ECE-320, Practice Quiz #2

Problems 1 and 2 refer to a system with poles at -2+5j. -2-5j. -10+j, -10-j, and -20

- 1) The best estimate of the <u>settling time</u> for this system is
- a) 2 seconds b) 0.4 seconds c) 4/5 seconds d) 0.2 seconds
- 2) The <u>dominant pole(s)</u> of this system are a) -2+5j and -2-5j b) -10+j and -10-j c) -20

Problems 3 and 4 refer to the **unit step response** of a system, shown below

- 3) The best estimate of the steady state error for a unit step input is a) 0.2 b) -0.2 c) 1.0 d) -0.0
- 4) The best estimate of the **percent overshoot** is a) 200% b) 100% c) 67% d) 20%
- 5) The unit step response of a system is given by $y(t) = 0.5u(t) tu(t) t^4 e^{-t} u(t) + e^{-t} u(t)$

The **steady state error** for a unit step input for this system is best estimated as

- a) ∞ b) 0.5 c) 2.0 d) -0.5 e) impossible to determine
- 6) The unit step response of a system is given by $y(t) = 0.5u(t) t^4 e^{-t} u(t) + e^{-t} u(t)$

The **steady state error** for a **unit step input** for this system is best estimated as

a) ∞ b) 0.5 c) 2.0 d) -0.5 e) impossible to determine

Problems 7 and 8 refer to the <u>unit step response</u> of a system, shown below

- 7) The best estimate of the steady state error for a unit step input is
- a) 0.2 b) -0.2 c) 0.3 d) 0.0 e) impossible to determine
- **8)** The best estimate of the **percent overshoot** is a) 75% b) 50% c) 40% d) 25%

9) The <u>unit ramp response</u> of a system is shown below:

The best estimate of the **steady state error** is a) 0.3 b) -0.3 c) 0 d) 0.5 e) -0.5

10) The <u>unit ramp response</u> of a system is shown below:

The best estimate of the **steady state error** is a) 0.75 b) -0.75 c) 1.5 d) -0.5

11) The <u>unit ramp response</u> of a system is given by $y(t) = -0.5u(t) + tu(t) + e^{-t}u(t)$.

The best estimate of the steady state error is

a) 0.5 b) 2.0 c) 1.0 d) ∞ e) -0.5

12) The <u>unit ramp response</u> of a system is given by $y(t) = -0.5u(t) - 2tu(t) + e^{-t}u(t)$

The best estimate of the steady state error is

a)
$$0.5$$
 b) 2.0 c) 1.0 d) ∞ e) -0.5

Problems 13 and 14 refer to the figure below, which shows the unit step response of a real 2nd order system and the unit step response of a second order model we are trying to match to the real system.

- 13) In order to make the model better match the real system, the *damping ratio* of the *model* should be
- a) increased
- b) decreased
- c) left alone
- d) impossible to determine
- 14) In order to make the model better match the real system, the *natural frequency* of the *model* should be
- a) increased
- b) decreased
- c) left alone d) impossible to determine

Problems 15-17 refer to the figure below, which shows the unit step response of a real 2nd order system and the unit step response of a second order model we are trying to match to the real system.

- 15) In order to make the model better match the real system, the **damping ratio** of the *model* should be
- a) increased
- b) decreased
- c) left alone
- d) impossible to determine
- **16**) In order to make the model better match the real system, the **natural frequency** of the **model** should be
- a) increased
- b) decreased
- c) left alone d) impossible to determine
- 17) In order to make the model better match the real system, the **static gain** of the **model** should be
- a) increased
- b) decreased
- c) left alone d) impossible to determine

18) For the following system

the pole of the controller $G_c(s)$ is at -15 the poles of the plant $G_p(s)$ are at -1 and -2 the poles of the closed loop system are at -7.1, -5.43 +3.98j, -5.43 -3.98j

The best estimate of the settling time of the closed loop system is

a) 4 seconds b) 4/15 seconds c) 4/7.1 seconds d) 4/5.r3 seconds

- 19) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?
- a) $T_s \le 1$ b) $T_s \ge 1$ c) $T_s \ge 4$ d) $T_s \le 4$ e) none of these

- 20) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?

