) can be at
most the smaller of n or m,

r(A) ≤ min(m,n)

If r(A) = min(n,m) then we say that A has full rank.

Example. Consider the matrix

A =

[
1 2 3 0
0 2 3 1

]

We know that the maximum value of r(A) is 2, and this is in fact the rank of this matrix. It is
probably easiest to look at the number of linearly independent columns in this case, and once
we find two linearly independent columns we know that is the most we can find. This matrix
has full rank.

Example. Consider the matrix

A =


1 1 0
2 1 0
3 2 1
0 0 1


We know the maximum value of r(A) is 3, and this is the rank of this matrix. Clearly the first,
second, and fourth rows are linearly independent, and the third row is the sum of these rows.
This matrix has full rank.

Example. Consider the matrix

A =

 1 1 0 1
2 2 0 0
0 0 0 3


We know the maximum value of r(A) is 3. In this case the first row is a linear combination of
the second and third rows, so there are only two linearly independent rows, so the rank of this
matrix is two.

Example. Consider the matrix

A =

 0 1 0
1 2 0
3 4 0


We know that maximum value of r(A) is 3. Clearly the first and second columns are linearly
independent, so the rank of this matrix is 2.

80

5.1.3 Unique Representation of a Vector

Let’s assume we have linearly independent vectors x1, x1, . . . , xp. If for any vector y we can write

y = α1x1 + α− 2x2 + . . .+ αpxp

then the expansion coefficients α1, α2, . . . , αp are unique.

To show that this is true, we’ll use contradiction. We will assume there is another (different)
set of expansion coefficients β1, β2, . . . , βp and then show that this leads to a contradiction. By
hypothesis we have that

y = β1x1 + β2x2 + . . .+ βpxp

Subtracting this expression from the original expression we get

0 = (α1 − β1)x1 + (α2 − β2)x2 + . . .+ (αp − βp)xp

Since we know the vectors xi are linearly independent, we know the only way the above expression
can be true is if each coefficient is zero, which means αi = βi, and we have a contradiction. Hence
the expansion coefficients are unique if the vectors are linearly independent.

5.1.4 Dimension of a Space

The dimension of a space is defined to be the number of linearly independent vectors in that
space. For most of this course we will be dealing with either Rn or Cn, which contain vectors
with n real or complex components. Both of these are n dimensional spaces.

5.1.5 The Cayley-Hamilton Theorem

In state variable control systems, such used in this course, one of the most important and useful
theorems from linear algebra is the Cayley-Hamilton Theorem. In its most basic form we can
state this theorem as:

Cayley-Hamilton Theorem: A matrix satisfies its own characteristic equation.

This seemingly simple theorem (and its corollaries) lead to some very important results. The
most important result for us at this point is that if we have a matrix A that is n × n, we can
always write An in terms of lower powers of A, i.e. in terms of An−1, An−2, . . . , A, I. We will
next illustrate this will a few examples.

Example. Consider the matrix

A =

[
1 2
3 4

]

We need to find the characteristic equation

∆(λ) = det [λI − A]

81

First we compute λI − A,

λI − A =

[
λ 0
0 λ

]
−
[
1 2
3 4

]

=

[
λ− 1 −2
−3 λ− 4

]

Then

∆(λ) = det

[
λ− 1 −2
−3 λ− 4

]
= (λ− 1)(λ− 4)− (−3)(−2) = λ2 − 5λ− 2

So by the Cayley-Hamilton Theorem we have

∆(A) = A2 − 5A− 2I = 0

or

A2 = 5A+ 2I

Example. Consider the matrix

A =

[
−5 2
0 1

]

We need to find the characteristic equation

∆(λ) = det [λI − A]

First we compute λI − A,

λI − A =

[
λ 0
0 λ

]
−
[
−5 2
0 1

]

=

[
λ+ 5 −2
0 λ− 1

]

Then

∆(λ) = det

[
λ+ 5 −2
0 λ− 1

]
= (λ+ 5)(λ− 1)− (0)(−2) = λ2 + 4λ− 5

So by the Cayley-Hamilton Theorem we have

∆(A) = A2 + 4A− 5I = 0

or

A2 = −4A+ 5I

82

5.2 Controllability

Controllability is one of the most important concepts in control systems. There are a number
of equivalent definitions of controllability. In this course we will concentrate on the following
three equivalent definitions of controllability:

• A system is controllable if there exists a control signal u(k) that takes the system from the
origin to any possible state in n steps, where G is an n× n matrix.

• A system is controllable if there exists a control signal u(k) that takes the system from
any possible initial state to any possible final state in n steps, where G is an n×n matrix.

• A system is controllable if we can use state variable feedback to place all of the system
poles where ever we want

Note that if we meet any one of the conditions of controllability we meet all of the conditions.
In this chapter we concentrate on the first two definitions, in the following chapter when we try
and use state variable feedback to place the poles we will concentrate on the third definition. In
what follows we will show that the discrete-time system

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k) +Du(k)

where G ∈ R n×n is controllable if the controllability matrix[
Gn−1H Gn−2H · · · GH H

]
has rank n. Note that controllability is only a function of G and H.

Example. Let’s consider the following discrete-time state variable system,

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k) +Du(k)

where

G =

[
0 1
2 3

]
, H =

[
1
2

]
, x(0) =

[
1
−2

]

Now let’s start marching our system through time. Our goal will be to determine if we can
go from our initial state x(0) to any final state x(2). If this is possible, then our system is
controllable. We have

x(1) = Gx(0) +Hu(0)

x(2) = Gx(1) +Hu(1) = G [Gx(0) +Hu(0)] +Hu(1) = G2x(0) +GHu(0) +Hu(1)

We can rewrite this equation as

x(2)−G2x(0) = ∆x =
[
GH H

] [u(0)
u(1)

]

83

Now the vector ∆x can be any vector in R2, so if we want to be able to solve this system of
equations, the matrix

[
GH H

]
=

[
2 1
8 2

]

must have rank 2, or there must be two linearly independent row or columns in this matrix.
This matrix has rank 2, so the system is controllable.

Example. Let’s consider the following discrete-time state variable system,

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k) +Du(k)

where

G =

[
1 0
0 2

]
, H =

[
1
0

]
, x(0) =

[
1
0

]

Now let’s start marching our system through time. Our goal will be to determine if we can
go from our initial state x(0) to any final state x(2). If this is possible, then our system is
controllable. We have

x(1) = Gx(0) +Hu(0)

x(2) = Gx(1) +Hu(1) = G [Gx(0) +Hu(0)] +Hu(1) = G2x(0) +GHu(0) +Hu(1)

We can rewrite this equation as

x(2)−G2x(0) = ∆x =
[
GH H

] [u(0)
u(1)

]

Now the vector ∆x can be any vector in R2, so if we want to be able to solve this system of
equations, the matrix

[
GH H

]
=

[
1 1
0 0

]

must have rank 2, or there must be two linearly independent row or columns in this matrix.
This matrix has rank 1, so the system is not controllable.

At this point, you might wonder why we stop at n = 2 for this system. Why not allow more
inputs? This is a good question, and to answer it we need to use the Cayely-Hamilton Theorem.
Let’s find the characteristic equation for G

λI −G =

[
λ 0
0 λ

]
−
[
1 0
0 2

]
=

[
λ− 1 0
0 λ− 2

]
∆(λ) = (λ− 1)(λ− 2) = λ2 − 3λ+ 2

84

so we know G2 = 3G− 2I. Now let’s look at the next time step,

x(3) = Gx(2) +Hu(2) = G[G2x(0) +GHu(0) +Hu(1)] +Hu(2)

= G3x(0) +G2Hu(0) +GHu(1) +Hu(2)

= G3x(0) + [3G− 2I]Hu(0) +GHu(1) +Hu(2)

= G3x(0) +GH[3u(0) + u(1)] +H[−2u(0) + u(2)]

which we can write as

x(3)−G3x(0) = ∆x =
[
GH H

] [3u(0) + u(1)
−2u(0) + u(2)

]

or

∆x =
[
GH H

]
ũ

Again, ∆x can be any vector in R2, so in order to be able to solve this, the controllability matrix
must have rank equal to n, which is 2.

Let’s next look at x(4),

x(4) = Gx(3) +Hu(3)

= G
{
G3x(0) +GH[3u(0) + u(1)] +H[−2u(0) + u(2)]

}
+Hu(3)

= G4x(0) +G2H[3u(0) + u(1)] +GH[−2u(0) + u(2)] +Hu(3)

= G4x(0) + [3G− 2I]H[3u(0) + u(1)] +GH[−2u(0) + u(2)] +Hu(3)

= G4x(0) +GH[9u(0) + 3u(1)] +H[−6u(0)− 2u(1)] +GH[−2u(0) + u(2)] +Hu(3)

= G4x(0) +GH[7u(0) + 3u(1) + u(2)] +H[−6u(0)− 2u(1) + u(3)]

which we can write as

x(3)−G4x(0) = ∆x =
[
GH H

] [7u(0) + 3u(1) + u(2)
−6u(0)− 2u(1) + u(3)

]

or

∆x =
[
GH H

]
ũ

Again, ∆x can be any vector in R2, so in order to be able to solve this, the controllability matrix
must have rank equal to n, which is 2.

It should be pretty clear at this point that we could use as many time steps as we want, but once
we get to n time steps, where G ∈ R n×n, there is no point in continuing. We will always get a
system of the same form, and the controllability matrix must have rank equal to n. Although we
have only examined single-input systems, it should be clear how this is extended to multi-input
systems.

85

5.3 Output Controllability

Sometimes we are more interested in the ability to reach any possible output, rather than reach-
ing any possible state. Even though a system is completely controllable, this does not mean we
can force the output of the system to reach any possible output. We will define output control-
lability as follows:

A system is output controllable if it is possible to find a sequence of inputs u(k) to take the output
from any initial output y(0) to any possible other output y(n) in n steps, where G ∈ R n×n.
For the discrete-time system

x(k + 1) = Gx(k) +Hu(k), G ∈ R n×n, H ∈ R n×r

y(k) = Cx(k) +Du(k), C ∈ R m×n. D ∈ R m×r

the system is output controllable if the matrix[
CGn−1H CGn−2H · · · CGH CH D

]
has rank m. Note that the presence of the D matrix can only help with output controllability.

5.4 Observability

If a system is observable, then we will be able to determine the initial state based on knowledge
of the input and measurement of the outputs. While this does not seem all that interesting, it
also means that we will be able to construct devices, call observers, that allow us to estimate
the states of a system based on knowledge of the inputs and measurements of the output. This
is a very important idea, since it is sometimes very difficult and/or expensive to measure all
of the states of a system, and state variable feedback assumes we have knowledge of all of the
states. For our purposes, we will use the following definition of observability:

A system is observable if given:

• knowledge of the state variable system model

• a finite number of input signals u(k)

• measurement of the resulting outputs y(k)

the initial state x(0) can be determined uniquely.

Let’s initially look at a system with G ∈ R3×3 and a scalar input u(k). Once we see this result,
it is pretty easy to see how we would generalize the result. We have

y(0) = Cx(0)

y(1) = Cx(1) +Du(1) = C[Gx(0) +Hu(0)] +Du(1) = CGx(0) + [CHu(0) +Du(1)]

y(2) = Cx(2) +Du(2) = C[Gx(1) +Hu(1)] +Du(2) = C[G {Gx(0) +Hu(0)}+Hu(1)] +Du(2)

= CG2x(0) + [CGHu(0) + CHu(1) +Du(2)]

86

Since everything is known except x(0), we can rewrite this system of equations as y(0)
y(1)− [CHu(0) +Du(1)]

y(2)− [CGHu(0) + CHu(1) +Du(2)]

 = ỹ =

 C
CG
CG2

x(0)
For convenience we can rewrite this as C

CG
CG2

x(0) =
[
o1 o2 o3

]  x1(0)
x2(0)
x3(0)

 = ỹ

where we have explicitly written the column vectors of the observability matrix as o1, o2 and o3
and the components of the initial state, x1(0), x2(0), and x3(0). We then have

o1x1(0) + o2x2(0) + o3x3(0) = ỹ

The o1, o2, and o3 are vectors, and the components of x(0), x1(0), x2(0), and x3(0) are the
expansion coefficients. We know that ỹ will have a unique representation if the vectors are
linearly independent. Hence, in order to be able to determine x(0) uniquely, we need n linearly
independent columns in the controllability matrix.

This results can be generalized to the following test for observability:

If the observability matrix 

C
CG
CG2

...
CGn−1


has rank n, where G ∈ R n×n, then the system is observable.

Note that

• y(k) need not be a scalar

• u(k) need not be a scalar

• we have used the Cayley-Hamilton Theorem again so we only need to look at the first n
entries in the observability matrix

It should be pointed out that sometimes the observability matrix is written[
CT GTCT (G2)TCT · · · (Gn−1)TCT

]

87

6 State Variable Feedback

State variable feedback is a commonly used method in modern control systems. If the system is
controllable, then we will be able to use state variable feedback to place the poles of the closed
loop system anywhere we want. This is generally not the case for classical transfer function
based methods. While we can use state-variable feedback to place the poles of a controllable
system where ever we want, we cannot change the location of the system zeros. We can place
the poles to try a pole/zero cancelation, but this is usually not desirable since the zeros of the
system are just approximations based on our model.

We begin this chapter deriving the equations for state variable feedback, then utilize three dif-
ferent algorithms for determining the state variable feedback gain vector/matrix.

+

Σ

+

C
+

Σ

+

D

u(k)

G

y(k)z-1
x(k+1) x(k)

H
+

Σ

K

G
pf

r(k)

Figure 17: Basic discrete-time state variable feedback system. The feedback gain matrix is K,
which is used to place the closed loop poles, and the prefilter gain Gpf , which is used to adjust
the steady state error for a step input.

Consider the open loop system

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k) +Du(k)

Assume we have a state variable system as shown in Figure 17, where K is the feedback gain
vector/matrix, Gpf is the prefilter gain, and r(k) is the new reference input. Hence we have
u(k) = Gpfr(k)−Kx(k). Using this in our model of the plant we have

x(k + 1) = Gx(k) +H[Gpfr(k)−Kx(k)] = [G−HK]x(k) + [HGpf]r(k)

y(k) = Cx(k) +D[Gpfr(k)−Kx(k)] = [C −DK]x(k) + [DGpf]r(k)

The transfer function between the new input r(k) and the output y(k) can then be computed
using z transforms as follows:

zX(z) = [G−HK]X(z) + [HGpf]R(z)

88

[zI −G+HK]X(z) = [HGpf]R(z)

X(z) = [zI −G+HK]−1[HGpf]R(z)

Y (z) = [C −DK]X(z) + [DGpf]R(z)

Y (z) =
{
[C −DK][zI −G+HK]−1[HGpf] + [DGpf]

}
R(z)

so the transfer function/transfer matrix (if there are vector inputs) between the input R(z) and
the output Y (z) is

F (z) = [C −DK][zI −G+HK]−1[HGpf] + [DGpf]

Normally we will assume D = 0, and the transfer function reduces to

F (z) = C[zI −G+HK]−1[HGpf]

Let’s assume we have a scalar input and D = 0. We know that Y (z) = F (z)R(z), and if the
input is a unit step r(k) = u(k), then for a zero steady state error we use the Final Value
Theorem to make the final final of y(k) = 1,

lim
k→∞

y(k) = 1 = lim
z→1

z − 1

z
Y (z) = lim

z→1

z − 1

z
F (z)R(z)

1 = lim
z→1

z − 1

z
F (z)

z

z − 1
= lim

z→1
F (z) = F (1) = C[I −G+HK]−1[HGpf]

or

Gpf =
1

C[I −G+HK]−1H

This prefilter will produce a steady state error of zero for a unit step input provided our system
is accurately enough modeled. Note that we need to determine the feedback gain vector K
before we try to determine the prefilter gain Gpf . Since the prefilter is outside of the feedback
loop this is not a very robust method of trying to produce a steady state error of zero. A better
method would be to make the system a type one system, which will be discussed in the next
chapter.

