ECE-320, Quiz #3

Problems 1-3 refer to the following root locus plot for a unity feedback system with a plant and a controller.

Based on this root locus plot, the best estimate of the poles of the closed loop system are
a) -0.3+j7, -0.3-j7, -0.6 b) 1+j2, 1-j2, and -3

2) Is this a type one system? a) yes b) no

3) Is this a stable system for all values of the gain k? a) yes b) no

4) Consider the following root locus plot for a plant and controller in a unity feedback configuration.

If we want the system to be stable, should we

a) increase the gain b) decrease the gain c) do nothing

Mailbox _____

Problems 5-10 refer to the following feedback system with plant $G_p(s) = \frac{1}{(s+3)(s+4)}$

5) If we use a proportional controller $G_c(s) = k_p$ will the system remain stable for all positive values of k_p ?

a) yes b) no

6) If we use a proportional controller $G_c(s) = k_p$ is there any value of k_p for which the settling time is less than 0.5 seconds?

a) yes b) no

7) If we use an integral controller $G_c(s) = \frac{k_i}{s}$ will the system remain stable for all positive values of k_i ?

a) yes b) no

8) If we use an integral controller $G_c(s) = \frac{k_i}{s}$ is there any value of k_i for which the settling time is less than 0.5 seconds?

a) yes b) no

9) For which of the following PID controllers will the settling time be smaller as $k \to \infty$

a)
$$G_c(s) = \frac{k(s+2+j)(s+2-j)}{s}$$
 b) $G_c(s) = \frac{k(s+4+2j)(s+4-2j)}{s}$
c) the results will be the same

10) For which of the following PD controllers will the settling time be smaller as $k \to \infty$ a) $G_c(s) = k(s+5)$ b) $G_c(s) = k(s+10)$ c) the results will be the same 11) The standard form for a PID controller is

 $G_c(s) = k_p + \frac{k_i}{s} + k_d s$ For the following PID controller $G_c(s) = \frac{5(s^2 + 2s + 1)}{s}$ determine k_p , k_i , and k_d

For your ease, assume the form of convolution $y(n) = \sum_{k=-\infty}^{k=\infty} x(k)h(n-k)$ in all of the following problems.

12) The finite summation $S_N = \sum_{k=0}^N a^k$ is equal to a) $\frac{1-a^N}{1-a}$ b) $\frac{1-a^{N-1}}{1-a}$ c) $\frac{1-a^{N+1}}{1-a}$ d) $\frac{1+a^{N+1}}{1-a}$ e) none of these

13) The finite summation
$$S = \sum_{k=-1}^{N+2} a^k$$
 is equal to
a) $a^{-1} \frac{1-a^{N+3}}{1-a}$ b) $a^1 \left(\frac{1-a^{N+4}}{1-a}\right)$ c) $a^{-1} \left(\frac{1-a^{N+4}}{1-a}\right)$ d) $a^{-1} \left(\frac{1-a^{N-4}}{1-a}\right)$ e) none of these

14) For a discrete time system, $\delta(0)$ is equal to

a) 0 b) 1 c) ∞ d) it is not defined

15) If an LTI system with impulse response $h(n) = 4^{n-1}u(n-1)$ has input $x(n) = \delta(n)$, the output of the system is

a)
$$y(n) = 4^{n-1}u(n-1)\delta(n)$$
 b) $y(n) = 4^{n-1}u(n)$ c) $y(n) = 4^{n-1}u(n-1)$ d) none of these

16) If an LTI system with impulse response $h(n) = 3^{n+1}u(n)$ has input $x(n) = 3\delta(n-1)$, the output of the system is

a)
$$y(n) = 3^{n+1}u(n-1)$$
 b) $y(n) = 3^n u(n-1)$ c) $y(n) = 3^n u(n)$ d) none of these

Mailbox _____

17) If an LTI system with impulse response $h(n) = 2^{n-1}u(n-1)$ has input $x(n) = 2\delta(n-1)$, the output of the system is

a) $y(n) = 2^{n-2}u(n-2)$ b) $y(n) = 2^n u(n-2)$ c) $y(n) = 2^{n-1}u(n-2)$ d) none of these

18) If an LTI system with impulse response $h(n) = 3\delta(n-1)$ has input $x(n) = 2\delta(n-1)$, the output of the system is

a) $y(n) = 3 \times 2u(n-2)$ b) $y(n) = 3 \times 2\delta(n-1)$ c) $y(n) = 3 \times 2\delta(n-2)$ d) none of these

19) If an LTI system with impulse response $h(n) = 3^n u(n)$ has input x(n) = u(n), the output of the system is

a)
$$y(n) = 3^n u(n)$$
 b) $y(n) = 3^{n+1}u(n)$ c) $y(n) = \frac{1-3^{n+1}}{1-3}u(n)$ d) $y(n) = \frac{1-3^{n-1}}{1-3}u(n)$

e) none of these

20) If an LTI system with impulse response $h(n) = 3^n u(n)$ has input $x(n) = 2^n u(n)$, the output of the system is

a)
$$y(n) = 3^{n} 2^{n} u(n)$$
 b) $y(n) = 3^{n} \frac{1 - \left(\frac{2}{3}\right)^{n+1}}{1 - \frac{2}{3}} u(n)$ c) $y(n) = 2^{n} \frac{1 - \left(\frac{3}{2}\right)^{n+1}}{1 - \frac{3}{2}} u(n)$
d) $y(n) = \left[\frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}}\right] \left[\frac{1 - \left(\frac{1}{3}\right)^{n+1}}{1 - \frac{1}{3}}\right] u(n)$ e) none of these

21) The sum
$$S = \sum_{k=0}^{\infty} a^k$$
 will converge provided
a) $|a| > 1$ b) $|a| < 1$

22) If the sum
$$S = \sum_{k=0}^{\infty} a^k$$
 converges, it is equal to
a) $\frac{1}{1+a}$ b) $\frac{1}{1-a}$ c) $\frac{a}{1-a}$ d) $\frac{a}{1+a}$ e) none of these

Root Locus Construction

Once each pole has been paired with a zero, we are done

1. Loci Branches

 $\underset{k=0}{poles} \rightarrow \underset{k=\infty}{zeros}$

Continuous curves, which comprise the locus, start at each of the *n* poles of G(s) for which k = 0. As k approaches ∞ , the branches of the locus approach the *m* zeros of G(s). Locus branches for excess poles extend to infinity.

The root locus is symmetric about the real axis.

2. Real Axis Segments

The root locus includes all points along the real axis to the left of an odd number of poles plus zeros of G(s).

3. Asymptotic Angles

As $k \to \infty$, the branches of the locus become asymptotic to straight lines with angles

$$\theta = \frac{180^\circ + i360^\circ}{n-m}, i = 0, \pm 1, \pm 2, ..$$

until all (n-m) angles not differing by multiples of 360° are obtained. *n* is the number of poles of G(s) and *m* is the number of zeros of G(s).

4. Centroid of the Asymptotes

The starting point on the real axis from which the asymptotic lines radiate is given by

$$\sigma_c = \frac{\sum_i p_i - \sum_j z_j}{n - m}$$

where p_i is the i^{th} pole of G(s), z_j is the j^{th} zero of G(s), n is the number of poles of G(s) and m is the number of zeros of G(s). This point is termed the *centroid of the asymptotes*.

5. Leaving/Entering the Real Axis

When two branches of the root locus leave or enter the real axis, they usually do so at angles of $\pm 90^{\circ}$.