- a) $T_p \le 1$ b) $T_p \ge 1$ c) $T_p \ge \pi$ d) $T_p \le \pi$ e) none of these

21) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?

a)
$$PO \ge 20\%$$
 b) $PO \le 20\%$

22) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?

a)
$$T_s \le 1$$
 b) $T_s \ge 1$ c) $T_s \ge 4$ d) $T_s \le 4$ e) none of these

c)
$$T_s \ge 4$$

d)
$$T_s \leq 4$$

- **23**) Assuming we are allowed to place our poles only in the (dark) shaded areas, which of the following two shaded regions will in general result in a **smaller settling time** for our system?
- a) the region in the top figure b) the region in the bottom figure

-4

-5 ' -8

-6

-5

-4

Real Axis

-3

-2

-1

- **24)** Assuming we are allowed to place our poles only in the (dark) shaded areas, which of the following two shaded regions will in general result in a **smaller time to peak** for our system?
- a) the region in the top figure b) the region in the bottom figure

25) One of the shaded regions below shows the possible pole locations for a percent overshoot less than 10%, and the other shows the possible pole locations for a percent overshoot less than 20%. Which of the two graphs shows the possible pole locations for a percent overshoot less than 20%?

a) the region in the top figure b) the region in the bottom figure

Problems 26-28 refer to the following system, where $G_p(s) = \frac{2}{s+3}$ and $G_c(s) = k$

- **26)** For this system, the position error constant, K_p , is
- a) k b) $\frac{k}{3}$ c) $\frac{2k}{3}$ d) none of these
- 27) The steady state error for a unit step input is

a)
$$e_{ss} = 0$$
 b) $e_{ss} = \frac{1}{k}$ c) $e_{ss} = \frac{1}{1+k}$ d) $e_{ss} = \frac{3}{k}$ e) $e_{ss} = \frac{3}{3+k}$ f) $e_{ss} = \frac{3}{2k}$ g) none of these

28) The (2%) settling time for this system is

a)
$$T_s = \frac{4}{1+2k}$$
 b) $T_s = \frac{4}{3+2k}$ c) $T_s = \frac{4}{2+3k}$ d) none of these

- **29)** For the block diagram below, the value of the prefilter G_{pf} that produces zero **steady state error** for a unit step input is:
- a) 1 b) 3/2 c) 3 d) 1/3

Problems 30-32 refer to the following system:

- **30)** Assuming the prefilter G_{pf} is 1, the **position error constant** K_p is best approximated as
- a) 2/3 b) 2/5 c) 1 d) 0
- 31) Assuming the prefilter G_{pf} is 1, the steady state error for a unit step is best approximated as
- a) 1/3 b) 3/2 c) 3/5 d) 2/5
- 32) The value of the prefilter G_{pf} that produces a steady state error of zero is:
- a) 1 b) 3/2 c) 5/2 d) 1/3

Problems 33-35 refer to the following system

- 33) Assuming the prefilter G_{pf} is 1, the velocity error constant K_{v} is best approximated as
- a) 2/3 b) 2/5 c) 1 d) 0
- 34) Assuming the prefilter G_{pf} is 1, the steady state error for a unit ramp input is best approximated as
- a) 1/3 b) 3/2 c) 3/5 d) 2/5
- 35) Assuming the prefilter G_{pf} is 1, the steady state error for a unit step input is best approximated as
- a) ∞ b) 0 c) 3/5 d) 2/5

Problems 36-38 refer to the following system:

- **36)** Assuming the prefilter G_{pf} is 1, the **position error constant** K_p is best approximated as
- a) 2/3 b) 1/3 c) 1 d) 0
- 37) Assuming the prefilter G_{pf} is 1, the steady state error for a unit step is best approximated as
- a) 1/3 b) 2/3 c) 3/4 d) 4/3
- 38) The value of the prefilter G_{pf} that produces a steady state error of zero is:
- a) 1 b) 3/2 c) 4 d) 1/3

Problems 39-41 refer to the following system

- **39)** Assuming the prefilter G_{pf} is 1, the **velocity error constant** K_{v} is best approximated as
- a) 2/3 b) 2 c) 1 d) 0
- **40**) Assuming the prefilter G_{pf} is 1, the **steady state error** for a unit ramp input is best approximated as
- a) 1/2 b) 3/2 c) 2 d) 2/5
- 41) Assuming the prefilter G_{pf} is 1, the steady state error for a unit step input is best approximated as
- a) ∞ b) 0 c) 3/5 d) 2

Answers: 1-a, 2-a, 3-b, 4-c, 5-a, 6-b, 7-a, 8-a, 9-a, 10-b, 11-a, 12-d, 13-b, 14-a, 15-a, 16-a, 17-b, 18-d, 19-d, 20-d, 21-b, 22-a, 23-a, 24-a, 25-a, 26-c, 27-g, 28-b, 29-a, 30-a, 31-c, 32-c, 33-a, 34-b, 35-b, 36-b, 37-c, 38-c, 39-b, 40-a, 41-b