6.1 Pole Placement by Transfer Functions

To determine the state feedback gain vector using the transfer function, we need to realize that
the denominator of the transfer function will be determined by

∆(z) = det[zI −G+HK]

We want the closed loop poles at µ1, µ2, . . . , µn, so the desired characteristic equations is

∆(z) = (z − µ1)(z − µ2) . . . (z − µn)

= zn + α1z
n−1 + α2z

n−2 + . . .+ αn−1z + αn

We then determine K by setting these equal,

∆(z) = det[zI −G+HK] = zn + α1z
n−1 + α2z

n−2 + . . .+ αn−1z + αn

89

This is a difficult computation for system with more than a few poles, so it is seldom used except
for low order systems.

Example. Assume we have the system

G =

[
0.1 0.2
0 0.2

]
, H =

[
0
0.1

]

We first check to be sure the system is controllable,

[
GH H

]
=

[
0.02 0
0.02 0.1

]

Clearly this matrix has rank two, so the system is controllable. Let’s find the gain vector K
to place the closed loop poles at -0.1 and -0.2. First we compute the desired characteristic
polynomial

∆(z) = [z − (−0.1)][z − (−0.2)] = (z + 0.1)(z + 0.2) = z2 + 0.3z + 0.02

and then compute det[zI −G+HK],

zI −G+HK =

[
z 0
0 z

]
−
[
0.1 0.2
0 0.2

]
+

[
0
0.1

] [
K1 K2

]
=

[
z − 0.1 −0.2
0.1K1 z − 0.2 + 0.1K2

]
det[zI −G+HK] = (z − 0.1)(z − 0.2 + 0.1K2)− (−0.2)(0.1K1)

= z2 + (−0.1− 0.2 + 0.1K2)z + (0.02− 0.01K2 + 0.02K1)

Equating terms with our desired characteristic polynomial, we get K2 = 6 and then K1 = 3, so

K =
[
3 6

]
Example. Assume we have the system

G =

[
0.1 0
0.2 0

]
, H =

[
1
0

]

We first check to be sure the system is controllable,

[
GH H

]
=

[
0.1 1.0
0.2 0

]

Clearly this matrix has rank two, so the system is controllable. We know from our previous
examples that this system is controllable. Let’s find the gain vector K to place the closed loop
poles at 0.1 and -0.1. First we compute the desired characteristic polynomial

∆(z) = [z − (0.1)][z − (−0.1)] = (z − 0.1)(z + 0.1) = z2 − 0.01

90

and then compute det[zI −G+HK],

zI −G+HK =

[
z 0
0 z

]
−
[
0.1 0
0.1 0

]
+

[
1
0

] [
K1 K2

]
=

[
z − 0.1 +K1 K2

−0.2 z

]
det[zI −G+HK] = (z − 0.1 +K1)(z)− (K2)(−0.2)

= z2 + (K1 − 0.1)z +K20.2

Equating terms with our desired characteristic polynomial, we get K1 = 0.1 and then K1 =
−0.05, so

K =
[
0.1 −0.05

]
Example. Assume we again have the system

G =

[
0.1 0.2
0 0.2

]
, H =

[
0
0.1

]

Let’s find the gain vector K to place both closed loop poles at 0. This clearly results in deadbeat
control. First we compute the desired characteristic polynomial

∆(z) = (z − 0)(z − 0) = z2

and then compute det[zI −G+HK],

zI −G+HK =

[
z 0
0 z

]
−
[
0.1 0.2
0 0.2

]
+

[
0
0.1

] [
K1 K2

]
=

[
z − 0.1 −0.2
0.1K1 z − 0.2 + 0.1K2

]
det[zI −G+HK] = (z − 0.1)(z − 0.2 + 0.1K2)− (−0.2)(0.1K1)

= z2 + (−0.1− 0.2 + 0.1K2)z + (0.02− 0.01K2 + 0.02K1)

Equating terms with our desired characteristic polynomial, we get K2 = 3 and then K1 = 0.5,
so

K =
[
0.5 3

]
Our next algorithm, Ackermann’s formula, is a bit easier to implement on a computer.

6.2 Pole Placement by Ackermann’s Formula

Let’s start with the open loop (plant) discrete-time state variable model

x(k + 1) = Gx(k) +Hu(k)

91

where u(k) is a scalar input. If we have state variable feedback of the form u(k) = −Kx(k),
then

x(k + 1) = Gx(k) +H (−Kx(k))
= (G−HK)x(k)

= G̃x(k)

where G̃ = G − HK. Assume we want the closed loop poles at µ1, µ2, . . . , µn, so the desired
characteristic equations is

∆(z) = (z − µ1)(z − µ2) . . . (z − µn)

= zn + α1z
n−1 + α2z

n−2 + . . .+ αn−1z + αn

Now we want the eigenvalues of G̃ to be the roots of this characteristic equation. Since the
Cayley-Hamilton Theorem states that a matrix must satisfy its own characteristic polynomial,
we know that once we have found the K to place the poles were we want them we will have

∆(G̃) = G̃n + α1G̃
n−1 + α2G̃

n−2 + . . .+ αn−1G̃+ αnI = 0

Let’s assume for the sake of development that n = 3. We then have

G̃ = G−HK

G̃2 = (G−HK)2 = (G−HK) G̃ = GG̃−HKG̃ = G(G−HK)−HKG̃ = G2 −GHK −HKG̃

G̃3 = (G−HK)G̃2 = GG̃2 −HKG̃2 = G(G2 −GHK −HKG̃)−HKG̃2

We then have

0 = ∆(G̃)

= G̃3 + α1G̃
2 + α2G̃+ α3I

=
[
G3 −G2HK −GHKG̃−HKG̃2

]
+ α1

[
G2 −GHK −HKG̃

]
+ α2 [G−HK] + α3I

Rearranging the terms we get

∆(G̃) =
[
G3 + α1G

2 + α2G+ α3I
]
−H(α2K + α1KG̃+KG̃2)−GH(α1K +KG̃)−G2H(K)

or

∆(G̃) = ∆(G)−
[
H GH G2H

]  α2K + α1KG̃+KG̃2

α1K +KG̃
K


We clearly recognize the matrix [

H GH G2H
]

as the controllability matrix. Since we are assuming the system is controllable and the input is
a scalar, we know this matrix will have an inverse. We also know that ∆(G̃) = 0, so we can
rearrange our above equations to be

[
H GH G2H

]−1
∆(G) =

 α2K + α1KG̃+KG̃2

α1K +KG̃
K


92

Now remember our goal is to find K, the state variable feedback vector. We can compute the
controllability matrix since G and H are known, and we can compute ∆(G) since we know G
and the desired characteristic polynomial. In order to find K, left’s premultiply both sides of
the above equation by the vector

[
0 0 1

]
,

[
0 0 1

] [
H GH G2H

]−1
∆(G) =

[
0 0 1

]  α2K + α1KG̃+KG̃2

α1K +KG̃
K

 = K

Although we have only derived this formula for the case of n = 3, we can generalize this to the
case of and arbitrary degree n,

K =
[
0 . . . 0 1

] [
H GH . . . Gn−1H

]−1
∆(G)

This form of Ackermann’s formula is only valid for a system with a scalar input.

Example. Assume we have the system

G =

[
0.1 0.2
0 0.2

]
, H =

[
0
0.1

]

We know from our previous examples that this system is controllable. Let’s again find the gain
vector K to place the closed loop poles at -0.1 and -0.2 using Ackermann’s formula. First we
compute the desired characteristic polynomial

∆(z) = [z − (−0.1)][z − (−0.2)] = (z + 0.1)(z + 0.2) = z2 + 0.3z + 0.02

and then ∆(G),

∆(G) = G2 + 0.3G+ 0.02I =

[
0.06 0.12
0 0.12

]

Next we need

[
H GH

]
=

[
0 0.02
0.1 0.02

]

and then

[
H GH

]−1
=

[
−10 10
50 0

]

Finally we have

K =
[
0 1

] [−10 10
50 0

] [
0.06 0.12
0 0.12

]
=

[
3 6

]

93

Example. Assume we have the system

G =

[
0.1 0
0.2 0

]
, H =

[
1
0

]

We know from our previous examples that this system is controllable. Let’s again find the gain
vector K to place the closed loop poles at 0.1 and -0.1 using Ackermann’s formula. First we
compute the desired characteristic polynomial

∆(z) = [z − (0.1)][z − (−0.1)] = (z − 0.1)(z + 0.1) = z2 − 0.01

and then ∆(G),

∆(G) = G2 − 0.01I =

[
0 0

0.02 −0.01

]

Next we need [
H GH

]
=

[
1 0.1
0 0.2

]

and then [
H GH

]−1
=

[
1 −0.5
0 5

]

Finally we have

K =
[
0 1

] [1 −0.5
0 5

] [
0 0

0.02 −0.01

]
=

[
0.1 −0.05

]
Example. Assume we again have the system

G =

[
0.1 0.2
0 0.2

]
, H =

[
0
0.1

]

We know from our previous examples that this system is controllable. Let’s again find the gain
vector K to place both closed loop poles at 0. This clearly results in deadbeat control. First we
compute the desired characteristic polynomial

∆(z) = (z − 0)(z + 0) = z2

and then ∆(G),

∆(G) = G2 =

[
0.01 0.06
0 0.04

]

Next we need [
H GH

]
=

[
0 0.02
0.1 0.02

]

94

and then [
H GH

]−1
=

[
−10.0 10.0
50.0 0

]
Finally we have

K =
[
0 1

] [−10 10
50 0

] [
0.01 0.06
0 0.04

]
=

[
0.5 3

]
Ackermann’s formula can be modified for a system with multiple inputs, however we will use an
alternate method for systems with multiple inputs. Before we develop that method, we need to
understand the idea of the null space of a matrix.

6.3 Null Space of a Matrix

The null space of a matrix A consists of all vectors x such that Ax = 0. If A ∈ Rm×n, and we
assume that n ≥ m, then the dimension of the null space, q(A) is given by

q(A) = n− r(A)

Since the dimension of a space consists of the number of linear independent vectors in the space,
this formula tell us how many linearly independent vectors we need to find in the null space of
a matrix. If we think of the rows of the matrix A as vectors, then the dot product of each of
these rows with any vector x in the null space must be zero. It is a common mistake to make
the dot product of one or two rows equal to zero and believe that is good enough!

Example. Consider the matrix

A =

[
1 0 2
0 3 0

]
The rank of this matrix is clearly 2, so r(A) = 2. We also have n = 3. Hence q(A) = n− r(A) =
3−2 = 1, and there is only one linearly independent vector in the null space of the matrix. One
such vector is

x =

 2
0
−1


Example. Consider the matrix

A =

[
1 0 1 2
0 1 1 2

]
For this matrix n = 4 and r(A) = 2, so we need to find two linearly independent vectors. Two
linearly independent vectors in the null space of this matrix are

x1 =


0
0
−2
1

 , x2 =


1
1
−1
0


95

One good way to be sure the vectors are linearly independent is to be sure one of the vectors
has a zero in a component where the other vector is not zero as we have done here.

Example. Consider the matrix

A =

 1 0 1
1 1 0
2 1 1


For this matrix n = 3 and r(A) = 2, so q(A) = n− r(A) = 1. One linearly independent vector
in the null space is

x =

 1
−1
−1


6.4 Pole Placement by Direct Eigenvector/Eigenvalue Assignment

The poles of the open loop system are determined by the characteristic equation,

∆(λ) = det [λI −G] = 0

If we want to choose the state feedback matrix K to place a closed loop pole at λi, then we want

∆(λi) = det [λiI − (G−HK)] = det [λiI −G+HK] = 0

However, if ∆(λi) = 0, then [λiI −G+HK] does not have full rank. This means q(A) ̸= 0 and
there must be a vector ψi in the null space of this matrix. Hence

[λiI −G+HK]ψi = 0

Rearranging this equation we get

[G−HK]ψi = λiψi

which means λi is an eigenvector of G−HK and ψi is the associated eigenvector. We can also
rearrange this equation as

(λiI −G)ψi +H(Kψi) = 0

or

[
λiI −G

... H
]  ψi

. . .
Kψi

 = 0

If we then define

ξi =

 ψi

. . .
Kψi


then we have [

λiI −G
... H

]
ξi = 0

so that ξi is in the null space of
[
λiI −G

... H
]
.

96

6.4.1 Pole Placement Algorithm (Scalar Input)

To determine the state feedback gain vector, go through the following steps:

1. For each closed loop pole (λi = desired closed loop pole location) solve[
λiI −G

... H
]
ξi = 0

2. After solving for the ξi, use the relationship

ξi =

 ψi

. . .
Kψi


to determine the necessary relationships for determining K. It is important to remember
that if G ∈ R n×n then ψi ∈ Rn (or ψi ∈ Cn if λi is complex).

3. For u(k) ∈ Rr there will generally be r linearly independent solutions ξi for each λi.
Sometimes when there are repeated poles we can find more than one ξi for each λi, but
this is not guaranteed.

4. If the input is a scalar (r = 1) then the gain vector K is unique.

5. If the system is controllable, we are guaranteed that this will work.

Example. Assume we have the system

G =

[
0.1 0.2
0 0.2

]
, H =

[
0
0.1

]

We know from our previous examples that this system is controllable. Since u(k) ∈ R1 we know
there will be only one ξi for each λi. Let’s again find the gain vector K to place the closed loop
poles at -0.1 and -0.2.

For λ1 = −0.1. We need to compute

[
λ1I −G

... H
]

=

[
−0.2 −0.2 0
0 −0.3 0.1

]

Next we need to find a ξ1 in the null space of this matrix. Clearly ξ1 =
[
1 −1 −3

]T
is one

such vector.

For λ2 = −0.2. we need to compute

[
λ2I −G

... H
]

=

[
−0.3 −0.2 0
0 −0.4 0.1

]

97

Next we need to find a ξ2 in the null space of this matrix. Clearly ξ2 =
[
−2 3 12

]T
is one

such vector.

Now we need to use the relationship

ξi =

[
ψi

Kψi

]

Since in this case we know n = 2, we know that ψi ∈ R2. From ξ1 we have

K

[
1
−1

]
= −3

and from ξ2 we have

K

[
−2
3

]
= 12

Combining these we get

K

[
1 −2
−1 3

]
=

[
−3 12

]
which we can solve to get K =

[
3 6

]
Example. Assume we have the system

G =

[
0.1 0
0.2 0

]
, H =

[
1
0

]

We know from our previous examples that this system is controllable. Since u(k) ∈ R1 we know
there will be only one ξi for each λi. Let’s again find the gain vector K to place the closed loop
poles at 0.1 and -0.1.

For λ1 = 0.1. We need to compute

[
λ1I −G

... H
]

=

[
0 0 1

−0.2 0.1 0

]

Next we need to find a ξ1 in the null space of this matrix. Clearly ξ1 =
[
1 2 0

]T
is one such

vector.

For λ2 = −0.1. we need to compute

[
λ2I −G

... H
]

=

[
−0.2 0 1
−0.2 −0.1 0

]

Next we need to find a ξ2 in the null space of this matrix. Clearly ξ2 =
[
1 −2 0.2

]T
is one

such vector.

98

Now we need to use the relationship

ξi =

[
ψi

Kψi

]

Since in this case we know n = 2, we know that ψi ∈ R2. From ξ1 we have

K

[
1
2

]
= 0

and from ξ2 we have

K

[
1
−2

]
= 0.2

Combining these we get

K

[
1 1
2 −2

]
=

[
0 0.2

]

which we can solve to get K =
[
0.1 −0.05

]
Example. Assume we have the system

G =

[
0.1 0.2
0 0.2

]
, H =

[
0
0.1

]

We know from our previous examples that this system is controllable. Since u(k) ∈ R1 we know
there will be only one ξi for each λi. Let’s again find the gain vector K to place both closed
loop poles at 0. This clearly results in deadbeat control.

