ECE-320 Quiz #1

Problems 1 and 2 refer to the impulse responses of six different systems given below:

$$h_1(t) = [t + e^{-t}] u(t)$$

$$h_2(t) = e^{-2t} u(t)$$

$$h_3(t) = [2 + \sin(t)] u(t)$$

$$h_4(t) = [1 - t^3 e^{-0.1t}] u(t)$$

$$h_5(t) = [1 + t + e^{-t}] u(t)$$

$$h_6(t) = [te^{-t} \cos(5t) + e^{-2t} \sin(3t)] u(t)$$

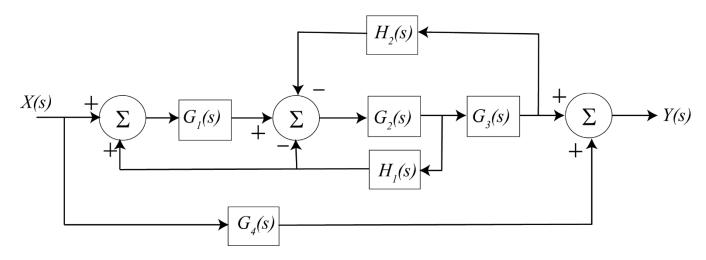
- 1) The number of stable systems is
- a) 0 b) 1 c) 2 d) 3
- 2) The number of **unstable systems** is
- a) 0 b) 1 c) 2 d) 3
- 3) Which of the following transfer functions represents a **stable** system?

$$G_a(s) = \frac{s-1}{s+1} \qquad G_b(s) = \frac{1}{s(s+1)} \qquad G_c(s) = \frac{s}{s^2 - 1}$$

$$G_d(s) = \frac{s+1}{(s+1+i)(s+1-i)} \qquad G_e(s) = \frac{(s-1-j)(s-1+j)}{s} \qquad G_f(s) = \frac{(s-1-j)(s-1+j)}{(s+1-i)(s+1+i)}$$

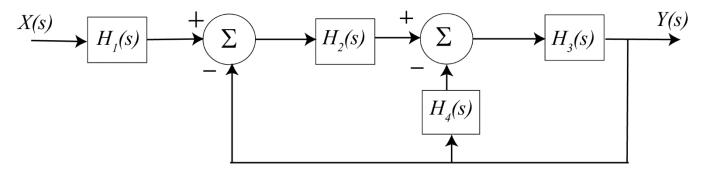
- a) all but $\,G_{\!c}\,\,$ b) only $\,G_{\!a}\,,\,\,G_{\!b}\,,$ and $\,G_{\!d}\,\,$ c) only $\,G_{\!a}\,,\,\,G_{\!d}\,,$ and $\,G_{\!f}\,$
- d) only G_d and G_f

e) only G_a and G_d


Problems 4 and 5 refer to the following transfer function

$$H(s) = \frac{2s+1}{(s+2)^2+1}$$

- 4) For this transfer function, the corresponding impulse response h(t) is composed of which terms?
- a) $e^{-t}\cos(2t)$, $e^{-t}\sin(2t)$ b) $e^{-2t}\cos(t)$, $e^{-2t}\sin(t)$
- c) $e^{-t}\cos(4t)$, $e^{-t}\sin(4t)$ d) $e^{-4t}\cos(t)$, $e^{-4t}\sin(t)$
- 5) The **poles** of the transfer function are
- a) $2 \pm i$
- b) $-2 \pm i$
- c) $-1 \pm 2i$ d) $-1 \pm 4i$


Name______ Mailbox_____

Problems 6 - 8 refer to the signal flow graph representation of the following block diagram.

- **6)** How many **paths** are there? a) 0 b) 1 c) 2 d) 3 e) 4
- 7) How man **loops** are there? a) 0 b) 1 c) 2 d) 3 e) 4
- **8)** Are any of the **cofactors** equal to 1? a) yes b) no

For problems 9 - 12 consider the signal flow graph representation of the following block diagram.

- **9)** How many **paths** are there? a) 0 b) 1 c) 2 d) 3 e) 4
- **10)** How many **loops** are there? a) 0 b) 1 c) 2 d) 3 e) 4
- **11)** The **determinant** (Δ) is a) 1 b) $1 H_2H_3 H_3H_4$ c) $1 + H_2H_3 + H_3H_4$ d) none of these
- **12)** The **transfer function** is a) 1 b) $\frac{H_1H_2H_3}{1-H_2H_3-H_3H_4}$ c) $\frac{H_1H_2H_3}{1+H_2H_3+H_3H_4}$