
1  

ECE-320: Linear Control Systems 

Homework 6 

 

Due: Monday April 25 at the beginning of class 

1)  Consider a system with closed loop transfer function ( )
p

o

p

k
G s

s k






 
.  The nominal values for the 

parameters are 1pk   and 2  . 

 

a) Determine an expression for the sensitivity of the closed loop system to variations in 
pk . Your final 

answer should be written as numbers and the complex variable s. 

b) Determine an expression for the sensitivity of the closed loop system to variations in . Your final 

answer should be written as numbers and the complex variable s. 

c) Determine expressions for the magnitude of the sensitivity functions in terms of frequency,   

d) As   the system is more sensitive to which of the two parameters? 

 

2) Consider the plant  
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where 3 is the nominal value of 0  and 0.5 is the nominal value of 1 . In this problem we will 

investigate the sensitivity of closed loop systems with various types of controllers to these two 

parameters. We will assume we want the settling time of our system to be 0.5 seconds and the steady 

state error for a unit step input to be less than 0.1. 

 

a)  (ITAE Model Matching) Since this is a first order system, we will use the first order ITAE model, 

( ) o
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o

G s
s
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i) For what value of o will we meet the settling time requirements and the steady state error 

requirements? 

 

ii) Determine the corresponding controller ( )cG s . 

 

iii) Show that the closed loop transfer function (using the parameterized form of ( )pG s  and the 

controller from part ii) is 
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iv) Show that the sensitivity of ( )oG s to variations in 0  is given by 0

0 8

G s
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s
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
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v) Show that the sensitivity of ( )oG s to variations in 
1  is given by  
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b) (Proportional Control) Consider a proportional controller, with 2.5pk  . 

 

i) Show that the closed loop transfer function is 0
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ii) Show that the sensitivity of ( )oG s to variations in 0  is given by  0
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iii) Show that the sensitivity of ( )oG s to variations in 
1  is given by  
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c) (Proportional+Integral Control) Consider a PI controller with 4pk   and 40ik  . 

 

i) Show that the closed loop transfer function is 0
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ii) Show that the sensitivity of ( )oG s to variations in 0  is given by  0
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iii) Show that the sensitivity of ( )oG s to variations in 1  is given by 
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d) Using Matlab, simulate the unit step response of each type of controller. Plot all responses on one 

graph. Use different line types and a legend. Turn in your plot and code. Do not make separate graphs 

for each system! 

 

e) Using Matlab and subplot, plot the sensitivity to 0  for each type of controller on one graph at the 

top of the page, and the sensitivity to 1  on one graph on the bottom of the page. Be sure to use 

different line types and a legend.  Turn in your plot and code. Only plot up to about 8 Hz (50 rad/sec) 

using a semilog scale with the sensitivity in dB (see next page). Do not make separate graphs for each 

system! 

 

In particular, these results should show you that the model matching method, which essentially tries and 

cancel the plant, are generally more sensitive to getting the plant parameters correct than the PI  

controller for low frequencies. However, for higher frequencies the methods are all about the same.  

Hint: If 
2

2
( )

2 10

s
T s

s s


 
,  plot the magnitude of the frequency response using: 

 

T = tf([2 0],[1 2 10]); 

w = logspace(-1,1.7,1000); 

[M,P]= bode(T,w); 

Mdb = 20*log10(M(:)); 

semilogx(w,Mdb); grid; 
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xlabel('Frequency (rad/sec)'); 

ylabel('dB'); 

 

3) Assume ( ) 3 2cos(2 3)x t t    is the input to an LTI system with transfer function  
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The steady state output will be 

a) ( ) 6 4cos(2 5)y t t           b) ( ) 4cos(2 5)y t t        c) ( ) [3 2cos(2 3)][2 ]jy t t e     

d) 2( ) 6 4cos(2 3) jy t t e     e) ( ) 3 4cos(2 5)y t t     f) none of these 

4) Assume ( ) 2 sin(5 ) 3cos(8 30 )ox t t t     is the input to an LTI system with transfer function shown 

below 

 

The steady state output of this system will be 

a) ( ) 20 5sin(5 9 ) 6cos(8 90 0 )o oy t t t        b) ( ) 2 5sin(5 90 ) 6cos(8 90 )o oy t t t     

c) ( ) 20 5sin(5 90 ) 6cos(8 120 )o oy t tt     d) ( ) 10 5sin(5 90 ) 6cos(8 120 )o oy t tt     

e)  none of these 
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Problems 5 and 6 refer to a system whose frequency response is represented by the Bode plot below  

.  