For λ = 0. We need to compute

[
λI −G

... H
]

=

[
−0.1 −0.2 0
0 −0.2 0.1

]

Next we need to find a ξ1 in the null space of this matrix. Clearly ξT1 =
[
−2 1 2

]T
is one

such vector.

There is only one vector in the null space. What do we do? We use what is called a generalized
eigenvector2. We know that

ξ =

[
ψ
Kψ

]

and that

(G−HK)ψ = λψ

2This is only a brief introduction to the concept of generalized eigenvectors.

99

For a generalize eigenvector ψg we have

(G−HK)ψg = λψg + ψ

where ψ is a regular eigenvector (such as we have found already in this example). We can rewrite
this as

[λiI −G+HK]ψg = −ψ

Since we don’t really care about scaling on the eigenvector, we can also write this as

[λiI −G+HK]ψg = ψ

or

[
(λI −G)

... H
] [ψg

Kψg

]
= ψ

or [
(λI −G)

... H
]
ξg = ψ

In our case this becomes [
−0.1 −0.2 0
0 −0.2 0.1

]
ξg =

[
−2
1

]

One solution is ξg =
[
20 0 10

]T
. Next we use both ξ and ξg to get K. From ξ we have

K

[
−2
1

]
= 2

and from ξg we have

K

[
20
0

]
= 10

Combining these we get

K

[
20 −2
0 1

]
=

[
10 2

]

from which we get K =
[
0.5 3

]
.

6.4.2 Pole Placement Algorithm (Vector Input)

If we have a vector input, we need to modify our algorithm slightly, since as we will see, the
feedback gain matrix is generally not unique. In what follows we will assume u(k) ∈ Rr. To
determine the state feedback gain matrix, go through the following steps:

100

1. For each closed loop pole (λi = desired closed loop pole location) solve[
λiI −G

... H
]
ξ = 0

. There will be r linearly independent vectors ξ. We can write these as

[
ξ1 ξ2 . . . ξr

]
=

[
ψ1 ψ2 . . . ψr

Kψ1 Kψ2 . . . Kψr

]
=

[
Ψ(λi)
F(λi)

]

2. After solving for all the λi, we will have

K
[
Ψ(λ1) Ψ(λ2) . . . Ψ(λn)

]
=
[
F(λ1) F(λ2) . . . F(λn)

]
This is an overdetermined system of equations.

3. Determine n linearly independent columns from[
Ψ(λ1) Ψ(λ2) . . . Ψ(λn)

]
Each column must be associated with a different eigenvalue, i.e., g1 ∈ Ψ(λ1), g2 ∈ Ψ(λ2),
..., gn ∈ Ψ(λn). Construct

G =
[
g1 g2 . . . gn

]
4. Find the corresponding columns from[

F(λ1) F(λ2) . . . F(λn)
]

f1 ∈ F(λ1), f2 ∈ F(λ2), etc. so Kgi = fi. Construct

F =
[
f1 f2 . . . fn

]
5. Solve KG = F . Note that there are multiple solutions since we can arbitrarily choose the

columns gi (as long as they are linearly independent). K is not unique!

Example. Determine the state feedback matrix K so the closed loop poles are at -0.2 and -0.3
for the system with

G =

[
0.1 0.2
0.2 0.1

]
H =

[
0.1 0.1
0 0.1

]

For λ1 = −0.2 we have [
λ1I −G H

]
=

[
−0.3 −0.2 0.1 0.1
−0.2 −0.3 0 0.1

]

Two linearly independent vectors in the null space of this matrix are

ξa1 =


1
1
0
5

 ξb1 =


0
1
−1
3


101

For λ1 = −0.3 we have

[
λ1I −G H

]
=

[
−0.4 −0.2 0.1 0.1
−0.2 −0.4 0 0.1

]

Two linearly independent vectors in the null space of this matrix are

ξa2 =


1
1
0
6

 ξb2 =


0
1
−2
4


So we have

Ψ(λ1) =

[
1 0
1 1

]
F(λ1) =

[
0 −1
5 3

]

Ψ(λ2) =

[
1 0
1 1

]
F(λ2) =

[
0 −2
6 4

]

Now we choose g1 ∈ Ψ(λ1) and the corresponding f1 ∈ F(λ1), g2 ∈ Ψ(λ2) and the corresponding
f2 ∈ F(λ2). In addition, g1 and g2 must be linearly independent.

Let’s first assume we choose the first columns of Ψ(λ1) and the second column of Ψ(λ2). Then
we have

g1 =

[
1
1

]
, f1 =

[
0
5

]
, K

[
1
1

]
=

[
0
5

]

g2 =

[
0
1

]
, f2 =

[
−2
4

]
, K

[
0
1

]
=

[
−2
4

]
Combining we have

K

[
1 0
1 1

]
=

[
0 −2
5 4

]

which yields

K =

[
2 −2
1 4

]

Let’s next assume we choose the second columns of Ψ(λ1) and the first column of Ψ(λ2). Then
we have

g1 =

[
0
1

]
, f1 =

[
−1
3

]
, K

[
0
1

]
=

[
−1
3

]

g2 =

[
1
1

]
, f2 =

[
0
6

]
, K

[
1
1

]
=

[
0
6

]
Combining we have

K

[
0 1
1 1

]
=

[
−1 0
3 6

]

102

which yields

K =

[
1 −1
3 3

]

We cannot choose any other combinations since we will not get linearly independent g1 and g2.

Example. Determine the state feedback matrix K so the both closed loop poles are at 0 for
the system with

G =

[
0.1 0.2
0.2 0.1

]
H =

[
0.1 0.1
0 0.1

]

For λ = 0 we have [
λI −G H

]
=

[
−0.1 −0.2 0.1 0.1
−0.2 −0.1 0 0.1

]

Two linearly independent vectors in the null space of this matrix are

ξa1 =


1
1
0
3

 ξb1 =


0
1
1
1


Since we only have one pole location, these are the only vectors we need. Combining we have

K

[
1 0
1 1

]
=

[
0 1
3 1

]

which yields

K =

[
−1 1
2 1

]

6.5 State Feedback Examples

Assume we have the discrete-time state variable model given by
x1(k)
v1(k)
x2(k)
v2(k)

 =


0.4964 0.0391 0.5153 0.0095

−15.5298 0.4361 14.7498 0.5022
0.4452 0.0082 0.3068 0.0358
12.7738 0.4326 −21.0039 0.2572



x1(k)
v1(k)
x2(k)
v2(k)

+


4.0181
142.8037
0.3955
29.8022

u(k)

y(k) =
[
1 0 0 0

] 
x1(k)
v1(k)
x2(k)
v2(k)


The sample interval is Ts = 0.05 seconds. In this model our output is the first state (x1). For
this plant, the transfer function is

Gp(z) =
4.018z3 + 2.048z2 + 1.939z + 3.65

z4 − 1.496z3 + 1.492z2 − 1.392z + 0.8639

103

with the four poles at −0.1073 ± 0.9583j and 0.8555 ± 0.4437j. This system also has zeros at
−0.9732 and 0.2317± 0.9380j.

The open loop unit step response of this system is shown in Figure 18. We can estimate the
settling time using our previous formula as Ts ≈ −4T

ln(|p|) =
−4(0.05)

ln(|−0.1073+0.9583j|) ≈ 5.5 seconds. This
estimated settling time agrees with the results in the figure.

Figure 19 shows the unit step response using state variable feedback to place the closed loop
poles at 0.1, 0.2, 0.3 and 0.8. This produces a state feedback gain vector

K =
[
−0.1165 0.0044 0.1280 −0.0039

]
and prefilter gain Gpf = 0.0086. We can estimate the settling time of this system as Ts ≈
−4(0.05)
ln(0.8)

≈ 0.9 seconds, which agrees fairly well with the results shown in the figure.

Figure 20 shows the unit step response when the closed loop poles are located at 0.1, 0.2, 0.3
and −0.3± 0.1j. This produces a state feedback gain vector

K =
[
0.1179 0.0089 −0.0796 0.0030

]
and prefilter gain Gpf = 0.1050. We can estimate the settling time of this system as Ts ≈

−4(0.05)
ln(|−0.3+0.1j)

≈ 0.17 seconds, which agrees fairly well with the results shown in the figure.

Figure 21 shows the unit step response when the closed loop poles are located at 0.1, 0.2, 0.3
and 0.3± 0.1j. This produces a state feedback gain vector

K =
[
−0.0468 0.0059 0.0566 −0.0025

]
and prefilter gain Gpf = 0.0309. We can estimate the settling time of this system as Ts ≈

−4(0.05)
ln(|0.3+0.1j)

≈ 0.17 seconds. This settling time does not agree very will the the response of the
system shown in the Figure. This is because our estimate of the settling time is based on a
model having only poles and no zeros. In the previous examples the poles of the system were
“far” from the zeros of the system, an had little effect on the step response of the system. In this
example, the poles of the system are “near” the zeros of the system, and the zeros are affecting
the step response of the system.

Figure 21 shows the unit step response when all the closed loop poles are located at 0. This is
deadbeat response and produces a state feedback gain vector

K =
[
0.0765 0.0082 −0.0463 0.0014

]
and prefilter gain Gpf = 0.0858. Since this is a fourth order system, the settling time is four
time steps. Since this is deadbeat response and the zeros of the system do not change, we can
determine the system difference equation as follows:

Y (z)

U(z)
= (0.0858)

4.018z3 + 2.048z2 + 1.939z + 3.65

z4

= 0.3447z−2 + 0.1758z−3 + 0.1663z−3 + 0.3132z−4

104

0 2 4 6
0

20

40

60

Time (sec)

x 1 (
cm

)

0 2 4 6
−200

0

200

400

Time (sec)

v 1 (
cm

/s
ec

)

0 2 4 6
0

10

20

30

40

Time (sec)

x 2 (
cm

)

0 2 4 6
−200

−100

0

100

200

Time (sec)

v 2 (
cm

/s
ec

)

Figure 18: Open loop step response of fourth order system. The poles of the plant are at
−0.1073 ± 0.9583j and 0.8555 ± 0.4437j. This system also has zeros at −0.9732 and 0.2317 ±
0.9380j.

or
y(k) = 0.3447u(k − 1) + 0.1758u(k − 2) + 0.1663u(k − 3) + 03132u(k − 4)

Since we assume the system is initially at rest with no initial conditions (all initial conditions
are zero), we have

y(0) = 0

y(1) = 0.3447

y(2) = 0.3447 + 0.1758 = 0.5205

y(3) = 0.3447 + 0.1758 + 0.1663 = 0.6868

y(4) = 0.3447 + 0.1758 + 0.1663 + 0.3132 = 1.0000

All y(k) = 1 for k ≥ 4. These results match those in the Figure.

6.6 General Guidelines for State Feedback Pole Locations

As a general rule the closer in magnitude the system poles are to the origin, the faster the
response of the system. Just as with continuous time systems, if there are multiple poles, the

105

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Time (sec)

x 1 (
cm

)

0 0.5 1 1.5
0

1

2

3

Time (sec)

v 1 (
cm

/s
ec

)

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

Time (sec)

x 2 (
cm

)

0 0.5 1 1.5
0

0.5

1

1.5

2

Time (sec)

v 2 (
cm

/s
ec

)

Figure 19: Closed loop step response of fourth order system with state variable feedback. The
poles of the closed loop system are at 0.1, 0.20.3 and 0.8. This system zeros remain at −0.9732
and 0.2317± 0.9380j.

106

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

Time (sec)

x 1 (
cm

)

0 0.1 0.2 0.3 0.4 0.5
−10

−5

0

5

10

15

20

Time (sec)

v 1 (
cm

/s
ec

)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

Time (sec)
x 2 (

cm
)

0 0.1 0.2 0.3 0.4 0.5
−2

0

2

4

6

8

10

Time (sec)

v 2 (
cm

/s
ec

)

Figure 20: Closed loop step response of fourth order system with state variable feedback. The
poles of the closed loop system are at 0.1, 0.2 and −0.3 ± 0.1j. This system zeros remain at
−0.9732 and 0.2317± 0.9380j.

107

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

Time (sec)

x 1 (
cm

)

0 0.2 0.4 0.6 0.8
−1

0

1

2

3

4

5

Time (sec)

v 1 (
cm

/s
ec

)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Time (sec)
x 2 (

cm
)

0 0.2 0.4 0.6 0.8
−1

0

1

2

3

4

5

Time (sec)

v 2 (
cm

/s
ec

)

Figure 21: Closed loop step response of fourth order system with state variable feedback. The
poles of the closed loop system are at 0.1, 0.2 and 0.3 ± 0.1j. This system zeros remain at
−0.9732 and 0.2317± 0.9380j.

108

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Time (sec)

x 1 (
cm

)

0 0.1 0.2 0.3 0.4
−5

0

5

10

15

Time (sec)

v 1 (
cm

/s
ec

)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

Time (sec)

x 2 (
cm

)

0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

Time (sec)

v 2 (
cm

/s
ec

)

Figure 22: Closed loop step response of fourth order system with state variable feedback. The
poles of the closed loop system are at 0. This is deadbeat response. This system zeros remain at
−0.9732 and 0.2317± 0.9380j.

109

response of the dominant poles will dominate the response of the overall system. In this case, the
poles with the largest magnitude will dominate the response and system will not reach steady
state until the response of these poles have subsided. However, it should also be noted that
placing the poles closer to the origin increases the system bandwidth and make the system less
robust and more sensitive to noise, external disturbances, and errors in the mathematical model
of the system. In addition, poles closer to the origin increases the control effort. Often, the
designer needs to use some iterative “guess and check” to see if the system preforms adequately.

110

7 Integral Control

In the previous chapter we introduced state variable feedback for changing the poles of the
closed loop system. With the use of a prefilter, we can often achieve a step response with zero
steady state error. However, this assumes we have a very accurate model of the plant, which is
often not the case. Consider the state variable model of a system we used in the last chapter,

x1(k)
v1(k)
x2(k)
v2(k)

 =


0.4964 0.0391 0.5153 0.0095

−15.5298 0.4361 14.7498 0.5022
0.4452 0.0082 0.3068 0.0358
12.7738 0.4326 −21.0039 0.2572



x1(k)
v1(k)
x2(k)
v2(k)

+


4.0181
142.8037
0.3955
29.8022

u(k)

y(k) =
[
0 0 1 0

] 
x1(k)
v1(k)
x2(k)
v2(k)


The sample interval is Ts = 0.05 seconds. In this model our output is the third state (x2). For
this plant, the transfer function is

Gp(z) =
4.018z3 + 2.048z2 + 1.939z + 3.65

z4 − 1.496z3 + 1.492z2 − 1.392z + 0.8639

with the four poles at −0.1073 ± 0.9583j and 0.8555 ± 0.4437j. This system also has zeros
at −0.9732 and 0.2317 ± 0.9380j. Figure 23 shows the unit step response using state variable
feedback to place the closed loop poles at 0.1, 0.2, 0.3 and 0.4, assuming the model accurately
represents the plant. The state feedback gain vector is

K =
[
−0.0607 0.0056 0.0701 −0.0028

]
and prefilter gain Gpf = 0.0390. The figure shows that if our model is indeed accurate, we will
pretty much get the response we expect.

Now let’s assume that there are small errors in our model, and the correct model is given by
x1(k)
v1(k)
x2(k)
v2(k)

 =


0.5460 0.0391 0.5153 0.0095

−15.5298 0.3925 14.7498 0.5022
0.4452 0.0082 0.3374 0.0358
12.7738 0.4326 −21.0039 0.2572



x1(k)
v1(k)
x2(k)
v2(k)

+


4.0181
142.8037
0.3955
29.8022

u(k)

y(k) =
[
0 0 1 0

] 
x1(k)
v1(k)
x2(k)
v2(k)


In this simplified example, the only modeling errors are on the diagonal. We, of course, do not
know the correct system, and if we use our model to determine the state feedback gains and
the prefilter gain Gpf , we will get the unit step response shown in Figure 24. Clearly the steady
state error is no longer correct, since our prefilter gain is not correct. However, since we have an
inaccurate model, there is really nothing we can do except try to “guess and check” the prefilter

111

gain until we get something that works better. However, this will only work if our plant does
not change over time.

An alternative approach is to include integral control so we can obtain zero steady state error
in one state for a unit step input. This is very similar to what is done using transfer functions.
The idea is to remove the prefilter gain (make it unity), which is outside the feedback loop, and
include an integrator, which is inside the feedback loop. We will assume a configuration like
that shown in Figure 25. Note that we have introduced Cy as the ’C’ vector we use to choose
the state for our output. This notation will be more important in the next chapter when we
introduce observers. Using this approach, with K1 = 0.0195 and

K2 =
[
0.0053 0.0068 0.0282 −0.0003

]
the closed loop poles will be at 0.1, 0.2, 0.30.4 and 0.5. The step response of this new system
with the integrator is shown in Figure 26. We will spend the remainder of this chapter deter-
mining how to find the gains K1 and K2 for this new structure. Our derivation will be based on
Ogata. It should be pointed out if the error in modeling the plant is too large, our controller
may produce an unstable system.

Consider the closed loop system in Figure 25, which includes an integrator as well as state
variable feedback. This configuration allows for zero steady state error for a single state. In this
configuration we introduce Cy as the vector that multiplies the output y to get the single state
we want to have a zero steady state error. We have the state equations

x(k + 1) = Gx(k) +Hu(k) x(k) ∈ Rn, G ∈ Rn×n, H ∈ Rn×m, u(k) ∈ Rm

y(k) = Cyx(k), Cy ∈ R1×n

We also have
v(k) = r(k)− y(k) + v(k − 1)

or
v(k)− v(k − 1) = r(k)− y(k)

Taking z-transforms we have

V (z)
(
1− z−1

)
= R(z)− Y (z)

or
V (z)

R(z)− Y (z)
=

1

1− z−1

Recall that the transfer function corresponding to an integrator in continuous time, 1
s
corre-

sponds to the transfer function 1
1−z−1 in discrete-time. Hence this configuration functions as an

integrator. As k → ∞ we have

v(∞) = r − y(∞) + v(∞)

or
limk→∞y(k) = r

112

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Time (sec)

x 1 (
cm

)

0 0.5 1 1.5 2
0

2

4

6

8

Time (sec)

v 1 (
cm

/s
ec

)

0 0.5 1 1.5 2
0

0.5

1

1.5

Time (sec)
x 2 (

cm
)

0 0.5 1 1.5 2
0

1

2

3

4

5

6

Time (sec)

v 2 (
cm

/s
ec

)

Figure 23: State variable feedback with poles at 0.1, 0.2, 0.3 and 0.4. We are trying to control
the position of the third state (x2). This example assumes our model accurately represents the
plant. We clearly have a zero steady state error for a unit step input.

113

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Time (sec)

x 1 (
cm

)

0 0.5 1 1.5 2
−2

0

2

4

6

8

Time (sec)

v 1 (
cm

/s
ec

)

0 0.5 1 1.5 2
0

0.5

1

1.5

Time (sec)

x 2 (
cm

)

0 0.5 1 1.5 2
−2

0

2

4

6

Time (sec)

v 2 (
cm

/s
ec

)

Figure 24: State variable feedback with poles at 0.1, 0.2, 0.3 and 0.4. We are trying to control the
position of the third state (x2). This example assumes our model does not accurately represents
the plant. We clearly do not have a zero steady state error for a unit step.

C
y

u(k)

y(k)
+

Σ

+

G

z-1
x(k+1) x(k)

H

K
2

+

Σ

r(k)
K
1

+

Σ

+

z-1

+

Σ
v(k)

v(k-1)

Figure 25: Basic configuration for including integral control in a state variable feedback system.

114

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Time (sec)

x 1 (
cm

)

0 0.5 1 1.5 2
−2

0

2

4

6

Time (sec)

v 1 (
cm

/s
ec

)

0 0.5 1 1.5 2
0

0.5

1

1.5

Time (sec)

x 2 (
cm

)

0 0.5 1 1.5 2
−1

0

1

2

3

4

5

Time (sec)

v 2 (
cm

/s
ec

)

Figure 26: State variable feedback with integral control with poles at 0.1, 0.2, 0.3, 0.4, and 0.5.
We are trying to control the position of the third state (x2). This example assumes our model
does not accurately represents the plant. We again have a zero steady state error for a unit step.

115

which tells us the steady state value of y(k) is the amplitude of the reference input r, and there is
no steady state error for a unit step input. Next, we need to determine how to chooseK1 andK2.

We start by rewriting the integrator equation as

v(k) = v(k − 1) + r(k)− y(k)

or

v(k + 1) = v(k) + r(k + 1)− y(k + 1)

= v(k) + r(k + 1)− Cy [Gx(k) +Hu(k)]

= −CyGx(k) + v(k)− CyHu(k) + r(k + 1)

Next, we write the control vector u(k) as

u(k) = −K2x(k) +K1v(k)

or

u(k + 1) = −K2x(k + 1) +K1v(k + 1)

= −K2 [Gx(k) +Hu(k)] +K1 [−CyGx(k) + v(k)− CyHu(k) + r(k + 1)]

= [−K2G−K1CyG] x(k) + [−K2H −K1CyH]u(k) +K1v(k) +K1r(k + 1)

= [−K2G−K1CyG] x(k) + [−K2H −K1CyH]u(k) + [u(k) +K2x(k)] +K1r(k + 1)

= [K2 −K2G−K1CyG]x(k) + [Im −K2H −K1CyH]u(k) +K1r(k + 1)

From this we can write the state variable model[
x(k + 1)
u(k + 1)

]
=

[
G H

K2 −K2G−K1CyG Im −K2H −K1CyH

] [
x(k)
u(k)

]
+

[
0
K1

]
r(k + 1)

with the output equation

y(k) =
[
Cy 0

] [x(k)
u(k)

]

Now consider the case when the reference input r(k) = ru(k), a step with amplitude r. We then
have[

x(k + 1)
u(k + 1)

]
=

[
G H

K2 −K2G−K1CyG Im −K2H −K1CyH

] [
x(k)
u(k)

]
+

[
0
K1r

]

As k → ∞ we have[
x(∞)
u(∞)

]
=

[
G H

K2 −K2G−K1CyG Im −K2H −K1CyH

] [
x(∞)
u(∞)

]
+

[
0
K1r

]

Now define the error vectors by

xe(k) = x(k)− x(∞)

ue(k) = u(k)− u(∞)

116

Subtracting our previous expressions we have[
x(k + 1)− x(∞)
u(k + 1)− u(∞)

]
=

[
G H

K2 −K2G−K1CyG Im −K2H −K1CyH

] [
x(k)− x(∞)
u(k)− u(∞)

]

or [
xe(k + 1)
ue(k + 1)

]
=

[
G H

K2 −K2G−K1CyG Im −K2H −K1CyH

] [
xe(k)
ue(k)

]

We can rewrite this system as[
xe(k + 1)
ue(k + 1)

]
=

[
G H
0 0

] [
xe(k)
ue(k)

]
+

[
0 0

K2 −K2G−K1CyG Im −K2H −K1CyH

] [
xe(k)
ue(k)

]

=

[
G H
0 0

] [
xe(k)
ue(k)

]
+

[
0
Im

]
w(k)

where

w(k) =
[
K2 −K2G−K1CyG Im −K2H −K1CyH

] [xe(k)
ue(k)

]
Now define

ξ(k) =

[
xe(k)
ue(k)

]

Ĝ =

[
G H
0 0

]

Ĥ =

[
0
Im

]
K̂ = −

[
K2 −K2G−K1CyG Im −K2H −K1CyH

]
The state equations then become

ξ(k + 1) = Ĝξ(k) + Ĥw(k)

w(k) = −K̂ξ(k)

or

ξ(k + 1) = Ĝξ(k) + Ĥ
(
−K̂

)
ξ(k)

=
(
Ĝ− ĤK̂

)
ξ(k)

This is the equation used to replace the poles of Ĝ using state variable feedback! Thus K̂ can
be determined by using techniques we’ve learned before.

Now assume we have determined K̂, how do we get K1 and K2? First note

[
K2 K1

] [G− In H
CyG CyH

]
=
[
K2(G− In) +K1CyG K2H +K1CyH

]

117

and[
K1 K2

] [G− In H
CyG CyH

]
−
[
0 Im

]
=
[
K2G−K2 +K1CyG −Im +K2H +K1CyH

]
= K̂

Hence

K̂ +
[
0 Im

]
=
[
K2 K1

] [G− In H
CyG CyH

]
or {

K̂ +
[
0 Im

]} [G− In H
CyG CyH

]−1

=
[
K2 K1

]
Before we do an example, we need to make a few notes:

• If the system is stable, we are guaranteed that the steady state error in the state of our
choice will be zero eventually. However, it may take quite a while for this to be achieved.
Remember, we are only looking at the steady state behavior.

• If the plant is controllable, including the integrator does not change the controllability.

• If there are more than one inputs (m > 1), then K1 and K2 are not unique. Choose the
pair that seem to work best.

• This method will only track a step input in one state with zero steady state error. Other
options are possible, but they are beyond the scope of these notes.

Example. Let’s assume

G =

[
0.1 0
0.2 0

]
, H =

[
1
0

]
, Cy =

[
1 0

]
and we want deadbeat control and a system with an integrator. First we need to form Ĝ and Ĥ,

Ĝ =

[
G H
0 0

]
=

 0.1 0 1
0.2 0 0
0 0 0



Ĥ =

[
0
Im

]
=

 0
0
1


Placing the poles we determine that

K̂ =
[
0.01 0 0.1

]
We can then form

KK = K̂ +
[
0 Im

]
=
[
0.01 0 0.1

]
+
[
0 0 1

]
=
[
0.01 0 1.1

]
and

TT =

[
G− In H
CyG CyH

]
=

 −0.9 0 1
0.2 −1 0
0.1 0 1


118

Then [
K2 K1

]
= KK × TT−1 =

[
0.1 0 1

]
So K2 =

[
0.1 0

]
and K1 = 1. Note that K2 is the beginning of the K̂ array and that K1 is at

the end of the K̂ array.

119

8 Full Order State Observers

In order to use state variable feedback, we need to have access to the states. Sometimes we
cannot measure all of the states, or it is too expensive. Instead of using the actual states we will
use estimates of the states. An observer constructs estimates using knowledge of the system dy-
namics, the (known) input, and the (measured) output. A full order observer is used to estimate
all of the states. A minimum order observer, which will be covered in the next chapter, is used to
estimate only some of the states. In order to estimates the states the system must be observable.

8.1 Derivation of Observer

Assume we have the system modeled by

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k)

We will assume our estimated state, x̃(k) follows the same dynamical model, but we will include
a term to correct for differences between the real (measured) output of the system and the
estimated state of the system,

x̃(k + 1) = Gx̃(k) +Hu(k) +Ke [y(k)− ỹ(k)]

noindent where

x̃(k) = the estimated state

ỹ(k) = the output based on the estimated state, ỹ(k) = Cx̃(k)

Ke = observer gain matrix

A signal flow model of the original system (plant) using a full order observer to estimate the
states used in state variable is shown in Figure 27. As the figure illustrated, when using a full
order observer with state variable feedback, it is the estimated state that is used, i.e.,

u(k) = Gpfr(k)−Kx̃(k)

What remains is to determine Ke.

Let’s define the error signal e(k) to be the difference between the true state, x(k), and the
estimate of the true state, x̃(k),

e(k) = x(k)− x̃(k)

Then we have

e(k + 1) = x(k + 1)− x̃(k + 1)

= [Gx(k) +Hu(k)]− [Gx̃(k) +Hu(k) +Ke {y(k)− ỹ(k)}]
= G (x(k)− x̃(k))−Ke {y(k)− ỹ(k)}
= G (x(k)− x̃(k))−Ke {Cx(k)− Cx̃(k)}
= G (x(k)− x̃(k))−KeC (x(k)− x̃(k))

= (G−KeC) (x(k)− x̃(k))

= (G−KeC) e(k)

120

u(k)
y(k)C

G

z-1
+

Σ

+

x(k+1) x(k)

H
+

Σ

K

G
pf

r(k)

+

Σ

+

C

G

z-1H
+

Σ

+

K
e

Σ

+

x(k)~
y(k)~

+

Σ

+

C

G

z-1H
+

Σ

+

K
e

Σ
x(k)x(k)x(k)

y(k)y(k)y(k)

Figure 27: State variable feedback using full order observer (the shaded area) to estimate the
states.

so the error has the dynamics

e(k + 1) = (G−KeC) e(k)

Hence the dynamics of the error is determined by the eigenvalues (poles) of the matrix G−KeC.
If the eigenvalues (poles) of G−KeC are within the unit circle (have magnitude less than one),
then e(k) → 0 as k → ∞. If e(k) → 0, then x(k)− x̃(k) → 0, or x̃(k) → x(k), i.e., the estimated
states converge to the true states. The closer the eigenvalues of G − KeC are to the origin,
the more rapidly the estimates converge to the true states. However, it is important to keep in
mind that the accuracy of the observer is dependent on how accurately the mathematical model
represents the true system.

8.2 Choosing Ke

We need to determine how to choose Ke to obtain the observer performance we want. We want
to use Ke to place the poles of the matrix G−KeC. When we designed state variable feedback
systems, we learned techniques to choose K to place the poles of the matrix G − HK. If we
compare this with the observer error matrix, we have

G−HK state variable feedback matrix

G−KeC observer error dynamic matrix

If we take the transpose of the observer error dynamic matrix we have

(G−KeC)
T = GT − CTKT

e

121

If we rename the variables G̃ = GT , K̃ = KT
e , and H̃ = CT , then we have

G̃− H̃K̃

and we can then use the state variable techniques we have already used to determine K̃ = KT
e .

Example. Design and observer with deadbeat response for the following system:

x(k + 1) =

[
0.1 0.2
0 0.1

]
x(k) +

[
0.1
0.2

]
u(k)

y(k) =
[
1 0

]
The first thing we need to do is be sure the system is observable or we will not be able to
construct the observer. The observability matrix is[

C
CG

]
=

[
1 0
0.1 0.2

]

which has rank two, so the system is observable. We need to place the poles (eigenvalues) of
G̃− H̃K̃ at zero. We have

G̃ = GT =

[
0.1 0
0.2 0.1

]

H̃ = CT =

[
1
0

]

We then need to find (for λ = 0)

[
λI − G̃

... H̃
]

=

[
−0.1 0 1
−0.2 −0.1 0

]

There is only one vector in the null space of this matrix, we will choose

ξ =

 1
−2
0.1


We then generate a generalized eigenvector using[

−0.1 0 1
−0.2 −0.1 0

]
ξg =

[
1
−2

]

from which we get

ξg =

 0
20
1



122

Finally we have

K̃

[
1
−2

]
= 0.1

K̃

[
0
20

]
= 1

which we combine to get

K̃

[
1 0
−2 20

]
=

[
0.1 1

]
K̃ =

[
0.2 0.05

]
Ke = K̃T =

[
0.2
0.05

]

8.3 State Feedback and Observers

In what follows we assume the system model

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k) +Du(k)

is both controllable and observable. Assume we are using state variable feedback with a reference
input r(k). Then we have

u(k) = Gpfr(k)−Kx(k)

Next assume that instead of the actual states being used in the feedback, we are using the
estimated states, so

u(k) = Gpfr(k)−Kx̃(k)

We then have

x(k + 1) = Gx(k) +H [Gpfr(k)−Kx̃(k)]

= Gx(k)−HKx̃(k) +HGpfr(k)

= Gx(k)−HKx̃(k)−HKx(k) +HKx(k)︸ ︷︷ ︸
subtract and add

+HGpfr(k)

= (G−HK)x(k) +HK (x(k)− x̃(k)) +HGpfr(k)

= (G−HK)x(k) +HKe(k) +HGpfr(k)

From the observer equation we have

e(k + 1) = (G−KeC)e(k)

Combining these we have the state model[
x(k + 1)
e(k + 1)

]
=

[
G−HK HK

0 G−KeC

] [
x(k)
e(k)

]
+

[
HGpf

0

]
r(k)

123

The characteristic equation for this system is

det

[
zI −G+HK −HK

0 zI −G+KeC

]
= 0

or, using properties of determinants,

det [zI −G+HK]︸ ︷︷ ︸
state feedback

det [zI −G+KeC]︸ ︷︷ ︸
observer

= 0

The first determinant is what we use to assign the state feedback poles, while the second de-
terminant is what we use to assign the observer poles. What we have shown is that we can
assign the closed loop system (state variable poles) and the observer pole independently. This
important result is called the separation principle.