5) If the input to the system is cos(10 3 )( ) 5 0otx t  , then the steady state output is best estimated as 

a) ( ) 0ssy t                                   b) cos(10 3) 5 0 )( o

ssy t t      

c) cos(10 2) 5 0 )( o

ssy t t            d) cos(10 5) 5 0 )( o

ssy t t 
 

6) If the input to the system is ( ) 50si (10n 0 )x t t , then the steady state output is best estimated as 

a) ( ) 2000sin(100 100 )o

ssy t t       b) ( ) 0.5sin(100 100 )o

ssy t t   

c) ( ) 2000sin(100 100 )o

ssy t t        d) ( ) 5sin(100 100 )o

ssy t t    
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7)  For the straight line approximation to the magnitude portion of a Bode plot shown below, the best 

estimate of the corresponding transfer function is 
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8)  For the straight line approximation to the magnitude portion of a Bode plot shown below, the best 

estimate of the corresponding transfer function is 
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9) The following three figures display the magnitude of six transfer functions. All of the poles and zeros 

of these transfer functions are in the left half plane (these are minimum phase transfer functions). All of 

the magnitudes, poles, and zeros are either zero or simple powers of 10 ( etc). Estimate the 

transfer functions.  

 

Figure 1: Problem 9, Systems a and b 
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Figure 2: Problem 9, Systems c and d 
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Figure 3: Problem 9, Systems e and f 
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Answers:  

 

 

10) (We will be using this in lab 5!, You mostly just run code for this problem) Assume we have 

reason to believe that the plant we want to design a controller for has the form 

2

2 2
( )

2
 p

n n
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and we need to estimate the paramters K ,  , and n . 

Since we get transfer functions from LTI systems, one way to estimate these parameters is to 

experimentally construct a Bode plot of the system by using inputs of known frequencies and 

amplitudes, and then measuring the amplitude and time delay (phase shift) of the output. Once we have 

the data for a Bode plot, we try and optimize the transfer function parameters to provide the best fit to 

the data. If this brings back nightmares of the last two labs in ECE205, then that class was not a 

complete waste of your time. 

The Matlab program process_data_pendulum.m (from the class webpage) has some data collected for 

you for an experiment I did with the pendulum systems. Yout will be filling in the data for this program 

when you have your own system in the next lab. The first column is the input the frequency (in Hz), the 

second column is the input amplitude (0.087, in rad),  the final column is the average output amplitude 

(in rad).  Note that here we will only be estimating the magnitude portion of the Bode plot, so we are not 

concerned with the time delay (or phase change) between the intput and output. 

In the Matlab command window, type 

data = process_data_pendulum 

This will write to the array data, and write the frequency and gain at that frequency to the screen. 

Remember the frequency at which the maximum gain occurs. 

To estimate the parameters we need we will use the Matlab program model_pendulum.m (from the 

class website) which utilizes Matlab’s  fminsearch routine. The input arguments to 
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model_pendulum.m are the array data, the initial guess of the parameter K  (assume it is 1.0), the initial 

guess of the parameter   (assume it is 0.05), and the initial guess of the parameter n  (assume it is the 

frequency of the maximum gain, converted to radians/sec.) The program spits a bunch of incredibly 

useful information to the screen, and eventually produces a plot of the transfer function and the 

measured data. The title indicates the estimated values of the parameters. If the transfer function does 

not seem to match the measured data very well you may want to try different initial estimates of the 

parameters. 

Turn in your final plot once you think you have a good fit. 