8.4 General Guidelines for Observer Pole Locations

Now that we know how to construct an observer to estimate the system poles, we need some
guidelines for choosing the pole locations for the observer. However, as in most engineering
systems we have a conflict:

• Choose Ke so the poles of G−KeC are small (near the origin).

– This produces estimates that converge to the true states more quickly, which is gen-
erally good.

– This increases the system bandwidth which makes the system less robust and more
sensitive to external disturbances, noise (or noisy measurements), or errors in the
mathematical model of the system. This is generally bad.

• Choose Ke so the poles of G−KeC are large (near the unit circle).

– This produces estimates that converge to the true states more slowly. This can
produce unsatisfactory results using state variable feedback since the estimated states
be used do not accurately reflect the state of the system.

– This reduces the system bandwidth which generally makes the system more robust
and less sensitive to external disturbances, noise, and mathematical errors in the
model of the system.

As a general rule, the poles (eigenvalues) of the observer should be smaller in magnitude by
a factor of three or four than the poles of the state feedback system. However, this is just a
general guideline. Often you need to use some intelligent “guess and check” methods.

8.5 Full Order Observers with Integral Control

It is possible to use a full order observer to estimate the states of a system, use state variable
feedback to place the poles of the closed loop system based on the estimated states, and include
integral control so one of the states will have zero steady state error for a unit step input.
Figure 8.5 displays a control structure that can be used for this purpose. Note that C is used in

124

r(k) u(k)
y(k)

CG

z-1
+

Σ

+

x(k+1) x(k)

H
+

Σ

K
2

+

Σ

+

C

G

z-1H
+

Σ

+

K
e

Σ

+

x(k)~
y(k)~

C
y

K
1

z-1

+

Σ

+

+

Σ

+

Σ

+

G

z-1H
+

CΣ

+

K
e

Σ

+

x(k)x(k)x(k)x(k)
y(k)y(k)y(k)

Figure 28: Structure for use of a full order observer, state variable feedback, and integral control.

the observer to indicate which states (outputs) will be input to the observer, and Cy indicates
which state (or linear combination of states) will have zero steady state error. Note also that the
observer is constructed independently of the state feedback gain, and the state feedback gains
(K1 and K2) are constructed independently of the use of an observer.

8.6 Simulations

In this section, we will assume we are using our standard model,
x1(k)
v1(k)
x2(k)
v2(k)

 =


0.4964 0.0391 0.5153 0.0095

−15.5298 0.4361 14.7498 0.5022
0.4452 0.0082 0.3068 0.0358
12.7738 0.4326 −21.0039 0.2572



x1(k)
v1(k)
x2(k)
v2(k)

+


4.0181
142.8037
0.3955
29.8022

u(k)

The sample interval is Ts = 0.05 seconds. We have not determined what the input to the ob-
server will be yet, and have not determined which state we want to have zero steady state error.

Example. Let’s assume we want the output of our system to be the first state (x1) and we want
the observer to be able to use only the third state (x2). The we would have

Cy =
[
1 0 0 0

]
C =

[
0 0 1 0

]
Let’s assume the system starts at rest (all initial conditions are zero) and we estimate the initial
states as x̃1 = 1.0 cm, ṽ1 = −10.0 cm/sec, x̃2 = −1.0 cm and ṽ2 = 10.0 cm/sec. Our estimates
of the initial states (the starting points for our observer) are a bit silly, but they will better
allow us to see how quickly our estimated states converge to our true states. If we place the
closed loop poles all at 0.3, and the observer poles all at 0.3 then we have

K =
[
−0.0885 0.0049 0.1038 −0.0029

]
125

KT
e =

[
0.2839 17.1162 0.2964 −24.1797

]
Gpf = 0.0206

and the unit step response is shown in Figure 29. This figure demonstrates that the estimated
states do converge to the real (true) system states, and the steady state error in the first state
is zero. If we move the observer poles all to 0.1, then we have

KT
e =

[
0.5960 9.4168 1.0964 −13.1210

]
Clearly K and Gpf do not change. The unit step response for this system is shown in Figure 30.
Finally, if we move the observer states all to 0.05, we have

KT
e =

[
0.7570 7.5642 1.2964 −9.3092

]
The step response for this system is shown in Figure 31. Comparing the results from these
three figures, it is clear that as the observer poles are moved closer to the origin the observed
states converge to the true states more quickly. However, it should be pointed out that this also
depends on having a sufficiently accurate model.

If we wanted the output of our system to be the third state (x2) and wanted our observer to be
able to use both the first and third states, then we would have

Cy =
[
0 0 1 0

]
C =

[
1 0 0 0
0 0 1 0

]
Our final simulation results are for the original system using both an observer and an integrator.
The observer uses the first and third states (x1 and x2) and the output is the first state (x1).
The initial states are again x1 = 1.0 cm, v1 = −10.0 cm/sec, x2 = −1.0 cm, and v2 = 10.0
cm/sec. The system poles are all at 0.2 and the observer poles are at 0.06, 0.08, 0.1, and 0.12.
The resulting state feedback and observer gains are

K1 = 0.0281

K2 =
[
0.0567 0.0078 0.0109 0.0013

]
KT

e =

[
0.7521 −8.1982 0.8629 17.2414
0.9909 19.8096 0.3843 −15.6217

]
and the simulation results are shown in Figure 32.

We should point out that even though we may know a state (or states) that are input to the
full order observer, we are still estimating all of those states in the full order observer. There
are two fairly good reasons for this

• There are often errors between our model of the system and the real system. Estimating
all of the states sometimes helps. If we are going to force a state to be a specific value and
the model is in error, this may have even larger errors in the other estimated states.

• Utilizing the known states in an observer (not trying to estimate them with the observer)
leads to a minimum order observer, which is the subject of the next chapter. However,
the math gets alot more complicated and you have to decide if it is really worth it to you
as a designer.

126

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Time (sec)

x 1(c
m

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

Time (sec)

v 1 (
cm

/s
ec

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

Time (sec)

x 2 (
cm

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

40

Time (sec)

v 2 (
cm

/s
ec

)

System
Observer

Figure 29: State response for state variable system with observer. The poles of the system and
the observer are all at 0.3. The input to the observer is the first state, and the first state is the
output of the system.

127

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

x 1(c
m

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

40

50

Time (sec)

v 1 (
cm

/s
ec

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

Time (sec)
x 2 (

cm
)

System
Observer

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

40

Time (sec)

v 2 (
cm

/s
ec

)

System
Observer

Figure 30: State response for state variable system with observer. The poles of the system are
all at 0.3 and the pole of the observer are all at 0.1. The input to the observer is the first state,
and the first state is the output of the system.

128

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Time (sec)

x 1(c
m

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

Time (sec)

v 1 (
cm

/s
ec

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

Time (sec)
x 2 (

cm
)

System
Observer

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

40

Time (sec)

v 2 (
cm

/s
ec

)

System
Observer

Figure 31: State response for state variable system with observer. The poles of the system are
all at 0.3 and the pole of the observer are all at 0.05. The input to the observer is the first state,
and the first state is the output of the system.

129

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time (sec)

x 1(c
m

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

4

6

8

Time (sec)

v 1 (
cm

/s
ec

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (sec)
x 2 (

cm
)

System
Observer

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10

Time (sec)

v 2 (
cm

/s
ec

)

System
Observer

Figure 32: State response for state variable system with observer and integral control. The poles
of the system are all at 0.1 and the pole of the observer are at 0.06, 0.08, 0.10, 0.12. The input
to the observer is the first and third states, and the first state is the output of the system.

130

9 Minimum Order Observers

For full order observers we estimate all of the states based on the system input u(k), output
y(k), and the mathematical model of the system. However, sometimes the states are easily
measured and we would like to use the actual state rather than an estimate. For a minimum
order observer we only estimate those states we do not know. Hence the state vector used in
the state variable feedback will contain some states that are known and some states that are
estimated using the observer.

Minimum order observers tend to be more sensitive to errors in the mathematical model of the
system, so often only one or two known states are used in a minimum order observer, and the
remaining states are estimated. In addition, although estimating fewer states and using known
states may seem easier, as you will see it is really fairly complicated.

We are going to have to rewrite the state equations with all of the known states first, and the
unknown states second. For example, assume q(k) is our state vector, and

q1(k) = x1(k)

q2(k) = ẋ1(k)

q3(k) = x2(k)

q4(k) = ẋ2(k)

where ẋi(k) is the discrete-time representation of the derivative of xi(k). Assume our initial
discrete-time state equations are

q1(k + 1)
q2(k + 1)
q3(k + 1)
q4(k + 1)

 =


g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44



q1(k)
q2(k)
q3(k)
q4(k)

+

h1
h2
h3
h4

u(k)
[
y1(k)
y2(k)

]
=

[
c11 c12 c13 c14
c21 c22 c23 c24

] 
q1(k)
q2(k)
q3(k)
q4(k)

+
[
d1
d2

]
u(k)

Let’s next assume that the positions are easy to measure, but the velocities are difficult to
measure. Hence we will assume our known states are q1(k) and q3(k), and our unknown states
are q2(k) and q4(k), Hence our new state vector will be

q(k) =


q1(k)
q3(k)
q2(k)
q4(k)


We need to rearrange our state variable system so the known states are first, and the unknown
states are second. This means the G, H, and C matrices will have to change, and we do this by
rearranging the rows and columns to match what we have done to the states. We rewrite the

131

G, H, and C matrices so the rows are in the correct order (1, 3, 2, 4) and the the columns are
in the correct order (1,3,2,4),

g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44

→


g11 g12 g13 g14
g31 g32 g33 g34
g21 g22 g23 g24
g41 g42 g43 g44

→


g11 g13 g12 g14
g31 g33 g32 g34
g21 g23 g22 g24
g41 g43 g42 g44



h1
h2
h3
h4

→


h1
h3
h2
h4


[
c11 c12 c13 c14
c21 c22 c23 c24

]
→
[
c11 c13 c12 c14
c21 c23 c22 c24

]
Our new state variable description is then

q1(k + 1)
q3(k + 1)
q2(k + 1)
q4(k + 1)

 =


g11 g13 g12 g14
g31 g33 g32 g34
g21 g23 g22 g24
g41 g43 g42 g44



q1(k)
q3(k)
q2(k)
q4(k)

+

h1
h3
h2
h4

u(k)
[
y1(k)
y2(k)

]
=

[
c11 c13 c12 c14
c21 c23 c22 c24

] 
q1(k)
q3(k)
q2(k)
q4(k)

+
[
d1
d2

]
u(k)

Of course, at this point we would just rename the state variables in our system,

q1(k) = x1(k)

q2(k) = x2(k)

q3(k) = ẋ1(k)

q4(k) = ẋ2(k)

and then 
q1(k + 1)
q2(k + 1)
q3(k + 1)
q4(k + 1)

 =


g11 g13 g12 g14
g31 g33 g32 g34
g21 g23 g22 g24
g41 g43 g42 g44



q1(k)
q2(k)
q3(k)
q4(k)

+

h1
h3
h2
h4

u(k)
[
y1(k)
y2(k)

]
=

[
c11 c13 c12 c14
c21 c23 c22 c24

] 
q1(k)
q2(k)
q3(k)
q4(k)

+
[
d1
d2

]
u(k)

and then

G =


g11 g13 g12 g14
g31 g33 g32 g34
g21 g23 g22 g24
g41 g43 g42 g44


132

H =


h1
h3
h2
h4


C =

[
c11 c13 c12 c14
c21 c23 c22 c24

]

In the next section will will do this more symbolically, but when we rearrange the states these
are the types of manipulations that are necessary.

9.1 Basic Structure

Let’s assume we have rearranged our states so all of the known states are in the vector xa(k)
and all of the unknown states, i.e., the states our observer needs to estimate, are in the vector
xb(k), so the state vector x(k) can be written

x(k) =

[
xa(k)
xb(k)

]

The state equations can then be written[
xa(k + 1)
xb(k + 1)

]
=

[
Gaa Gab

Gba Gbb

] [
xa(k)
xb(k)

]
+

[
Ha

Hb

]
u(k)

y(k) =
[
C 0

] [xa(k)
xb(k)

]

We will assume we want the output of our system to be the known states. One of the most
difficult parts in implementing the minimum order observer is getting the correct sized matrices,
so let’s determine what we know so far. We will assume that x(k) ∈ Rn and that we know (have
measured) m states. Then we have

x(k) ∈ Rn

xa(k) ∈ Rm xb(k) ∈ Rn−m

Gaa ∈ Rm×m Gab ∈ Rm×(n−m)

Gba ∈ R(n−m)×m Gbb ∈ R(n−m)×(n−m)

Ha ∈ Rm Hb ∈ Rn−m

C = Im an m×m identity matrix

The equation for the first state is

xa(k + 1) = Gaaxa(k) +Gabxb(k) +Hau(k)

which we can rewrite as

xa(k + 1)−Gaaxa(k)−Hau(k)︸ ︷︷ ︸
these are known or measured

= Gabxb(k)

133

Let’s define ỹ(k) = xa(k + 1)−Gaaxa(k)−Hau(k) so

ỹ(k) = Gabxb(k) = C̃xb(k) where C̃ = Gab

The equation for the remaining (unknown) states is

xb(k + 1) = Gbaxa(k) +Gbbxb(k) +Hbu(k)

Define ũ(k) = Gbaxa(k) +Hbu(k) so that

xb(k + 1) = Gbbxb(k) + ũ(k) = G̃xb(k) + H̃ũ(k) where G̃ = Gbb, H̃ = In−m

Hence we have the system (for the unknown states)

xb(k + 1) = G̃xb(k) + H̃ũ(k)

ỹ(k) = C̃xb(k)

where

G̃ = Gbb

H̃ = In−m

C̃ = Gab

ũ(k) = Gbaxa(k) +Hbu(k)

ỹ(k) = xa(k + 1)−Gaaxa(k)−Hau(k)

Now for the state variable system

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k)

we derived the observer equation

x̃(k + 1) = (G−KeC)x̃(k) +Hu(k) +Key(k)

For our system this becomes

x̃b(k + 1) =
(
G̃−KeC̃

)
x̃b(k) + H̃ũ(k) +Keỹ(k)

or, substituting in for most of the tilde variables

x̃b(k + 1) = [Gbb −KeGab] x̃b(k) + [Gbaxa(k) +Hbu(k)] +Ke [xa(k + 1)−Gaaxa(k)−Hau(k)]

Note that we need xa(k+1) (or equivalently y(k+1)) to determine x̃b(k+1). This is awkward,
so we will have to modify this expression a bit. We can rewrite this expression as

x̃b(k + 1)−Kexa(k + 1) = (Gbb −KeGab) x̃b(k) + (Gba −KeGaa) xa(k) + (Hb −KeHa)u(k)

= (Gbb −KeGab) x̃b(k) + (Gba −KeGaa) xa(k) + (Hb −KeHa)u(k)

+ (Gbb −KeGab)Kexa(k)− (Gbb −KeGab)Kexa(k)︸ ︷︷ ︸
add and subtract

= (Gbb−KeGab) (x̃b(k)−Kexa(k)) + (Gbb −KeGab)Kexa(k)

+ (Gba −KeGaa)xa(k) + (Hb −KeHa)u(k)

= (Gbb −KeGab) (x̃b(k)−Kexa(k)) + (Hb −KeHa)u(k)

+ [(Gbb −KeGab)Ke + (Gba −KeGaa)]xa(k)

134

Now we define the new variables

η(k) = xb(k)−Kexa(k) = xb(k)−Key(k)

and
η̃(k) = x̃b(k)−Kexa(k) = x̃b(k)−Key(k)

where we have used the fact that y(k) = xa(k). Finally we can write a state variable equation
for η̃, with both xa(k) and u(k) as inputs, as follows:

η̃(k + 1) = (Gbb −KeGab) η̃(k) + [(Gbb −KeGab)Ke + (Gba −KeGaa)]xa(k)

+ (Hb −KeHa)u(k)

If we define

G̃ = Gbb −KeGab

H̃ = G̃Ke + (Gba −KeGaa)

F̃ = Hb −KeHa

Then
η̃(k + 1) = G̃η̃(k) + H̃xa(k) + F̃ u(k)

and

x̃(k) =

[
xa(k)
x̃b(k)

]
=

[
y(k)

η̃(k) +Key(k)

]
=

[
0

In−m

]
η̃(k) +

[
Im
Ke

]
y(k)

or
x̃(k) = C̃η̃(k) + D̃y(k)

where

C̃ =

[
0

In−m

]
D̃ =

[
Im
Ke

]

Note that x̃(k) is the output of the observer. A graphical implementation of the minimum order
observer is shown in Figure 9.1. All that remains now is to find Ke for the observer.

9.2 Determining Ke

To find an equation for Ke, we begin with the following previously derived expressions:

x̃b(k + 1) = [Gbb −KeGab] x̃b(k) + [Gbaxa(k) +Hbu(k)] +Ke [xa(k + 1)−Gaaxa(k)−Hau(k)]

xb(k + 1) = Gbaxa(k) +Gbbxb(k) +Hbu(k)

Gabxb(k) = xa(k + 1)−Gaaxa(k)−Hau(k)

135

y(k)

CG

z-1
+

Σ

+

H
+

Σ

K

G
pf

r(k)

+

+

z-1

+

Σ

+

Σ

+

+

+

z-1

+

Σ

+

Σ

+

C
y

F
~

H
~

G
~

C
~

D
~

x(k)
~

y(k) = x
a
(k)

η(κ)
~

Figure 33: Structure for use of a minimum order observer and state variable feedback. The
minimum order observer is in the shaded area.

We then define the observer error e(k) as the difference between the true state xb(k) and the
state estimated from the observer, x̃b(k). Hence we have e(k) = xb(k)− x̃b(k), or

e(k + 1) = xb(k + 1)− x̃b(k + 1)

= {Gbaxa(k) +Gbbxb(k) +Hbu(k)}
−{[Gbb −KeGab] x̃b(k) + [Gbaxa(k) +Hbu(k)] +Ke [xa(k + 1)−Gaaxa(k)−Hau(k)]}

= Gbb (xb(k)− x̃b(k)) +KeGabx̃b(k)−Ke [xa(k + 1)−Gaaxa(k)−Hau(k)]

= Gbb (xb(k)− x̃b(k)) +KeGabx̃b(k)−KeGabxb(k)

= (Gbb −KeGab) (xb(k)− x̃b(k))

or
e(k + 1) = (Gbb −KeGab) e(k)

This is the observer error equation! For the full order observer we had the equation

e(k + 1) = (G−KeC) e(k)

We need to use Ke to place the the poles of the minimum order observer. We do this exactly as
we did for the full order observer using Gbb as G, and using Gab as C.

136

Finally, for this minimum order observer to work, the rank of the matrix

Gab

GabGbb

GabG
2
bb

...
GabG

n−m−1
bb


has rank n−m. We only need this to have rank n−m since we are only trying to find n−m states.

9.3 Examples

Example. For the system defined by

x(k + 1) =

 0 0.1 0.2
0.2 0 0.1
0.1 0.1 0.1

 x(k) +
 0.1
0.2
0.3

u(k)
y(k) =

[
0 0 1

]
assume we can measure states one and three and want to design a minimum order deadbeat
observer to estimate the second state. The system output is to remain the same.

Rearranging our system so the know states are first and the unknown state is second, we have
the state variable model x1(k + 1)

x3(k + 1)
x2(k + 1)

 =

 0 0.2 0.1
0.1 0.1 0.1
0.2 0.1 0


 x1(k)
x3(k)
x2(k)

+
 0.1
0.3
0.2

u(k)
Since the output for the system is x3(k), we have

y(k) =
[
0 1 0

]  x1(k)
x3(k)
x2(k)


Hence we have

Cy =
[
0 1 0

]
For the observer we have

y(k) =

[
1 0 0
0 1 0

]  x1(k)
x3(k)
x2(k)


so

C =
[
Im 0

]
=

[
1 0 0
0 1 0

]

137

We can identify the submatrices as follows:

Gaa =

[
0 0.2
0.1 0.1

]
Gab =

[
0.1
0.1

]
Gba =

[
0.2 0.1

]
Gbb = 0

Ha =

[
0.1
0.3

]
Hb = 0.2

Next we check to be sure the system is observable. We have

Gab =

[
0.1
0.1

]
GabGbb =

[
0
0

] [
Gab

GabGbb

]
=


0.1
0.1
0
0


which has rank one, which is equal to n −m = 3 − 2 = 1. Hence we will be able to construct
an observer. The error equation for the observer is then

e(k + 1) = (Gbb −KeGab) e(k)

Taking z-transforms of this scalar equation, and assuming the initial condition e(0), we have

zE(z)− ze(0) = (Gbb −KeGab)E(z)

or

E(z) =
ze(0)

z −Gbb −KeGab

For deadbeat response we want all of the poles at zero, so we want

Gbb −KeGab = 0−
[
Ke,1Ke,2

] [0.1
0.1

]
= 0

One solution to this is Ke =
[
1 −1

]
. We then have

G̃ = Gbb −KeGab = 0

H̃ = G̃Ke +Gba −KeGaa =
[
0.3 0

]
F̃ = Hb −KeHa = 0.4

C̃ =

[
0

In−m

]
=

 0
0
1



D̃ =

[
Im
Ke

]
=

 1 0
0 1
1 −1


Example. For the original system in the previous example, assume the only known state is the
third state and we want to design a minimum order deadbeat controller to estimate states one
and two. Assume the output of the original system is state two. The new system description is x3(k)

x1(k)
x2(k)

 =

 0.1 0.1 0.1
0.2 0 0.1
0.1 0.2 0


 x3(k)
x1(k)
x2(k)

+
 0.3
0.1
0.2

u(k)
138

Since the output for the system is x2(k), we have

y(k) =
[
0 0 1

]  x3(k)
x1(k)
x2(k)


Hence we have

Cy =
[
0 0 1

]
For the observer we have

y(k) =
[
1 0 0

]  x3(k)
x1(k)
x2(k)


so

C =
[
Im 0

]
=
[
1 0 0

]
We can identify the submatrices as follows:

Gaa = 0.1 Gab =
[
0.1 0.1

]
Gba =

[
0.2
0.1

]
Gbb =

[
0 0.1
0.2 0

]

Ha = 0.3 Hb

[
0.1
0.2

]

Next we check to be sure the system is observable. We have

Gab =
[
0.1 0.1

]
GabGbb =

[
0.02 0.01

] [
Gab

GabGbb

]
=

[
0.1 0.1
0.02 0.01

]

which has rank two, which is equal to n −m = 3 − 1 = 2. Hence we will be able to construct
an observer. The error equation for the observer is then

e(k + 1) = (Gbb −KeGab) e(k)

To make this look like pole placement, we identify G = GT
bb, H = GT

ab, and K = KT
e , so

G =

[
0 0.2
0.1 0

]
, H =

[
0.1
0.1

]

We then have, for λ = 0,

[
λI −G

... H
]
ξ =

[
0 −0.2 0.1

−0.1 0 0.1

]
ξ = 0

The dimension of the null space for this matrix is one, so we will only find one vector in the null
space. One such vector is

ξ =
[
2 1 2

]T
Finding a generalized eigenvector we then solve[

0 −0.2 0.1
−0.1 0 0.1

]
ξg =

[
2
1

]

139

which has solution
ξg =

[
−10 −10 0

]T
Putting these together we have

K

[
2 −10
1 −10

]
=
[
2 0

]
or K =

[
2 −2

]
. To get Ke we use the fact that Ke = KT , so

Ke =

[
2
−2

]

We then have

G̃ = Gbb −KeGab =

[
−0.2− 0.1

0.4 0.2

]

H̃ = G̃Ke +Gba −KeGaa =

[
−0.2
0.7

]

F̃ = Hb −KeHa =

[
−0.5
0.8

]

C̃ =

[
0

In−m

]
=

 0 0
1 0
0 1



D̃ =

[
Im
Ke

]
=

 1
2
−2


9.4 Minimum Order Observers with Integral Control

It is possible to use a minimum order observer to estimate the states of a system, use state
variable feedback to place the poles of the closed loop system based on the estimated states,
and include integral control so one of the states will have zero steady state error for a unit step
input. Figure 9.4 displays a control structure that can be used for this purpose. Note that C
is used in the observer to indicate which states are known and will be input to the observer,
and Cy indicates which state (or linear combination of states) will have zero steady state error.
Note that the observer is constructed independently of the state feedback gain, and the state
feedback gains (K1 and K2) are constructed independently of the use of an observer.

9.5 Simulations

In this section, we will assume we are using our standard model,
x1(k)
v1(k)
x2(k)
v2(k)

 =


0.4964 0.0391 0.5153 0.0095

−15.5298 0.4361 14.7498 0.5022
0.4452 0.0082 0.3068 0.0358
12.7738 0.4326 −21.0039 0.2572



x1(k)
v1(k)
x2(k)
v2(k)

+


4.0181
142.8037
0.3955
29.8022

u(k)

140

r(k)

+

y(k)

CG

z-1
+

Σ

+

HΣ

+

+

z-1

+

Σ

+

Σ

+

C
y

F
~

H
~

G
~

C
~

D
~

x(k)
~

η(κ)
~

Σ Σ
+

+ +

z-1

K
2

K
1

+

+

z-1

+

Σ

+

Σ

+

F
~

H
~

G
~

C
~

D
~

η(κ)
~

x(k)

Figure 34: Structure for use of a minimum order observer, state variable feedback, and integral
control. The minimum order observer is in the shaded region.

The sample interval is Ts = 0.05 seconds. We have not determined what the input to the
observer will be yet, and have not determined which state we want to have zero steady state
error. The first thing we need to do is to determine which states are assumed to be known and
which states we are estimating. We then need to rearrange our states so the known states are
at the top and the unknown states follow. For the purposes of using the same model in all of
our examples, we will put the states in the following order: x2(k), x1(k), v1(k), and then v2(k).
Our new state variable model is then

x2(k)
x1(k)
v1(k)
v2(k)

 =


0.3068 0.4452 0.0082 0.0358
0.5153 0.4964 0.0391 0.0095
14.7498 −15.5298 0.4361 0.5022
−21.0039 12.7738 0.4326 0.2572



x2(k)
x1(k)
v1(k)
v2(k)

+


0.3955
4.0181
142.8037
29.8022

u(k)

Example. Let’s assume we want the output of our system to be the first state (x2) and we
assume that this state is also the measured (known) state. Then we would have

Cy =
[
1 0 0 0

]
C =

[
1 0 0 0

]
If we place the closed loop poles all at 0.5, and the observer poles at 0.1, 0.15, and 0.2 then we
have

K =
[
0.2421 −0.1957 0.0017 −0.0018

]
KT

e =
[
0.5521 −10.0558 16.0980

]
141

Gpf = 0.0081

G̃ =

 0.2506 0.0346 −0.0103
−11.0532 0.5181 0.8619
5.6074 0.3013 −0.3187



H̃ =

 −0.0290
20.3972
−31.0063



F̃ =

 3.7997
146.7809
23.4352



C̃ =


0 0 0
1 0 0
0 1 0
0 0 1



D̃ =


1.000
0.5521

−10.0558
16.0980


Let’s assume the system starts with all initial conditions zero except x2 = −1.0 cm, and we
estimate the initial states as x̃1 = 1.0 cm, ṽ1 = −10.0 cm/sec, and ṽ2 = 10.0 cm/sec. Our
estimates of the initial states (the starting points for our observer) are a bit silly, but they will
better allow us to see how quickly our estimated states converge to our true states. and the
unit step response is shown in Figure 35. This figure demonstrates that the estimated states do
converge to the real (true) system states, and the steady state error in the first state (x2) is zero.
Note that there is no error in the estimate of x2 since the minimum order observer assumed the
state was measured. Note also that out initial estimates for the unknown states (x1, v1 and v2)
are modified before they are saved to be plotted. Hence these estimated states appear to be
incorrect based on our prescribed initial conditions.

Next, let’s assume the same case as before, except we now assume both x1 and x2 are known.
Leaving the state variables in the same order as before, we have

C =

[
1 0 0 0
0 1 0 0

]

We again place all of the system poles at 0.5 and the minimum order observer poles at 0.1 and
0.15. We then have

K =
[
0.2421 −0.1957 0.0017 −0.0018

]
Ke =

[
12.4487 6.0026
0.0714 11.0545

]
Gpf = 0.0081

G̃ =

[
0.1000 0.000
0.000 0.1500

]

142

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Time (sec)

x 1(c
m

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

40

60

Time (sec)

v 1 (
cm

/s
ec

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

Time (sec)
x 2 (

cm
)

System
Observer

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

40

60

Time (sec)

v 2 (
cm

/s
ec

)

System
Observer

Figure 35: State response for state variable system with minimum order observer with state x2
assumed to be known, and x2 is the system output. The poles of the system are all at 0.5 and
the poles of the observer are at 0.1, 0.15, and 0.2.

143

H̃ =

[
9.0830 −23.4507

−26.7114 8.9132

]

F̃ =

[
113.7613
−14.6438

]

C̃ =


0 0
0 0
1 0
0 1



D̃ =


1.000 0.000
0.000 1.000
12.4487 6.0026
0.0714 11.0545


The unit step response of the system is shown in Figure 36. Note that there is no error in the
estimates for x1 and x2 since these states are assume to be known.

Our final simulation results are for the original system using both an observer and an integrator.
The observer uses the first two states (x1 and x2) and the output is the second state (x1). With
all parameters as before (system poles at 0.5 and observer poles at 0.1 and 0.15), we have

K1 = 0.0027

K2 =
[
0.1664 −0.1307 0.0036 −0.0021

]

and the simulation results are shown in Figure 37. All of the other parameters are the same as
in the previous example.

144

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Time (sec)

x 1(c
m

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

40

60

80

Time (sec)

v 1 (
cm

/s
ec

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

Time (sec)

x 2 (
cm

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

40

60

80

Time (sec)

v 2 (
cm

/s
ec

)

System
Observer

Figure 36: State response for state variable system with minimum order observer with states x2
and x1 assumed to be known. The output is x2. The poles of the system are all at 0.5 and the
poles of the observer are at 0.1 and 0.15.

145

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

Time (sec)

x 1(c
m

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

40

Time (sec)

v 1 (
cm

/s
ec

)

System
Observer

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

Time (sec)
x 2 (

cm
)

System
Observer

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

40

60

Time (sec)

v 2 (
cm

/s
ec

)

System
Observer

Figure 37: State response for state variable system with observer and integral control. The poles
of the system are all at 0.5 and the poles of the observer are at 0.1 and 0.15. The input to the
observer is the first and second states (x2 and x1), and the second state (x1)is the output of the
system.

146

10 Transfer Functions of Observer Based Controllers

Although we have focused on state variable methods, sometimes it is convenient to determine
the transfer function of an observer based controller as an alternative to design using classical
transfer function methods. The transfer function approach is for a single-input single-output
system. This is usually easier to implement than a state variable approach. Sometimes the
transfer function of the observer based controller works just fine, while other times the perfor-
mance is not acceptable. In addition, the observer based controller may, however, be unstable or
make the system unstable. The ability to construct the observer based controller is sometimes
useful, and it is just another possible solution to a problem. It should be point out that we will
derive the observer-controller transfer function using a regulator (a system with a zero input),
but theses systems can be tried with either type of application. Finally, it is important to realize
that for these systems, we must have Cy = C. That is, the observer must use the output of the
system.

10.1 Full Order Observers

Consider the state variable model

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k)

As we have seen before, the full order observer follows the following dynamical equation

x̃(k + 1) = Gx̃(k) +Hu(k) +Ke (y(k)− ỹ(k))

= Gx̃(k) +Hu(k) +Ke (y(k)− Cx̃(k))

= (G−KeC) x̃(k) +Hu(k) +Key(k)

If we assume the input is zero, i.e., we have a regulator and just want to hold the system at
zero, then u(k) = −Kx̃(k), and we have

x̃(k + 1) = (G−KeC −HK) x̃(k) +Key(k)

We know want to find the transfer function between the input to our system y(k) and the output
(input to the plant) u(k). Taking z transforms we have

zX̃(z) = (G−KeC −HK) X̃(z) +KeY (z)

(zI −G+KeC +HK) X̃(z) = KeY (z)

X̃(z) = (zI −G+KeC +HK)−1KeY (z)

Then since u(k) = −Kx̃(k) we have

U(z) = −K (zI −G+KeC +HK)−1KeY (z)

Hence for scalar input and output we have

U(z)

−Y (z)
= K (zI −G+KeC +HK)−1Ke

147

This transfer function of observer based controllers is often implemented as shown in Figure 10.1
(Configuration A or Configuration B). Note that both of these configurations can be used as
controllers also (with a non-zero input), but they may not work very well. In addition, the sec-
ond configuration (with the transfer function in the feedback path) often works better. Finally,
it should again be pointed out that although the poles for both the observer and controller
are designed to be stable, we cannot guarantee the stability of the transfer function. For these
transfer functions, the only thing to do is try them and then simulate the systems.

R(z)
Y(z)+

-

ΣG
B

G
p
(z)

G
OC
(z)

R(z)
Y(z)

+

-

ΣG
A

G
p
(z)G

OC
(z)

Figure 38: Two common structures used for observer based controllers. We will refer to the top
structure as Configuration A, and the bottom structure as Configuration B.

It can be easily shown that the correct prefilters will be

GA =
1 +Goc(1)Gp(1)

Goc(1)Gp(1)

GB =
1 +Goc(1)Gp(1)

Gp(1)

We can use Matlab to determine the transfer function by using the following commands:

GG = G - Ke*C-H*K;

HH = Ke;

CC = K;

DD = 0;

[num,den] = ss2tf(GG,HH,CC,DD);

Gc = tf(num,den,Ts);

148

10.2 Simulations

Assume we have our usual discrete-time state variable model given by
x1(k)
v1(k)
x2(k)
v2(k)

 =


0.4964 0.0391 0.5153 0.0095

−15.5298 0.4361 14.7498 0.5022
0.4452 0.0082 0.3068 0.0358
12.7738 0.4326 −21.0039 0.2572



x1(k)
v1(k)
x2(k)
v2(k)

+


4.0181
142.8037
0.3955
29.8022

u(k)

The sample interval is Ts = 0.05 seconds. Let’s assume we want our output to be the first state
(x1), so we want

C = Cy =
[
1 0 0 0

]
In the following examples we will assume all of the observer poles are located at 0.1, 0.11,
0.12, and 0.13. If we place all of the system poles at 0.6, then the step response of the true
observer and controller and the observer controller transfer function (configurations A and B)
will produce the results shown in Figure 39. As this figure shows, both of the transfer function
based designs are significantly worse than the true observer controller. The observer controller
transfer function is

Goc(z) =
−0.2175z3 + 0.5643z2 − 0.5364z + 0.1866

z4 − 1.364z3 + 0.6849z2 + 0.5759z − 0.7885

Figure 40 shows the same system with all of the state variable feedback poles at 0.1. In this
instance, all three systems appear to work nearly the same. Figures 41 and 42 show the same
configurations using the third state (x2) as the system output.

10.3 Reduced Order Observers

For the reduced order observer we have the equation

η̃(k + 1) = G̃η̃(k) + H̃xa(k) + F̃ u(k)

where

G̃ = Gbb −KeGab

H̃ = G̃Ke + (Gba −KeGaa)

F̃ = Hb −KeHa

η̃(k) = x̃b(k)−Key(k)

Assuming again no input to the system (i.e., a regulator problem) we have

u(k) = −Kx̃(k) =
[
Ka Kb

] [xa(k)
xb(k)

]
= −Kaxa(k)−Kbxb(k)

Since y(k) = xa(k) for the minimum order observer we have

u(k) = −Kay(k)−Kbx̃b(k)

= −Kay(k)−Kb [η̃(k) +Key(k)]

= − [Ka +KbKe] y(k)−Kbη̃(k)

149

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (sec)

S
ys

te
m

 O
ut

pu
t (

y)

Full Observer/Controller
Configuration A
Configuration B

Figure 39: Closed loop step response of fourth order system with true observer controller and
with the observer controller transfer function. The output is the first state (x1). All of the
system poles are at 0.6 and the observer poles are at 0.1, 0.11, 0.12, and 0.13.

150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

S
ys

te
m

 O
ut

pu
t (

y)

Full Observer/Controller
Configuration A
Configuration B

Figure 40: Closed loop step response of fourth order system with true observer controller and
with the observer controller transfer function. The output is the first state (x1). All of the
system poles are at 0.1 and the observer poles are at 0.1, 0.11, 0.12, and 0.13.

151

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (sec)

S
ys

te
m

 O
ut

pu
t (

y)

Full Observer/Controller
Configuration A
Configuration B

Figure 41: Closed loop step response of fourth order system with true observer controller and
with the observer controller transfer function. The output is the third state (x2). All of the
system poles are at 0.1 and the observer poles are at 0.1, 0.11, 0.12, and 0.13.

152

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (sec)

S
ys

te
m

 O
ut

pu
t (

y)

Full Observer/Controller
Configuration A
Configuration B

Figure 42: Closed loop step response of fourth order system with true observer controller and
with the observer controller transfer function. The output is the third state (x2). All of the
system poles are at 0.1 and the observer poles are at 0.1, 0.11, 0.12, and 0.13.

153

Substituting this relationship into the relationship for η̃(k + 1) we have

η̃(k + 1) = G̃η̃(k) + H̃y(k) + F̃ [− (Ka +KbKe) y(k)−Kbη̃(k)]

=
[
G̃− F̃Kb

]
η̃(k) +

[
H̃ − F̃ (Ka +KbKe)

]
y(k)

Now taking z-transforms we have

zη̃(z) =
[
G̃− F̃Kb

]
η̃(z) +

[
H̃ − F̃ (Ka +KbKe)

]
Y (z)

η̃(z) =
[
zI − G̃+ F̃Kb

]−1 [
H̃ − F̃ (Ka +KbKe)

]
Y (z)

and

U(z) = − [Ka +KbKe]Y (z)−Kbη̃(z)

= − [Ka +KbKe]Y (z)−Kb

[
zI − G̃+ F̃Kb

]−1 [
H̃ − F̃ (Ka +KbKe)

]
Y (z)

Finally, the transfer function we want is given by

U(z)

−Y (z)
= [Ka +KbKe] +Kb

[
zI − G̃+ F̃Kb

]−1 [
H̃ − F̃ (Ka +KbKe)

]
This transfer function observer based controller can then be implemented in exactly the same
way as for the full order observer based controller. Again, there is no guarantee that the resulting
controller/regulator will be stable or even work very well. We can use Matlab to determine the
transfer function as follows:

GG = Gtilde -Ftilde*Kb;

HH = Htilde - Ftilde*(Ka+Kb*Ke);

CC = Kb;

DD = Ka + Kb*Ke

[num,den] = ss2tf(GG,HH,CC,DD);

Gc = tf(num,den,Ts);

Recall that for the minimum order observer we must have the known state in the first position.
Thus we will always have C = Cy with a 1 in the first position and all other positions 0. The
order of the states may need to be rearranged, as usual when using a minimum order observer.

Figure 43 displays the results for our usual fourth order system with all of the system poles at
0.6 and the observer poles at 0.1, 0.11, and 0.12. The output (and known state) is the first state
(x1). The observer controller transfer function is

Goc(z) =
−0.1786z3 + 0.02658z2 + 0.3013z − 0.2486

z3 − 0.5158z2 + 0.9837z + 1.05

In this instance, the results from the true minimum order obseerver/state feedback controller
and the transfer function implementations are very nearly the same. Figure 44 displays the re-
sults when the system poles are all moved to 0.1. In this case clearly configuration B is superior
and nearly identical to the true minimum observer/state feedback system.

154

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

S
ys

te
m

 O
ut

pu
t (

y)

Minimum Observer/Controller
Configuration A
Configuration B

Figure 43: Closed loop step response of fourth order system with true minimum order observer
controller and with the observer controller transfer function. The output is the first state (x1).
All of the system poles are at 0.6 and the observer poles are at 0.1, 0.11, and 0.12.

Figure 45 displays the results for the system where the third state (x2) is the known/output
state, all of the system poles are at 0.6, and the observer poles are at 0.1, 0.11, and 0.12. The
observer controller transfer function is

Goc(z) =
0.1465z3 − 0.01845z2 − 0.2748z + 0.2296

z3 − 1.292z2 − 0.9488z − 0.09644

In this instance the reordering of the state variables is necessary and we still have C = Cy =[
1 0 0 0

]
. In this instance nearly all three configurations perform identically. Finally, Fig-

ure 46 displays the results when all of the system poles are moved to 0.1. Again, the results
from configuration B more closely match those of the complete minimum order observer/state
variable feedback system, but with much simpler implementation.

155

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

Time (sec)

S
ys

te
m

 O
ut

pu
t (

y)

Minimum Observer/Controller
Configuration A
Configuration B

Figure 44: Closed loop step response of fourth order system with true minimum order observer
controller and with the observer controller transfer function. The output is the first state (x1).
All of the system poles are at 0.1 and the observer poles are at 0.1, 0.11, and 0.12.

156

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

S
ys

te
m

 O
ut

pu
t (

y)

Minimum Observer/Controller
Configuration A
Configuration B

Figure 45: Closed loop step response of fourth order system with true minimum order observer
controller and with the observer controller transfer function. The output is the third state (x2).
All of the system poles are at 0.1 and the observer poles are at 0.1, 0.11, and 0.12.

157

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ys

te
m

 O
ut

pu
t (

y)

Minimum Observer/Controller
Configuration A
Configuration B

Figure 46: Closed loop step response of fourth order system with true minimum order observer
controller and with the observer controller transfer function. The output is the third state (x2).
All of the system poles are at 0.1 and the observer poles are at 0.1, 0.11, and 0.12.

158

11 Linear Quadratic Optimal Control

In this final chapter, we will focus on solving a linear quadratic tracking problem. Assume we
have a known input signal r(k) that we would like the output of our system to follow. We
assume that the system operates over a finite number of time steps, from k = 0 to k = N − 1,
and that our system can be modeled as a linear time-invariant state variable system,

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k)

For this type of problem there are usually three things we are interested in:

1. How closely does x(k) match r(k) over k = 0, . . . , N − 1?

2. How close is X(N) to R(N), i.e. does our system end at the same place the reference
input ends?

3. How much control effort is required?

One way to formulate this problem is as follows:

min
u(k)

J =
1

2
[y(N)− r(N)]T Qf [y(N)− r(N)]

+
1

2

k=N−1∑
k=0

{
[y(k)− r(k)]T Q [y(k)− r(k)] + u(k)TRu(k)

}
Subject to the constraints

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k)

We assume x(0) = x0 and the signal we want our system to follow, r(k), are known. Finally, we
assume Q = QT , Qf = QT

f , R = RT , and R−1 exists. These three matrices impose penalties on

• the control effort (R)

• not matching the reference signal at the final time (Qf)

• not matching the reference signal during the transients (Q)

For this formulation, the system is linear and the penalties are quadratic. This problem is said
to have soft terminal constraints since we do not force y(N) = r(N). We can try to make
them equal by imposing a penalty, but it is not absolutely required that they be equal. If we
require that y(N) = R(N) as part of the problem, then we have a problem with hard terminal
constraints, and it needs to be solved a bit differently than the method we will follow.

159

11.1 Euler Lagrange Equations

With our background in matrix calculus and Lagrange multipliers, let’s return to our original
problem. We need to adjoin the constraints to our original cost function. Hence we need to now
find the control sequence u(k) to minimize J̄ , where J̄ is the same cost function as J but has
the constraints adjoined. Specifically, we can write J̄ as

J̄ =
1

2
[y(N)− r(N)]T Qf [y(N)− r(N)]

+
k=N−1∑
k=0

{1
2
[y(k)− r(k)]T Q [y(k)− r(k)] +

1

2
u(k)TRu(k)

+λ(k + 1)T [Gx(k) +Hu(k)− x(k + 1)]
}

Notice that in this case the Lagrange multiplier is a time varying vector. At this point is may
seem odd to write it as λ(k + 1) instead of λ(k), but it will turn out to be a bit simpler in the
future. Rather than having the two variables y(k) and x(k), let’s rewrite our expression for J̄
in terms of x(k),

J̄ =
1

2
[Cx(N)(N)− r(N)]T Qf [Cx(N)− r(N)]

+
k=N−1∑
k=0

{1
2
[Cx(k)− r(k)]T Q [Cx(k)− r(k)] +

1

2
u(k)TRu(k)

+λ(k + 1)T [Gx(k) +Hu(k)− x(k + 1)]
}

Next we define the discrete-time Hamiltonian as

H =
1

2

{
[Cx(k)− r(k)]T Q [Cx(k)− r(k)] + u(k)TRu(k)

}
+ λ(k + 1)T [Gx(k) +Hu(k)]

and define

Φ (x(N)) =
1

2
[Cx(N)− r(N)]T Qf [Cx(N)− r(N)]

In terms of these new variables we have

J̄ = Φ(x(N)) +
N−1∑
k=0

{
H(k)− λ(k + 1)Tx(k + 1)

}

= Φ(x(N)) +
N−1∑
k=0

H(k)−
N∑
k=1

λ(k)Tx(k) + λ(0)Tx(0)− λ(0)Tx(0)︸ ︷︷ ︸
adding zero

= Φ(x(N)) +
N−1∑
k=0

[
H(k)− λ(k)Tx(k)

]
− λ(N)Tx(N) + λT (0)x(0)

Now let’s consider differential changes in J̄ due to differential changes in u(k) and x(k),

dJ̄ =
dΦ (x(N))

dx(N)
dx(N)− λT (N)dx(N) + λT (0)dx(0)

= +
k=N−1∑
k=0

{[
∂H(k)

∂x(k)
− λT (k)

]
dx(k) +

∂H(k)

∂u(k)
du(k)

}

160

At an optimum we need dJ̄ = 0. To avoid having to determine the dx(k) caused by the
incremental changes in du(k), we will choose the Lagrange multipliers as

λT (k) =
∂H(k)

∂x(k)

Next, since we don’t know what du(k) is, we will choose

∂H(k)

∂u(k)
= 0

We know the initial condition x(0) is a constant, so dx(0) = 0. Finally we are left with the
boundary condition

λT (N) =
dΦ (x(N))

dx(N)

In summary, to find a control sequence u(k) that produces a minimum value of J , we must solve
the following discrete-time Euler-Lagrange (EL) equations

∂H(k)

∂x(k)
= λT (k)

∂H(k)

∂u(k)
= 0

λT (N) =
dΦ (x(N))

dx(N)

x(0) = x0 a known initial condition

where the discrete-time Hamiltonian is

H =
1

2

{
[Cx(k)− r(k)]T Q [Cx(k)− r(k)] + u(k)TRu(k)

}
+ λ(k + 1)T [Gx(k) +Hu(k)]

and

Φ (x(N)) =
1

2
[Cx(N)− r(N)]T Qf [Cx(N)− r(N)]

This is known as a two point boundary value problem, since we have a boundary value at the
initial time (x(0)) and a boundary value at the end time (λ(N)). In general these are very
difficult to solve analytically, and a computer solution is required. For our particular problem
we will be able to general a recursive relationship that must be solved to determine the solution.

11.2 Derivation of Recursive Relationships

At this point, we need to use the Euler-Lagrange equations to determine the solution to our
problem. First we need to expand out our expression for H(k),

H =
1

2

{
[Cx(k)− r(k)]T Q [Cx(k)− r(k)] + u(k)TRu(k)

}
+ λ(k + 1)T [Gx(k) +Hu(k)]

=
1

2
xT (k)CTQCx(k)− xT (k)CTQr(k) + λT (k + 1)Gx(k) +

1

2
uT (k)Ru(k)

+λT (k + 1)Hu(k) + rT (k)Qr(k)

161

Then
∂H(k)

∂x(k)
= xT (k)CTQC − rT (k)QC + λT (k + 1)G = λT (k)

or
λ(k) = CTQCx(k)− CTQr(k) +GTλ(k + 1)

At this point we have a recursive relationship between the λ’s. We then have the boundary
condition

λ(N)T =
dΦ (x(N))

dx(N)

=
d

dx(N)

{
1

2

[
x(N)TCT − r(N)T

]
Qf [Cx(N)− r(N)]

}
=

d

dx(N)

[
1

2
x(N)TCTQfCx(N)− r(N)TQfCx(N) +

1

2
Qfr(N)

]
= xT (N)CTQfC − r(N)TQfC

or
λ(N) = CTQfCx(N)− CTQfr(N)

Our last condition is given by the remaining Euler-Lagrange equation,

0 =
∂H(k)

∂u(k)
= uT (k)R + λT (k + 1)H

or
Ru(k) +HTλ(k + 1) = 0

which leads to
u(k) = −R−1HTλ(k + 1)

At this point we do not have particularly useful results, so we are going to have to do some
algebra and apply a trick or two. We will derive some equations that seem to be getting worse
than when we started, but then they will simplify and lead to useful recurrence relationships.
We can write the state equations as

x(k + 1) = Gx(k) +Hu(k) = Gx(k) +H
{
R−1HTλ(k + 1)

}
= Gx(k)−HR−1HTλ(k + 1)

Next, let’s assume λ(k) = S(k)x(k)− v(k) for some functions S(k) and v(k) to be determined.
We then have

x(k + 1) = Gx(k)−HR−1HT {S(k + 1)x(k + 1)− v(k + 1)}

or [
I +HR−1HTS(k + 1)

]
x(k + 1) = Gx(k) +HR−1HTv(k + 1)

If we define
∆(k) =

[
I +HR−1HTS(k + 1)

]−1

then we have
x(k + 1) = ∆(k)Gx(k) + ∆(k)HR−1HTv(k + 1)

162

We also have

λ(k) = S(k)x(k)− v(k) = CTQCx(k)− CTQr(k) +GT {S(k + 1)x(k + 1)− v(k + 1)}

or

S(k)x(k)−v(k) = CTQCx(k)+GTS(k+1)
{
∆(k)Gx(k) + ∆(k)HR−1HTv(k + 1)

}
−GTv(k+1)−CTQr(k)

Rearranging this expression we get{
−S(k) +GTS(k + 1)∆(k)G+ CTQC

}
x(k)

+
{
v(k) +GTS(k + 1)∆(k)HR−1HTv(k + 1)−GTv(k + 1)− CTQr(k)

}
= 0

This expression must be true for all x(k), which means each of the terms in brackets must be
zero, so we have

S(k) = GTS(k + 1)∆(k)G+ CTQC

v(k) =
[
−GTS(k + 1)∆(k)HR−1HT +GT

]
v(k + 1) + CTQr(k)

∆(k) =
[
I +HR−1HTS(k + 1)

]−1

These are the recursive equations we need. If we know S(k + 1) and v(k + 1) we can determine
S(k) and v(k). However, we need a starting condition. To get the starting condition, we use

λ(N) = S(N)x(N)− v(N) = CTQfCx(N)− CTQfr(N)

so we have the starting conditions

S(N) = CTQfC

V (N) = CTQfr(N)

Finally, we want to put our results in a control law we can use. We have

u(k) = −R−1HTλ(k + 1)

Ru(k) = −HTλ(k + 1)

= −HT {S(k + 1)x(k + 1)− v(k + 1)}
= −HT {S(k + 1) [Gx(k) +Hu(k)]− v(k + 1)}
= −HTS(k + 1)Gx(k)−HTS(k + 1)Hu(k) +HTv(k + 1)[

R +HTS(k + 1)H
]
u(k) = −HTS(k + 1)Gx(k) +HTv(k + 1)

u(k) = −
[
R +HTS(k + 1)H

]−1
HTS(k + 1)Gx(k)

+
[
R +HTS(k + 1)H

]−1
HTv(k + 1)

= −K(k)x(k) + uf (k)

The time-varying feedback matrix K(k) is given by

K(k) =
[
R +HTS(k + 1)H

]−1
HTS(k + 1)G

163

y(k)+

-

Σ G
p
(z)

K(k)

u
f
(k)

x(k)

C

Figure 47: Structure for use with the LQR optimal system. Note that the signal we are trying
to track is known in advance.

and the feedforward control uf (k) is given by

uf (k) =
[
R +HTS(k + 1)H

]−1
HTv(k + 1)

The basic structure for this system is shown in Figure 11.2.

Before giving some examples in the next section, we should summarize. The signal we are trying
to track, r(k) is known in advance from k = 0 to k = N . From this information, and knowledge
of C and Qf , we can compute (in advance) the values for S(N) and V (N). From these values,
we can use the recursive relationships we have derived to compute s(k) and v(k) for all required
k. Finally we can compute K(k) and uf (k) and implement the control law. Normally you guess
some values for R, Q, and Qf and then simulate the system to get the desired response using
an intelligent guess and check sort of method. At this point you should be aware that there is
on very serious potential problem with what we have done. This method assumes our model of
the plant is very accurate and there is no noise or external disturbances in the system.

11.3 Examples

In this section we present some results of the optimal tracker algorithm for the discrete-time
system modeled by the equation

x1(k)
v1(k)
x2(k)
v2(k)

 =


0.4964 0.0391 0.5153 0.0095

−15.5298 0.4361 14.7498 0.5022
0.4452 0.0082 0.3068 0.0358
12.7738 0.4326 −21.0039 0.2572



x1(k)
v1(k)
x2(k)
v2(k)

+


4.0181
142.8037
0.3955
29.8022

u(k)

y(k) =
[
0 0 1 0

] 
x1(k)
v1(k)
x2(k)
v2(k)


The sample interval is Ts = 0.05 seconds and we are trying to track the input signal from t = 0
until t = 2.0 seconds. Again, we assume this input signal is known in advance.

Figure 48 shows the values of each state as well as the control signal (u) and feedforward signal
(uf) for an input of r(k) = 1.0 for Q = 0.001, Qf = 0.001 and R = 0.1. Figure 49 shows the

164

0 0.5 1 1.5 2
0

0.5

1

1.5

Time (sec)

x 1

0 0.5 1 1.5 2
−10

−5

0

5

10

Time (sec)

v 1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Time (sec)

x 2

Q
f
 = 0.001, Q = 0.001, R = 0.1

Input
Output

0 0.5 1 1.5 2
−10

−5

0

5

10

Time (sec)
v 2

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

Time (sec)

u f

0 0.5 1 1.5 2
0

0.02

0.04

0.06

Time (sec)

u

Figure 48: Pathetic tracking of a unit step signal.

corresponding values of the feedback gains (K(k)). Clearly we are not tracking the input signal
very well, but then again we weren’t trying yet either!

We next adjust the weights so the output of the system matches the reference signal at the end
of the interval. If we only want to match at the end of the interval, we will usually just adjust
the value of Qf . Figure 50 shows the values of each state as well as the control signal (u) and
feedforward signal (uf) for our input of r(k) = 1.0 for Q = 0.001, Qf = 0.01 and R = 0.1.
Figure 51 shows the corresponding values of the feedback gains (K(k)). Clearly we are doing a
much better job of matching the value of the reference signal at the end of the interval. Note
that both the feedforward control signal (uf) and the feedback gains are fairly constant until
near the end of the interval.

Next we try and track the reference signal across the whole interval. We will start by adjusting
the value of Q, and returning Qf to its original value. Figure 52 shows the values of each state

165

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03

Time (sec)

k 1

0 0.5 1 1.5 2
0

1

2

3

4
x 10

−3

Time (sec)

k 2

0 0.5 1 1.5 2
−0.01

−0.005

0

0.005

0.01

0.015

Time (sec)

k 3

0 0.5 1 1.5 2
0

0.5

1

1.5

2
x 10

−3

Time (sec)

k 4

Figure 49: Time-varying feedback gains for the pathetic tracking of a unit step signal.

166

0 0.5 1 1.5 2
0

0.5

1

1.5

Time (sec)

x 1

0 0.5 1 1.5 2
−10

−5

0

5

10

Time (sec)

v 1

0 0.5 1 1.5 2
0

0.5

1

Time (sec)
x 2

Q
f
 = 0.01, Q = 0.001, R = 0.1

Input
Output

0 0.5 1 1.5 2
−5

0

5

10

Time (sec)

v 2

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

Time (sec)

u f

0 0.5 1 1.5 2
0

0.02

0.04

0.06

Time (sec)

u

Figure 50: Matching the value of the reference signal at the end of the interval.

167

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

Time (sec)

k 1

0 0.5 1 1.5 2
0

1

2

3

4

5

6
x 10

−3

Time (sec)

k 2

0 0.5 1 1.5 2
−0.06

−0.04

−0.02

0

0.02

Time (sec)

k 3

0 0.5 1 1.5 2
0

1

2

3

4

5
x 10

−3

Time (sec)

k 4

Figure 51: Time-varying feedback gains for matching the value of the reference signal at the
end of the interval.

168

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Time (sec)

x 1

0 0.5 1 1.5 2
−20

0

20

40

Time (sec)

v 1

0 0.5 1 1.5 2
0

0.5

1

1.5

Time (sec)

x 2

Q
f
 = 0.001, Q = 0.1, R = 0.1

Input
Output

0 0.5 1 1.5 2
−10

0

10

20

Time (sec)

v 2

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

Time (sec)

u f

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

Time (sec)

u

Figure 52: Tracking of a unit step signal across much of the interval.

and the control signals, and Figure 53 shows the corresponding values of the feedback gains for
Q = 0.1, Qf = 0.001 and R = 0.1. Figure 53 shows the corresponding values of the feedback
gains (K(k)). Clearly we are doing a much better job of matching the value of the reference
signal throughout the interval, however we are off a bit at the end of the interval. Note that
both the feedforward control signal (uf) and the feedback gains are fairly constant until near
the end of the interval.

Figures 54 and 55 shows the results after modifying Qf so we track the reference signal across
the interval and match it fairly well at the end of the interval. Figures 56 shows the results when
we use a constant feedback gain matrix. This is much easier to implement than a time-varying
feedback gain matrix, and the performance for this application is nearly the same except at the
end of the interval. In fact, if you were to use the dlqry command in Matlab with the same
weights we used,

dlqry(H,G,C,D,Q,R)

Matlab produces the constant feedback gains 0.1096, 0.0083, -0.0384, and -0.0043, which are
nearly the same (within numerical accuracy) feedback gains we obtained. Note that if you know

169

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

Time (sec)

k 1

0 0.5 1 1.5 2
0

0.002

0.004

0.006

0.008

0.01

Time (sec)

k 2

0 0.5 1 1.5 2
−0.1

−0.05

0

0.05

0.1

Time (sec)

k 3

0 0.5 1 1.5 2
0

0.002

0.004

0.006

0.008

0.01

0.012

Time (sec)

k 4

Figure 53: Time-varying feedback gains for tracking a unit step signal across much of the interval.

170

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Time (sec)

x 1

0 0.5 1 1.5 2
−20

0

20

40

Time (sec)

v 1

0 0.5 1 1.5 2
0

0.5

1

1.5

Time (sec)

x 2

Q
f
 = 0.1, Q = 0.1, R = 0.1

Input
Output

0 0.5 1 1.5 2
−10

0

10

20

Time (sec)

v 2

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

Time (sec)

u f

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

Time (sec)

u

Figure 54: Tracking of a unit step signal across the interval and matching at the end of the
interval.

you only want to use the constant feedback gains, you can make some simplifications to our
derivation. In addition, Matlab does not allow for the final weight Qf that our derivation does.

Finally, if we look at a sinusoidal input, as shown in Figure 57 (using constant feedback gains).
What is most interesting and important to note about this results is to notice that both the
feedforward control signal (uf) and the control signal (u) lead the signal we want to track.
Nearly all real systems will have a delay in them and not be able to accurately track a reference
input without a delay. We are able to do this only because we know the input signal (r(k)) in
advance.

171

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

Time (sec)

k 1

0 0.5 1 1.5 2
0

0.002

0.004

0.006

0.008

0.01

Time (sec)

k 2

0 0.5 1 1.5 2
−0.1

−0.05

0

0.05

0.1

0.15

Time (sec)

k 3

0 0.5 1 1.5 2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time (sec)

k 4

Figure 55: Time-varying feedback gains for tracking a unit step signal across the interval and
matching at the end of the interval.

172

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Time (sec)

x 1

0 0.5 1 1.5 2
−40

−20

0

20

40

Time (sec)

v 1

0 0.5 1 1.5 2
0

0.5

1

1.5

Time (sec)
x 2

Q
f
 = 0.1, Q = 0.1, R = 0.1

Input
Output

0 0.5 1 1.5 2
−10

0

10

20

Time (sec)

v 2

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

Time (sec)

u f

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

Time (sec)

u

Figure 56: Same system as in Figure 54 only we are using the constant gains instead of time-
varying gains.

173

0 0.5 1 1.5 2
−2

−1

0

1

2

Time (sec)

x 1

0 0.5 1 1.5 2
−40

−20

0

20

40

Time (sec)

v 1

0 0.5 1 1.5 2
−4

−2

0

2

Time (sec)
x 2

Q
f
 = 0.1, Q = 0.1, R = 0.1

Input
Output

0 0.5 1 1.5 2
−40

−20

0

20

40

Time (sec)

v 2

0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

Time (sec)

u f

0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

Time (sec)

u

Figure 57: Tracking a sinusoid with constant gains. Note that both the feedforward control and
control signal lead the known input.

174

